{"dp_type": "Project", "free_text": "Climate Change"}
[{"awards": "2422677 Hall, Brenda", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 29 Oct 2024 00:00:00 GMT", "description": "The future response of the East Antarctic Ice Sheet (EAIS) to climate change and its consequent effect on global sea level remains a pressing problem, with implications for societal well-being, the economy, and national security. Projections of future ice-sheet behavior rely in part on understanding gained from ice-sheet response to past climate change, which can be found in geologic records. This project uses geologic features produced at the base of the ice sheet to examine a large change in EAIS behavior and to place ages on when this change occurred. By comparison to climate records from the same time, the project results will allow assessment of ice-sheet response to a climate that likely was warmer than at present. Such information will improve understanding of possible ice-sheet responses to a warming climate, as well as the underlying mechanisms. A better assessment of the likely EAIS response to future warming climate will aid in setting national and international policy and improve public welfare, by promoting more accurate predictions of the amounts and rates of sea-level rise. This project will contribute to the education of young scientists, thereby increasing the STEM workforce, which is in the national interest. A general-audience book will be produced to explain the importance of Antarctica to the public.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica; GLACIAL LANDFORMS", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Erosional landscapes of the Transantarctic Mountains produced by East Antarctic subglacial water?", "uid": "p0010488", "west": null}, {"awards": "2317997 Keogh, Molly", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 17 Oct 2024 00:00:00 GMT", "description": "Climate change is disproportionately affecting polar regions, with the Arctic now warming nearly four times faster than the global average. Polar warming drives coastal erosion and increases sediment delivery to the coastal ocean, affecting ecosystem processes ranging from primary productivity to carbon sequestration. Tracking changes in sedimentation rate is urgently needed to determine current conditions and measure further change. In polar regions, however, two of the most globally reliable sediment tracers, the radioisotopes lead-210 (210Pb) and cesium-137 (137Cs), have yielded mixed results. To understand the distribution and usefulness of these radioisotopes at high latitudes, this research makes use of a wealth of polar sediment cores archived at the Oregon State University Marine and Geology Repository combined with data synthesized from the literature. Results provide the first systematic study of Arctic and Antarctic sediment accretion. Improving the tools we use to track changes in sedimentation will help coastal managers and decisionmakers understand how climate change is impacting polar coastlines and marine environments, and what local communities should expect in the future. Sediment cores will be subsampled and analyzed for the activities of 210Pb (half-life = 22.3 years) and 137Cs (half-life = 30.1 years) using alpha and gamma spectroscopy, respectively. To provide context related to depositional environment, select subsamples will also be analyzed for sediment bulk density, grain size distribution, and organic content. A subset of samples with no measurable 210Pb or 137Cs activity will be analyzed for 14C to determine whether the lack of radioisotopes in a sample is because the core is simply too old, the true surface layer is missing, or because the shorter-lived radioisotopes did not accumulate. By undertaking comprehensive spatial analysis of the distribution of 210Pb and 137Cs in Arctic and Antarctic sediments, this research will achieve three goals: first, measure the activity of short-lived radioisotopes in archived sediment cores, a service to the science community that is urgently needed before the isotopes decay beyond detection. Second, produce a comprehensive pole-wide atlas of sediment accretion rates. And finally, conduct a temporal analysis of sedimentation rate changes over the last ~60 to 125 years along the Beaufort Sea coast of northern Alaska, an ecologically and economically important region experiencing environmental transformation due to climate warming.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Alpha Spectrometry; Sediment Dynamics; Polar; SEDIMENTATION; MARINE SEDIMENTS; Pb-210; Geochronology; SEDIMENTS", "locations": "Polar", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel; Antarctic Earth Sciences", "paleo_time": null, "persons": "Keogh, Molly", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Postdoctoral Fellowship: OPP-PRF: Tracing Polar Sediments with Short-lived Radioisotopes in 75 years of Arctic and Antarctic Sediment Cores", "uid": "p0010484", "west": -180.0}, {"awards": "2336328 Larochelle, Stacy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 08 Oct 2024 00:00:00 GMT", "description": "Ice sheets lose ice mass through gravity-driven flow to the ocean where ice breaks into icebergs and melts, contributing to global sea level rise. Water commonly found at the base of ice sheets facilitates this process by lubricating the ice-rock interface. The recent discovery of vast, kilometer-thick groundwater reservoirs beneath the Antarctic Ice Sheet thus raises important questions about the potential impact of groundwater on ice flow. It has been hypothesized that groundwater flow to the ice-sheet bed may accelerate ice flow as the ice sheet shrinks in response to global warming. Evaluating this hypothesis is challenging due to poorly understood interactions between water, ice, and rock, but is crucial for anticipating the response of ice sheets and sea level to climate change. Understanding how groundwater responds to a changing ice sheet also has important implications for the heat, chemical elements, and microorganisms it stores and transports.\u003cbr/\u003e\u003cbr/\u003eTo assess the impact of groundwater processes on ice dynamics, a new idealized modeling framework will be developed, incorporating several novel hydromechanical couplings between ice sheets, subglacial drainage systems, and groundwater aquifers. This framework will enable testing the hypotheses that (1) aquifers decelerate ice mass loss in the absence of a well-developed subglacial drainage system, but that (2) an efficient, channelized drainage system can reduce and even reverse this decelerating effect, and that (3) the impact of these phenomena is most pronounced for steep ice flowing rapidly over thick sedimentary basins and depends in a complex way on aquifer permeability. Existing geodetic, seismic, and other geophysical datasets at well-studied Thwaites Glacier and Whillans Ice Stream will be used to constrain model parameters and investigate the impact of groundwater processes in contrasting glaciologic settings. This work will help rule out or highlight subglacial groundwater as one of the next major challenges for efforts to predict the future of the Antarctic Ice Sheet and sea-level rise on decadal to millennial timescales. The project will contribute to educating the next generation of scientists by supporting an early-career PI and a graduate student, as well as participation in a field and research educational program in Alaska and the production of chapters for an online, open-source, free interactive textbook.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GROUND WATER; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Larochelle, Stacy; Kingslake, Jonathan", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Modeling the Coupled Dynamics of Groundwater, Subglacial Hydrology and Ice Sheets", "uid": "p0010479", "west": null}, {"awards": "2317995 Herman, Rachael", "bounds_geometry": "POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.5,-55 -62,-55 -62.5,-55 -63,-55 -63.5,-55 -64,-55 -64.5,-55 -65,-55 -65.5,-55 -66,-56 -66,-57 -66,-58 -66,-59 -66,-60 -66,-61 -66,-62 -66,-63 -66,-64 -66,-65 -66,-65 -65.5,-65 -65,-65 -64.5,-65 -64,-65 -63.5,-65 -63,-65 -62.5,-65 -62,-65 -61.5,-65 -61))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 04 Oct 2024 00:00:00 GMT", "description": "Gentoo penguins (Pygoscelis papua) inhabit one of the fastest warming regions on Earth, the Western Antarctic Peninsula (WAP), where environmental shifts are measured in years, not decades. Despite this, the species is flourishing, growing in numbers and colonizing new habitats while sister species, such as Ad\u00e9lie penguins (P. adeliae), are declining in the region. This project will investigate to what extent epigenetics contributes to the success of gentoo penguins. Epigenetic variation is controlled by modifications to DNA or chromatin structure that affect the expression of genes, rather than changes to the underlying DNA sequence. This project will improve the understanding of gentoo penguin adaptation to climate change, and whether it is a result of increased flexibility in behavior and physiology driven by a greater capacity for epigenetic changes (i.e., epigenetic potential). The most studied form of epigenetic variation is the profiling of DNA methylation patterns. Environmental effects can trigger changes in DNA methylation that target specific tissues, allowing for localized gene expression shifts that result in modifications to the phenotype of an organism without any alteration to the underlying genotype. Given that epigenetic variation between populations often exceeds genetic variation, fine-scale genetic differentiation observed amongst gentoo penguin colonies suggests the possibility for local adaptation via even more divergent epigenetic changes and provides a framework for examining epigenetic variation across the gentoo penguin breeding range along multiple ecological axes. The researchers will test this by comprehensively characterizing the epigenomic profiles via patterns of DNA methylation in wild gentoo and Ad\u00e9lie penguins using cutting-edge high-resolution genomics techniques. Specifically, they will investigate whether gentoo penguins exhibit a greater degree of differences in DNA-methylation than underlying genetic differences, suggesting such epigenetic variation is driven by external environmental variables, potentially leading to improved capacity for local adaptation. This project will explore whether epigenetic potential may be selected for in individuals who disperse to new colony locations by comparing older, established colonies to new colonies at the range-edge. By implementing cutting-edge epigenetic methods in wild populations of gentoo penguins, this project will help address ecological questions on environmental plasticity that will impact conservation efforts and decisions on Marine Protected Areas (MPAs) on the Antarctic Peninsula.", "east": -55.0, "geometry": "POINT(-60 -63.5)", "instruments": null, "is_usap_dc": true, "keywords": "Gentoo Penguin; ECOLOGICAL DYNAMICS; Adaptation; Methylation; Antarctic Peninsula; Climate Change; Epigenetic Variation; PENGUINS", "locations": "Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Post Doc/Travel", "paleo_time": null, "persons": "Herman, Rachael", "platforms": null, "repositories": null, "science_programs": null, "south": -66.0, "title": "Postdoctoral Fellowship: OPP-PRF: Epigenetic Potential as a Driver of Local Adaptation in Gentoo Penguins (Pygoscelis Papua) along the Western Antarctic Peninsula", "uid": "p0010477", "west": -65.0}, {"awards": "2420219 Chignell, Stephen", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "Geodiversity is the variety of non-living elements like rocks, landforms, and processes in a given area, and plays an especially critical role in Antarctica. Geodiversity provides the conditions in which life can develop and underpins all ecosystems on Earth. It also provides tangible services to people (like construction materials) as well as intangible benefits (such as scientific knowledge from ice cores and artistic inspiration from glaciers). Despite its importance, Antarctic geodiversity remains under-explored, under-described, and inadequately mapped. This knowledge gap is particularly concerning given the threats posed by increasing human activity and environmental and climate change. This project uses a variety of datasets to map Antarctic geodiversity, assess its benefits to people, and help identify priority locations for conservation. \u003cbr/\u003e\u003cbr/\u003eThrough an interdisciplinary and mixed-method approach, this research will fill a major gap in the current understanding and representations of the Antarctic. Using the McMurdo Dry Valleys as a case study, the researcher will combine geospatial data on geology, geomorphology, glaciology, and hydrology to map geodiversity of the region. This project will identify sites of key geosystem services by analyzing geospatial data on placenames, scientific samples, and a web-based participatory mapping survey. The geodiversity and geosystem services data will then be overlaid and combined to identify hotspots of geo-social diversity. The resulting maps will be compared with the region\u2019s protected area boundaries to assess the fit-for-purpose of current environmental management and identify priority locations for future research and conservation. The fellow will promote Antarctic geodiversity broadly, including at UNESCO International Geodiversity Day.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Dry Valleys; LANDSCAPE; ROCKS/MINERALS/CRYSTALS; LANDFORMS; GIS; GLACIAL LANDFORMS; RIVERS/STREAMS", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Chignell, Stephen", "platforms": null, "repositories": null, "science_programs": null, "south": -78.5, "title": "Postdoctoral Fellowship: OPP-PRF: Mapping Antarctic Geodiversity: Assessing People, Place, and Abiotic Nature in the McMurdo Dry Valleys", "uid": "p0010476", "west": 160.0}, {"awards": "2332062 Kim, Heather", "bounds_geometry": "POLYGON((-80 -59,-76.8 -59,-73.6 -59,-70.4 -59,-67.2 -59,-64 -59,-60.8 -59,-57.599999999999994 -59,-54.4 -59,-51.2 -59,-48 -59,-48 -60.6,-48 -62.2,-48 -63.8,-48 -65.4,-48 -67,-48 -68.6,-48 -70.2,-48 -71.8,-48 -73.4,-48 -75,-51.2 -75,-54.4 -75,-57.6 -75,-60.8 -75,-64 -75,-67.2 -75,-70.4 -75,-73.6 -75,-76.8 -75,-80 -75,-80 -73.4,-80 -71.8,-80 -70.2,-80 -68.6,-80 -67,-80 -65.4,-80 -63.8,-80 -62.2,-80 -60.6,-80 -59))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 05 Aug 2024 00:00:00 GMT", "description": "The West Antarctic Peninsula (WAP) is experiencing significant environmental changes, including warming temperatures, reduced sea ice, and glacier retreat. These changes could impact marine ecosystems and biological and chemical processes, particularly the biological pump, which is the process by which carbon is transported from the ocean surface to the deep sea, playing a crucial role in regulating atmospheric carbon dioxide levels. This project aims to understand how climate change affects the biological pump in the WAP region. Using a combination of advanced modeling techniques and data from long-term research programs, the project will investigate the processes governing the biological pump and its climate feedback. The findings will provide insights into the future dynamics of the WAP region and contribute to our understanding of climate change impacts on polar marine ecosystems. This research is important as it will enhance knowledge of how polar regions respond to climate change, which is vital for predicting global climate patterns and informing conservation efforts. Furthermore, the project supports the development of early-career researchers and promotes diversity in science through collaborations with educational programs and outreach to underrepresented communities.\u003cbr/\u003e\u003cbr/\u003eThis project focuses on the WAP, a region undergoing rapid environmental changes. The goal is to investigate and quantify the factors controlling the biological pump and its feedback to climate change and variability. A novel hybrid modeling framework will be developed, integrating observational data from the Palmer Long-Term Ecological Research program and the Rothera Oceanographic and Biological Time-Series into a sophisticated one-dimensional mechanistic biogeochemical model. This framework will utilize Artificial Intelligence and Machine Learning techniques for data assimilation and parameter optimization. By incorporating complementary datasets and optimizing model parameters, the project aims to reduce uncertainties in modeling biological pump processes. The study will also use climate scenarios from the Coupled Model Intercomparison Project Phase 6 to assess the impacts of future climate conditions on the biological pump. Additionally, the project will examine the role of vertical mixing of dissolved organic matter in total export production, providing a comprehensive understanding of the WAP carbon cycle. The outcomes will improve temporal resolution and data assimilation, advancing the mechanistic understanding of the interplay between ocean dynamics and biogeochemical processes in the changing polar environment. The project will also leverage unique datasets and make the model framework and source codes publicly available, facilitating collaboration and benefiting the broader scientific community. Outreach efforts include engaging with educational programs and promoting diversity in Polar Science through collaborations with institutions serving underrepresented groups.", "east": -48.0, "geometry": "POINT(-64 -67)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctic; BIOGEOCHEMICAL CYCLES; PELAGIC; ECOSYSTEM FUNCTIONS", "locations": "West Antarctic", "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kim, Heather", "platforms": null, "repositories": null, "science_programs": null, "south": -75.0, "title": "Projecting the Biological Carbon Pump and Climate Feedback in the Rapidly Changing West Antarctic Peninsula: A Hybrid Modeling Study", "uid": "p0010474", "west": -80.0}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "601814", "doi": "10.15784/601814", "repository": "USAP-DC", "science_program": null, "title": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "url": "http://www.usap-dc.org/view/dataset/601814"}], "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Abrupt Climate Change; Antarctica; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Ice Core Records; Talos Dome", "locations": "Antarctica; Talos Dome", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fischer, Hubertus; Brook, Edward J.; Clark, Reid; Menking, James; Bauska, Thomas; Schmitt, Jochen; Lee, James; Iseli, Rene; Riddell-Young, Benjamin", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1903681 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8; Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "datasets": [{"dataset_uid": "601803", "doi": "10.15784/601803", "keywords": "Antarctica; Cryosphere; Ice Core; Nitrous Oxide; Taylor Glacier", "people": "Brook, Edward J.; Menking, Andy", "repository": "USAP-DC", "science_program": null, "title": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8", "url": "https://www.usap-dc.org/view/dataset/601803"}, {"dataset_uid": "601592", "doi": "10.15784/601592", "keywords": "Antarctica; Nitrous Oxide; Taylor Glacier", "people": "Menking, Andy; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601592"}], "date_created": "Wed, 19 Jun 2024 00:00:00 GMT", "description": "The objective of this project was to understand why the nitrous oxide (N2O) content of the atmosphere was lower during the last ice age (about 20,000-100,000 years ago) than in the subsequent warm period (10,000 years ago to present) and why it fluctuated during climate changes within the ice age. Nitrous oxide is a greenhouse gas that contributes to modern global warming. It is thought that modern warming will in turn cause increases in natural sources of nitrous oxide from bacteria in soils and the ocean, creating a \"positive feedback.\" However, the amount these sources will increase is uncertain because the different ways that nitrous oxide are produced, and how sensitive they are to warmer climate, are not well known. This project measured a unique property of the nitrous oxide molecule in very large ancient air samples from a glacier in Antarctica. This method can distinguish between different microbial processes that produce nitrous oxide but it has not been applied yet to the time periods in question. The data provide information about how natural climate changes affect nitrous oxide production. This project developed two records of the intramolecular site preference of Nitrogen-15 in N2O. One record spans the last deglaciation (10,000-21,000 years ago) when atmospheric N2O concentration rose by 30 percent, and the other record spans millennial-scale climate changes during the last ice age when N2O varied by smaller amounts (Heinrich Stadial 4 and Dansgaard Oeschger 8, 35,000-41,000 years ago). The records will be used to understand what changes in the nitrogen cycle caused atmospheric N2O concentration to vary and what mechanisms link the N2O emissions to climate change. This work also allowed exploration of an isotopic tracer for in situ production of N2O that contaminates the atmospheric signal in particularly dusty ice. ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Taylor Glacier; Nitrous Oxide; TRACE GASES/TRACE SPECIES; Ice Core; Stable Isotopes; NITROUS OXIDE", "locations": "Taylor Glacier", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes", "uid": "p0010465", "west": -180.0}, {"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 13 Jun 2024 00:00:00 GMT", "description": "The Amundsen Sea, near the fastest melting Antarctic glaciers, hosts one of the most productive polar ecosystems in the world. Phytoplankton serve as the base of the food chain, and their growth also removes carbon dioxide from the atmosphere. Phytoplankton growth is fertilized in this area by nutrient iron, which is only present at low concentrations in seawater. Prior studies have shown the seabed sediments may provide iron to the Amundsen Sea ecosystem. However, sediment sources of iron have never been studied here directly. This project fills this gap by analyzing sediments from the Amundsen Sea and investigating whether sediment iron fertilizes plankton growth. The results will help scientists understand the basic ecosystem drivers and predict the effects of climate change on this vibrant, vulnerable region. This project also emphasizes inclusivity and openness to the public. The researchers will establish a mentoring network for diverse polar scientists through the Polar Impact Network and communicate their results to the public through the website CryoConnect.org. \u003cbr/\u003e\u003cbr/\u003eThis project leverages samples already collected from the Amundsen Sea (NBP22-02) to investigate sediment iron (Fe) cycling and fluxes. The broad questions driving this research are 1) does benthic Fe fertilize Antarctic coastal primary productivity, and 2) what are the feedbacks between benthic Fe release and carbon cycling in the coastal Antarctic? To answer these questions, the researchers will analyze pore water Fe content and speciation and calculate fluxes of Fe across the sediment-water interface. These results will be compared to sediment characteristics (e.g., organic carbon content, reactive Fe content, proximity to glacial sources) to identify controls on benthic Fe release. This research dovetails with and expands on the science goals of the ?Accelerating Thwaites Ecosystem Impacts for the Southern Ocean? (ARTEMIS) project through which the field samples were collected. In turn, the findings of ARTEMIS regarding modeled and observed trace metal dynamics, surface water productivity, and carbon cycling will inform the conclusions of this project, allowing insight into the impact of benthic Fe in the whole system. This project represents a unique opportunity for combined study of the water column and sediment biogeochemistry which will be of great value to the marine biogeochemistry community and will inform future sediment-ocean studies in polar oceanography and beyond.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENT CHEMISTRY; TRACE ELEMENTS", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Benthic Iron Fluxes and Cycling in the Amundsen Sea", "uid": "p0010463", "west": null}, {"awards": "1444690 Bell, Robin; 0958658 Bell, Robin", "bounds_geometry": null, "dataset_titles": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Millstein, Joanna; Cordero, Isabel; Bertinato, Christopher; Bell, Robin; Das, Indrani; Chu, Winnie; Dhakal, Tejendra; Frearson, Nicholas; Spergel, Julian; Wilner, Joel; Dong, LingLing", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Dong, LingLing; Dhakal, Tejendra; Frearson, Nicholas; Wearing, Martin; Chu, Winnie; Bell, Robin; Keeshin, Skye; Spergel, Julian; Packard, Sarah; Bertinato, Christopher; Cordero, Isabel; Das, Indrani", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}], "date_created": "Fri, 17 May 2024 00:00:00 GMT", "description": "The Lamont-Doherty Earth Observatory of Columbia University was awarded a multi-year grant (May 1, 2010- April 30, 2015) to develop an ice imaging system, or \"IcePod,\" for use in measuring the surface and subsurface topography of ice sheets. IcePod will enable research on the effects of global climate change on ice sheets and the effects of sub-glacial water on potential sea-level rise. IcePod sensors are contained in a Common Science Support Pod and operated on NYANG LC-130 aircraft during routine and targeted missions over Greenland and Antarctica. The IcePod instrument package consists of ice-penetrating radar, infrared and visible cameras, laser altimeter, inertial measurement unit, GPS receiver and data acquisition system. IcePod will also enable other instruments to be used in the modular Common Science Support Pod, and will become a shared community research facility providing data to the science community. Funding will support activities in both Greenland and Antarctica needed to commission IcePod, to develop a data reduction flow and data delivery system for IcePod data, and to engineer a UPS to provide IcePod with clean, reliable power for system operation. \u003cbr/\u003e\u003cbr/\u003eEvidence from satellites has documented that the amount of ice in both the earth\u0027s polar regions is decreasing as global temperatures increase. Understanding how this change is occurring and building an understanding of how fast these continent-sized pieces of ice will change in the future, is critical as society develops plans for adapting to changing coastlines. To measure change and understand the processes driving these changes requires the capacity to image the polat ice sheets and oceans from long-range aircraft. This award supplemented the original MRI-R2 program that developed innovative airborne imagery technology called IcePod. IcePod can be mounted on any LC-130, the aircraft used in the polar regions, for the major logistical support. The IcePod system was developed by engineers and scientists at Columbia University, working in close collaboration with the New York Air National Guard, who operate the ski-equipped LC-130 aircraft for the National Science Foundation in Antarctica and Greenland. The IcePod instrumentation package presently consists of: a scanning laser for precise measurements of the ice surface, visible and infrared imaging cameras to document the ice surface structure and temperature, ice-penetrating radar to recover the ice thickness and constrain the distribution of water at the ice sheet bed, and shallow-ice radar to measure snow accumulation. A magnetometer system is mounted inside the pod to recover information on the solid earth structure. Positioning of the IcePod during flights and the measurements are provided by precision GPS satellite data and inertial technology. A gravimeter, using its own rack, is also employed in conjunction with the IcePod sensor suite. The final commissioning of the system occurred in November - December 2014 in Antarctica as stipulated in the award. The IcePod was successfully operated in full polar conditions with a series of flights from McMurdo Station over the Ross Ice Shelf, the Ross Sea, the Dry Valleys, the Transantarctic Mountains and to South Pole. Protocol was also developed for data handling, robust data reduction, workflow and quality control and archiving of data. \u003cbr/\u003e\u003cbr/\u003eThe system is now available to the polar community for novel imaging applications.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Greenland; C-130; Remote Sensing; RADAR; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica; Greenland", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Earth Sciences; Antarctic Astrophysics and Geospace Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Zappa, Christopher; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130", "uid": "p0010462", "west": null}, {"awards": "2301026 Amsler, Charles", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 May 2024 00:00:00 GMT", "description": "General abstract\u003cbr/\u003e\u003cbr/\u003eMost organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical abstract\u003cbr/\u003e\u003cbr/\u003eExisting macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MACROALGAE (SEAWEEDS); Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Krueger-Hadfield, Stacy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Historical and Contemporary Drivers of Macroalgal Reproductive System Variation along the Western Antarctic Peninsula", "uid": "p0010460", "west": null}, {"awards": "2215771 Kreutz, Karl", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 01 Apr 2024 00:00:00 GMT", "description": "This award is for acquisition of new instrumentation to support acquisition of the new LA-HR-ICPMS instrumentation for the trace-element analysis of various environmental samples. This instrumentation will replace the original (and heavily used over two decades) ThermoScientific Element2 ICP-MS installed at the University of Maine?s Climate Change Institute (CCI). The new acquisition will significantly expand research capabilities of the CCI/ICP-MS Facility to improve the analysis of aqueous samples, supplemented with a laser ablation (LA) front end for ice, biological, and other solid materials. The current ICP-MS Facility was established in 2002 with an NSF/MRI award, which since then has served as a vital resource for climate, environmental, ecosystem, and engineering research and training at the U. Maine, across the state of Maine and beyond. The routine use and primary support of the Facility come from the Principal Investigators and their collaborators that group under three research areas: glaciochemistry and climate/environmental reconstruction; paleoceanography and marine biogeochemistry; and environmental sensor development and material science engineering. The U. Maine is the State?s Land \u0026 Sea Grant university and only PhD granting institution, so the campus is the de facto academic research and research training hub of the state of Maine. The proposed advances of this research \u0026 training instrumentation will immediately impact current and future NSF-funded research projects that support extensive national and international collaborations. Specific to this proposal are collaborations with the University of Venice (Italy) and the University of Cambridge/British Antarctic Survey to develop laser ablation ICP-MS imaging of ice cores, and collaborations with New Zealand, Swiss, Chinese, Canadian, and Brazilian colleagues to analyze ice, thereby maintaining our leadership role in global ice core and climate change research. Likewise, the enhanced carbonate analysis capacity of the Element XR will have an immediate impact on NSF-funded research projects in the Gulf of Maine and in the South Pacific. The proposed instrumentation will facilitate new and important collaborations between academic colleges (College of Natural Science, Forestry, and Agriculture and the College of Engineering) and research units - the CCI and the Frontier Institute for Research in Sensor Technology - across the campus, as well as enabling new and broader scientific collaborations with other academic and scientific institutions across Maine.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CHEMISTRY; GLACIERS/ICE SHEETS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Kreutz, Karl; Mukhopadhyay, Sharmila M; Allen, Katherine A; Mayewski, Paul A.; Kurbatov, Andrei V.", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "MRI: Acquisition of LA-HR-ICPMS instrumentation for climate, environmental, ecosystem, and engineering research at the University of Maine", "uid": "p0010456", "west": null}, {"awards": "2233187 Stammerjohn, Sharon", "bounds_geometry": "POLYGON((-180 -70,-177 -70,-174 -70,-171 -70,-168 -70,-165 -70,-162 -70,-159 -70,-156 -70,-153 -70,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-150 -79,-150 -80,-153 -80,-156 -80,-159 -80,-162 -80,-165 -80,-168 -80,-171 -80,-174 -80,-177 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -79,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 28 Feb 2024 00:00:00 GMT", "description": "The Ross Sea Region Marine Protected Area (RSRMPA), one of the world?s largest MPAs, encompasses one of the healthiest marine ecosystems remaining on this planet; however, it is exposed to increasing stress from ongoing climate change and fishing pressure. Numerous gaps in our understanding of the highly coupled nature of the Ross Sea marine ecosystem need to be addressed to support conservation efforts in the Ross Sea region, including informing the efficacy and management of the RSRMPA into the coming decades. The overarching goal of this research is to formulate an innovative and sustainable world-class research program aimed at better understanding, conserving, and managing the RSRMPA through the coordination of multi-faceted system-level approaches. There will be a coordinated effort to facilitate international collaboration; create education, outreach, and Diverse Equitable and Inclusive (DEI) opportunities; and increase conservation awareness. Coordinating Ross Sea marine ecosystem research will contribute to enhancing system-level global research, sustainable data networks, DEI, and climate equity. This program will also provide opportunity to develop similar frameworks for other large-scale, globally important systems. The trans-disciplinary aspiration can also serve to guide the NSF in sustaining or initiating new funding opportunities while addressing several of the 10 NSF BIG IDEAS and engaging multiple NSF Directorates. The project will help maintain NSF?s mission of scientific leadership by networking the Antarctic community by providing science-based conservation plans to help mitigate environmental changes in this pristine region of the Southern Ocean. The researchers will convene a workshop to strategize the implementation of an internationally networked, world class program that is based on inter- and trans-disciplinary approaches (including bridging science, cyberinfrastructure, policy, management, and conservation), while also providing opportunities for STEM education, early career development, and core DEI principles. To effectively facilitate the prioritization of research related to the regional and global interconnectedness of the Ross Sea marine ecosystem, the workshop will involve leading experts in Ross Sea marine research and other researchers, stakeholders, and policy experts involved in the greater oceanographic, climate and ecosystem/food web modeling communities. The workshop will determine a long-term decadal plan comprising the following phases: (1) initial data synthesis and ecosystem/food web model development; (2) field observations and modeling, networked through an internationally coordinated Ross Sea Observing System; and (3) data synthesis and modeling, including a ?sunset? plan to support ongoing RSRMPA management and preservation of the Ross Sea marine ecosystem. Outcomes will include a workshop report detailing the long-term research plan, a peer-reviewed article, educational and outreach materials, and a list of proposed research topics for implementing a world class research program and Principal Investigators who will help coordinate the multiple efforts aimed at addressing major gaps in our knowledge of the Ross Sea system.", "east": 160.0, "geometry": "POINT(-175 -75)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; PELAGIC; COASTAL; United States Of America", "locations": "United States Of America", "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Stammerjohn, Sharon; Brooks, Cassandra", "platforms": null, "repositories": null, "science_programs": null, "south": -80.0, "title": "Planning: Formulating and Sustaining a System-Level Understanding of a Large Marine Ecosystem in the Ross Sea Region Marine Protected Area to Better Conserve and Guide Policy", "uid": "p0010452", "west": -150.0}, {"awards": "2325922 Couradeau, Estelle", "bounds_geometry": "POLYGON((-73.783 4.679,-73.7827 4.679,-73.7824 4.679,-73.7821 4.679,-73.7818 4.679,-73.7815 4.679,-73.7812 4.679,-73.7809 4.679,-73.7806 4.679,-73.7803 4.679,-73.78 4.679,-73.78 4.6789,-73.78 4.6788,-73.78 4.6787,-73.78 4.6786,-73.78 4.6785,-73.78 4.6784,-73.78 4.6783,-73.78 4.6782,-73.78 4.6781,-73.78 4.678,-73.7803 4.678,-73.7806 4.678,-73.7809 4.678,-73.7812 4.678,-73.7815 4.678,-73.7818 4.678,-73.7821 4.678,-73.7824 4.678,-73.7827 4.678,-73.783 4.678,-73.783 4.6781,-73.783 4.6782,-73.783 4.6783,-73.783 4.6784,-73.783 4.6785,-73.783 4.6786,-73.783 4.6787,-73.783 4.6788,-73.783 4.6789,-73.783 4.679))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Feb 2024 00:00:00 GMT", "description": "As climate change progresses, it is activating both master switches of microbial activity simultaneously: moisture and temperature. In soils, microbes serve critical ecosystem services including nutrient cycling and carbon sequestration. The fact that we do not fully understand how microbes act on carbon pools in soils and how these will change with the rapidly changing climate is extremely worrisome. Here we propose to tackle this question by initiating an interdisciplinary action studying the soils of the Colombian P\u00e1ramos. The P\u00e1ramos are a unique high-altitude hotspot of biodiversity in the Andes that render critical ecosystem services, including water capture and carbon sequestration. If the hydrology of the system has gained a lot of attention over the past few years, the fate of the extensive pools of organic carbon in these vast peatlands has remained unexplored. The unique geographic situation of the cold and humid P\u00e1ramos being already on the edge of their geo-climatic range provides us with an unparalleled opportunity to study a soil microbial community from carbon-rich soils that are extremely vulnerable to both the raise in temperature and decrease of moisture that will impact soils around the globe as climate change progresses. Our project aims at starting to address the need to disentangle the effect of moisture and temperature on the activity and composition of the microbial communities controlling the fate of organic carbon in soils (Objective 1), while assembling an international team of experts capable of scaling up the understanding of these processes at the landscape and regional level by integrating the functioning of the belowground microbial community with the above-ground vegetation (Objective 2).", "east": -73.78, "geometry": "POINT(-73.7815 4.6785)", "instruments": null, "is_usap_dc": true, "keywords": "TERRESTRIAL ECOSYSTEMS; Chingaza Paramos Colombia; ORGANIC MATTER; SOIL MECHANICS", "locations": "Chingaza Paramos Colombia", "north": 4.679, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Couradeau, Estelle; Maximova, Siela; Machado, Jose Luis", "platforms": null, "repositories": null, "science_programs": null, "south": 4.678, "title": "Collaborative Research: BoCP-Design: Climate change alteration of soils functional biodiversity of the P\u00e1ramos, Colombia", "uid": "p0010445", "west": -73.783}, {"awards": "2333940 Zhong, Shijie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 08 Jan 2024 00:00:00 GMT", "description": "Satellite observations of Earth?s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth?s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth?s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS; CRUSTAL MOTION; COMPUTERS; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE", "locations": "WAIS", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Zhong, Shijie", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica", "uid": "p0010441", "west": -180.0}, {"awards": "2224760 Gooseff, Michael", "bounds_geometry": "POINT(162.87 -77)", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER", "datasets": [{"dataset_uid": "200379", "doi": "", "keywords": null, "people": null, "repository": "Environmental Data Initiative (EDI)", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Tue, 14 Nov 2023 00:00:00 GMT", "description": "In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world\u0027s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education \u0026 Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6.", "east": 162.87, "geometry": "POINT(162.87 -77)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; ABLATION ZONES/ACCUMULATION ZONES; SOIL TEMPERATURE; DIATOMS; FIELD INVESTIGATION; PERMANENT LAND SITES; BUOYS; GROUND-BASED OBSERVATIONS; SEDIMENTS; SNOW WATER EQUIVALENT; SPECIES/POPULATION INTERACTIONS; WATER-BASED PLATFORMS; FIXED OBSERVATION STATIONS; VIRUSES; PHYTOPLANKTON; ACTIVE LAYER; FIELD SURVEYS; RADIO TRANSMITTERS; DATA COLLECTIONS; ECOLOGICAL DYNAMICS; LANDSCAPE; GROUND WATER; SNOW/ICE CHEMISTRY; LAND-BASED PLATFORMS; ANIMALS/INVERTEBRATES; ECOSYSTEM FUNCTIONS; HUMIDITY; GEOCHEMISTRY; SURFACE WINDS; RIVERS/STREAM; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; SNOW; LAND RECORDS; ATMOSPHERIC PRESSURE; SURFACE TEMPERATURE; ATMOSPHERIC RADIATION; BACTERIA/ARCHAEA; AIR TEMPERATURE; GLACIERS; SNOW/ICE TEMPERATURE; SOIL CHEMISTRY; METEOROLOGICAL STATIONS; WATER QUALITY/WATER CHEMISTRY; TERRESTRIAL ECOSYSTEMS; MOORED; PROTISTS; STREAMFLOW STATION; Dry Valleys; LAKE/POND; LAKE ICE; SNOW DEPTH; AQUATIC ECOSYSTEMS; SNOW DENSITY; FIELD SITES", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H.", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e RADIO TRANSMITTERS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e STREAMFLOW STATION; WATER-BASED PLATFORMS; WATER-BASED PLATFORMS \u003e BUOYS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "Environmental Data Initiative (EDI)", "repositories": "Environmental Data Initiative (EDI)", "science_programs": "LTER", "south": -77.0, "title": "LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem", "uid": "p0010440", "west": 162.87}, {"awards": "2232891 Postlethwait, John", "bounds_geometry": "POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Aug 2023 00:00:00 GMT", "description": "Antarctic animals face tremendous threats as Antarctic ice sheets melt and temperatures rise. About 34 million years ago, when Antarctica began to cool, most species of fish became locally extinct. A group called the notothenioids, however, survived due to the evolution of antifreeze. The group eventually split into over 120 species. Why did this group of Antarctic fishes evolve into so many species? One possible reason why a single population splits into two species relates to sex genes and sex chromosomes. Diverging species often have either different sex determining genes (genes that specify whether an individual\u2019s gonads become ovaries or testes) or have different sex chromosomes (chromosomes that differ between males and females within a species, like the human X and Y chromosomes). We know the sex chromosomes of only a few notothenioid species and know the genetic basis for sex determination in none of them. \r\nThe aims of this research are to: 1) identify sex chromosomes in species representing every major group of Antarctic notothenioid fish; 2) discover possible sex determining genes in every major group of Antarctic notothenioid fish; and 3) find sex chromosomes and possible sex determining genes in two groups of temperate, warmer water, notothenioid fish. These warmer water fish include groups that never experienced the frigid Southern Ocean and groups that had ancestors inhabiting Antarctic oceans that later adjusted to warmer waters. This project will help explain the mechanisms that led to the division of a group of species threatened by climate change. This information is critical to conserve declining populations of Antarctic notothenioids, which are major food sources for other Antarctic species such as bird and seals. \r\nThe project will offer a diverse group of undergraduates the opportunity to develop a permanent exhibit at the Eugene Science Center Museum. The exhibit will describe the Antarctic environment and explain its rapid climate change. It will also introduce the continent\u2019s bizarre fishes that live below the freezing point of water. The project will collaborate with the university\u2019s Science and Comics Initiative and students in the English Department\u2019s Comics Studies Minor to prepare short graphic novels explaining Antarctic biogeography, icefish specialties, and the science of this project as it develops.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Speciation; Southern Ocean; Dragonfish; Antarctica; Plunderfish; Fish; Notothenioid; FISH; Eleginopsioidea; Icefish; MARINE ECOSYSTEMS; Cryonotothenioid; Sub-Antarctic", "locations": "Antarctica; Southern Ocean; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Desvignes, Thomas", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA: The Role of Sex Determination in the Radiation of Antarctic Notothenioid Fish", "uid": "p0010431", "west": -180.0}, {"awards": "2302832 Reilly, Brendan", "bounds_geometry": "POLYGON((-70 -55,-67 -55,-64 -55,-61 -55,-58 -55,-55 -55,-52 -55,-49 -55,-46 -55,-43 -55,-40 -55,-40 -56.1,-40 -57.2,-40 -58.3,-40 -59.4,-40 -60.5,-40 -61.6,-40 -62.7,-40 -63.8,-40 -64.9,-40 -66,-43 -66,-46 -66,-49 -66,-52 -66,-55 -66,-58 -66,-61 -66,-64 -66,-67 -66,-70 -66,-70 -64.9,-70 -63.8,-70 -62.7,-70 -61.6,-70 -60.5,-70 -59.4,-70 -58.3,-70 -57.2,-70 -56.1,-70 -55))", "dataset_titles": "NRM, ARM, IRM, and magnetic susceptibility investigations on U1537 and U1538 cube samples; Rock magnetic data from IODP Exp. 382 Sites U1537 and U1538 to support Reilly et al. \"A geochemical mechanism for \u003e10 m offsets of magnetic reversals inferred from the comparison of two Scotia Sea drill sites\"", "datasets": [{"dataset_uid": "200411", "doi": "10.5281/zenodo.10035106", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Rock magnetic data from IODP Exp. 382 Sites U1537 and U1538 to support Reilly et al. \"A geochemical mechanism for \u003e10 m offsets of magnetic reversals inferred from the comparison of two Scotia Sea drill sites\"", "url": "https://zenodo.org/records/10035107"}, {"dataset_uid": "200412", "doi": "10.7288/V4/MAGIC/19778", "keywords": null, "people": null, "repository": "MagIC (EarthRef)", "science_program": null, "title": "NRM, ARM, IRM, and magnetic susceptibility investigations on U1537 and U1538 cube samples", "url": "http://dx.doi.org/10.7288/V4/MAGIC/19778"}], "date_created": "Wed, 12 Jul 2023 00:00:00 GMT", "description": "The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica\u0027s response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica\u0027s glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth\u0027s most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change.\r\n\r\nThe proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica\u0027s ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene.", "east": -40.0, "geometry": "POINT(-55 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "PALEOMAGNETISM; SEDIMENTS; Scotia Sea", "locations": "Scotia Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE \u003e PLIOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE; PHANEROZOIC \u003e CENOZOIC", "persons": "Reilly, Brendan", "platforms": null, "repo": "Zenodo", "repositories": "MagIC (EarthRef); Zenodo", "science_programs": null, "south": -66.0, "title": "Collaborative Research: Linking Marine and Terrestrial Sedimentary Evidence for Plio-pleistocene Variability of Weddell Embayment and Antarctic Peninsula Glaciation", "uid": "p0010424", "west": -70.0}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ; Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation; Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica; Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "datasets": [{"dataset_uid": "601683", "doi": "10.15784/601683", "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601683"}, {"dataset_uid": "601813", "doi": "10.15784/601813", "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "people": "Bauska, Thomas; Iseli, Rene; Clark, Reid; Brook, Edward J.; Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Menking, Andy", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601813"}, {"dataset_uid": "601737", "doi": "10.15784/601737", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin; Martin, Kaden; Brook, Edward J.; Edwards, Jon S.; Lee, James; Rosen, Julia", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "url": "https://www.usap-dc.org/view/dataset/601737"}, {"dataset_uid": "601736", "doi": "10.15784/601736", "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "people": "M\u00fchl, Michaela; Lee, James; Martin, Kaden; Buizert, Christo; Rosen, Julia; Riddell-Young, Benjamin; Brook, Edward J.; Blunier, Thomas; Fischer, Hubertus; Schmitt, Jochen; Edwards, Jon S.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601736"}], "date_created": "Mon, 01 May 2023 00:00:00 GMT", "description": "This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are \"fingerprints\" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. \u003cbr/\u003e\u003cbr/\u003eThe project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; TRACE GASES/TRACE SPECIES; METHANE", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "uid": "p0010416", "west": -180.0}, {"awards": "2133684 Fierer, Noah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 07 Apr 2023 00:00:00 GMT", "description": "Not all of Antarctica is covered in ice. In fact, soils are common to many parts of Antarctica, and these soils are often unlike any others found on Earth. Antarctic soils harbor unique microorganisms able to cope with the extremely cold and dry conditions common to much of the continent. For decades, microbiologists have been drawn to the unique soils in Antarctica, yet critical knowledge gaps remain. Most notably, it is unclear what properties allow certain microbes to thrive in Antarctic soils. By using a range of methods, this project is developing comprehensive model that discovers the unique genomic features of soils diversity, distributions, and adaptations that allow Antarctic soil microbes to thrive in extreme environments. The proposed work will be relevant to researchers in many fields, including engineers seeking to develop new biotechnologies, ecologists studying the contributions of these microbial communities to the functioning of Antarctic ecosystems, microbiologists studying novel microbial adaptations to extreme environmental conditions, and even astrobiologists studying the potential for life on Mars. More generally, the proposed research presents an opportunity to advance our current understanding of the microbial life found in one of the more distinctive microbial habitats on Earth, a habitat that is inaccessible to many scientists and a habitat that is increasingly under threat from climate change.\r\n\r\nThe research project explores the microbial diversity in Antarctic soils and links specific features to different soil types and environmental conditions. The overarching questions include: What microbial taxa are found in a variety of Antarctic environments? What are the environmental preferences of specific taxa or lineages? What are the genomic and phenotypic traits of microorganisms that allow them to persist in extreme environments and determine biogeographical differneces? This project will analyze archived soils collected from across Antarctica by a network of international collaborators, with samples selected to span broad gradients in soil and site conditions. The project uses cultivation-independent, high-throughput genomic analysis methods and cultivation-dependent approaches to analyze bacterial and fungal communities in soil samples. The results will be used to predict the distributions of specific taxa and lineages, obtain genomic information for the more ubiquitous and abundant taxa, and quantify growth responses in vitro across gradients in temperature, moisture, and salinity. This integration of ecological, environmental, genomic, and trait-based information will provide a comprehensive understanding of microbial life in Antarctic soils. This project will also help facilitate new collaborations between scientists across the globe while providing undergraduate students with \u0027\u0027hands-on\u0027\u0027 research experiences that introduce the next generation of scientists to the field of Antarctic biology.\r\n\r\nThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FUNGI; BACTERIA/ARCHAEA; TERRESTRIAL ECOSYSTEMS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fierer, Noah; Quandt, Alisha A; Lemonte, Joshua", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: ANT LIA Integrating Genomic and Phenotypic Analyses to understand Microbial Life in Antarctic Soils", "uid": "p0010414", "west": -180.0}, {"awards": "2001646 Chereskin, Teresa; 1542902 Chereskin, Teresa", "bounds_geometry": "POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54))", "dataset_titles": "Joint Archive for shipboard ADCP data; World Ocean Database", "datasets": [{"dataset_uid": "200355", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "World Ocean Database", "url": "https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html"}, {"dataset_uid": "200354", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Joint Archive for shipboard ADCP data", "url": "https://uhslc.soest.hawaii.edu/sadcp/"}], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "The Antarctic Circumpolar Current (ACC) is the largest current on the planet, flowing west to east around Antarctica, forming a barrier that separates warmer waters to the north from colder waters to the south. Ocean eddies (like atmospheric storms) break through the ACC barrier, transferring heat across the ACC towards Antarctica. When warmer ocean waters intrude onto the Antarctic continental shelves, they contribute to glacial melt and ice shelf retreat. Over the past several decades, the Southern Ocean has warmed and winds have increased due to climate change. Somewhat surprisingly the ACC, though pushed by faster winds, has not accelerated; a faster current would present a stronger barrier to heat transfer. Instead, ocean eddies have increased. These eddies are concentrated at 6-7 \"hot spots\". Drake Passage is one of these hot spots. As the narrowest land gap on the entire circumpolar path of the ACC, Drake Passsage is an ideal monitoring spot. However, it is also one of the windiest and roughest stretches of water on the globe. The only ship that crosses Drake Passage year-round is the USAP supply vessel for Palmer Station, making it a unique platform to monitor the currents and temperature with a minimum of personnel and resources. The Drake Passage time series of upper ocean currents and temperature is now in its 24th year. The upper ocean temperature measurements have found significant warming in Drake Passage. The upper ocean current measurements have confirmed that the ACC has remained steady on average but have also revealed a complicated filamented current structure. Combining temperature and current measurements has provided a better understanding of heat transfer across the ACC by eddies. The time series has also provided valuable ground-truth for satellite measurements and for numerical model predictions looking at the entire ACC. Our studies are focused on examining low-frequency variability - seasonal, interannual, and decadal - in order to provide baselines from which to evaluate and interpret physical and biogeochemical changes occurring in the Southern Ocean. \r\n", "east": -55.0, "geometry": "POINT(-61.5 -59)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; Drake Passage; WATER TEMPERATURE; Antarctic Circumpolar Current; Heat Flux", "locations": "Drake Passage", "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Sprintall, Janet", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -64.0, "title": "High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science", "uid": "p0010409", "west": -68.0}, {"awards": "1543445 Zhang, Jing", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf; Antarctic passive microwave Kmeans derived surface melt days, 1979-2020", "datasets": [{"dataset_uid": "601685", "doi": "10.15784/601685", "keywords": "Antarctica; Glaciology; Larsen C Ice Shelf; Model Data; Surface Energy Budget; Surface Mass Balance; WRF Model", "people": "Zhang, Jing; Luo, Liping", "repository": "USAP-DC", "science_program": null, "title": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601685"}, {"dataset_uid": "601457", "doi": "10.15784/601457", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Melt Days; Passive Microwave; Snow/ice; Snow/Ice; Surface Melt", "people": "Hock, Regine; Fahnestock, Mark; Johnson, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Antarctic passive microwave Kmeans derived surface melt days, 1979-2020", "url": "https://www.usap-dc.org/view/dataset/601457"}], "date_created": "Fri, 24 Feb 2023 00:00:00 GMT", "description": "Over the last half century the Antarctic Peninsula has been among the most rapidly warming regions in the world. This has led to increased glacier melt, widespread glacier retreat, ice-shelf collapses, and glacier speed-ups. Many of these changes are driven by changing precipitation and increased melt due to warmer air temperatures. This project will use a combination of two models - a regional atmospheric model and a model of processes at the glacier surface - to simulate future changes in temperature and snowfall, and the resulting changes in glacier mass. The combination of models will be tested against the observational record (since 1979 when satellite observations became available), to verify that it can reproduce observed change, and then run to the year 2100. Results will provide better estimates of the impacts of future climate changes over the Antarctic Pensinsula and the expected glacier mass changes driven by the evolving climate. \u003cbr/\u003e\u003cbr/\u003eThe project will use the large changes observed on the Peninsula to validate a model framework suitable for understanding the impact of these changes on the glaciers and ice shelves there, with the goal of developing optimally constrained future climate and surface mass change scenarios for the region. The framework will provide both a coherent picture of the impacts of past changes on the region\u0027s ice cover, and also the best available constraints on forcings that will determine ice mass loss from this region going forward under a standard scenario. The Weather Forecasting and Research (WRF) Model will be used over the domain of the Antarctic Peninsula and neighboring islands to quantify trends in spatio-temporal patterns of mass change with a focus on surface melt. The WRF model will be enhanced to account for the specific conditions of glacier surfaces, and the modified model will be used to simulate climate conditions and resulting surface mass budgets and melt over the period 1979-2100. Tying modeled past climate changes to the surface and satellite-based observational record will provide a foundation for interpreting projected future change. Results will be validated using available weather station observations, surface mass-balance data, and satellite-derived records of melt. The activity will foster partnerships through collaboration with colleagues in Spain, Germany and The Netherlands and will support an early-career postdoctoral researcher and two graduate students, introduce undergraduate and high-school students to original research and provide training of students through inclusion of data and results in course curriculums.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; MODELS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Zhang, Jing; Hock, Regine; Fahnestock, Mark", "platforms": "OTHER \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model", "uid": "p0010408", "west": -180.0}, {"awards": "1543457 Munro, David; 1543511 Stephens, Britton", "bounds_geometry": "POLYGON((-73 -53,-71.2 -53,-69.4 -53,-67.6 -53,-65.8 -53,-64 -53,-62.2 -53,-60.4 -53,-58.6 -53,-56.8 -53,-55 -53,-55 -54.4,-55 -55.8,-55 -57.2,-55 -58.6,-55 -60,-55 -61.4,-55 -62.8,-55 -64.2,-55 -65.6,-55 -67,-56.8 -67,-58.6 -67,-60.4 -67,-62.2 -67,-64 -67,-65.8 -67,-67.6 -67,-69.4 -67,-71.2 -67,-73 -67,-73 -65.6,-73 -64.2,-73 -62.8,-73 -61.4,-73 -60,-73 -58.6,-73 -57.2,-73 -55.8,-73 -54.4,-73 -53))", "dataset_titles": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445); Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "datasets": [{"dataset_uid": "200350", "doi": "https://doi.org/10.25921/3ysc-pm11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200352", "doi": "https://doi.org/10.25921/f94g-zp40", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200353", "doi": "https://doi.org/10.25921/fq0a-7y11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200348", "doi": "https://doi.org/10.7289/v5tq5zt1", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200349", "doi": "https://doi.org/10.25921/b4jn-ef56", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200351", "doi": "https://doi.org/10.25921/z0pk-pv81", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}], "date_created": "Wed, 22 Feb 2023 00:00:00 GMT", "description": "The Southern Ocean plays a key role in modulating the global carbon cycle, but the size and even the sign of the flux of carbon dioxide between the ocean and atmosphere in this region is still uncertain. This is in part due to the lack of measurements in this remote region of the world ocean. This project continues a multi-year time series of shipboard chemical measurements in the Drake Passage to detect changes in the ocean carbon cycle and to improve the understanding of mechanisms driving natural variability and long-term change in the Southern Ocean. More specifically, this project is a continuation of the collection of underway upper ocean measurements of the surface partial pressure of carbon dioxide during crossings of the Drake Passage by the Antarctic Research and Supply Vessel Laurence M. Gould. This project also includes collection and analysis of discrete samples relevant to ocean carbon cycle studies including macronutrient concentrations, total carbon dioxide concentrations, and the carbon isotopic composition of total carbon dioxide. The Drake Passage data are made readily available to the international science community and serve as both validation and constraints of remotely sensed observations and numerical coupled earth systems models.", "east": -55.0, "geometry": "POINT(-64 -60)", "instruments": null, "is_usap_dc": true, "keywords": "Drake Passage; NUTRIENTS; BIOGEOCHEMICAL CYCLES; DISSOLVED GASES; TRACE GASES/TRACE SPECIES", "locations": "Drake Passage", "north": -53.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Munro, David; Sweeney, Colm; Lovenduski, Nicole S; Stephens, Britton", "platforms": null, "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Investigating Biogeochemical Fluxes and Linkages To Climate Change With Multi-Scale Observations In The Drake Passage", "uid": "p0010407", "west": -73.0}, {"awards": "1542723 Alexander, Becky", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": "WAIS Divide ice core nitrate isotopes", "datasets": [{"dataset_uid": "601456", "doi": "10.15784/601456", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide ice core nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601456"}], "date_created": "Mon, 13 Feb 2023 00:00:00 GMT", "description": "The Earth\u0027s atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate.\u003cbr/\u003e\u003cbr/\u003eThis award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "Nitrate Isotopes; ICE CORE RECORDS; WAIS Divide; LABORATORY", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "uid": "p0010403", "west": -112.05}, {"awards": "2135696 Polito, Michael; 2135695 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70,-180 -70.8,-180 -71.6,-180 -72.4,-180 -73.2,-180 -74,-180 -74.8,-180 -75.6,-180 -76.4,-180 -77.2,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,-180 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77.2,160 -76.4,160 -75.6,160 -74.8,160 -74,160 -73.2,160 -72.4,160 -71.6,160 -70.8,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 28 Oct 2022 00:00:00 GMT", "description": "Stable isotope analyses of carbon and nitrogen (\u03b413C and \u03b415N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. One other stable isotope, sulfur (\u03b434S), is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. In the Ross Sea region, the cold, dry environment has been conductive for the preservation of Ad\u00e9lie penguin (Pygoscelis adeliae) bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (\u003e45,000 yrs ago) through the Holocene. Most of these colonies are associated with one of three polynyas, or highly productive areas of open water surrounded by sea ice in the Ross Sea. Thus, this species is an excellent bioindicator for marine conditions, past and present, and its colonies have appeared and disappeared throughout this region with changing climate and sea ice regimes for millennia. Current warming trends are inducing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Ad\u00e9lie penguins and other species in this region from human impacts and knowledge on how this species responds to climate change, past and present, will support this goal. \r\n\r\nWe propose to investigate ecological responses in diet and foraging behavior of the Ad\u00e9lie penguin to known climatic events that occurred in the middle to late Holocene, specifically, before, during and after a warming period known as the penguin \u2018optimum\u2019 at 2000 - 4000 cal yr before present (BP). We will apply for the first time a suite of three stable isotope analyses (\u03b413C, \u03b415N, \u03b434S) on chick bones and feathers, as well as prey remains, from active and abandoned colonies in the Ross Sea. We will use existing tissue samples (~60-80 bones) collected by PI Emslie with NSF support since 2001 and supplement these with newly collected samples of bones and feathers in this project. We will conduct compound-specific isotope analyses of carbon on essential amino acids from collagen from a selected sample of 30-40 bones that span the past 5000 yrs to provide corroboratory information. We will apply three-dimensional Bayesian niche models and/or community metrics using R scripts in these analyses to identify isotopic \u2018signatures\u2019 of existing and past foraging grounds and polynyas used by Ad\u00e9lie penguins in the southern, central, and northern Ross Sea. This four-year study will the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. \r\n\r\nBroader Impacts:\r\nThe PIs are committed to public engagement and enhancement of K-12 education in the STEM sciences. Broader impacts of this research will include support and training for one Ph.D., two M.S., and eight undergraduate students in the Department of Biology and Marine Biology, and two M.A. students in the Watson School of Education at the University of North Carolina Wilmington (UNCW). The last two students will continue to expand on a detailed polar curriculum that was initiated in previous NSF grants for 2nd and 4th grade students, and most recently for 9-12th grade students now available on PI Emslie\u2019s website (www.uncw.edu/penguins). Additional curricula for K-12 students will be designed and tested in this project, which will include visitation to local K-12 schools. As in previous awards, we will focus on schools that serve historically under-represented groups in the sciences. We will work with the UNCW Center for Education in STEM Sciences to assess the efficacy of this new curricula. All curricula will be uploaded on the Educational Resource Commons website. Field work will include blogs and active question-answer sessions with students at these schools. We will continue to post project information and updates on PI Emslie\u2019s website and YouTube channel. Our partnership with tour ship companies will provide a platform for onboard lectures on the importance of scientific research as well as citizen science opportunities for another sector of the public. This proposal requires fieldwork in the Antarctic.\r\n", "east": -180.0, "geometry": "POINT(170 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Climate Change; Adelie Penguin; Foraging Ecology; Ross Sea; PENGUINS; Holocene; Stable Isotopes", "locations": "Ross Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Emslie, Steven; Lane, Chad S; Polito, Michael", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea", "uid": "p0010388", "west": 160.0}, {"awards": "1645087 Catchen, Julian", "bounds_geometry": null, "dataset_titles": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids; Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki; Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "datasets": [{"dataset_uid": "200330", "doi": "", "keywords": null, "people": null, "repository": "NCBI ", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA861284"}, {"dataset_uid": "200331", "doi": "10.5061/dryad.ghx3ffbs3", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbs3"}, {"dataset_uid": "200380", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA857989"}, {"dataset_uid": "200381", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA917608"}], "date_created": "Mon, 10 Oct 2022 00:00:00 GMT", "description": "As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today\u0027s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region.\u003cbr/\u003eDespite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group - the notothenioid fishes - dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today\u0027s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. \u003cbr/\u003eThis proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids\u0027 evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Genome Assembly; FISH; McMurdo Sound; Icefish; SHIPS; Notothenioid; Puerto Natales, Chile", "locations": "McMurdo Sound; Puerto Natales, Chile", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Catchen, Julian; Cheng, Chi-Hing", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCBI ", "repositories": "Dryad; NCBI; NCBI ", "science_programs": null, "south": null, "title": "Evolutionary Genomic Responses in Antarctic Notothenioid Fishes", "uid": "p0010384", "west": null}, {"awards": "2011454 Veit, Richard; 2011285 Santora, Jarrod", "bounds_geometry": "POLYGON((-39 -53,-38.6 -53,-38.2 -53,-37.8 -53,-37.4 -53,-37 -53,-36.6 -53,-36.2 -53,-35.8 -53,-35.4 -53,-35 -53,-35 -53.2,-35 -53.4,-35 -53.6,-35 -53.8,-35 -54,-35 -54.2,-35 -54.4,-35 -54.6,-35 -54.8,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.8,-39 -54.6,-39 -54.4,-39 -54.2,-39 -54,-39 -53.8,-39 -53.6,-39 -53.4,-39 -53.2,-39 -53))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 06 Oct 2022 00:00:00 GMT", "description": "Part I: Non-technical description: \r\nOcean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. This project will quantify the impact of the climate warming on seabirds. The study area is in South Georgia in the South Atlantic with the largest and most diverse seabird colonies in the world. Detecting and understanding how physics and biology interact to bring positive or negative population changes to seabirds has long challenged scientists. The team in this project hypothesizes that 1) Cold water seabird species decline while warm water species increase due to ocean warming observed in the last 30 years; 2) All species decrease with ocean warming, affecting how they interact with each other and in doing so, decreasing their chances of survival; and 3) Species profiles can be predicted using multiple environmental variables and models. To collect present-day data to compare with observations done in 1985, 1991 and 1993, 2 cruises are planned in the austral winter; the personnel will include the three Principal Investigators, all experienced with sampling of seabirds, plankton and oceanography, with 2 graduate and 5 undergraduate students. Models will be developed based on the cruise data and the environmental change experienced in the last 30 years. The research will improve our understanding of seabird and marine mammal winter ecology, and how they interact with the environment. This project benefits NSF\u0027s goals to expand the fundamental knowledge of Antarctic systems, biota, and processes. The project will provide an exceptional opportunity to teach polar field skills to undergraduates by bringing 5 students to engage in the research cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. \r\n\r\nPart II: Technical description: \r\nOcean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. Based on previous work, the Principal Investigators in this project want to test the hypothesis that warming would have decreased seabird abundance and species associations in the South Georgia region of the South Atlantic. A main premise of this proposal is that because of marine environmental change, the structure of the seabird communities has also changed, and potentially in a manner that has diminished the mutually beneficial dynamics of positive interactions, with subsequent consequences to fitness and population trends. The study is structured by 3 main objectives: 1) identify changes in krill, bird and mammal abundance that have occurred from previous sampling off both ends of South Georgia during winter in 1985, 1991 and 1993, 2) identify pairings of species that benefit each other in searching for prey, and quantify how such relationships have changed since 1985, and 3) make predictions about how these changes in species pairing might continue given predicted future changes in climate. The novelty of the approach is the conceptual model that inter-species associations inform birds of food availability and that the associations decrease if bird abundance decreases, thus warming could decrease overall population fitness. These studies will be essential to establish if behavioral patterns in seabird modulate their response to climate change. The project will provide exceptional educational opportunity to undergraduates by bringing 5 students to participate on the cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -35.0, "geometry": "POINT(-37 -54)", "instruments": null, "is_usap_dc": true, "keywords": "Local Enhancement; South Georgia Island; Mutualism; Climate Change; Positive Interactions; Seabirds; COMMUNITY DYNAMICS; SPECIES/POPULATION INTERACTIONS; R/V NBP", "locations": "South Georgia Island", "north": -53.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Veit, Richard; Manne, Lisa; Santora, Jarrod", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -55.0, "title": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter", "uid": "p0010382", "west": -39.0}, {"awards": "2147045 Learman, Deric", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,171 -80,162 -80,153 -80,144 -80,135 -80,126 -80,117 -80,108 -80,99 -80,90 -80,90 -78,90 -76,90 -74,90 -72,90 -70,90 -68,90 -66,90 -64,90 -62,90 -60,99 -60,108 -60,117 -60,126 -60,135 -60,144 -60,153 -60,162 -60,171 -60,-180 -60))", "dataset_titles": "Physical and geochemical data from shelf sediments eastern Antarctica", "datasets": [{"dataset_uid": "601876", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Learman, Deric", "repository": "USAP-DC", "science_program": null, "title": "Physical and geochemical data from shelf sediments eastern Antarctica", "url": "https://www.usap-dc.org/view/dataset/601876"}], "date_created": "Tue, 30 Aug 2022 00:00:00 GMT", "description": "Microbes in Antarctic surface marine sediments have an important role in degrading organic matter and releasing nutrients to the ocean. Organic matter degradation is at the center of the carbon cycle in the ocean, providing valuable information on nutrient recycling, food availability to animals and carbon dioxide release to the atmosphere. The functionality of these microbes has been inferred by their genomics, however these methods only address the possible function, not their actual rates. In this project the PIs plan to combine genomics methods with cellular estimates of enzyme abundance and activity as a way to determine the rates of carbon degradation. This project aims to sample in several regions of Antarctica to provide a large-scale picture of the processes under study and understand the importance of microbial community composition and environmental factors, such as primary productivity, have on microbial activity. The proposed work will combine research tools such as metagenomics, meta-transcriptomics, and metabolomics coupled with chemical data and enzyme assays to establish degradation of organic matter in Antarctic sediments. This project benefits NSFs goals of understanding the adaptation of Antarctic organisms to the cold and isolated environment, critical to predict effects of climate change to polar organisms, as well as contribute to our knowledge of how Antarctic organisms have adapted to this environment. Society will benefit from this project by education of 2 graduate students, undergraduates and K-12 students as well as increase public literacy through short videos production shared in YouTube.\r\n\r\nThe PIs propose to advance understanding of polar microbial community function, by measuring enzyme and gene function of complex organic matter degradation in several ocean regions, providing a circum-Antarctic description of sediment processes. Two hypotheses are proposed. The first hypothesis states that many genes for the degradation of complex organic matter will be shared in sediments throughout a sampling transect and that where variations in gene content occur, it will reflect differences in the quantity and quality of organic matter, not regional variability. The second hypothesis states that a fraction of gene transcripts for organic matter degradation will not result in measurable enzyme activity due to post-translational modification or rapid degradation of the enzymes. The PIs will analyze sediment cores already collected in a 2020 cruise to the western Antarctic Peninsula with the additional request of participating in a cruise in 2023 to East Antarctica. The PIs will analyze sediments for metagenomics, meta-transcriptomics, and metabolomics coupled with geochemical data and enzyme assays to establish microbial degradation of complex organic matter in Antarctic sediments. Organic carbon concentrations and content in sediments will be measured with \u03b413C, \u03b415N, TOC porewater fluorescence in bulk organic carbon. Combined with determination of geographical variability as well as dependence on carbon sources, results from this study could provide the basis for new hypotheses on how climate variability, with increased water temperature, affects geochemistry in the Southern Ocean.", "east": 90.0, "geometry": "POINT(-165 -70)", "instruments": null, "is_usap_dc": true, "keywords": "BENTHIC; ECOSYSTEM FUNCTIONS; Weddell Sea; Antarctic Peninsula; SEDIMENT CHEMISTRY; R/V NBP", "locations": "Antarctic Peninsula; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Learman, Deric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments", "uid": "p0010373", "west": -60.0}, {"awards": "1842542 Morgan, Daniel", "bounds_geometry": "POLYGON((160 -77,160.4 -77,160.8 -77,161.2 -77,161.6 -77,162 -77,162.4 -77,162.8 -77,163.2 -77,163.6 -77,164 -77,164 -77.1,164 -77.2,164 -77.3,164 -77.4,164 -77.5,164 -77.6,164 -77.7,164 -77.8,164 -77.9,164 -78,163.6 -78,163.2 -78,162.8 -78,162.4 -78,162 -78,161.6 -78,161.2 -78,160.8 -78,160.4 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 09 Aug 2022 00:00:00 GMT", "description": "The goal of this study is to identify and distinguish different source areas of glacial sediment in the McMurdo Dry Valleys, Antarctica to determine past glacial flow direction. Understanding ice flow is critical for determining how the Antarctic Ice Sheets have behaved in the past. Such insight is fundamental for allowing scientists to predict how the Antarctic Ice Sheets will evolve and, in turn, forecast how much and how fast sea level may rise. The project study site, the McMurdo Dry Valleys, contain a tremendous record of glacial deposits on land that extends back at least 14 million years. Chemistry of the rocks within the glacial deposits hold clues to the sources of ice that deposited the material. The chemical analyses of the glacial deposits will allow mapping of the former extent of glaciations providing a better understand of ice flow history. The mapping of the largest ice sheet expansion of the past 14 million years in the McMurdo Dry Valleys is of broad interest to the global climate change community. Undergraduate students comprise the majority of the field teams and will be responsible for sample preparation and analysis in the laboratory. \u003cbr/\u003e\u003cbr/\u003eThis project utilizes new geochemical techniques to test hypotheses about the source, extent, and flow patterns of the glacier ice that deposited glacial tills in the McMurdo Dry Valleys, Antarctica (MDV). The MDV contain an unparalleled terrestrial archive of glacial deposits, which record multiple sources of ice that deposited them. These include the northeast flowing ice that overrode the Transantarctic Mountains, the eastward expansion of the East Antarctic Ice Sheet, the westward extension of the Ross Ice Shelf representing an expansion of the West Antarctic Ice Sheet, and the growth of local alpine glaciers. The glacial tills and drifts in the Antarctic are typically isolated in patches or disjointed outcrop patterns making it difficult to correlate tills and determine their source. This project will undertake a systematic study of the tills in the McMurdo Dry Valleys to determine their provenance with a variety of geochemical techniques including major and minor element analyses with X-ray fluorescence, heavy mineral composition, soil salt concentration, and determining the uranium-lead (U-Pb) ages of zircon sands contained in these tills. The primary tool will be the age distribution of the population of detrital zircon in a glacial drift because it reflects the source of the tills and provides a unique geochemical \"fingerprint\" used to distinguish source areas while correlating units across different sites. A deliverable from this project will be a community available library of zircon fingerprints for mapped glacial tills from archived samples at the Polar Rock Repository and the systematic collection of samples in the MDV.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIATION; Dry Valleys", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Morgan, Daniel", "platforms": null, "repositories": null, "science_programs": null, "south": -78.0, "title": "Unlocking the Glacial History of the McMurdo Dry Valleys, Antarctica by Fingerprinting Glacial Tills with Detrital Zircon U-Pb Age Populations", "uid": "p0010368", "west": 160.0}, {"awards": "2205008 Walker, Catherine", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "The majority of mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean\u2019s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, on the whole, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; ICE EXTENT; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Walker, Catherine; Zhang, Weifeng; Seroussi, Helene", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Investigating the Role of Coastal Polynya Variability in Modulating Antarctic Marine-Terminating Glacier Drawdown", "uid": "p0010364", "west": -180.0}, {"awards": "2212904 Herbert, Lisa", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "The Amundsen Sea, near the fastest melting Antarctic glaciers, hosts one of the most productive polar ecosystems in the world. Phytoplankton serve as the base of the food chain, and their growth also removes carbon dioxide from the atmosphere. Phytoplankton growth is fertilized in this area by nutrient iron (Fe), which is only present at low concentrations in seawater. Prior studies have shown the seabed sediments may provide Fe to the Amundsen Sea ecosystem. However, sediment sources of Fe have never been studied here directly. This project fills this gap by analyzing sediments from the Amundsen Sea and investigating whether sediment Fe fertilizes plankton growth. The results will help scientists understand the basic ecosystem drivers and predict the effects of climate change on this vibrant, vulnerable region. This project also emphasizes inclusivity and openness to the public. The researchers will establish a mentoring network for diverse polar scientists through the Polar Impact Network and communicate their results to the public through CryoConnect.org. \r\n\r\nThis project leverages samples already collected from the Amundsen Sea (NBP22-02) to investigate sediment Fe cycling and fluxes. The broad questions driving this research are 1) does benthic Fe fertilize Antarctic coastal primary productivity, and 2) what are the feedbacks between benthic Fe release and carbon cycling in the coastal Antarctic? To answer these questions, the researchers will analyze pore water Fe content and speciation and calculate fluxes of Fe across the sediment-water interface. These results will be compared to sediment characteristics (e.g., organic carbon content, reactive Fe content, proximity to glacial sources) to identify controls on benthic Fe release. This research dovetails with and expands on the science goals of the \u201cAccelerating Thwaites Ecosystem Impacts for the Southern Ocean\u201d (ARTEMIS) project through which the field samples were collected. In turn, the findings of ARTEMIS regarding modeled and observed trace metal dynamics, surface water productivity, and carbon cycling will inform the conclusions of this project, allowing insight into the impact of benthic Fe in the whole system. This project represents a unique opportunity for combined study of the water column and sediment biogeochemistry which will be of great value to the marine biogeochemistry community and will inform future sediment-ocean studies in polar oceanography and beyond. \r\n", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "TRACE ELEMENTS; SEDIMENT CHEMISTRY; Amundsen Sea", "locations": "Amundsen Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Post Doc/Travel", "paleo_time": null, "persons": "Herbert, Lisa", "platforms": null, "repositories": null, "science_programs": null, "south": -75.0, "title": "OPP-PRF: Benthic Iron Fluxes and Cycling in the Amundsen Sea", "uid": "p0010362", "west": -120.0}, {"awards": "1744649 Christianson, Knut", "bounds_geometry": "POLYGON((-120 -85.5,-117.5 -85.5,-115 -85.5,-112.5 -85.5,-110 -85.5,-107.5 -85.5,-105 -85.5,-102.5 -85.5,-100 -85.5,-97.5 -85.5,-95 -85.5,-95 -85.62,-95 -85.74,-95 -85.86,-95 -85.98,-95 -86.1,-95 -86.22,-95 -86.34,-95 -86.46000000000001,-95 -86.58,-95 -86.7,-97.5 -86.7,-100 -86.7,-102.5 -86.7,-105 -86.7,-107.5 -86.7,-110 -86.7,-112.5 -86.7,-115 -86.7,-117.5 -86.7,-120 -86.7,-120 -86.58,-120 -86.46000000000001,-120 -86.34,-120 -86.22,-120 -86.1,-120 -85.98,-120 -85.86,-120 -85.74,-120 -85.62,-120 -85.5))", "dataset_titles": "Hercules Dome ApRES Data; Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data; Hercules Dome Ice-Penetrating Radar Swath Topographies; Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets; ITASE Impulse Radar Hercules Dome to South Pole", "datasets": [{"dataset_uid": "601710", "doi": "10.15784/601710", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Christian, John; Hoffman, Andrew; Horlings, Annika; Christianson, Knut; Hills, Benjamin; Holschuh, Nicholas; O\u0027Connor, Gemma", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data", "url": "https://www.usap-dc.org/view/dataset/601710"}, {"dataset_uid": "601711", "doi": "10.15784/601711", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Holschuh, Nicholas; Hoffman, Andrew; Christianson, Knut; Paden, John", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome Ice-Penetrating Radar Swath Topographies", "url": "https://www.usap-dc.org/view/dataset/601711"}, {"dataset_uid": "601739", "doi": "10.15784/601739", "keywords": "Antarctica; Apres; Crystal Orientation Fabric; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hercules Dome; Ice Dynamic; Ice Penetrating Radar; Radar Interferometry; Radar Polarimetry", "people": "Christianson, Knut; Hills, Benjamin; Steig, Eric J.; Erwin, Emma; Horlings, Annika; Fudge, Tyler J; Hoffman, Andrew; Holschuh, Nicholas", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome ApRES Data", "url": "https://www.usap-dc.org/view/dataset/601739"}, {"dataset_uid": "601606", "doi": "10.15784/601606", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Christianson, Knut", "repository": "USAP-DC", "science_program": null, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "url": "https://www.usap-dc.org/view/dataset/601606"}, {"dataset_uid": "601712", "doi": "10.15784/601712", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Jacobel, Robert; Hoffman, Andrew; Christianson, Knut; Welch, Brian", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "ITASE Impulse Radar Hercules Dome to South Pole", "url": "https://www.usap-dc.org/view/dataset/601712"}], "date_created": "Tue, 02 Aug 2022 00:00:00 GMT", "description": "The response of the Antarctic ice sheet to climate change is a central issue in projecting global sea-level rise. While much attention is focused on the ongoing rapid changes at the coastal margin of the West Antarctic Ice Sheet, obtaining records of past ice-sheet and climate change is the only way to constrain how an ice sheet changes over millennial timescales. Whether the West Antarctic Ice Sheet collapsed during the last interglacial period (~130,000 to 116,000 years ago), when temperatures were slightly warmer than today, remains a major unsolved problem in Antarctic glaciology. Hercules Dome is an ice divide located at the intersection of the East Antarctic and West Antarctic ice sheets. It is ideally situated to record the glaciological and climatic effects of changes in the West Antarctic Ice Sheet. This project will establish whether Hercules Dome experienced major changes in flow due to changes in the elevation of the two ice sheets. The project will also ascertain whether Hercules Domes is a suitable site from which to recover climate records from the last interglacial period. These records could be used to determine whether the West Antarctic Ice Sheet collapsed during that period. The project will support two early-career researchers and train students at the University of Washington. Results will be communicated through outreach programs in coordination the Ice Drilling Project Office, the University of Washington\u0027s annual Polar Science Weekend in Seattle, and art-science collaboration.\u003cbr/\u003e\u003cbr/\u003eThis project will develop a history of ice dynamics at the intersection of the East and West Antarctic ice sheets, and ascertain whether the site is suitable for a deep ice-coring operation. Ice divides provide a unique opportunity to assess the stability of past ice flow. The low deviatoric stresses and non-linearity of ice flow causes an arch (a \"Raymond Bump\") in the internal layers beneath a stable ice divide. This information can be used to determine the duration of steady ice flow. Due to the slow horizontal ice-flow velocities, ice divides also preserve old ice with internal layering that reflects past flow conditions caused by divide migration. Hercules Dome is an ice divide that is well positioned to retain information of past variations in the geometry of both the East and West Antarctic Ice Sheets. This dome is also the most promising location at which to recover an ice core that can be used to determine whether the West Antarctic Ice Sheet collapsed during the last interglacial period. Limited ice-penetrating radar data collected along a previous scientific surface traverse indicate well-preserved englacial stratigraphy and evidence suggestive of a Raymond Bump, but the previous survey was not sufficiently extensive to allow thorough characterization or determination of past changes in ice dynamics. This project will conduct a dedicated survey to map the englacial stratigraphy and subglacial topography as well as basal properties at Hercules Dome. The project will use ground-based ice-penetrating radar to 1) image internal layers and the ice-sheet basal interface, 2) accurately measure englacial attenuation, and 3) determine englacial vertical strain rates. The radar data will be combined with GPS observations for detailed topography and surface velocities and ice-flow modeling to constrain the basal characteristics and the history of past ice flow.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -86.1)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; ICE DEPTH/THICKNESS; East Antarctica", "locations": "West Antarctica; East Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Hoffman, Andrew; Holschuh, Nicholas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.7, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "uid": "p0010359", "west": -120.0}, {"awards": "2114502 Tinto, Kirsteen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).\r\n\r\nAn important part of understanding future climate change is predicting changes in how fast the ice in Antarctica is moving. If ice flows more quickly towards the ocean, it will have a direct impact on sea level rise. One of the things that can influence the ice flow is the type of rock below the ice coverage in Antarctica. Sedimentary basins are large regions where sedimentary rocks accumulated in the past, often under ancient seas. It has been observed that where there are sediments below the ice, the ice can flow faster. This project seeks to understand what is below the ice and how the underlying rock influences the ice flow. Is it hard, crystalline rock? Is it a sedimentary basin? What is the relationship between sediments and ice flow? The answers to these questions will be addressed by using a combination of available data and geophysical methods. Information from well-known rock-types will be used to train the computer to recognize these features by using an application of artificial intelligence known as machine learning, which will help the characterization and identification of unknown sedimentary basins beneath the ice. The results of this project will be disseminated to a broad audience by holding workshops for teacher and students to explain our findings under the ice and to introduce the machine learning technique. Open-source codes used during this project will be made available for use in higher-level classrooms as well as in further studies.\r\n\r\nTo date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. A combination of large-scale datasets will be used to characterize known basins and identify new sedimentary basins to produce the first continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. Available geophysical compilations of data and the location of well-known sedimentary basins will be used to apply an ensemble machine learning algorithm. The machine learning algorithm will learn complex relationships by voting among a collection of randomized decision trees. The gravity signal related to sedimentary basins known from other (e.g. seismic) techniques will be evaluated and unknown basins from aerogravity data regression analyses will be proposed by calculating a gravity residual that reflects density inhomogeneities. The gravimetric sedimentary basins identified from the regression analyses will be compared with an independent method of identifying sedimentary distribution, the Werner deconvolution method of estimating depth to magnetic sources. The hypothesis, which is sedimentary basins are correlated to fast ice flow behavior, will be tested by comparing the location of the sedimentary basins with locations of high ice flow by using available ice velocity observations. A relationship between sedimentary basins and ice streams will be defined qualitatively and quantitatively, aiming to evaluate if there are ice streams where no sedimentary basins are reported, or sedimentary basins with no ice streams related. The findings of these project can confirm if the presence of abundant sediments is a pre-requisite for ice streaming. Analyzing previously known sedimentary basins and identifying new ones in Antarctica is central to evaluating the influence of subglacial sediments on the ice sheet flow.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GRAVITY ANOMALIES; ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Constantino, Renata", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Pan-Antarctic Assessment of Sedimentary Basins and the Onset of Streaming Ice Flow from Machine Learning and Aerogravity Regression Analyses", "uid": "p0010351", "west": -180.0}, {"awards": "2139497 Balco, Gregory", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 21 Jun 2022 00:00:00 GMT", "description": "This project will conduct basic research into geological dating techniques that are useful for determining the age of glacial deposits in polar regions, Antarctica in particular. These techniques are necessary for determining how large the polar ice sheets were in the geologic past, including during past periods of warm climate that likely resemble present and near-future conditions. Thus, they represent an important technical capability needed for estimating the response of polar ice sheets to climate warming. Because changes in the size of polar ice sheets are the largest potential contribution to future global sea-level change, this capability is also relevant to understanding likely sea-level impacts of future climate change. The research in this project comprises several observational and experimental approaches to improving the speed, efficiency, cost, and accuracy of these techniques, as well as a scientific outreach program aimed at making the resulting capabilities more broadly available to other researchers. The project supports a postdoctoral scholar and contributes to human resources development in polar and climate science.\r\n\r\nThe project focuses on several areas of cosmogenic-nuclide geochemistry, which is a geochemical dating method that relies on the production and decay of cosmic-ray-produced radionuclides in surface rocks. Measurements of these nuclides can be used to quantify the duration of surface exposure and ice cover at locations in Antarctica that are covered and uncovered by changes in the size of the Antarctic ice sheets, thus providing a means of reconstructing past ice-sheet change. The first proposed set of experiments are aimed at implementing a \u0027\u0027virtual mineral separation\u0027\u0027 approach to cosmogenic noble gas analysis that may allow measurement of nuclide concentrations in certain minerals without physically separating the minerals from the host rock. If feasible, this would realize significant speed and cost improvements for this type of analysis. A second set of experiments will focus on means of identifying and quantifying non-cosmogenic background inventories of some relevant nuclides, which is intended to improve the measurement sensitivity and precision for cosmic-ray-produced inventories of these nuclides. A third focus area aims to improve capabilities to measure multiple cosmic-ray-produced nuclides in the same sample, which has the potential to improve the accuracy of dating methods based on these nuclides and to expand the situations in which these methods can be applied. If successful, these experiments are likely to improve a number of applications of cosmogenic-nuclide geochemistry relevant to Antarctic research, including subglacial bedrock exposure dating, dating of multimillion-year-old glacial deposits, and surface-process studies useful in understanding landform evolution and ecosystem dynamics.\r\n\r\nThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "California; LABORATORY; AMD; GEOCHEMISTRY; Amd/Us; USAP-DC; USA/NSF", "locations": "California", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Balco, Gregory", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -90.0, "title": "Targeted Basic Research to Enable Antarctic Science Applications of Cosmogenic-Nuclide Geochemistry", "uid": "p0010343", "west": -180.0}, {"awards": "1745068 Booth, Robert; 1745082 Beilman, David", "bounds_geometry": "POLYGON((-64.4 -62.4,-63.910000000000004 -62.4,-63.42 -62.4,-62.93000000000001 -62.4,-62.440000000000005 -62.4,-61.95 -62.4,-61.46 -62.4,-60.97 -62.4,-60.480000000000004 -62.4,-59.99 -62.4,-59.5 -62.4,-59.5 -62.7,-59.5 -63,-59.5 -63.3,-59.5 -63.6,-59.5 -63.900000000000006,-59.5 -64.2,-59.5 -64.5,-59.5 -64.80000000000001,-59.5 -65.10000000000001,-59.5 -65.4,-59.99 -65.4,-60.480000000000004 -65.4,-60.97 -65.4,-61.46 -65.4,-61.95 -65.4,-62.440000000000005 -65.4,-62.93000000000001 -65.4,-63.42 -65.4,-63.910000000000004 -65.4,-64.4 -65.4,-64.4 -65.10000000000001,-64.4 -64.80000000000001,-64.4 -64.5,-64.4 -64.2,-64.4 -63.900000000000006,-64.4 -63.6,-64.4 -63.3,-64.4 -63,-64.4 -62.7,-64.4 -62.4))", "dataset_titles": "LMG2002 Expedtition Data", "datasets": [{"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "Warming on the western Antarctic Peninsula in the later 20th century has caused widespread changes in the cryosphere (ice and snow) and terrestrial ecosystems. These recent changes along with longer-term climate and ecosystem histories will be deciphered using peat deposits. Peat accumulation can be used to assess the rate of glacial retreat and provide insight into ecological processes on newly deglaciated landscapes in the Antarctic Peninsula. This project builds on data suggesting recent ecosystem transformations that are linked to past climate of the western Antarctic Peninsula and provide a timeline to assess the extent and rate of recent glacial change. The study will produce a climate record for the coastal low-elevation terrestrial region, which will refine the major climate shifts of up to 6 degrees C in the recent past (last 12,000 years). A novel terrestrial record of the recent glacial history will provide insight into observed changes in climate and sea-ice dynamics in the western Antarctic Peninsula and allow for comparison with off-shore climate records captured in sediments. Observations and discoveries from this project will be disseminated to local schools and science centers. The project provides training and career development for a postdoctoral scientist as well as graduate and undergraduate students.\u003cbr/\u003e\u003cbr/\u003eThe research presents a new systematic survey to reconstruct ecosystem and climate change for the coastal low-elevation areas on the western Antarctic Peninsula (AP) using proxy records preserved in late Holocene peat deposits. Moss and peat samples will be collected and analyzed to generate a comprehensive data set of late-Holocene climate change and ecosystem dynamics. The goal is to document and understand the transformations of landscape and terrestrial ecosystems on the western AP during the late Holocene. The testable hypothesis is that coastal regions have experienced greater climate variability than evidenced in ice-core records and that past warmth has facilitated dramatic ecosystem and cryosphere response. A primary product of the project is a robust reconstruction of late Holocene climate changes for coastal low-elevation terrestrial areas using multiple lines of evidence from peat-based biological and geochemical proxies, which will be used to compare with climate records derived from marine sediments and ice cores from the AP region. These data will be used to test several ideas related to novel peat-forming ecosystems (such as Antarctic hairgrass bogs) in past warmer climates and climate controls over ecosystem establishment and migration to help assess the nature of the Little Ice Age cooling and cryosphere response. The chronology of peat cores will be established by radiocarbon dating of macrofossils and Bayesian modeling. The high-resolution time series of ecosystem and climate changes will help put the observed recent changes into a long-term context to bridge climate dynamics over different time scales.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -59.5, "geometry": "POINT(-61.95 -63.900000000000006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; ISOTOPES; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Amd/Us; FIELD INVESTIGATION; Antarctic Peninsula; AMD; TERRESTRIAL ECOSYSTEMS; USA/NSF; RADIOCARBON", "locations": "Antarctic Peninsula", "north": -62.4, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Beilman, David; Booth, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.4, "title": "Collaborative Research: Reconstructing Late Holocene Ecosystem and Climate Shifts from Peat Records in the Western Antarctic Peninsula", "uid": "p0010337", "west": -64.4}, {"awards": "2055455 Duhaime, Melissa", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Part 1: Non-technical description:\r\nIt is well known that the Southern Ocean plays an important role in global carbon cycling and also receives a disproportionately large influence of climate change. The role of marine viruses on ocean productivity is largely understudied, especially in this global region. This team proposes to use combination of genomics, flow cytometry, and network modeling to test the hypothesis that viral biogeography, infection networks, and viral impacts on microbial metabolism can explain variations in net community production (NCP) and carbon cycling in the Southern Ocean. The project includes the training of a postdoctoral scholar, graduate students and undergraduate students. It also includes the development of a new Polar Sci ReachOut program in partnership with the University of Michigan Museum of Natural History especially targeted to middle-school students and teachers and the general public. The team will also produce a Science for Tomorrow (SFT) program for use in middle schools in metro-Detroit communities and lead a summer Research Experience for Teachers (RET) fellows. \r\n\r\nPart 2: Technical description: \r\nThe study will leverage hundreds of existing samples collected for microbes and viruses from the Antarctic Circumpolar Expedition (ACE). These samples provide the first contiguous survey of viral diversity and microbial communities around Antarctica. Viral networks are being studied in the context of biogeochemical data to model community networks and predict net community production (NCP), which will provide a way to evaluate the role of viruses in Southern Ocean carbon cycling. Using cutting edge molecular and flow cytometry approaches, this project addresses the following questions: 1) How/why are Southern Ocean viral populations distributed across environmental gradients? 2a) Do viruses interfere with \"keystone\" metabolic pathways and biogeochemical processes of microbial communities in the Southern Ocean? 2b) Does nutrient availability or other environmental variables drive changes in virus-microbe infection networks in the Southern Ocean? Results will be used to develop and evaluate generative models of NCP predictions that incorporate the importance of viral traits and virus-host interactions.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Amd/Us; AMD; FIELD INVESTIGATION; USA/NSF; AQUATIC SCIENCES; BACTERIA/ARCHAEA; MARINE ECOSYSTEMS; VIRUSES; USAP-DC", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Duhaime, Melissa; Zaman, Luis", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA - Viral Ecogenomics of the Southern Ocean: Unifying Omics and Ecological Networks to Advance our Understanding of Antarctic Microbial Ecosystem Function", "uid": "p0010333", "west": -180.0}, {"awards": "1951090 Stukel, Michael", "bounds_geometry": "POLYGON((-80 -63,-78.2 -63,-76.4 -63,-74.6 -63,-72.8 -63,-71 -63,-69.2 -63,-67.4 -63,-65.6 -63,-63.8 -63,-62 -63,-62 -63.7,-62 -64.4,-62 -65.1,-62 -65.8,-62 -66.5,-62 -67.2,-62 -67.9,-62 -68.6,-62 -69.3,-62 -70,-63.8 -70,-65.6 -70,-67.4 -70,-69.2 -70,-71 -70,-72.8 -70,-74.6 -70,-76.4 -70,-78.2 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "BCO-DMO Project Page", "datasets": [{"dataset_uid": "200294", "doi": null, "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "BCO-DMO Project Page", "url": "https://www.bco-dmo.org/project/838048"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children?s book, ?Plankton do the Strangest Things?, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms.\u003cbr/\u003e\u003cbr/\u003e This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years? worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-71 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Palmer Station; USAP-DC; BIOGEOCHEMICAL CYCLES; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Stukel, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -70.0, "title": "Quantifying Processes Driving Interannual Variability in the Biological Carbon Pump in the Western Antarctic Peninsula", "uid": "p0010332", "west": -80.0}, {"awards": "2141555 Brooks, Cassandra", "bounds_geometry": "POLYGON((-180 -71.5,-177.1 -71.5,-174.2 -71.5,-171.3 -71.5,-168.4 -71.5,-165.5 -71.5,-162.6 -71.5,-159.7 -71.5,-156.8 -71.5,-153.9 -71.5,-151 -71.5,-151 -72.25,-151 -73,-151 -73.75,-151 -74.5,-151 -75.25,-151 -76,-151 -76.75,-151 -77.5,-151 -78.25,-151 -79,-153.9 -79,-156.8 -79,-159.7 -79,-162.6 -79,-165.5 -79,-168.4 -79,-171.3 -79,-174.2 -79,-177.1 -79,180 -79,178.1 -79,176.2 -79,174.3 -79,172.4 -79,170.5 -79,168.6 -79,166.7 -79,164.8 -79,162.9 -79,161 -79,161 -78.25,161 -77.5,161 -76.75,161 -76,161 -75.25,161 -74.5,161 -73.75,161 -73,161 -72.25,161 -71.5,162.9 -71.5,164.8 -71.5,166.7 -71.5,168.6 -71.5,170.5 -71.5,172.4 -71.5,174.3 -71.5,176.2 -71.5,178.1 -71.5,-180 -71.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 27 May 2022 00:00:00 GMT", "description": "The Ross Sea, Antarctica, is one of the last large intact marine ecosystems left in the world, yet is facing increasing pressure from commercial fisheries and environmental change. It is the most productive stretch of the Southern Ocean, supporting an array of marine life, including Antarctic toothfish the regions top fish predator. While a commercial fishery for toothfish continues to grow in the Ross Sea, fundamental knowledge gaps remain regarding toothfish ecology and the impacts of toothfish fishing on the broader Ross Sea ecosystem. Recognizing the global value of the Ross Sea, a large (\u003e2 million km2) marine protected area was adopted by the multi-national Commission for the Conservation of Antarctic Marine Living Resources in 2016. This research will fill a critical gap in the knowledge of Antarctic toothfish and deepen understanding of biological-physical interactions for fish ecology, while contributing to knowledge of impacts of fishing and environmental change on the Ross Sea system. This work will further provide innovative tools for studying connectivity among geographically distinct fish populations and for synthesizing and assessing the efficacy of a large-scale marine protected area. In developing an integrated research and education program in engaged scholarship, this project seeks to train the next generation of scholars to engage across the science-policy-public interface, engage with Southern Ocean stakeholders throughout the research process, and to deepen the publics appreciation of the Antarctic. \r\n\r\nA major research priority among Ross Sea scientists is to better understand the life history of the Antarctic toothfish and test the efficacy of the Ross Sea Marine Protected Area (MPA) in protecting against the impacts of overfishing and climate change. Like growth rings of a tree, fish ear bones, called otoliths, develop annual layers of calcium carbonate that incorporates elements from their environment. Otoliths offer information on the fishs growth and the surrounding ocean conditions. Hypothesizing that much of the Antarctic toothfish life cycle is structured by ocean circulation, this research employs a multi-disciplinary approach combining age and growth work with otolith chemistry testing, while also utilizing GIS mapping. The project will measure life history parameters as well as trace elements and stable isotopes in otoliths in three distinct sets collected over the last four decades in the Ross Sea. The information will be used to quantify the transport pathways Antarctic toothfish use across their life history, and across time, in the Ross Sea. The project will assess if toothfish populations from the Ross Sea are connected more widely across the Antarctic. By comparing life history and otolith chemistry data across time, the researchers will assess change in life history parameters and spatial dynamics and seek to infer if these changes are driven by fishing or climate change. Spatially mapping of these data will allow an assessment of the efficacy of the Ross Sea MPA in protecting toothfish and where further protections might be needed.\r\n\r\nThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": -151.0, "geometry": "POINT(-175 -75.25)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USA/NSF; FIELD INVESTIGATION; USAP-DC; AMD; FISHERIES; Ross Sea", "locations": "Ross Sea", "north": -71.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Brooks, Cassandra", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "CAREER: Using Otolith Chemistry to Reveal the Life History of Antarctic Toothfish in the Ross Sea, Antarctica: Testing Fisheries and Climate Change Impacts on a Top Fish Predator", "uid": "p0010329", "west": 161.0}, {"awards": "2037598 Alberto, Filipe; 2037670 Heine, John", "bounds_geometry": "POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 23 May 2022 00:00:00 GMT", "description": "Collaborative Research: Biogeography, population genetics, and ecology of two common species of fleshy red algae in McMurdo Sound\r\n\r\nClimate change is predicted to increase the period of fast ice-free conditions in polar habitats. As early colonizers, macroalgae may take advantage of increased light availability to outcompete invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) for space in shallow subtidal hardbottom habitats. The project will compare patterns in vegetative and reproductive characteristics of two macroalgal species Phyllophora antarctica and Iridaea cordata collected from the 1980s to present-day. Populations will be collected from coastal and offshore sites in shallow (3\u20134 m) and greater (approx.12 m) depths at Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount. Genetic diversity of the two algal species will be measured and is expected to be relatively low due to limited dispersal in McMurdo Sound. No previous research has investigated the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on macroalgal communities in McMurdo Sound. For the first time, photogrammetry will be used to collect community-level data on the newly discovered offshore Dellbridge Seamount and 3D visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in subtidal polar ecology and the importance of Antarctic science to their lives.\r\n", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; McMurdo Sound; USAP-DC; Amd/Us; COMMUNITY DYNAMICS; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS); USA/NSF", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Heine, John; Goldberg, Nisse; Alberto, Filipe", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound", "uid": "p0010322", "west": 162.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills I-188 Field Season Report 2022-2023; Allan Hills ice water stable isotope record for dD, d18O; COLDEX Raw MARFA Ice Penetrating Radar data; NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601854", "doi": "10.15784/601854", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Fudge, T. J.; Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601854"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Severinghaus, Jeffrey P.; Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Hishamunda, Valens; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "200435", "doi": "10.18738/T8/PNBFOL", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2023-24 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/PNBFOL"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Horlings, Annika; Epifanio, Jenna; Conway, Howard; Shaya, Margot; Manos, John-Morgan", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Higgins, John; Marks Peterson, Julia; Epifanio, Jenna; Mayo, Emalia; Goverman, Ashley; Jayred, Michael; Morton, Elizabeth; Banerjee, Asmita; Hudak, Abigail; Manos, John-Morgan; Carter, Austin; Shackleton, Sarah; Brook, Edward J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "200434", "doi": "10.18738/T8/99IEOG", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "NSF COLDEX 2022-23 Riegl Laser Altimeter Level 2 Geolocated Surface Elevation Triplets", "url": "https://doi.org/10.18738/T8/99IEOG"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Shackleton, Sarah; Carter, Austin; Nesbitt, Ian; Zajicek, Anna; Morton, Elizabeth; Kuhl, Tanner; Epifanio, Jenna; Morgan, Jacob; Higgins, John", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "200433", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "200432", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Conway, Howard; Brook, Edward J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "601768", "doi": null, "keywords": "Antarctica; East Antarctic Plateau", "people": "Kerr, Megan; Ng, Gregory; Greenbaum, Jamin; Buhl, Dillon; Chan, Kristian; Kempf, Scott D.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Higgins, John; Severinghaus, Jeffrey P.; Brook, Edward; Introne, Douglas; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community.\r\n\r\nKnowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Polar Special Initiatives", "paleo_time": null, "persons": "Brook, Edward J.; Neff, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "OPR", "repositories": "OPR; Texas Data Repository; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "1543305 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Station", "datasets": [{"dataset_uid": "200291", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Antarctic Automatic Weather Station", "url": "https://amrdcdata.ssec.wisc.edu/group/about/automatic-weather-station-project"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity, incoming sunshine, and snow accumulation may also be taken at selected sites. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the Antarctic AWS network are important records for recent climate change and meteorological processes. The surface observations from the Antarctic AWS network are also used operationally, and in the planning of field work. The surface observations made from the network have been used to check on satellite and remote sensing observations.This project uses the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall. Specifically, this project improves our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "HUMIDITY; SURFACE PRESSURE; ATMOSPHERIC TEMPERATURE; AMD; ATMOSPHERIC PRESSURE; USA/NSF; AIR TEMPERATURE; Antarctica; USAP-DC; Amd/Us; SURFACE WINDS; SURFACE AIR TEMPERATURE; ATMOSPHERIC PRESSURE MEASUREMENTS; WEATHER STATIONS; ATMOSPHERIC WINDS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019", "uid": "p0010319", "west": -180.0}, {"awards": "2146791 Lai, Chung Kei Chris", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 May 2022 00:00:00 GMT", "description": "Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. \r\n\r\nThis project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Glacier-Ocean Boundary Layer; Alaska; USAP-DC; USA/NSF; ABLATION ZONES/ACCUMULATION ZONES; GLACIERS; AMD; Amd/Us; Antarctica; LABORATORY", "locations": "Antarctica; Alaska", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Lai, Chung; Robel, Alexander", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Revising Models of the Glacier-Ocean Boundary Layer with Novel Laboratory Experiments ", "uid": "p0010317", "west": null}, {"awards": "2053726 Hofmann, Gretchen", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "datasets": [{"dataset_uid": "200288", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Analyses combining ATAC-seq, RRBS, and RNA-seq data for purple urchins", "url": "https://github.com/snbogan/Sp_RRBS_ATAC"}], "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part 1: Non-technical description:\r\n\tWith support from the Office of Polar Programs, this project will evaluate how an important part of the food web in the coastal ocean of Antarctica will respond to climate change. The focal study organism in the plankton is a shelled mollusk, the Antarctic pteropod, Limacina helicina antarctica, a Southern Ocean organism that this known to respond to climate driven changes in ocean acidification and ocean warming. Ocean acidification, the lowering of ocean pH via the absorption of atmospheric carbon dioxide in the surface of the ocean, is a change in the ocean that is expected to cross deleterious thresholds of pH within decades. This study will improve understanding of how pteropods will respond, which will provide insight into predicting the resilience of the Antarctic marine ecosystem during future changes, one of the planets last marine wildernesses. The project will use tools of molecular biology to examine specifically how gene expression is modulated in the pteropods, and further, how the changes and regulation of genes act to resist the stress of low pH and high temperature. In addition, this project supports the training of Ph.D. graduate students and advances the goal of inclusive excellence in STEM and in marine sciences, in particular. The students involved in this project are from groups traditionally under-represented in marine science including first-generation college students. Overall, the project contributes to the development of the U.S. work force and contributes to diversity and inclusive excellence in the geosciences.\r\n\r\nPart 2: Technical description: \r\nThe overarching goal of this project is to investigate the molecular response of the Antarctic thecosome pteropod, Limacina helicina antarctica to ocean acidification (OA) and ocean warming. The project will investigate changes in the epigenome of juvenile L. h. antarctica, by assessing the dynamics of DNA methylation in response to three scenarios of environmental conditions that were simulated in laboratory mesocosm CO2 experiments: (1) present-day pCO2 conditions for summer and winter, (2) future ocean acidification expected within 10-15 years, and (3) a multiple stressor experiment to investigate synergistic interaction of OA and high temperature stress. Recent lab-based mesocosm experiment research showed significant changes in the dynamics of global DNA methylation in the pteropod genome, along with variation in gene expression in response to abiotic changes. Thus, it is clear that juvenile L. h. antarctica are capable of mounting a substantial epigenetic response to ocean acidification. However, it is not known how DNA methylation, as an epigenetic process, is modulating changes in the transcriptome. In order to address this gap in the epigenetic knowledge regarding pteropods, the project will use next-generation sequencing approaches (e.g., RNA sequencing and reduced representation bisulfite sequencing) to integrate changes in methylation status with changes in gene expression in juvenile pteropods. Overall, this investigation is an important step in exploring environmental transcriptomics and phenotypic plasticity of an ecologically important member of Southern Ocean macrozoooplankton in response to anthropogenic climate change.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; McMurdo Sound; Amd/Us; FIELD INVESTIGATION; USA/NSF; AMD; MARINE ECOSYSTEMS; ANIMALS/INVERTEBRATES", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -78.0, "title": "The Role of the Epigenetic Mechanism, DNA Methylation, in the Tolerance and Resistance of Antarctic Pteropods to Ocean Acidification and Warming", "uid": "p0010313", "west": 163.0}, {"awards": "1932876 Ball, Becky", "bounds_geometry": "POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical summary\u003cbr/\u003eThe Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the \u201cgreening\u201d of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as \u201cplant-soil\u201d interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.\u003cbr/\u003e\u003cbr/\u003ePart II: Technical summary\u003cbr/\u003eIn this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -58.133333, "geometry": "POINT(-58.8997245 -62.265751)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD SURVEYS; ECOLOGICAL DYNAMICS; USA/NSF; SOIL CHEMISTRY; 25 De Mayo/King George Island; Antarctic Peninsula; PLANTS; Amd/Us; FUNGI; ANIMALS/INVERTEBRATES; USAP-DC; TERRESTRIAL ECOSYSTEMS; BACTERIA/ARCHAEA", "locations": "25 De Mayo/King George Island; Antarctic Peninsula", "north": -62.15, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -62.381502, "title": "Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession", "uid": "p0010315", "west": -59.666116}, {"awards": "2148517 Hancock, Cathrine", "bounds_geometry": "POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55))", "dataset_titles": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023; Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "datasets": [{"dataset_uid": "601852", "doi": "10.15784/601852", "keywords": "Antarctica; Continental Slope; Cryosphere; Eddy; Float Trajectory; HAFOS; Weddell Sea", "people": "Hancock, Cathrine; Boebel, Olaf", "repository": "USAP-DC", "science_program": null, "title": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023", "url": "https://www.usap-dc.org/view/dataset/601852"}, {"dataset_uid": "601652", "doi": "10.15784/601652", "keywords": "Antarctica; ANTXXIV/3; Argo Float; Artoa4argo; GPS Data; RAFOS; US Argo Program; Weddell Sea", "people": "Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "url": "https://www.usap-dc.org/view/dataset/601652"}], "date_created": "Fri, 25 Mar 2022 00:00:00 GMT", "description": "The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or \"mesoscale\" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics.\r\n\r\nThis project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions.", "east": 30.0, "geometry": "POINT(-15 -65)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; WATER MASSES; BUOYS; USA/NSF; Weddell Sea; AMD; USAP-DC; Amd/Us", "locations": "Weddell Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hancock, Cathrine; Speer, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Weddell Gyre Mean Circulation and Eddy Statistics from Floats", "uid": "p0010310", "west": -60.0}, {"awards": "1643248 Hall, Brenda", "bounds_geometry": "POLYGON((163.3 -77.8,163.43 -77.8,163.56 -77.8,163.69 -77.8,163.82 -77.8,163.95 -77.8,164.08 -77.8,164.21 -77.8,164.34 -77.8,164.47 -77.8,164.6 -77.8,164.6 -77.85,164.6 -77.9,164.6 -77.95,164.6 -78,164.6 -78.05,164.6 -78.1,164.6 -78.15,164.6 -78.2,164.6 -78.25,164.6 -78.3,164.47 -78.3,164.34 -78.3,164.21 -78.3,164.08 -78.3,163.95 -78.3,163.82 -78.3,163.69 -78.3,163.56 -78.3,163.43 -78.3,163.3 -78.3,163.3 -78.25,163.3 -78.2,163.3 -78.15,163.3 -78.1,163.3 -78.05,163.3 -78,163.3 -77.95,163.3 -77.9,163.3 -77.85,163.3 -77.8))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Pyramid Trough Radiocarbon Data; Walcott Glacier area radiocarbon data; Walcott Glacier Exposure Data", "datasets": [{"dataset_uid": "601615", "doi": "10.15784/601615", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Howchin Glacier; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier area radiocarbon data", "url": "https://www.usap-dc.org/view/dataset/601615"}, {"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601614", "doi": "10.15784/601614", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pyramid Trough; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Pyramid Trough Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601614"}, {"dataset_uid": "601616", "doi": "10.15784/601616", "keywords": "Antarctica; Beryllium-10; Exposure Age; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; McMurdo Sound; Royal Society Range; Walcott Glacier", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Walcott Glacier Exposure Data", "url": "https://www.usap-dc.org/view/dataset/601616"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "The Antarctic Ice Sheet is the greatest potential contributor to sea-level change. However, the future response of the ice sheet to warming climate is recognized as one of the greatest uncertainties in sea-level projections. An understanding of past ice fluctuations can afford insight into ice-sheet response to climate change and thus is critical for improving sea-level predictions. In this project, we will reconstruct the behavior of the Antarctic Ice Sheet in the western Ross Sea region during the great global warming that ended the last ice age. Fluctuations in ice volume during this time period will allow us to characterize the factors that cause the ice sheet to advance and retreat and will enable us to distinguish between models that suggest repeated episodes of ice-sheet collapse vs those that indicate ice-sheet growth during warming climate. An understanding of the cause(s) of changes in ice volume during the warming that ended the last ice age has important implications for the future of the Antarctic Ice Sheet. ", "east": 164.6, "geometry": "POINT(163.95 -78.05)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER ELEVATION/ICE SHEET ELEVATION; Royal Society Range; USA/NSF; USAP-DC; Amd/Us; AMD; LABORATORY; GLACIAL LANDFORMS", "locations": "Royal Society Range", "north": -77.8, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "Response of the Antarctic Ice Sheet to the last great global warming", "uid": "p0010301", "west": 163.3}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": "POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Royal Society Range Headland Moraine Belt Radiocarbon Data; Salmon Valley Radiocarbon Data", "datasets": [{"dataset_uid": "601556", "doi": "10.15784/601556", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Salmon Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601556"}, {"dataset_uid": "601555", "doi": "10.15784/601555", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601555"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth\u0027s climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. ", "east": 164.6, "geometry": "POINT(164.1 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Amd/Us; AMD; USA/NSF; GLACIAL LANDFORMS; USAP-DC; Royal Society Range; GLACIER ELEVATION/ICE SHEET ELEVATION", "locations": "Royal Society Range", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "uid": "p0010302", "west": 163.6}, {"awards": "0342484 Harwood, David", "bounds_geometry": "POINT(167.083333 -77.888889)", "dataset_titles": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "datasets": [{"dataset_uid": "601451", "doi": "10.15784/601451", "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "people": "Passchier, Sandra; Candice, Falk", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601451"}], "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "ANDRILL is a scientific drilling program to investigate Antarctica\u0027s role in global climate change over the last sixty million years. The approach integrates geophysical surveys, new drilling technology, multidisciplinary core analysis, and ice sheet modeling to address four scientific themes: (1) the history of Antarctica\u0027s climate and ice sheets; (2) the evolution of polar biota and ecosystems; (3) the timing and nature of major tectonic and volcanic episodes; and (4) the role of Antarctica in the Earth\u0027s ocean-climate system. \u003cbr/\u003e\u003cbr/\u003eThis award initiates what may become a long-term program with drilling of two previously inaccessible sediment records beneath the McMurdo Ice Shelf and in South McMurdo Sound. These stratigraphic records cover critical time periods in the development of Antarctica\u0027s major ice sheets. The McMurdo Ice Shelf site focuses on the Ross Ice Shelf, whose size is a sensitive indicator of global climate change. It has recently undergone major calving events, and there is evidence of a thousand-kilometer contraction since the last glacial maximum. As a generator of cold bottom water, the shelf may also play a key role in ocean circulation. The core obtained from this site will also offer insight into sub-ice shelf sedimentary, biologic, and oceanographic processes; the history of Ross Island volcanism; and the flexural response of the lithosphere to volcanic loading, which is important for geophysical and tectonic studies of the region.\u003cbr/\u003e\u003cbr/\u003eThe South McMurdo Sound site is located adjacent to the Dry Valleys, and focuses on the major ice sheet overlying East Antarctica. A debate persists regarding the stability of this ice sheet. Evidence from the Dry Valleys supports contradictory conclusions; a stable ice sheet for at least the last fifteen million years or an active ice sheet that cycled through expansions and contractions as recently as a few millions of years ago. Constraining this history is critical to deep-time models of global climate change. The sediment cores will be used to construct an overall glacial and interglacial history for the region; including documentation of sea-ice coverage, sea level, terrestrial vegetation, and melt-water discharge events. The core will also provide a general chronostratigraphic framework for regional seismic studies and help unravel the area\u0027s complex tectonic history.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this project include formal and informal education, new research infrastructure, various forms of collaboration, and improving society\u0027s understanding of global climate change. Education is supported at the postdoctoral, graduate, undergraduate, and K-12 levels. Teachers and curriculum specialists are integrated into the research program, and a range of video resources will be produced, including a science documentary for television release. New research infrastructure includes equipment for core analysis and ice sheet modeling, as well as development of a unique drilling system to penetrate ice shelves. Drill development and the overall project are co-supported by international collaboration with scientists and the National Antarctic programs of New Zealand, Germany, and Italy. The program also forges new collaborations between research and primarily undergraduate institutions within the United States. \u003cbr/\u003e\u003cbr/\u003eAs key factors in sea-level rise and oceanic and atmospheric circulation, Antarctica\u0027s ice sheets are important to society\u0027s understanding of global climate change. ANDRILL offers new data on marine and terrestrial temperatures, and changes our understanding of extreme climate events like the formation of polar ice caps. Such data are critical to developing accurate models of the Earth\u0027s climatic future.", "east": 167.083333, "geometry": "POINT(167.083333 -77.888889)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; FIELD SURVEYS; ICE SHEETS; USA/NSF; Amd/Us; PALEOCLIMATE RECONSTRUCTIONS; Ross Ice Shelf; SEDIMENTS", "locations": "Ross Ice Shelf", "north": -77.888889, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Harwood, David; Levy, Richard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.888889, "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "uid": "p0010297", "west": 167.083333}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina.\r\n\r\nThe PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "datasets": [{"dataset_uid": "601770", "doi": "10.15784/601770", "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "people": "Joanie, Van de Walle; Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "url": "https://www.usap-dc.org/view/dataset/601770"}], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Overview: To date, studies that have addressed the impacts of global changes have mainly focused on linking climate variability and/or human disturbances to individual life history traits, population dynamics or distribution. However, individual behavior and plasticity mediate these responses. The goal of this project is to understand mechanisms linking environmental changes (climate \u0026 fisheries)- behavioral personality type \u2013 plasticity in foraging behaviors- life history traits \u2013 population dynamics for a seabird breeding in the southern ocean: the wandering albatross. This project will also forecast the population structure and growth rate using the most detailed mechanistic model to date for any wild species incorporating behaviors in an eco-evolutionary context. Specifically, the investigators will (1) characterize the life history strategies along the shy-bold continuum of personalities and across environmental conditions; (2) understand the link between phenotypic plasticity in foraging effort and personality; (3) characterize the heritability of personality and foraging behaviors; (4) develop a stochastic eco-evolutionary model to understand and forecast the distribution of bold and shy individuals within the population and the resulting effect on population growth rate in a changing environment by integrating processes from goals 1, 2 and 3. To date, this has been hampered by the lack of long-term data on personality and life histories in any long-lived species in the wild. For the first time ever, we have tested in a controlled environment the response to a novel situation for ~1800 individuals for more than a decade to define individual personality variation along the shy-bold continuum that we can relate to the life history traits over the entire species life cycle using unique long-term individual mark-recapture data sets for this iconic polar species. The novelty of this project thus lies in the combination of personality, foraging and demographic data to understand and forecast population responses to global change using state-of-the-art statistical analysis and eco-evolutionary modeling approaches. \r\nIntellectual Merit: While there is ubiquitous evidence of personality differences across taxa, the implications for life-history are less clear, and the consequences for population dynamics virtually unexplored empirically. How the phenotypic distributions of personality and foraging behaviors types within a population is created and maintained by ecological (demographic and phenotypic plasticity) and evolutionary (heritability) processes remain an open question. Personality traits are a crucial link between how individuals acquire resources, and how they allocate these to reproduction and survival, and this trade-off drives population dynamics. However, although some studies have found different foraging behaviors or breeding performances between personality types, none have established the link between personality- foraging behaviors \u2013 life histories (both reproduction and survival, and their covariations) in the context of climate change. Furthermore plasticity in foraging behaviors is not considered in the pace-of-life syndrome, which has potentially hampered our ability to find covariation between personality and life history trade-off. Research into the heritability of personality traits has revealed a strong heritable component, but studies looking at the heritability of foraging behaviors are lacking. For the first time ever, this project will fill these knowledge gaps and integrate in an eco-evolutionary model the complex interaction among individual personality and foraging plasticity, heritability of personality and foraging behaviors, life history strategies, population dynamics in a changing environment (fisheries and climate). Furthermore, this project will provide for the first time projections of population size and structure under future global change using state-of-the-art climate projections from IPCC-class atmospheric-oceanic global circulation models.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; AMD; ECOLOGICAL DYNAMICS; OCEAN TEMPERATURE; USA/NSF; Antarctica; SPECIES/POPULATION INTERACTIONS; PENGUINS; Amd/Us", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie; Patrick, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "uid": "p0010283", "west": -180.0}, {"awards": "1644128 Welten, Kees; 1644094 Caffee, Marc", "bounds_geometry": "POINT(-112.12 -79.48)", "dataset_titles": "WAIS Divide Core 10Be data, 2850-3240 m", "datasets": [{"dataset_uid": "601692", "doi": "10.15784/601692", "keywords": "10Be; Antarctica; Beryllium; Cosmogenic Radionuclides; Ice Core Data; WAIS Divide", "people": "Woodruff, Thomas; Caffee, Marc; Welten, Kees", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Core 10Be data, 2850-3240 m", "url": "https://www.usap-dc.org/view/dataset/601692"}], "date_created": "Mon, 15 Nov 2021 00:00:00 GMT", "description": "The award supports a project to use existing samples from the West Antarctic Ice Sheet (WAIS) Divide ice core to align its timescale with that of the Greenland ice cores using common chronological markers. The upper 2850 m of the WAIS Divide core, which was drilled to a depth of 3405 m, has been dated with high precision. The timescale of the remaining (bottom) 550 m of the core has larger uncertainties, limiting our understanding of the timing of abrupt climate events in Antarctica relative to those in Greenland during the last ice age. The intellectual merit of this project is to further constrain the relative timing of these abrupt climate events in Greenland and Antarctica to obtain crucial insight into the underlying mechanism. The main objective of this project is to improve the current timescale of the WAIS Divide core from 31,000 to 65,000 years ago by synchronizing this core with the Greenland ice cores using common signals in Beryllium-10, a radioactive isotope of Be that is produced in the atmosphere by cosmic rays and is deposited onto the snow within 1-2 years of its production. The 10Be flux is largely independent of climate signals since its production varies with solar activity and the geomagnetic field. This project will further strengthen collaborations between the PI\u2019s in Berkeley and Purdue with ice core researchers in the US and Europe, involve undergraduate students in many aspects of its research, and continue out-reach to under-represented students.\r\n\r\nThe direct ice-to-ice synchronization of the WAIS Divide ice core with the Greenland Ice Core Chronology (GICC05) using cosmogenic 10Be is expected to reduce the uncertainty in the relative timing of more than 20 abrupt climate events in Greenland and Antarctica to a few decades. To achieve this goal we will obtain a continuous high-resolution record of 10Be in the WAIS Divide core from 2850 to 3390 m depth, and compare the obtained 10Be record with existing 10Be records of the Greenland ice cores, including GISP2 and NGRIP. We will separate 10Be from ~1000 ice samples of the WAIS Divide core and measure the 10Be concentration in each sample using accelerator mass spectrometry (AMS). Broader impacts of the 10Be measurements are that they will also provide information on the Laschamp event, a ~2000 year long period of low geomagnetic field strength around 41,000 years ago, and improve the calibration of the 14C dating method for organic samples older than 30,000 years. The broader impacts of the project include (1) the involvement and training of undergraduate students in ice core research and accelerator mass spectrometry measurements, (2) the incorporation of ice core and climate research into ongoing outreach programs at Purdue University and Berkeley SSL, (3) better understanding of abrupt climate changes in the past will improve our ability to predict future climate change, (4) evaluating the possible threat of a future geomagnetic excursion in the next few hundred years. This award does not require support in Antarctica.\r\n", "east": -112.12, "geometry": "POINT(-112.12 -79.48)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; LABORATORY; Amd/Us; WAIS Divide; AMD; USAP-DC; DEPTH AT SPECIFIC AGES", "locations": "WAIS Divide", "north": -79.48, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Welten, Kees; Caffee, Marc", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.48, "title": "Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements", "uid": "p0010280", "west": -112.12}, {"awards": "1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200257", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/34133"}, {"dataset_uid": "200256", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/24530"}, {"dataset_uid": "200255", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/32632"}], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles.\r\n\r\nThe project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Antarctica; USA/NSF; AMD; ICE CORE RECORDS; USAP-DC; VOLCANIC DEPOSITS; MODELS; Amd/Us", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Buizert, Christo; Wettstein, Justin", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores", "uid": "p0010279", "west": -180.0}, {"awards": "2139002 Huth, Alexander", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "datasets": [{"dataset_uid": "601718", "doi": "10.15784/601718", "keywords": "Antarctica; Glaciology; Iceberg; Ice Shelf Dynamics; Larsen C Ice Shelf; Model Data; Modeling", "people": "Huth, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601718"}], "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Icebergs influence climate by controlling how freshwater from ice sheets is distributed into the ocean, where roughly half of ice sheet mass loss is attributed to iceberg calving in the current climate. The freshwater deposited by icebergs as they drift and melt can affect ocean circulation, sea-ice formation, and biological primary productivity. Furthermore, calving of icebergs from ice shelves, the floating extensions of ice sheets, can influence ice sheet evolution and sea-level rise by reducing the resistive stresses provided by ice shelves on the seaward flow of upstream grounded ice. The majority of mass calved from ice shelves occurs in the form of tabular icebergs, which are typically hundreds of meters thick and on the order of tens to hundreds of kilometers in length and width. Tabular calving occurs when full-thickness ice shelf fractures known as rifts propagate to the edges of the ice shelf. These calving events are infrequent, often with decades between events on an individual ice shelf. Changes in tabular calving behavior, i.e., the size and frequency of calving events, can strongly influence climate and ice sheet evolution. However, tabular calving behavior, and how it responds to changes in climate, is neither well understood nor accurately represented in climate models.\r\n\r\nIn this project, a tabular calving parameterization for climate models will be developed. The parameterization will be derived according to data generated from a series of realistic and idealized century-scale tabular calving simulations, which will be performed with a novel ice flow and damage framework that can be applied at the scale of individual ice sheet-ice shelf systems: the CD-MPM-SSA (Continuum Damage Material Point Method for Shelfy-Stream Approximation). During these simulations, the geometry of the ice shelf, mechanical/rheological properties of the ice, and climate forcings such as ocean temperature will be varied to determine the rifting and calving response. The calving parameterization derived from these experiments will be implemented in a Geophysical Fluid Dynamics Laboratory (GFDL) climate model, where it will be coupled with a bonded-particle iceberg model. Then, experiments will be run to study the feedback between changes in iceberg calving behavior and climate. Success of this project will improve our understanding and representation of the ice mass budget, ice sheet evolution, and ocean freshwater fluxes, and will improve projections of climate change and sea-level rise.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; ICEBERGS; AMD; Antarctic Ice Sheet; USA/NSF; GLACIERS/ICE SHEETS; Amd/Us; MODELS", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Huth, Alex", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "OPP-PRF Calving, Icebergs, and Climate", "uid": "p0010276", "west": -180.0}, {"awards": "1331681 Bernard, Kim; 1324313 Winsor, Peter; 1327248 Kohut, Josh; 1326167 Fraser, William; 1326541 Oliver, Matthew", "bounds_geometry": "POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.3,-60 -62.6,-60 -62.9,-60 -63.2,-60 -63.5,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60.5 -65,-61 -65,-61.5 -65,-62 -65,-62.5 -65,-63 -65,-63.5 -65,-64 -65,-64.5 -65,-65 -65,-65 -64.7,-65 -64.4,-65 -64.1,-65 -63.8,-65 -63.5,-65 -63.2,-65 -62.9,-65 -62.6,-65 -62.3,-65 -62))", "dataset_titles": "Expedition Data; Expedition data of LMG1509", "datasets": [{"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}, {"dataset_uid": "002730", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1509", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Mon, 27 Sep 2021 00:00:00 GMT", "description": "The application of innovative ocean observing and animal telemetry technology over Palmer Deep (Western Antarctic Peninsula; WAP) is leading to new understanding, and also to many new questions related to polar ecosystem processes and their control by bio-physical interactions in the polar environment. This multi-platform field study will investigate the impact of coastal physical processes (e.g. tides, currents, upwelling events, sea-ice) on Ad\u00e9lie penguin foraging ecology in the vicinity of Palmer Deep, off Anvers Island, WAP. Guided by real-time surface convergence and divergences based on remotely sensed surface current maps derived from a coastal network of High Frequency Radars (HFRs), a multidisciplinary research team will adaptively sample the distribution of phytoplankton and zooplankton, which influence Ad\u00e9lie penguin foraging ecology, to understand how local oceanographic processes structure the ecosystem. \u003cbr/\u003e\u003cbr/\u003eCore educational objectives of this proposal are to increase awareness and \u003cbr/\u003eunderstanding of (i) global climate change, (ii) the unique WAP ecosystem, (iii) innovative methods and technologies used by the researchers, and (iv) careers in ocean sciences, through interactive interviews with scientists, students, and technicians, during the field work. These activities will be directed towards instructional programming for K-16 students and their teachers. Researchers and educators will conduct formative and summative evaluation to improve the educational program and measure its impacts respectively.", "east": -60.0, "geometry": "POINT(-62.5 -63.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Palmer Station; PELAGIC; USA/NSF; Amd/Us; USAP-DC; AMD; LMG1509", "locations": "Palmer Station", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bernard, Kim; Kohut, Josh; Oliver, Matthew; Fraser, William; Winsor, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Impacts of Local Oceanographic Processes on Adelie Penguin Foraging Ecology Over Palmer Deep", "uid": "p0010268", "west": -65.0}, {"awards": "2103032 Schmittner, Andreas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The Antarctic ice sheet is an important component of Earth\u2019s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability.\r\n\r\nThis project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE CORE RECORDS; Amd/Us; USA/NSF; OCEAN TEMPERATURE; GLACIERS/ICE SHEETS; BIOGEOCHEMICAL CYCLES; MODELS; AMD; United States Of America; OCEAN CURRENTS; ICEBERGS; PALEOCLIMATE RECONSTRUCTIONS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Schmittner, Andreas; Haight, Andrew ; Clark, Peter", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation", "uid": "p0010256", "west": -180.0}, {"awards": "2114786 Warnock, Jonathan", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica\u2019s response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica\u2019s glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth\u0027s most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change.\r\nThe proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica\u2019s ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; FIELD SURVEYS; Weddell Sea Embayment; USA/NSF; SEA ICE; USAP-DC; PALEOCLIMATE RECONSTRUCTIONS; SEA SURFACE TEMPERATURE; AMD; Amd/Us", "locations": "Weddell Sea Embayment", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Warnock, Jonathan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Linking Marine and Terrestrial Sedimentary Evidence for Plio-pleistocene Variability of Weddell Embayment and Antarctic Peninsula Glaciation", "uid": "p0010260", "west": null}, {"awards": "1745007 Mayewski, Paul; 1744832 Severinghaus, Jeffrey; 1745006 Brook, Edward J.; 1744993 Higgins, John; 0838843 Kurbatov, Andrei", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; I-165-M GPR Field Report 2019-2020; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Brook, Edward J.; Nesbitt, Ian", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Severinghaus, Jeffrey P.; Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Hishamunda, Valens; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": " Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. ", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "1643871 van Gestel, Natasja; 1947562 van Gestel, Natasja", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment; Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "datasets": [{"dataset_uid": "601853", "doi": "10.15784/601853", "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "url": "https://www.usap-dc.org/view/dataset/601853"}, {"dataset_uid": "601877", "doi": "10.15784/601877", "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "people": "van Gestel, Natasja", "repository": "USAP-DC", "science_program": null, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601877"}], "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Responses of the carbon balance of terrestrial ecosystems to warming will feed back to the pace of climate change, but the size and direction of this feedback are poorly constrained. Least known are the effects of warming on carbon losses from soil, and clarifying the major microbial controls is an important research frontier. This study uses a series of experiments and observations to investigate microbial, including autotrophic taxa, and plant controls of net ecosystem productivity in response to warming in intact ecosystems. Field warming is achieved using open-top chambers paired with control plots, arrayed along a productivity gradient. Along this gradient incoming and outgoing carbon fluxes will be measured at the ecosystem-level. The goal is to tie warming-induced shifts in net ecosystem carbon balance to warming effects on soil microbes and plants. The field study will be supplemented with lab temperature incubations. Because soil microbes dominate biogeochemical cycles in Antarctica, a major focus of this study is to determine warming responses of bacteria, fungi and archaea. This is achieved using a cutting-edge stable isotope technique, quantitative stable isotope probing (qSIP) developed by the proposing research team, that can identify the taxa that are active and involved in processing new carbon. This technique can identify individual microbial taxa that are actively participating in biogeochemical cycling of nutrients (through combined use of 18O-water and 13C-bicarbonate) and thus can be distinguished from those that are simply present (cold-preserved). The study further assesses photosynthetic uptake of carbon by the vegetation and their sensitivity to warming. Results will advance research in climate change, plant and soil microbial ecology, and ecosystem modeling.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; TERRESTRIAL ECOSYSTEMS; USA/NSF; AMD; Amd/Us; USAP-DC; FIELD SURVEYS", "locations": "Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "van Gestel, Natasja", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "uid": "p0010251", "west": -65.0}, {"awards": "1941292 St-Laurent, Pierre; 1941327 Stammerjohn, Sharon; 1941308 Fitzsimmons, Jessica; 1941304 Sherrell, Robert; 1941483 Yager, Patricia", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files; Expedition Data of NBP2202; Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica); Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "datasets": [{"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}, {"dataset_uid": "601785", "doi": "10.15784/601785", "keywords": "Amundsen Sea; Antarctica; Cryosphere; CTD; NBP2202; Oceanography; R/v Nathaniel B. Palmer", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601785"}, {"dataset_uid": "200400", "doi": "10.17882/99231", "keywords": null, "people": null, "repository": "SEANOE", "science_program": null, "title": "Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica)", "url": "https://doi.org/10.17882/99231"}, {"dataset_uid": "200399", "doi": "10.25773/bt54-sj65", "keywords": null, "people": null, "repository": "William \u0026 Mary ScholarWorks", "science_program": null, "title": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files", "url": "https://doi.org/10.25773/bt54-sj65"}], "date_created": "Fri, 20 Aug 2021 00:00:00 GMT", "description": " The Amundsen Sea hosts the most productive polynya in all of Antarctica, with its vibrant green waters visible from space, and an atmospheric CO2 uptake density 10x higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape, and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet (WAIS). ARTEMIS aims to characterize the climate-sensitive nature of glacial meltwater-driven micronutrient (iron, Fe) contributions driving ecosystem productivity and CO2 uptake in the coastal Antarctic. We propose to integrate observations and ocean modeling of these processes to enhance predictive capabilities. Currently, basal melt resulting from warm deep waters penetrating ice shelf cavities dominates mass losses of WAIS, contributing to sea level rise. These physical melting processes are being studied by the International Thwaites Glacier Collaboration (ITGC). The impact of melting on the marine ecosystem has also been explored, and we know that productivity is due in part to Fe-rich, glacial meltwater-driven outflow. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied, however. Improved knowledge would provide keys to understanding meltwater\u0027s future impact on the ecosystem. An ongoing field program (TARSAN, part of the ITGC) offers the ideal physical oceanographic framework for our biogeochemical effort. We propose here to collaborate with TARSAN-supported UK scientists, providing value added to both team efforts. ARTEMIS will add shipboard measurements (trace metals, carbonate system, nutrients, organic matter, microorganisms) and biogeochemical sensors on autonomous vehicles to gather critical knowledge needed to understand the impact of the melting WAIS on both the coastal ecosystem and the regional carbon (C) cycle. Driving questions include: 1) what are the fluxes and chemical forms of Fe, C, and microorganisms in the ice shelf outflow? 2) what are the relative contributions to the ouflow from deep water, benthic, and glacial melt sources, and how do these inputs combine to affect the bioavailability of Fe? 3) How are Fe and C compounds modified as the outflow advects along the coastal current and mixes into the bloom region? and 4) what will be the effect of increased glacial melting, changes in the coastal icescape, and declining sea ice on theecosystem of the Amundsen Sea? Such questions fall outside the focus of the ITGC, but are of keen interest to Antarctic Organisms and Ecosystems and Antarctic Integrated System Science programs.", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; USA/NSF; USAP-DC; AMD; Amundsen Sea; Amd/Us; SHIPS", "locations": "Amundsen Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "R2R", "repositories": "R2R; SEANOE; USAP-DC; William \u0026 Mary ScholarWorks", "science_programs": "Thwaites (ITGC)", "south": -75.0, "title": "NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)", "uid": "p0010249", "west": -120.0}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": "POLYGON((162 -77,162.8 -77,163.6 -77,164.4 -77,165.2 -77,166 -77,166.8 -77,167.6 -77,168.4 -77,169.2 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.2 -78,168.4 -78,167.6 -78,166.8 -78,166 -78,165.2 -78,164.4 -78,163.6 -78,162.8 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species; Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "datasets": [{"dataset_uid": "601766", "doi": null, "keywords": "Antarctica; McMurdo Sound", "people": "Naslund, Andrew; Frazier, Amanda; Mandic, Milica; Todgham, Anne", "repository": "USAP-DC", "science_program": null, "title": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species", "url": "https://www.usap-dc.org/view/dataset/601766"}, {"dataset_uid": "601765", "doi": null, "keywords": "Antarctica; McMurdo Sound; Ross Sea", "people": "Frazier, Amanda; Naslund, Andrew; Zillig, Ken; Mandic, Milica; Todgham, Anne", "repository": "USAP-DC", "science_program": null, "title": "Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "url": "https://www.usap-dc.org/view/dataset/601765"}], "date_created": "Thu, 12 Aug 2021 00:00:00 GMT", "description": "This project fits within the second of three major themes identified by the National Academy of Science report \u201cA Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research\u201d. How do Antarctic biota evolve and adapt to the changing environment? Decoding the genomic and transcriptomic bases of biological adaptation and response across Antarctic organisms and ecosystems. Central in this theme is the physiological capacity of animals to cope with changes in environmental conditions over their lifetime, which this research firmly addresses. In the Southern Ocean surrounding Antarctica there is an extraordinary diversity of marine life. Much of our understanding of the biology of these animals comes from studies of the adaptations of these animals to sub-zero ocean conditions. Antarctic marine organisms have evolved to survive in stable, cold ocean conditions and possess a limited capacity to respond to environmental change. Research to date on Antarctic fishes has focused on adult life stages with much less research on early life stages that likely prioritize growth and development and not physiological mechanisms of stress tolerance. This project addresses the mechanisms that early life stages (embryos, larvae and juveniles) of Antarctic fishes use to respond to changes in ocean conditions. Specifically, the project will examine energetic trade-offs between key developmental processes in the context of environmental change. While the project focuses on Antarctic species, the research is highly translatable to stress tolerance mechanisms of fishes along the coast of North America, many of which are also experiencing changes in multiple environmental factors. Research in the Antarctic allows scientists to identify unifying themes or generalities in physiology that extend beyond the waters of the Southern Ocean and therefore have broad implications for understanding what is limiting the performance of fishes globally. BROADER IMPACTS \u2013To build environmental stewardship and awareness, we must increase science literacy in the broader community. This project does this through three main objectives. First is to increase the diversity of students involved in environmental science research. Student diversity, in turn, gives the scientific community a broader perspective for addressing critical challenges in environmental biology. This project provides resources to support three PhD students, one postdoctoral scholar and two undergraduate students and promotes the diversity of young scientists and the advancement of groups traditionally underrepresented in environmental biology. Todgham will broaden the outreach effort by developing exhibits on environmental change impacts on polar regions for large public events, an opportunity to engage K-12 students, government officials in Sacramento and local and statewide communities. Lastly, through a collaboration with PolarTREC and teacher Denise Hardoy, lesson plans have been developed to teach K-12 students about experimental design, polar environments and sensitivity of Antarctic species to climate change.", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; AMD; McMurdo Sound; FISH; USA/NSF; Amd/Us; USAP-DC", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Todgham, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "uid": "p0010241", "west": 162.0}, {"awards": "1952199 Schneider, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Variable-resolution CESM2 over Antarctica (ANTSI): Monthly outputs used for evaluation", "datasets": [{"dataset_uid": "200417", "doi": "10.5281/zenodo.7335891", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Variable-resolution CESM2 over Antarctica (ANTSI): Monthly outputs used for evaluation", "url": "https://zenodo.org/records/7335892"}], "date_created": "Wed, 21 Jul 2021 00:00:00 GMT", "description": "The Antarctic Ice Sheet (AIS) is sensitive to and an indicator of climate change. While dynamic ice loss is largely driven by ocean forcing, this ice loss might be mitigated by enhanced snowfall on the ice sheet. By developing and understanding of the processes governing snowfall variability and change on the AIS, this project will contribute to the objective of understanding the long-term role of the AIS as a contributor to sea level rise. This project is strongly embedded in the collaborative, open-source framework of the Community Earth System Model version 2 (CESM2) and will deliver new datasets of Antarctic precipitation for the community to use. The project will help to build a diverse geoscience workforce by recruiting and training a SOARs student to be directly involved in the research. A graduate student will also be recruited, and they will play a pivotal role in the proposed work. \r\n\r\nIn this project, we propose to leverage the Climate Model Intercomparison Project 6 (CMIP6) climate model ensemble as a whole, and CESM2 in particular, to disentangle the major sources of uncertainty and to elucidate the underlying mechanisms of Antarctic precipitation change, with a particular focus on the role of atmospheric circulation changes relative to that of atmospheric warming. Using the variable resolution capabilities of CESM2, we will provide the community with precipitation estimates at a very high horizontal resolution. The proposed analyses will also use a forthcoming 100-member large ensemble. The project seeks to answer the following questions: 1) How well does the CESM2 represent the present-day Antarctic surface climate, precipitation, and surface mass balance (SMB), including the mean and its variability? 2) What is the sensitivity of simulated Antarctic precipitation to model resolution in present-day and future climates? 3) What are the roles of thermodynamics (warming atmosphere and ocean) and dynamics (changes in atmospheric circulation) in observed and projected snowfall changes? How do these break down into forced and internal variability? In particular, is there a significant forced precipitation trend due to circulation changes driven by stratospheric ozone depletion and recovery and increases in greenhouse gas concentration? 4) What processes and boundary conditions drive the ensemble spread of AIS precipitation in single-model and multi-model ensembles? How does the spread driven by initial surface conditions (including sea ice cover, surface fluxes, inversion strength) compare with the irreducible uncertainty due to internal climate system variability?\r\n\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; ICE SHEETS; Amd/Us; Antarctica; AMD; SNOW; MODELS; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Schneider, David; Datta, Rajashree Tri", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Uncertainty and Mechanisms of Antarctica\u2019s Changing Snowfall and its Role in Sea Level Change", "uid": "p0010233", "west": -180.0}, {"awards": "1943550 McDonald, Birgitte", "bounds_geometry": "POLYGON((168 -77,168.3 -77,168.6 -77,168.9 -77,169.2 -77,169.5 -77,169.8 -77,170.1 -77,170.4 -77,170.7 -77,171 -77,171 -77.1,171 -77.2,171 -77.3,171 -77.4,171 -77.5,171 -77.6,171 -77.7,171 -77.8,171 -77.9,171 -78,170.7 -78,170.4 -78,170.1 -78,169.8 -78,169.5 -78,169.2 -78,168.9 -78,168.6 -78,168.3 -78,168 -78,168 -77.9,168 -77.8,168 -77.7,168 -77.6,168 -77.5,168 -77.4,168 -77.3,168 -77.2,168 -77.1,168 -77))", "dataset_titles": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony; Post-molt emperor penguin foraging ecology", "datasets": [{"dataset_uid": "601688", "doi": "10.15784/601688", "keywords": "Animal Tracking; Antarctica; Biota; Emperor Penguin; GPS; Late Chick Rearing; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony", "url": "https://www.usap-dc.org/view/dataset/601688"}, {"dataset_uid": "601686", "doi": "10.15784/601686", "keywords": "Antarctica; Biota; Emperor Penguin; NBP2302; Post-Molt; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Post-molt emperor penguin foraging ecology", "url": "https://www.usap-dc.org/view/dataset/601686"}], "date_created": "Tue, 20 Jul 2021 00:00:00 GMT", "description": "This project will identify behavioral and physiological variability in foraging Emperor Penguins that can be directly linked to individual success in the marine environment using an optimal foraging theory framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor Penguins at Cape Crozier using fine-scale movement and video data loggers during late chick-rearing, an energetically demanding life history phase. Specifically, this study will 1) Estimate the foraging efficiency and examine its relationship to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient they will be to climate change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The researchers will: 1) Investigate the inter- and intra-individual behavioral variability exhibited by Emperor Penguins during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor Penguins in the Antarctic ecosystem. This includes development of two courses (general education and advanced techniques), training of undergraduate and graduate students, and a collaboration with the NSF funded \u201cPolar Literacy: A model for youth engagement and learning\u201d program to develop afterschool and camp curriculum that target underserved and underrepresented groups.\r\n\r\n", "east": 171.0, "geometry": "POINT(169.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; PENGUINS; MARINE ECOSYSTEMS; USA/NSF; Ross Sea; FIELD SURVEYS; USAP-DC; AMD", "locations": "Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "McDonald, Birgitte", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea", "uid": "p0010232", "west": 168.0}, {"awards": "1643825 Bucklin, Ann", "bounds_geometry": "POLYGON((-74.57 -60.9,-72.487 -60.9,-70.404 -60.9,-68.321 -60.9,-66.238 -60.9,-64.155 -60.9,-62.072 -60.9,-59.989 -60.9,-57.906 -60.9,-55.823 -60.9,-53.74 -60.9,-53.74 -61.537,-53.74 -62.174,-53.74 -62.811,-53.74 -63.448,-53.74 -64.085,-53.74 -64.722,-53.74 -65.359,-53.74 -65.996,-53.74 -66.633,-53.74 -67.27,-55.823 -67.27,-57.906 -67.27,-59.989 -67.27,-62.072 -67.27,-64.155 -67.27,-66.238 -67.27,-68.321 -67.27,-70.404 -67.27,-72.487 -67.27,-74.57 -67.27,-74.57 -66.633,-74.57 -65.996,-74.57 -65.359,-74.57 -64.722,-74.57 -64.085,-74.57 -63.448,-74.57 -62.811,-74.57 -62.174,-74.57 -61.537,-74.57 -60.9))", "dataset_titles": "Alongtrack data collected continuously by the ship\u0027s underway acquisition system from ARSV Laurence M. Gould cruise LMG1110 in the Southern Ocean in 2011 ; Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Antarctic salp genome and RNAseq transcriptome from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2 in the Southern Ocean. Biological and Chemical Oceanography Data Management Office (BCO-DMO). ; Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Salp specimen log for genomic and transcriptomic study collected from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2. Biological and Chemical Oceanography Data Management Office (BCO-DMO).; CTD data from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ; CTD data from MOCNESS tows taken in the Antarctic in 2011 from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ; Scientific sampling event log from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from Nov. 2011 (Salp_Antarctic project) ", "datasets": [{"dataset_uid": "200232", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD data from MOCNESS tows taken in the Antarctic in 2011 from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ", "url": "https://www.bco-dmo.org/dataset/488871/data"}, {"dataset_uid": "200230", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Scientific sampling event log from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from Nov. 2011 (Salp_Antarctic project) ", "url": "https://www.bco-dmo.org/dataset/3565/data"}, {"dataset_uid": "200231", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Alongtrack data collected continuously by the ship\u0027s underway acquisition system from ARSV Laurence M. Gould cruise LMG1110 in the Southern Ocean in 2011 ", "url": "https://www.bco-dmo.org/dataset/3636/data"}, {"dataset_uid": "200229", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD data from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ", "url": "https://www.bco-dmo.org/dataset/559174/data"}, {"dataset_uid": "200227", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Salp specimen log for genomic and transcriptomic study collected from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2. Biological and Chemical Oceanography Data Management Office (BCO-DMO).", "url": "https://www.bco-dmo.org/dataset/672600"}, {"dataset_uid": "200228", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Antarctic salp genome and RNAseq transcriptome from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2 in the Southern Ocean. Biological and Chemical Oceanography Data Management Office (BCO-DMO). ", "url": "https://www.bco-dmo.org/dataset/675040/data"}], "date_created": "Sat, 03 Jul 2021 00:00:00 GMT", "description": "The Antarctic salp, Salpa thompsoni, is an increasingly important player in the vulnerable Southern Ocean pelagic ecosystem. Field studies have documented rapid population growth under favorable environmental conditions, resulting in dense blooms of salps that can out-compete and displace other species, and significantly perturb the pelagic ecosystem. A comprehensive reference genome for the Antarctic salp will enable the identification of genes and gene networks underlying physiological responses and allow detection of natural selection driving the species\u2019 adaptation to climate change. The primary hypothesis driving this research is that predicted S. thompsoni orthologs (i.e., genes of the same function that share a common ancestor) that show evidence of rapid evolution are indicative of positive selection, and further that these genes and associated gene networks provide the basis for rapid adaptation of the Antarctic salp to environmental variation associated with climate change. Our genome assembly strategy builds upon methods developed during our previous award (PLR-1044982), including both paired-end short read and linked-read sequencing approaches. This project used state-of-the-art approaches: Oxford Nanopore long read sequencing, de novo assembly, and comprehensive transcriptomics. The results include a new reference genome for S. thompsoni, consisting of 8,815 sequences (contigs), with less fragmentation (N50 = 188 kb), and genome coverage of 78%. We have discovered strong secondary structures that dramatically affect sequencing efficiency. Our analyses of these secondary structures led to the discovery of abundant G-quadruplex sequences distributed throughout the genome at a significantly higher frequency compared to other tunicate species, suggesting the structures are a defining feature of this salp genome. These results provide novel insights into the function of unique genomic features in the regulation of genome stability, despite the complex life history, including sexual and asexual reproduction of the Southern Ocean salp. The completed salp reference genome will provide a valuable foundational resource for other scientists (including ecologists, oceanographers, and climate change experts), working on this species. ", "east": -53.74, "geometry": "POINT(-64.155 -64.085)", "instruments": null, "is_usap_dc": true, "keywords": "SHIPS; PELAGIC; Southern Ocean", "locations": "Southern Ocean", "north": -60.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bucklin, Ann; O\u0027Neill, Rachel J", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -67.27, "title": "Genome Assembly and Analysis of the Bloom Forming Southern Ocean Salp, Salpa thompsoni", "uid": "p0010224", "west": -74.57}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": "POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3))", "dataset_titles": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.); 18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.); Fish pictures and skin pathology of X-cell infection in Trematomus scotti.; Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.; In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.; Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ; microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas; Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.; Nomenclatural Act for the genus Notoxcellia; Nomenclatural Act for the species Notoxcellia coronata; Nomenclatural Act for the species Notoxcellia picta; Phylogenetic Analysis of Notoxcellia species.; Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni; Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.; Trematomus scotti with X-cell xenomas", "datasets": [{"dataset_uid": "200382", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the genus Notoxcellia", "url": "https://zoobank.org/NomenclaturalActs/5cf9609e-0111-4386-8518-bd50b5bdde0e"}, {"dataset_uid": "601494", "doi": "10.15784/601494", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Le Francois, Nathalie; Postlethwait, John; Desvignes, Thomas; Lauridsen, Henrik", "repository": "USAP-DC", "science_program": null, "title": "Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.", "url": "https://www.usap-dc.org/view/dataset/601494"}, {"dataset_uid": "601501", "doi": "10.15784/601501", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Desvignes, Thomas; Varsani, Arvind", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species.", "url": "https://www.usap-dc.org/view/dataset/601501"}, {"dataset_uid": "200384", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia picta", "url": "https://zoobank.org/NomenclaturalActs/31062dd2-7202-47fa-86e0-7be5c55ac0e2"}, {"dataset_uid": "200383", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia coronata", "url": "https://zoobank.org/NomenclaturalActs/194d91b2-e268-4238-89e2-385819f2c35b"}, {"dataset_uid": "200262", "doi": "", "keywords": null, "people": null, "repository": "MorphoSource", "science_program": null, "title": "Trematomus scotti with X-cell xenomas", "url": "https://www.morphosource.org/projects/000405843?locale=en"}, {"dataset_uid": "200277", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA789574"}, {"dataset_uid": "601496", "doi": "10.15784/601496", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Lauridsen, Henrik; Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Fish pictures and skin pathology of X-cell infection in Trematomus scotti.", "url": "https://www.usap-dc.org/view/dataset/601496"}, {"dataset_uid": "601539", "doi": "10.15784/601539", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.", "url": "https://www.usap-dc.org/view/dataset/601539"}, {"dataset_uid": "601495", "doi": "10.15784/601495", "keywords": "Antarctica; Antarctic Peninsula", "people": "Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.", "url": "https://www.usap-dc.org/view/dataset/601495"}, {"dataset_uid": "200276", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630145"}, {"dataset_uid": "601538", "doi": "10.15784/601538", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Lauridsen, Henrik; Desvignes, Thomas; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas", "url": "https://www.usap-dc.org/view/dataset/601538"}, {"dataset_uid": "601537", "doi": "10.15784/601537", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Fontenele, Rafaela S. ; Kraberger, Simona ; Varsani, Arvind; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ", "url": "https://www.usap-dc.org/view/dataset/601537"}, {"dataset_uid": "601536", "doi": "10.15784/601536", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Kent, Michael L. ; Murray, Katrina N. ; Postlethwait, John", "repository": "USAP-DC", "science_program": null, "title": "Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.", "url": "https://www.usap-dc.org/view/dataset/601536"}, {"dataset_uid": "200275", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630144"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Overview:\r\nAntarctic biota face increasing stressors from warming oceans. A key question is: What will be the effect of warming waters on Antarctic biota? A gap in our knowledge is the identify of early harbingers of new stressors. In our recent field season, we unexpectedly discovered pink, wart-like neoplasms in Antarctic notothenioid fish, including Trematomus scotti (crowned notothen) and Nototheniops larseni (painted notothen). Neoplasms affected about 30% of T. scotti collected in Andvord Bay on the West Antarctic Peninsula and covered 10 to 30% of the bodies of affected individuals, usually in one contiguous patch. We collected samples from affected and apparently unaffected controls. We could not find evidence of any similar outbreak. Our overall goal is to learn the biological origins of this neoplasm and how it affects cellular function and organismal physiology. \r\nIntellectual Merit:\r\nAim 1: Pathogenic agents. Aim 1a: To test the hypothesis that a virus causes the neoplasm. Methods involve isolating and sequencing viral nucleic acids from neoplasms and from unaffected skin and comparing sequences to known viruses. Aim 1b: To test the hypothesis that neoplasms are hosts to parasites not present in healthy skin. Methods include tissue sections and DNA sequencing to find evidence of parasitic organisms. Significance: achieving Aim 1 will narrow down possible etiological agents. An untested possibility is that environmental contaminants cause the condition; exploring that hypothesis would require further sampling outside the limits of an EAGER proposal.\r\nAim 2: Cell-level pathology. Aim 2a: To test the hypothesis that the histopathology of the neoplasms is similar to other known skin neoplasias; alternatively, it might be a previously unknown type of neoplasia. Methods involve the examination of histological sections to identify pathology-specific characters. Aim 2b: To find effects of neoplasms on cell function. Methods involve performing whole-genome transcriptomics of affected and normal skin by RNA-seq and aligning reads to a T. scotti reference genome. Significance: achieving Aim 2 will define the cell biology and gene-expression phenotypes of the neoplasia, thus suggesting mechanisms that cause it.\r\n[Note: NSF deleted funds specifically to achieve the Aim 3, which nevertheless appears here to represent the original proposal.] Aim 3: Organismal pathology. Aim 3a: To test the hypothesis that the neoplasm has adverse effects on growth and physiology. Methods are to perform morphometrics in fish with neoplasms compared to age-matched controls from otolith studies. Aim 3b: To test the hypothesis that the neoplasia affects reproductive traits. Methods compare reproductive effort in affected and unaffected individuals. Significance: if the neoplasia has little consequences on growth and reproduction, our worry about its spread will be lessened, but if it is harmful, then Antarctic ecology, which largely depends on notothenioid fish, might be in danger.\r\nAchieving Aims 1-3 will advance knowledge by identifying the causes of a neoplasia outbreak in Antarctic fish. Work is potentially transformative because it might represent an early sign of Antarctic fish responses to the stress of global climate change. Proposed work would be the first to investigate a neoplasia outbreak in Antarctic fish. We will assess the project\u2019s success by whether we identify a causative agent and its effects on physiology.\r\nBroader Impacts:\r\nAim 4: Publicizing the neoplasia. We aim to raise awareness of the outbreak and publicize its distinct diagnostic features, including assays to detect it, by contributing to groups that track Antarctic ecosystems. \r\nAim 5: Inclusion. We will involve underrepresented groups in scientific research with authentic research experiences.\r\nAchieving Aims 4 and 5 will benefit society because they will disseminate to scientific and lay communities a potential early-warning system for the effects of an apparently new neoplasia affecting, at least locally, a large proportion of a fish population. Dissemination will stir research to determine whether this neoplasia outbreak is an isolated event or is becoming a general phenomenon, and thus a concern for Antarctic ecosystems. Proposed research will enhance research infrastructure by providing tools to identify the neoplasia. Finally, the project will broaden access to research careers by exposing underserved high school students and undergraduates to an exciting live research project.\r\n", "east": -62.3, "geometry": "POINT(-63.8 -64.15)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Andvord Bay; Amd/Us; PROTISTS; BENTHIC; FISH; Dallmann Bay; USAP-DC; NSF/USA; AMD", "locations": "Andvord Bay; Dallmann Bay", "north": -63.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Varsani, Arvind; Desvignes, Thomas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "ZooBank", "repositories": "GenBank; MorphoSource; NCBI SRA; USAP-DC; ZooBank", "science_programs": null, "south": -65.0, "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "uid": "p0010221", "west": -65.3}, {"awards": "1840941 Murphy, David; 1840949 Fields, David; 1840927 Weissburg, Marc", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Overview: This project has two goals. The first is to investigate the responses of Antarctic krill Euphasia superba to flow and chemical stimuli indicating food and predation risk, the interaction of these cues, and how krill responses to these cues depend on the photic environment. This project will will determine threshold responses, the ability of krill to orient to horizontal and vertical flows, whether chemical cues polarize responses to flow and whether this differs with attractive vs. aversive cues, and how these responses are affected by light intensity. This will determine how and under what specific conditions the flow, chemical and light environment can either attract or repel krill, and whether krill can use flows to transport themselves towards beneficial environments and away from risky ones. The second goal is to examine whether the behavioral responses of individual krill can be scaled up to predict the properties of aggregations such as density, coherence, swimming speed and direction. This project will use a modeling approach to determine properties of krill aggregations in defined oceanographic conditions characteristic of the southern ocean to examine links between individual behavior and aggregation properties in physically realistic scenarios.\r\n\r\nIntellectual Merit:\r\nKrill are an ecologically important component of all high latitude food webs and constitute a growing fishery yet we know very little about their behavior in response to environmentally relevant chemical, flow and photic conditions. Understanding krill demography can be enabled by examining individual responses to light, attractive (food related) and aversive (predator related) chemical cues, flow, light and their interactions. This analysis can be used to define/predict preferred environments, define the capacity of krill to detect and move to them (and away from unfavorable ones), better parameterize models of DVM, and krill energetics. Linking individual behavior to aggregations will improve our ability to use passive acoustic sampling of krill to understand their biology by providing insight into what krill are doing in aggregations that display particular features, and help define useful properties to characterize aggregations. The role of biology vs. physical forcing in determining zooplankton distributions, and the relationship between individual behavior and emergent group properties are fundamental questions.\r\n\r\nBroader Impacts:\r\nAntarctic krill (Eupahusia superba) are dominant members of the Southern Ocean. They are a critical resource for higher predators, are considered an ecosystem engineer, are the most highly linked species in Antarctic food webs, exert top down control on phytoplankton abundance and represent the largest Antarctic fishery. This project will therefore impact our understanding of the ecology of high latitude systems, their capacity to respond to environmental perturbations (like climate change), and krill fisheries management. Project PIs will engage conservation and management experts to vet and use the developed software tools, as well as to share results. The project will support one post-doctoral associate to be trained in a highly interdisciplinary environment, and provide graduate and undergraduate research opportunities in ocean sciences, biology and engineering. Products will include open source code for behavioral modeling, K12 curricular materials based on these models as well as digital archives of krill behavior, and a variety of public engagement activities.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; AMD; FIELD INVESTIGATION; Amd/Us; USAP-DC; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Record, Nicholas ; Weissburg, Marc", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Individual Based Approaches to Understanding Krill Distributions and Aggregations", "uid": "p0010202", "west": null}, {"awards": "1643877 Friedlaender, Ari", "bounds_geometry": "POLYGON((-65 -63.5,-64.5 -63.5,-64 -63.5,-63.5 -63.5,-63 -63.5,-62.5 -63.5,-62 -63.5,-61.5 -63.5,-61 -63.5,-60.5 -63.5,-60 -63.5,-60 -63.73,-60 -63.96,-60 -64.19,-60 -64.42,-60 -64.65,-60 -64.88,-60 -65.11,-60 -65.34,-60 -65.57,-60 -65.8,-60.5 -65.8,-61 -65.8,-61.5 -65.8,-62 -65.8,-62.5 -65.8,-63 -65.8,-63.5 -65.8,-64 -65.8,-64.5 -65.8,-65 -65.8,-65 -65.57,-65 -65.34,-65 -65.11,-65 -64.88,-65 -64.65,-65 -64.42,-65 -64.19,-65 -63.96,-65 -63.73,-65 -63.5))", "dataset_titles": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "datasets": [{"dataset_uid": "601542", "doi": "10.15784/601542", "keywords": "Antarctica; Antarctic Peninsula; Biologging; Foraging; Ice; Minke Whales", "people": "Friedlaender, Ari", "repository": "USAP-DC", "science_program": null, "title": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601542"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Part 1. The Antarctic Peninsula is warming rapidly and one of the consequences of this change is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region yet little is known about their foraging behavior and ecology. The goals of our research project are to use suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, we can reconstruct the underwater movements of the whales and determine where and when they feed. Using UAS (unmanned aerial systems) we can generate real-time images of sea ice cover and link these with our tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, we will use scientific echosounders to characterize the prey field that the whales are exploiting and look for differences in krill availability inside and out of the ice. All of this information is critical to understand the ecological role of Antarctic minke whales so that we can better predict and understand the impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. \nOur research will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of climate change in polar regions. The integration of our multi-disciplinary methods to study marine ecology and climate change impacts will serve as a template for similar work in other at-risk regions and species. Our educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and climate change through the use of documentary filming, real-time delivery of project events via social media, and curriculum development for formal STEM educators.\u003cbr/\u003e\u003cbr/\u003e\nPart 2. To understand how climatic changes will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale yet virtually nothing is known of the their foraging behavior or ecological role. Thus, we lack the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole. We will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. We pose the following research questions:\u003cbr/\u003e\n1.\tWhat is the feeding performance of AMWs?\u003cbr/\u003e\n2.\tHow important is sea ice to the foraging behavior of AMW?\u003cbr/\u003e\n3.\tHow do AMWs feed directly under sea ice?\u003cbr/\u003e\nWe will use proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales. Combined with quantitative measurements of the prey field, we will measure the energetic costs of feeding and determine how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology we will also determine how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance our knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem.\nOur educational and outreach are to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of global climate change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in ocean science by sharing the experiences of scientists and students. These will be achieved by delivery of project events and data to informal audiences through pervasive social media channels, together with a traditional professional development program and formal STEM education. \n", "east": -60.0, "geometry": "POINT(-62.5 -64.65)", "instruments": null, "is_usap_dc": true, "keywords": "Andvord Bay; USAP-DC; MARINE ECOSYSTEMS; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "Andvord Bay", "north": -63.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Friedlaender, Ari", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.8, "title": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)", "uid": "p0010207", "west": -65.0}, {"awards": "1848887 McClintock, James", "bounds_geometry": "POINT(-64.0527 -64.77423)", "dataset_titles": "2020 and 2023 Underwater video transect community analysis data; 2020 daily seawater carbonate chemistry; 2023 daily seawater carbonate chemistry; Amphipod counts from 2020 ocean acidification experiment; Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments; Palatability of Desmarestia menziesii extracts from ambient and low pH treatments; Palatability of Palmaria decipiens thallus from ambient and low pH treatments; Underwater transect videos used for 2020 and 2023 community analyses", "datasets": [{"dataset_uid": "601701", "doi": "10.15784/601701", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2023 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601701"}, {"dataset_uid": "601791", "doi": "10.15784/601791", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601791"}, {"dataset_uid": "601792", "doi": "10.15784/601792", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601792"}, {"dataset_uid": "601793", "doi": "10.15784/601793", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601793"}, {"dataset_uid": "601796", "doi": "10.15784/601796", "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "url": "https://www.usap-dc.org/view/dataset/601796"}, {"dataset_uid": "601702", "doi": "10.15784/601702", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Amphipod counts from 2020 ocean acidification experiment", "url": "https://www.usap-dc.org/view/dataset/601702"}, {"dataset_uid": "601700", "doi": "10.15784/601700", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601700"}, {"dataset_uid": "601787", "doi": "10.15784/601787", "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 and 2023 Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601787"}], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs.\r\n\r\nThe project will compare population and assemblage-wide impacts of natural (ambient) and carbon dioxide enriched seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative \"winners\" and some will be relative \"losers\" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod \"winners\" and two key amphipod \"losers\". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem.", "east": -64.0527, "geometry": "POINT(-64.0527 -64.77423)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; AMD; COASTAL; BENTHIC; USAP-DC; Palmer Station; ANIMALS/INVERTEBRATES; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS)", "locations": "Palmer Station", "north": -64.77423, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77423, "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "uid": "p0010193", "west": -64.0527}, {"awards": "1750888 Aronson, Richard; 1750903 Ingels, Jeroen; 1750630 Smith, Craig", "bounds_geometry": "POLYGON((-64 -66,-63.3 -66,-62.6 -66,-61.9 -66,-61.2 -66,-60.5 -66,-59.8 -66,-59.1 -66,-58.4 -66,-57.7 -66,-57 -66,-57 -66.3,-57 -66.6,-57 -66.9,-57 -67.2,-57 -67.5,-57 -67.8,-57 -68.1,-57 -68.4,-57 -68.7,-57 -69,-57.7 -69,-58.4 -69,-59.1 -69,-59.8 -69,-60.5 -69,-61.2 -69,-61.9 -69,-62.6 -69,-63.3 -69,-64 -69,-64 -68.7,-64 -68.4,-64 -68.1,-64 -67.8,-64 -67.5,-64 -67.2,-64 -66.9,-64 -66.6,-64 -66.3,-64 -66))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project was to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop was designed to bring scientists with expertise in Antarctic biological, ecological, and ecosystem sciences to Florida State University to share knowledge, identify important research knowledge gaps, and outline strategic plans for research. Major outcomes from the project were as follows. The international workshop to share and review knowledge concerning the response of Antarctic ecosystems to ice-shelf collapse was held at the Florida State University Coastal and Marine Laboratory (FSUCML) on 18-19 November 2017. Thirty-eight U.S. and international scientists attended the workshop, providing expertise in biological, ecological, geological, biogeographical, and glaciological sciences. Twenty-six additional scientists were either not able to attend or were declined because of having reached maximum capacity of the venue or for not responding to our invitation before the registration deadline. The latest results of ice-shelf research were presented, providing an overview of the current scientific knowledge and understanding of the biological, ecological, geological and cryospheric processes associated with ice-shelf collapse and its ecosystem-level consequences. In addition, several presentations focused on future plans to investigate the impacts of the recent Larsen C collapse. The following presentations were given at the meeting: 1) Cryospheric dynamics and ice-shelf collapse \u2013 past and future (M. Truffer, University of Alaska, Fairbanks) 2) The geological history and geological impacts of ice-shelf collapse on the Antarctic Peninsula (Scottt Ishman, Amy Leventer) 3) Pelagic ecosystem responses to ice-shelf collapse (Mattias Cape, Amy Leventer) 4) Benthic ecosystem response to ice-shelf collapse (Craig Smith, Pavica Sr\u0161en, Ann Vanreusel) 5) Larsen C and biotic homogenization of the benthos (Richard Aronson, James McClintock, Kathryn Smith, Brittany Steffel) 6) British Antarctic Survey: plans for Larsen C investigations early 2018 and in the future (Huw Griffiths) 7) Feedback on the workshop \u201cClimate change impacts on marine ecosystems: implications for management of living resources and conservation\u201d held 19-22 September 2017, Cambridge, UK (Alex Rogers) 8) Past research activities and plans for Larsen field work by the Alfred Wegener Institute, Germany (Charlotte Havermans, Dieter Piepenburg. One of the salient points emerging from the presentations and ensuing discussions was that, given our poor abilities to predict ecological outcomes of ice-shelf collapses, major cross-disciplinary efforts are needed on a variety of spatial and temporal scales to achieve a broader, predictive understanding of ecosystem consequences of climatic warming and ice-shelf failure. As part of the workshop, the FSUCML Polar Academy Team\u2014Dr. Emily Dolan, Dr. Heidi Geisz, Barbara Shoplock, and Dr. Jeroen Ingels\u2014initiated AntICE: \"Antarctic Influences of Climate Change on Ecosystems\" (AntICE). They reached out to various groups of school children in the local area (and continue to do so). The AntICE Team have been interacting with these children at Wakulla High School and Wakulla Elementary in Crawfordville; children from the Cornerstone Learning Community, Maclay Middle School, Gilchrist Elementary, and the School of Arts and Sciences in Tallahassee; and the Tallahassee-area homeschooling community to educate them about Antarctic ecosystems and ongoing climate change. The underlying idea was to make the children aware of climatic changes in the Antarctic and their effect on ecosystems so they, in turn, can spread this knowledge to their communities, family and friends \u2013 acting as \u2018Polar Ambassadors\u2019. We collaborated with the Polar-ICE project, an NSF-funded educational project that established the Polar Literacy Initiative. This program developed the Polar Literacy Principles, which outline essential concepts to improve public understanding of Antarctic and Arctic ecosystems. In the Polar Academy work, we used the Polar Literacy principles, the Polar Academy Team\u2019s own Antarctic scientific efforts, and the experience of the FSU outreach and education program to engage with the children. We focused on the importance of Antarctic organisms and ecosystems, the uniqueness of its biota and the significance of its food webs, as well as how all these are changing and will change further with climate change. Using general presentations, case studies, scientific methodology, individual experiences, interactive discussions and Q\u0026A sessions, the children were guided through the many issues Antarctic ecosystems are facing. Over 300 \u0027\u0027Polar ambassadors\u0027\u0027 attended the interactive lectures and afterwards took their creativity to high latitudes by creating welcome letters, displays, dioramas, sculptures, videos and online media to present at the scientific workshop. Over 50 projects were created by the children (Please see supporting files for images). We were also joined by a photographer, Ryan David Reines, to document the event. More information, media and links to online outreach products are available at https://marinelab.fsu.edu/labs/ingels/outreach/polar-academy/\n\nFurther concrete products of the workshop: 1) a position-paper focusing on ideas, hypotheses and priorities for investigating the ecological impacts of ice-shelf collapse along the Antarctic Peninsula (Ingels et al., 2018; \u201cThe scientific response to Antarctic ice-shelf loss; Nature Climate Change 8, 848-851), and 2) a publication reviewing what is known and unknown about ecological responses to ice-shelf melt and collapse, outlining expected ecological outcomes of ice-shelf disintegration along the Antarctic Peninsula (Ingels et al., 2020; \u201cAntarctic ecosystem responses following ice\u2010shelf collapse and iceberg calving: Science review and future research\u201d, WIREs Climate Change, e682). The second publication was covered in the The Scientist and by a press-release in Germany, see https://www.altmetric.com/details/91826381. Other products included a poster presentation at the MEASO2018 conference in Hobart, Australia in 2018, and the above-mentioned visits to schools and institutes to talk about the research in invited seminars. We also conducted and active online outreach campaign, with dissemination of our work in various news outlets, blogs, and social media (e.g. reaching \u003e750k total followers on twitter with the publications alone).\u0027", "east": -57.0, "geometry": "POINT(-60.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE ECOSYSTEMS; USAP-DC; LABORATORY; AMD; Weddell Sea; GLACIERS/ICE SHEETS; ECOLOGICAL DYNAMICS; USA/NSF; SEA ICE; Amd/Us; Antarctica", "locations": "Antarctica; Weddell Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ingels, Jeroen; Aronson, Richard; Smith, Craig", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -69.0, "title": "Collaborative Research: RAPID/Workshop - Antarctic Ecosystem Research following Ice Shelf Collapse and Iceberg Calving Events", "uid": "p0010189", "west": -64.0}, {"awards": "2045611 Rasbury, Emma; 2042495 Blackburn, Terrence", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ; U-series Geochronology, Isotope, and Elemental Geochemistry of a Subglacial Precipitate that Formed Across Termination III; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601781", "doi": "10.15784/601781", "keywords": "Antarctica; Carbon; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Opal; Oxygen Isotope; Sr; Subglacial; U", "people": "Piccione, Gavin", "repository": "USAP-DC", "science_program": null, "title": "U-series Geochronology, Isotope, and Elemental Geochemistry of a Subglacial Precipitate that Formed Across Termination III", "url": "https://www.usap-dc.org/view/dataset/601781"}, {"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Edwards, Graham; Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}, {"dataset_uid": "601849", "doi": "10.15784/601849", "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Gagliardi, Jessica", "repository": "USAP-DC", "science_program": null, "title": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ", "url": "https://www.usap-dc.org/view/dataset/601849"}], "date_created": "Fri, 18 Jun 2021 00:00:00 GMT", "description": "Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth\u2019s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* \u003c1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit \u03b418O compositions consistent with derivation from the depleted polar plateau (\u003c -50 \u2030). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or \u201cAntarctic isotopic maximums\u201d, which represent Southern Hemisphere warm periods during low Atlantic Meridional overturning circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; AMD; USA/NSF; Amd/Us; USAP-DC; East Antarctica", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "uid": "p0010192", "west": -180.0}, {"awards": "1935438 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Jun 2021 00:00:00 GMT", "description": "The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change the quantity relevant for estimating the ice sheets sea-level contribution requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores.\r\n\r\nThis project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (\u003e 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; LABORATORY; USA/NSF; COMPUTERS; USAP-DC; FIRN; Antarctic Ice Sheet; Amd/Us", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Kingslake, Jonathan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data", "uid": "p0010185", "west": null}, {"awards": "1643355 Steig, Eric; 1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; Layer and Thinning based Accumulation Rate Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "601448", "doi": "10.15784/601448", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow/ice; Snow/Ice", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Layer and Thinning based Accumulation Rate Reconstructions", "url": "https://www.usap-dc.org/view/dataset/601448"}, {"dataset_uid": "200220", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncdc.noaa.gov/paleo/study/24530"}, {"dataset_uid": "200219", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32632"}], "date_created": "Fri, 28 May 2021 00:00:00 GMT", "description": "The main objectives of the proposed work are twofold: (1) to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores; (2) to provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores. The WAIS Divide, Siple Dome, Byrd, Taylor Dome and South Pole ice cores will be synchronized using volcanic, dust and gas (CH4 and d18Oatm) markers; this synchronization will be combined with ice-flow and firn densification modeling to create gas-age and ice-age scales for these ice cores, consistent with the highly accurate WAIS Divide chronology. The grant will support ongoing efforts to synchronize the WAIS Divide core to the Dome C and Dronning Maud Land cores, which in turn have been synchronized to several East Antarctic ice cores. Using this chronological framework, the interpolar phasing of millennial-scale climate change will be investigated during the DO cycles using 6 Antarctic ice cores, and during the last deglaciation using 11 ice cores. The relationship between accumulation rate and site temperature during the natural warming of the last deglaciation will be investigated for all the Antarctic ice cores included in the framework.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Steig, Eric J.; Buizert, Christo", "platforms": null, "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw", "uid": "p0010183", "west": -180.0}, {"awards": "1935870 Ballard, Grant; 1935901 Dugger, Katie", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "datasets": [{"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Ad\u00e9lie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Ad\u00e9lie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of \u003e1 million hits per month and use by \u003e300 classrooms/~10,000 students) will be continued. Each field season will also have \u2018Live From the Penguins\u2019 Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector.\r\n", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; AMD; MARINE ECOSYSTEMS; Amd/Us; Adelie Penguin; USAP-DC; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Varsani, Arvind; Dugger, Katie; Orben, Rachael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies", "uid": "p0010179", "west": 165.0}, {"awards": "1543498 Ballard, Grant; 1543459 Dugger, Katie; 1543541 Ainley, David", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Locations of Adelie penguins from geolocating dive recorders 2017-2019; Penguinscience Data Sharing Website", "datasets": [{"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "601482", "doi": "10.15784/601482", "keywords": "Adelie Penguin; Animal Behavior Observation; Antarctica; Biologging; Biota; Foraging Ecology; Geolocator; GPS Data; Migration; Ross Sea; Winter", "people": "Schmidt, Annie; Ballard, Grant; Ainley, David; Dugger, Katie; Lescroel, Amelie; Lisovski, Simeon", "repository": "USAP-DC", "science_program": null, "title": "Locations of Adelie penguins from geolocating dive recorders 2017-2019", "url": "https://www.usap-dc.org/view/dataset/601482"}, {"dataset_uid": "200278", "doi": "", "keywords": null, "people": null, "repository": "California Avian Data Center", "science_program": null, "title": "Penguinscience Data Sharing Website", "url": "https://data.pointblue.org/apps/penguin_science/"}, {"dataset_uid": "601443", "doi": "10.15784/601443", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601443"}], "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Ad\u00e9lie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin\u0027s annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin\u0027s condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and \"NestCheck\" (a site that is logged-on by \u003e300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer. \u003cbr/\u003e\u003cbr/\u003eThe project will accomplish three major goals, all of which relate to how Ad\u00e9lie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual\u0027s lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Adelie Penguin; Amd/Us; FIELD INVESTIGATION; MARINE ECOSYSTEMS; Ross Island; USAP-DC; Penguin", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Ainley, David; Dugger, Katie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "California Avian Data Center; USAP-DC", "science_programs": null, "south": -78.0, "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.", "uid": "p0010177", "west": 165.0}, {"awards": "1246416 Stephen, Ralph; 1246151 Bromirski, Peter", "bounds_geometry": "POLYGON((-180 -77,-179.5 -77,-179 -77,-178.5 -77,-178 -77,-177.5 -77,-177 -77,-176.5 -77,-176 -77,-175.5 -77,-175 -77,-175 -77.4,-175 -77.8,-175 -78.2,-175 -78.6,-175 -79,-175 -79.4,-175 -79.8,-175 -80.2,-175 -80.6,-175 -81,-175.5 -81,-176 -81,-176.5 -81,-177 -81,-177.5 -81,-178 -81,-178.5 -81,-179 -81,-179.5 -81,180 -81,179 -81,178 -81,177 -81,176 -81,175 -81,174 -81,173 -81,172 -81,171 -81,170 -81,170 -80.6,170 -80.2,170 -79.8,170 -79.4,170 -79,170 -78.6,170 -78.2,170 -77.8,170 -77.4,170 -77,171 -77,172 -77,173 -77,174 -77,175 -77,176 -77,177 -77,178 -77,179 -77,-180 -77))", "dataset_titles": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ; Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "datasets": [{"dataset_uid": "200207", "doi": "10.7914/SN/XH_2014", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-Induced Vibrations and Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf. International Federation of Digital Seismograph Networks. ", "url": "http://www.fdsn.org/networks/detail/XH_2014/"}, {"dataset_uid": "200209", "doi": "10.7283/58E3-GA46", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations 2015/2016, UNAVCO, Inc., GPS/GNSS Observations Dataset", "url": "https://doi.org/10.7283/58E3-GA46"}], "date_created": "Thu, 15 Apr 2021 00:00:00 GMT", "description": "This award supports a project intended to discover, through field observations and numerical simulations, how ocean wave-induced vibrations on ice shelves in general, and the Ross Ice Shelf (RIS), in particular, can be used (1) to infer spatial and temporal variability of ice shelf mechanical properties, (2) to infer bulk elastic properties from signal propagation characteristics, and (3) to determine whether the RIS response to infragravity (IG) wave forcing observed distant from the front propagates as stress waves from the front or is \"locally\" generated by IG wave energy penetrating the RIS cavity. The intellectual merit of the work is that ocean gravity waves are dynamic elements of the global ocean environment, affected by ocean warming and changes in ocean and atmospheric circulation patterns. Their evolution may thus drive changes in ice-shelf stability by both mechanical interactions, and potentially increased basal melting, which in turn feed back on sea level rise. Gravity wave-induced signal propagation across ice shelves depends on ice shelf and sub-shelf water cavity geometry (e.g. structure, thickness, crevasse density and orientation), as well as ice shelf physical properties. Emphasis will be placed on observation and modeling of the RIS response to IG wave forcing at periods from 75 to 300 s. Because IG waves are not appreciably damped by sea ice, seasonal monitoring will give insights into the year-round RIS response to this oceanographic forcing. The 3-year project will involve a 24-month period of continuous data collection spanning two annual cycles on the RIS. RIS ice-front array coverage overlaps with a synergistic Ross Sea Mantle Structure (RSMS) study, giving an expanded array beneficial for IG wave localization. The ice-shelf deployment will consist of sixteen stations equipped with broadband seismometers and barometers. Three seismic stations near the RIS front will provide reference response/forcing functions, and measure the variability of the response across the front. A linear seismic array orthogonal to the front will consist of three stations in-line with three RSMS stations. Passive seismic array monitoring will be used to determine the spatial and temporal distribution of ocean wave-induced signal sources along the front of the RIS and estimate ice shelf structure, with the high-density array used to monitor and localize fracture (icequake) activity. The broader impacts include providing baseline measurements to enable detection of ice-shelf changes over coming decades which will help scientists and policy-makers respond to the socio-environmental challenges of climate change and sea-level rise. A postdoctoral scholar in interdisciplinary Earth science will be involved throughout the course of the research. Students at Cuyamaca Community College, San Diego County, will develop and manage a web site for the project to be used as a teaching tool for earth science and oceanography classes, with development of an associated web site on waves for middle school students.\n\r\nUnderstanding and being able to anticipate changes in the glaciological regime of the Ross Ice Shelf (RIS) and West Antarctic Ice Sheet (WAIS) are key to improving sea level rise projections due to ongoing ice mass loss in West Antarctica. The fate of the WAIS is a first-order climate change and global societal issue for this century and beyond that affects coastal communities and coastal infrastructure globally. \r\n\r\nIce shelf--ocean interactions include impacts from tsunami, ocean swell (10-30s period), and very long period ocean waves that impact ice shelves and produce vibrations that induce a variety of seismic signals detected by seismometers buried in the ice shelf surface layer, called firn. To study the wave-induced vibrations in the RIS, an extensive seismic array was deployed from Nov. 2014 to Nov. 2016. This unique seismometer array deployment on an ice shelf made continuous observations of the response of the RIS to ocean wave impacts from ocean swell and very long period waves. An extensive description of the project motivation and background (including photos and videos of the deployment operations), and list of published studies of analyses of the seismic data collected by this project, are available at the project website https://iceshelfvibes.ucsd.edu. \r\n\r\nTwo types of seismic signals detected by the seismic array are most prevalent: flexural gravity waves (plate waves) and icequakes (signals analogous to those from earthquakes but from fracturing of the ice). \r\nLong period ocean waves flex the ice shelf at the same period as the ocean waves, with wave energy at periods greater than ocean swell more efficient at coupling energy into flexing the ice shelf. Termed flexural gravity waves or plate waves (Chen et al., 2018), their wave-induced vibrations can reach 100\u2019s of km from the ice edge where they are excited, with long period wave energy propagating in the water layer below the shelf coupled with the ice shelf flexure. Flexural gravity waves at very long periods (\u003e 300 s period), such as from tsunami impacts (Bromirski et al., 2017), can readily reach grounding zones and may play a role in long-term grounding zone evolution. \r\nSwell-induced icequake activity was found to be most prevalent at the shelf front during the austral summer (January \u2013 March) when seasonal sea ice is absent and the associated damping of swell by sea ice is minimal (Chen et al., 2019). \r\n\r\nIn addition to the seismic array, a 14 station GPS (global positioning system) array was installed during seismic data retrieval and station servicing operations in October-November 2015. The GPS stations, co-located with seismic stations, extended from the shelf front southward to about 415 km at interior station RS18. Due to logistical constraints associated with battery weight during installation, only one station (at DR10) operated year-round. The GPS data collected give a detailed record of changes in iceflow velocity that are in close agreement with the increasing velocity estimates approaching the shelf front from satellite observations. Importantly, the year-round data at DR10 show an unprecedented seasonal cycle of changes in iceflow velocity, with a speed-up in northward (seaward) ice flow during Jan.-May and then a velocity decrease from June-Sep. (returning to the long-term mean flow velocity). This annual ice flow velocity change cycle has been attributed in part to seasonal changes in ice shelf mass (thinning, reducing buttressing) due to melting at the RIS basal (bottom) surface from intrusion of warmer ocean water (Klein et al., 2020). ", "east": 170.0, "geometry": "POINT(177.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; USAP-DC; Amd/Us; AMD; USA/NSF; Iris; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bromirski, Peter; Gerstoft, Peter; Stephen, Ralph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Dynamic Response of the Ross Ice Shelf to Wave-induced Vibrations", "uid": "p0010169", "west": -175.0}, {"awards": "1643301 Gerbi, Christopher; 1643353 Christianson, Knut", "bounds_geometry": null, "dataset_titles": "ImpDAR: an impulse radar processor; SeidarT; South Pole Lake ApRES Radar; South Pole Lake GNSS; South Pole Lake: ground-based ice-penetrating radar", "datasets": [{"dataset_uid": "200244", "doi": " https://zenodo.org/badge/latestdoi/382590632", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "SeidarT", "url": "https://github.com/UMainedynamics/SeidarT"}, {"dataset_uid": "601502", "doi": "10.15784/601502", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; GPS; GPS Data; South Pole; Subglacial Lakes", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake GNSS", "url": "https://www.usap-dc.org/view/dataset/601502"}, {"dataset_uid": "200202", "doi": "http://doi.org/10.5281/zenodo.3833057", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ImpDAR: an impulse radar processor", "url": "https://www.github.com/dlilien/ImpDAR"}, {"dataset_uid": "200203", "doi": "", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "South Pole Lake: ground-based ice-penetrating radar", "url": "http://hdl.handle.net/1773/45293"}, {"dataset_uid": "601503", "doi": "10.15784/601503", "keywords": "Antarctica; Apres; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; Subglacial Lakes; Vertical Velocity", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake ApRES Radar", "url": "https://www.usap-dc.org/view/dataset/601503"}], "date_created": "Wed, 17 Feb 2021 00:00:00 GMT", "description": "This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. \r\n\r\nIce viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIERS/ICE SHEETS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; South Pole; USA/NSF; AMD; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; Amd/Us", "locations": "South Pole; United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "GitHub", "repositories": "GitHub; Uni. Washington ResearchWorks Archive; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow", "uid": "p0010160", "west": null}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": null, "dataset_titles": "metabolic measurements; Sedation dose and response; TDR and weather data", "datasets": [{"dataset_uid": "601524", "doi": "10.15784/601524", "keywords": "Antarctica; McMurdo Sound; Metabolic Rate; Thermoregulation; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "metabolic measurements", "url": "https://www.usap-dc.org/view/dataset/601524"}, {"dataset_uid": "601631", "doi": "10.15784/601631", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Pearson, Linnea", "repository": "USAP-DC", "science_program": null, "title": "Sedation dose and response", "url": "https://www.usap-dc.org/view/dataset/601631"}, {"dataset_uid": "601435", "doi": "10.15784/601435", "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "people": "Pearson, Linnea; Liwanag, Heather; Weitzner, Emma", "repository": "USAP-DC", "science_program": null, "title": "TDR and weather data", "url": "https://www.usap-dc.org/view/dataset/601435"}], "date_created": "Sat, 12 Dec 2020 00:00:00 GMT", "description": "The transition of young from parental care to independence is a critical stage in the life of many animals. Surviving this stage can be especially challenging for polar mammals where the extreme cold requires extra energy to keep warm, rather than using the majority of energy for growth, development and physical activities. Young Weddell seals (Leptonychotes weddellii) have only weeks to develop the capabilities to survive both on top of the sea ice and within the -1.9\u00b0C seawater where they can forage for food. The project seeks to better understand how Weddell seal pups rapidly develop (within weeks) the capacity to transition between these two extreme environments (that differ greatly in their abilities to conduct heat) and how they budget their energy during the transition. Though the biology and physiology of adult Weddell seals is well studied, the energetic and physiological strategies of pups during development is still unclear. Understanding factors that may affect survival at critical life history events is essential for better understanding factors that might affect marine mammal populations. Weddell seals are the southernmost breeding mammal and are easily recognizable as quintessential Antarctic seals. Determining potential vulnerabilities at critical life stages to change in the Antarctic environment will facilitate the researchers\u0027 ability to not only gain public interest but also communicate how research is revealing ways in which changes are occurring at the poles and how these changes may affect polar ecosystems. By collaborating with the Marine Mammal Center, the project will directly reach the public, through curricular educational materials and public outreach that will impact over 100,000 visitors annually.\u003cbr/\u003e\u003cbr/\u003eTo elucidate the physiological strategies that facilitate the survival of Weddell seal pups from birth to independence, the proposed study examines the development of their thermoregulation and diving capability. To achieve this, the project will determine the mechanisms that Weddell seal pups use to maintain a stable, warm body temperature in air and in water and then examine the development of diving capability as the animals prepare for independent foraging. The researchers will take a fully integrative approach- making assessments from proteins to tissues to the whole-animal level- when investigating both these objectives. To assess the development of thermoregulatory capability, researchers will quantify body insulation, resting metabolic rates in air and in water, muscle thermogenesis (shivering), and body surface temperatures in the field. The project will also assess the development of dive capability by quantifying oxygen storage capacities and measuring early dive behavior. To identify possible cellular mechanisms for how Weddell seals navigate this trade-off during development, the program will quantify several key developmental regulators of increased hypoxic capacity (HIF, VEGF and EPO) using qPCR, as well as follow the proteomic changes of adipose and muscle tissue, which will include abundance changes of metabolic, antioxidant, cytoskeletal, and Ca2+-regulating proteins. The study of the physiological development leading up to the transition to independence in pinnipeds will help researchers better predict the effects of climate change on the distribution and abundance of this species and how this will affect other trophic levels. Environmental changes that alter habitat suitability have been shown to decrease population health, specifically because of declines in juvenile survival.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MAMMALS; FIELD INVESTIGATION; McMurdo Sound", "locations": "McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Liwanag, Heather; Pearson, Linnea; Tomanek, Lars", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "uid": "p0010144", "west": null}, {"awards": "1908399 Bizimis, Michael; 1908548 Feakins, Sarah", "bounds_geometry": "POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617))", "dataset_titles": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]; Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years; Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years; Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago; Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "datasets": [{"dataset_uid": "200259", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago", "url": "https://www.ncdc.noaa.gov/paleo/study/34772"}, {"dataset_uid": "200206", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32052"}, {"dataset_uid": "200317", "doi": "10.25921/n9kg-yw91", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/35613"}, {"dataset_uid": "200335", "doi": "10.5281/zenodo.7254536", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "url": "https://zenodo.org/record/7254536#.Y2BLgOTMI2w"}, {"dataset_uid": "200334", "doi": "10.5281/zenodo.7254786", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]", "url": "https://zenodo.org/record/7254786#.Y2BLAeTMI2w"}], "date_created": "Sat, 05 Dec 2020 00:00:00 GMT", "description": "The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as \u0027biomarkers\u0027 in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program\u0027s (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD \u0026 MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. \u003cbr/\u003e\u003cbr/\u003eThe researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 75.08183, "geometry": "POINT(74.934415 -67.48617)", "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; Prydz Bay; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; DROUGHT/PRECIPITATION RECONSTRUCTION; ISOTOPES; AIR TEMPERATURE RECONSTRUCTION", "locations": "Prydz Bay; Sabrina Coast", "north": -67.27617, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Feakins, Sarah; Scher, Howard", "platforms": null, "repo": "NCEI", "repositories": "NCEI; Zenodo", "science_programs": null, "south": -67.69617, "title": "Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation", "uid": "p0010143", "west": 74.787}, {"awards": "1141411 Baker, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Laboratory Experiments with H2SO4-Doped Ice; The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "datasets": [{"dataset_uid": "600380", "doi": "10.15784/600380", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Physical Properties; Snow", "people": "Baker, Ian", "repository": "USAP-DC", "science_program": null, "title": "The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "url": "https://www.usap-dc.org/view/dataset/600380"}, {"dataset_uid": "601081", "doi": "10.15784/601081", "keywords": null, "people": "Hammonds, Kevin", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Experiments with H2SO4-Doped Ice", "url": "https://www.usap-dc.org/view/dataset/601081"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This award supports a project to undertake a systematic examination of the effects of soluble impurities, particularly sulfuric acid, on the creep of polycrystalline ice as function of temperature, strain rate and impurity concentration. The working hypothesis is that soluble impurities will increase the flow rate of polycrystalline ice compared to high-purity ice, that this effect will be temperature dependent and that the impurities by affecting the re-crystallization and grain growth will change the fabric of the ice. Both H2SO4-doped and high-purity poly-crystalline ice will be produced by freezing sheets of ice, breaking them up, sieving the ice particles and then sintering them in a mold into fine-grained cylindrical specimens with at least ten grains across their diameter. The resulting microstructures (dislocation structure, grain size and shape, grain boundary character and micro-structural location of the acid) will be characterized using a variety of techniques including: optical microscopy, scanning electron microscopy, including secondary electron imaging, electron backscattered patterns, energy dispersive X-ray spectroscopy, electron channeling contrast imaging, and X-ray topography. The creep of both the H2SO4-doped and the high-purity polycrystalline ice will be undertaken at a range of temperatures and stresses. The ice?s response to the creep deformation (grain boundary sliding, dislocation motion, re-crystallization, grain boundary migration, impurity redistribution) will be studied using a combination of methods. The creep behavior will be modeled and related to the microstructure. Of particular interest is how impurities affect the activation energy for creep. The intellectual merit of the work is that it will lead to a better understanding of glacier ice and will enable glaciologists to model the influence of impurities on the flow and fabric development in polycrystalline ice. The broader impacts of the project include the knowledge that will be gained of the effects of impurities on the flow of ice which will allow paleoclimatologists to better interpret ice core data and will allow scientists developing predictive models to better address the flow of ice sheets under various climate change scenarios. The project will also lead to the education and training of a Ph.D. student, several undergraduates and some high school students. Results from the research will be published in refereed journals. Several undergraduates, typically two per year, will also perform the work. Dartmouth aggressively courts minority students at all degree levels, and we will seek women or minority group undergraduates for this project. The undergraduates will be supported by Dartmouth?s nationally-honored Women In Science Project or by REU funding. The undergraduates? research will integrate closely with the Ph.D. student?s studies. Hanover High School students will also be involved in the project and develop an educational kit to introduce students to the properties of ice. Results from the research will be published in refereed journals and presented at conferences.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; USAP-DC; SNOW/ICE; Amd/Us; LABORATORY; Antarctica; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "uid": "p0010133", "west": -180.0}, {"awards": "0732450 Van Dover, Cindy; 0732917 McCormick, Michael; 0732983 Vernet, Maria; 0732711 Smith, Craig", "bounds_geometry": "POLYGON((-60.5 -63.1,-59.99 -63.1,-59.48 -63.1,-58.97 -63.1,-58.46 -63.1,-57.95 -63.1,-57.44 -63.1,-56.93 -63.1,-56.42 -63.1,-55.91 -63.1,-55.4 -63.1,-55.4 -63.29,-55.4 -63.48,-55.4 -63.67,-55.4 -63.86,-55.4 -64.05,-55.4 -64.24,-55.4 -64.43,-55.4 -64.62,-55.4 -64.81,-55.4 -65,-55.91 -65,-56.42 -65,-56.93 -65,-57.44 -65,-57.95 -65,-58.46 -65,-58.97 -65,-59.48 -65,-59.99 -65,-60.5 -65,-60.5 -64.81,-60.5 -64.62,-60.5 -64.43,-60.5 -64.24,-60.5 -64.05,-60.5 -63.86,-60.5 -63.67,-60.5 -63.48,-60.5 -63.29,-60.5 -63.1))", "dataset_titles": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula; NBP1001 cruise data; NBP1203 cruise data; Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601073", "doi": "10.15784/601073", "keywords": "Antarctica; Antarctic Peninsula; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; LARISSA; Microbiology", "people": "McCormick, Michael", "repository": "USAP-DC", "science_program": null, "title": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601073"}, {"dataset_uid": "601304", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601304"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.", "east": -55.4, "geometry": "POINT(-57.95 -64.05)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NBP1203; USAP-DC; Amd/Us; LARISSA; Larsen Ice Shelf; Species Abundance Data; R/V NBP; Antarctic Peninsula; NBP1001; USA/NSF; AMD; Antarctica; MARINE ECOSYSTEMS", "locations": "Antarctica; Antarctic Peninsula; Larsen Ice Shelf", "north": -63.1, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "McCormick, Michael; Vernet, Maria; Van Dover, Cindy; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.", "uid": "p0010135", "west": -60.5}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": "POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))", "dataset_titles": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches; Granulometry of Joinville and Livingston Island beaches; Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula; Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula; Joinville and Livingston Islands - rock and sediment OSL ages; OSL data - Joinville and Livingston Islands - Raw data; Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "datasets": [{"dataset_uid": "601400", "doi": "10.15784/601400", "keywords": "Antarctica; Grain Size; Granulometry; Joinville Island; Livingston Island; LMG0412; Raised Beaches", "people": "Simms, Alexander; Theilen, Brittany", "repository": "USAP-DC", "science_program": null, "title": "Granulometry of Joinville and Livingston Island beaches", "url": "https://www.usap-dc.org/view/dataset/601400"}, {"dataset_uid": "601634", "doi": "10.15784/601634", "keywords": "Antarctica; Joinville Island; Raised Beaches; Sea Level", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601634"}, {"dataset_uid": "601633", "doi": "10.15784/601633", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601633"}, {"dataset_uid": "601632", "doi": "10.15784/601632", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601632"}, {"dataset_uid": "601531", "doi": "10.15784/601531", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches", "url": "https://www.usap-dc.org/view/dataset/601531"}, {"dataset_uid": "601532", "doi": "10.15784/601532", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "OSL data - Joinville and Livingston Islands - Raw data", "url": "https://www.usap-dc.org/view/dataset/601532"}, {"dataset_uid": "601534", "doi": "10.15784/601534", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Joinville and Livingston Islands - rock and sediment OSL ages", "url": "https://www.usap-dc.org/view/dataset/601534"}], "date_created": "Thu, 08 Oct 2020 00:00:00 GMT", "description": "Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers reconstructed past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula and determined the rate of uplift over the last 5,000 years. The researchers analyzed the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. We found that unlike most views of how sea level changed across Antarctica over the last 5,000 years, its history is complex with periods of increasing rates of sea-level fall as well as short periods of potential sea-level rise. We attribute these oscillations in the nature of sea-level change across the Antarctic Peninsula to changes in the ice sheet over the last 5,000 years. These changes in sea level also suggest our understanding of the Earth structure beneath the Antarctic Peninsula need to be revised. The beach deposits themselves also record periods of climate change as reflected in the size and shape of their cobbles. This project has lead to the training of five graduate students, three undergraduate students, and outreach talks to k-12 schools in three communities.", "east": -55.0, "geometry": "POINT(-60 -63)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctic Peninsula; COASTAL LANDFORMS/PROCESSES; USAP-DC; SEA LEVEL RECONSTRUCTION; South Shetland Islands; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "South Shetland Islands; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Simms, Alexander; DeWitt, Regina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "uid": "p0010132", "west": -65.0}, {"awards": "1542962 Anderson, Robert", "bounds_geometry": "POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57))", "dataset_titles": "Expedition Data of NBP1702; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "datasets": [{"dataset_uid": "200166", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ", "url": "https://www.ncdc.noaa.gov/paleo/study/31312"}, {"dataset_uid": "200165", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "url": "https://www.bco-dmo.org/dataset/813379/data"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}], "date_created": "Fri, 25 Sep 2020 00:00:00 GMT", "description": "General:\r\nScientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth\u2019s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean that regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. This project was designed test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and the slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement was to be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work was expected to contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. \r\n\r\nTechnical:\r\nThe project added a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that collected sediment cores at locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170\u00b0W. The goal was to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. We proposed to compare the radiocarbon age of foraminifera that inhabited the surface ocean with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms would have been used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it was expected that surface and deep-dwelling foraminifera would exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters outcrop at the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work was to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean\u2019s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarctica. \r\n\r\nUnfortunately, the cores were shipped to the core repository in a horizontal orientation and there was sufficient distortion of the sediment that the radiocarbon ages of benthic foraminifera were uninterpretable. Therefore, we report only the radiocarbon dates for planktonic foraminifera as well as the total counts of elemental relative abundance from X-ray Fluorescence analysis of the cores. In addition, we used the expedition as an opportunity to collect water samples from which dissolved concentrations of long-lived isotope of thorium and protactinium were determined. Results from those analyses showed that lateral transport by isopycnal mixing dominates the supply of Pa to the Southern Ocean. We have also developed a new algorithm to correct for supply of Th by isopycnal mixing and thereby derive estimates of dust flux to the Southern Ocean. \r\n", "east": -169.0, "geometry": "POINT(-170 -60.6)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; SEDIMENT CHEMISTRY; South Pacific Ocean; SHIPS", "locations": "South Pacific Ocean", "north": -57.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Fleisher, Martin; Pavia, Frank", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCEI", "repositories": "BCO-DMO; NCEI; R2R", "science_programs": null, "south": -64.2, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean", "uid": "p0010130", "west": -171.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": "POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60))", "dataset_titles": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "datasets": [{"dataset_uid": "601379", "doi": "10.15784/601379", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601379"}, {"dataset_uid": "601377", "doi": "10.15784/601377", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601377"}, {"dataset_uid": "601378", "doi": "10.15784/601378", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601378"}], "date_created": "Thu, 10 Sep 2020 00:00:00 GMT", "description": "Abstract for the general public:\u003cbr/\u003e\u003cbr/\u003eThe margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this \u0027iceberg-rafted debris\u0027 falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. \u003cbr/\u003e\u003cbr/\u003eThe study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: \u003cbr/\u003e\u003cbr/\u003e1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. \u003cbr/\u003e\u003cbr/\u003e2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. \u003cbr/\u003e\u003cbr/\u003eTechnical abstract:\u003cbr/\u003e\u003cbr/\u003e The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. \u003cbr/\u003e\u003cbr/\u003eGeochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: \u003cbr/\u003e\u003cbr/\u003e1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. \u003cbr/\u003e\u003cbr/\u003e2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.", "east": -20.0, "geometry": "POINT(-45 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "TERRIGENOUS SEDIMENTS; Subglacial Till; USAP-DC; ICEBERGS; AMD; USA/NSF; ISOTOPES; AGE DETERMINATIONS; Argon; Provenance; Till; Amd/Us; R/V POLARSTERN; FIELD INVESTIGATION; SEDIMENT CHEMISTRY; Weddell Sea; Antarctica; LABORATORY", "locations": "Weddell Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V POLARSTERN", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "uid": "p0010128", "west": -70.0}, {"awards": "1246465 Brook, Edward J.", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "datasets": [{"dataset_uid": "601337", "doi": "10.15784/601337", "keywords": "Antarctica; Carbon Cycle; CO2; Gas Chromatograph; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; WAIS Divide", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "url": "https://www.usap-dc.org/view/dataset/601337"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Cycle; Ice Core Records; USAP-DC; CO2; FIELD INVESTIGATION; CARBON DIOXIDE; LABORATORY; WAIS Divide", "locations": "WAIS Divide", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Completing the WAIS Divide Ice Core CO2 record", "uid": "p0010110", "west": -112.1115}, {"awards": "1907974 Saltzman, Eric", "bounds_geometry": "POLYGON((129.26 -89.86,130.261 -89.86,131.262 -89.86,132.263 -89.86,133.264 -89.86,134.265 -89.86,135.266 -89.86,136.267 -89.86,137.268 -89.86,138.269 -89.86,139.27 -89.86,139.27 -89.861,139.27 -89.862,139.27 -89.863,139.27 -89.864,139.27 -89.865,139.27 -89.866,139.27 -89.867,139.27 -89.868,139.27 -89.869,139.27 -89.87,138.269 -89.87,137.268 -89.87,136.267 -89.87,135.266 -89.87,134.265 -89.87,133.264 -89.87,132.263 -89.87,131.262 -89.87,130.261 -89.87,129.26 -89.87,129.26 -89.869,129.26 -89.868,129.26 -89.867,129.26 -89.866,129.26 -89.865,129.26 -89.864,129.26 -89.863,129.26 -89.862,129.26 -89.861,129.26 -89.86))", "dataset_titles": "H2 in South Pole firn air", "datasets": [{"dataset_uid": "601332", "doi": "10.15784/601332", "keywords": "Antarctica; Firn; Glaciology; Hydrogen; Ice Core Records; Snow/ice; Snow/Ice; South Pole", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "H2 in South Pole firn air", "url": "https://www.usap-dc.org/view/dataset/601332"}], "date_created": "Tue, 09 Jun 2020 00:00:00 GMT", "description": "Hydrogen (H2) is one of the most abundant trace gases in the atmosphere, with a mean level of 500 ppb and an atmospheric lifetime of about two years. Hydrogen has an impact on both air quality and climate, due to its role as a precursor for tropospheric ozone and stratospheric water vapor. Projections indicate that a future \"hydrogen economy\" would increase hydrogen emissions. Understanding of the atmospheric hydrogen budget is largely based on a 30-year record of surface air measurements, but there are no long-term records with which to assess either: 1) the influence of climate change on atmospheric hydrogen, or 2) the extent to which humans have impacted the hydrogen budget. Polar ice core records of hydrogen will advance our understanding of the atmospheric hydrogen cycle and provide a stronger basis for projecting future changes to atmospheric levels of hydrogen and their impacts. \u003cbr/\u003e\u003cbr/\u003eThe research will involve laboratory work to enable the collection and analysis of hydrogen in polar ice cores. Hydrogen is a highly diffusive molecule and, unlike most other atmospheric gases, diffusion of hydrogen in ice is so rapid that ice samples must be stored in impermeable containers immediately upon drilling and recovery. This project will: 1) construct a laboratory system for extracting and analyzing hydrogen in polar ice, 2) develop and test materials and construction designs for vessels to store ice core samples in the field, and 3) test the method on samples of opportunity previously stored in the field. The goal of this project is a proven, cost-effective design for storage flasks to be fabricated for use on future polar ice coring projects. This project will support the dissertation research of a graduate student in the UC Irvine Department of Earth System Science.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 139.27, "geometry": "POINT(134.265 -89.865)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Firn; TRACE GASES/TRACE SPECIES; South Pole; FIELD INVESTIGATION; USAP-DC", "locations": "South Pole", "north": -89.86, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Saltzman, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.87, "title": "EAGER: Feasibility of Reconstructing the Atmospheric History of Molecular Hydrogen from Antarctic Ice", "uid": "p0010106", "west": 129.26}, {"awards": "1744550 Amsler, Charles; 1744602 Iken, Katrin; 1744584 Klein, Andrew; 1744570 Galloway, Aaron", "bounds_geometry": "POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.772,-60 -62.544,-60 -63.316,-60 -64.088,-60 -64.86,-60 -65.632,-60 -66.404,-60 -67.176,-60 -67.948,-60 -68.72,-61 -68.72,-62 -68.72,-63 -68.72,-64 -68.72,-65 -68.72,-66 -68.72,-67 -68.72,-68 -68.72,-69 -68.72,-70 -68.72,-70 -67.948,-70 -67.176,-70 -66.404,-70 -65.632,-70 -64.86,-70 -64.088,-70 -63.316,-70 -62.544,-70 -61.772,-70 -61))", "dataset_titles": "Average global horizontal solar irradiance at study sites; Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula; Chemical composition data for Desmarestia menziesii; Chemical composition data for Himantothallus grandifolius; Chemical composition data for Iridaea ; Chemical composition data for Sarcopeltis antarctica ; Computed fetch for project study sites; Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ; Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ; Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.; Landsat Sea Ice/Cloud classifications surrounding project study sites; Latitude and longitude data for project study sites; LMG1904 expedition data; Macroalgal species collected along horizontal transect components ; Modelled Solar Irradiance for Western Antarctic Pennisula; Sea Ice Concentration Timeseries for study sites; Underwater transect videos used for community analyses; Underwater video transect community analysis data; VIIRS KD(490) diffuse attenuation coefficients for study sites", "datasets": [{"dataset_uid": "601651", "doi": "10.15784/601651", "keywords": "Antarctica; Antarctic Peninsula; Biota; GIS; GIS Data; LMG1904; R/v Laurence M. Gould; Solar Radiation", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Modelled Solar Irradiance for Western Antarctic Pennisula", "url": "https://www.usap-dc.org/view/dataset/601651"}, {"dataset_uid": "601330", "doi": "10.15784/601330", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sample Location", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Latitude and longitude data for project study sites", "url": "https://www.usap-dc.org/view/dataset/601330"}, {"dataset_uid": "601649", "doi": "10.15784/601649", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Five year mean annual and summer sea ice concentration grids for the Western Antarctic Peninsula from AMSR2, National Ice Center Charts and the Sea Ice Index ", "url": "https://www.usap-dc.org/view/dataset/601649"}, {"dataset_uid": "601725", "doi": "10.15784/601725", "keywords": "Antarctica; Antarctic Peninsula", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Macroalgal species collected along horizontal transect components ", "url": "https://www.usap-dc.org/view/dataset/601725"}, {"dataset_uid": "200147", "doi": "10.7284/908260", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1904 expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1904"}, {"dataset_uid": "601643", "doi": "10.15784/601643", "keywords": "Antarctica; Antarctic Peninsula; LMG1904; National Ice Center Charts; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Gridded sea ice concentrations from National Ice Center (NIC) Charts 2014-2019 for Western Antarctic Peninsula ", "url": "https://www.usap-dc.org/view/dataset/601643"}, {"dataset_uid": "601640", "doi": "10.15784/601640", "keywords": "Antarctica; Biota; Diffuse Attenuation Coefficient; LMG1904; R/v Laurence M. Gould; Turbidity", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "VIIRS KD(490) diffuse attenuation coefficients for study sites", "url": "https://www.usap-dc.org/view/dataset/601640"}, {"dataset_uid": "601610", "doi": "10.15784/601610", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for community analyses", "url": "https://www.usap-dc.org/view/dataset/601610"}, {"dataset_uid": "601619", "doi": "10.15784/601619", "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601619"}, {"dataset_uid": "601654", "doi": "10.15784/601654", "keywords": "Antarctica; Antarctic Peninsula; GIS; LANDSAT; LMG1904; Remote Sensing; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Landsat Sea Ice/Cloud classifications surrounding project study sites", "url": "https://www.usap-dc.org/view/dataset/601654"}, {"dataset_uid": "601653", "doi": "10.15784/601653", "keywords": "Antarctica; Antarctic Peninsula; Biota; Carbon; Carbon Isotopes; LMG1904; Nitrogen Isotopes; Oceans", "people": "Iken, Katrin", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601653"}, {"dataset_uid": "601642", "doi": "10.15784/601642", "keywords": "Antarctica; Antarctic Peninsula; Biota; LMG1904; R/v Laurence M. Gould; Sea Ice Concentration", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Concentration Timeseries for study sites", "url": "https://www.usap-dc.org/view/dataset/601642"}, {"dataset_uid": "601885", "doi": "10.15784/601885", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Sarcopeltis antarctica ", "url": "https://www.usap-dc.org/view/dataset/601885"}, {"dataset_uid": "601884", "doi": "10.15784/601884", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Iridaea ", "url": "https://www.usap-dc.org/view/dataset/601884"}, {"dataset_uid": "601883", "doi": "10.15784/601883", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Himantothallus grandifolius", "url": "https://www.usap-dc.org/view/dataset/601883"}, {"dataset_uid": "601882", "doi": "10.15784/601882", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Macroalgae", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Chemical composition data for Desmarestia menziesii", "url": "https://www.usap-dc.org/view/dataset/601882"}, {"dataset_uid": "601639", "doi": "10.15784/601639", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fetch; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Computed fetch for project study sites", "url": "https://www.usap-dc.org/view/dataset/601639"}, {"dataset_uid": "601641", "doi": "10.15784/601641", "keywords": "Antarctica; Average Global Horizontal Solar Irradiance; Biota; LMG1904; R/v Laurence M. Gould", "people": "Klein, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Average global horizontal solar irradiance at study sites", "url": "https://www.usap-dc.org/view/dataset/601641"}, {"dataset_uid": "200402", "doi": "10.5281/zenodo.10524919", "keywords": null, "people": null, "repository": "Zendo", "science_program": null, "title": "Initial release of code and data associated with Whippo et al. (2024) Fatty acid profiles and stable isotope composition of Antarctic macroalgae: A baseline for a combined biomarker approach in food web studies.", "url": "https://zenodo.org/records/10524920"}], "date_created": "Thu, 04 Jun 2020 00:00:00 GMT", "description": "The western Antarctic Peninsula has become a model for understanding cold water communities and how they may be changing in Antarctica and elsewhere. Brown macroalgae (seaweeds) form extensive undersea forests in the northern portion of this region where they play a key role in providing both physical structure and a food (carbon) source for shallow water communities. Yet between Anvers Island (64 degrees S latitude) and Adelaide Island (67 S latitude) these macroalgae become markedly less abundant and diverse. This is probably because the habitat to the south is covered by more sea ice for a longer period, and the sea ice reduces the amount of light that reaches the algae. The reduced macroalgal cover undoubtedly impacts other organisms in the food web, but the ways in which it alters sea-floor community processes and organization is unknown. This project will quantitatively document the macroalgal communities at multiple sites between Anvers and Adelaide Islands using a combination of SCUBA diving, video surveys, and algal collections. Sea ice cover, light levels, and other environmental parameters on community structure will be modelled to determine which factors have the largest influence. Impacts on community structure, food webs, and carbon flow will be assessed through a mixture of SCUBA diving and video surveys. Broader impacts include the training of graduate students and a postdoctoral researcher, as well as numerous informal public education activities including lectures, presentations to K-12 groups, and a variety of social media-based outreach.\u003cbr/\u003e\u003cbr/\u003eMacroalgal communities are more abundance and diverse to the north along the Western Antarctic Peninsula, perhaps due to the greater light availability that is associated with shorter period of sea-ice cover. This project will determine the causes and community level consequence of this variation in algal community structure. First, satellite data on sea ice extent and water turbidity will be used to select study sites between 64 S and 69 S where the extent of annual sea ice cover is the primary factor influencing subsurface light levels. Then, variations in macroalgal cover across these study sites will be determined by video line-transect surveys conducted by SCUBA divers. The health, growth, and physiological status of species found at the different sites will be determined by quadrat sampling. The relative importance of macroalgal-derived carbon to the common invertebrate consumers in the foodweb will be assessed with stable isotope and fatty acid biomarker techniques. This will reveal how variation in macroalgal abundance and species composition across the sea ice cover gradient impacts sea floor community composition and carbon flow throughout the food web. In combination, this work will facilitate predictions of how the ongoing reductions in extent and duration of sea ice cover that is occurring in the region as a result of global climate change will impact the structure of nearshore benthic communities.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-65 -64.86)", "instruments": null, "is_usap_dc": true, "keywords": "COASTAL; R/V LMG; MACROALGAE (SEAWEEDS); BENTHIC; USAP-DC; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James; Iken, Katrin; Galloway, Aaron; Klein, Andrew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC; Zendo", "science_programs": null, "south": -68.72, "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "uid": "p0010104", "west": -70.0}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Li, Xiaona; Passchier, Sandra; Hojnacki, Victoria; States, Abbey; Lepp, Allison", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}, {"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Horowitz Castaldo, Josie; Passchier, Sandra; Light, Jennifer; Lepp, Allison", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical)\u003cbr/\u003eSea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eAbstract (technical)\u003cbr/\u003eThe melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "9319854 Bell, Robin; 9319877 Finn, Carol; 9319369 Blankenship, Donald", "bounds_geometry": "POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))", "dataset_titles": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project; SOAR-IRE airborne gravity data for the CASERTZ/WAIS project; SOAR-TKD airborne gravity data for the CASERTZ/WAIS project; SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "datasets": [{"dataset_uid": "601288", "doi": "10.15784/601288", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601288"}, {"dataset_uid": "601291", "doi": "10.15784/601291", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601291"}, {"dataset_uid": "601290", "doi": "10.15784/601290", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601290"}, {"dataset_uid": "601289", "doi": "10.15784/601289", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601289"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.", "east": -105.0, "geometry": "POINT(-130 -81)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; MAGNETIC FIELD; GRAVITY FIELD; Antarctica; GLACIERS/ICE SHEETS; Marie Byrd Land; Airborne Gravity", "locations": "Marie Byrd Land; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Blankenship, Donald D.; Finn, C. A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "uid": "p0010094", "west": -155.0}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross; Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.; Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea); Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "datasets": [{"dataset_uid": "200372", "doi": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063", "keywords": null, "people": null, "repository": "https://rs.figshare.com/", "science_program": null, "title": "Supplementary material from \"Boldness predicts divorce rates in wandering albatrosses", "url": "https://rs.figshare.com/collections/Supplementary_material_from_Boldness_predicts_divorce_rates_in_wandering_albatrosses_i_Diomedea_exulans_i_/6181063"}, {"dataset_uid": "601832", "doi": "10.15784/601832", "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "people": "jenouvrier, stephanie", "repository": "USAP-DC", "science_program": null, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "url": "https://www.usap-dc.org/view/dataset/601832"}, {"dataset_uid": "601585", "doi": "10.15784/601585", "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "url": "https://www.usap-dc.org/view/dataset/601585"}, {"dataset_uid": "601518", "doi": "10.15784/601518", "keywords": "Antarctica; Biota; Wandering Albatross", "people": "Barbraud, Christophe; Sun, Ruijiao; Delord, Karine; Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "url": "https://www.usap-dc.org/view/dataset/601518"}], "date_created": "Wed, 01 Apr 2020 00:00:00 GMT", "description": "The goal of this project is to understand the drivers of pair disruption and quantify its resulting effects on individual fitness components and population growth rate and structure for two procellariiformes breeding in the Southern Ocean: the wandering albatross and the snow petrel, which both form long-lasting pair bonds. The mechanisms of pair disruption may be contrasted between these species, as pair disruption in wandering albatross may occur with the death of a partner by incidental by-catch in fisheries, while in snow petrels it may occur through divorce and climate-related conditions. Unique long-term individual mark-recapture data sets exist for these iconic polar species, allowing for a comprehensive study of the rates, causes and consequences of pair disruption and how they differ among species.\r\n\r\nThis study will result in the most detailed analysis to date of the impact of social monogamy and long-term pair bonds on individual fitness components (vital rates: survival, recruitment and fecundity; life-history outcomes: life expectancy, age at 1st breeding and lifetime reproductive success; and occupancy times: duration of pair bond or widowhood) and population growth and structure (e.g, sex ratio of individuals available for mating). Specifically, the investigators will assess:\r\n1. Variations in pair disruption rates, and if they are related to global change (by-catch in the case of albatross widowing, and climate in the case of petrel divorce) by developing a state-of-the-art statistical multievent mark-recapture model. \r\n2. Impacts of pair disruption on vital rates, specifically whether i) greater familiarity and better coordination within pairs improves breeding performance and survival, ii) mating costs reduce the probability of breeding and iii) divorce is more likely to occur after a breeding failure. \r\n3. Impacts of pair disruption on life-history outcomes and occupancy times using Markov chain stochastic life cycle models. \r\n4. Impacts of pair disruption on population dynamics by developing a novel non-linear two-sex matrix population model. \r\nThe investigators will develop novel sensitivity and Life Table Response Experiment analyses to examine the respective effects of fisheries, climate, vital rates, and pair-disruption rates on life-history outcomes, occupancy times, and population growth and structure, and their variations among year and species. \r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "ECOLOGICAL DYNAMICS; FIELD INVESTIGATION; East Antarctica; USAP-DC", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "https://rs.figshare.com/", "repositories": "https://rs.figshare.com/; USAP-DC", "science_programs": null, "south": -90.0, "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "uid": "p0010090", "west": -180.0}, {"awards": "1341661 Near, Thomas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Phylogenomics of Antarctic notothenioid fishes", "datasets": [{"dataset_uid": "601264", "doi": null, "keywords": "Adaptive Radiation; Antarctica; Fish; Notothenioidei; Phylogeny; Southern Ocean; Speciation", "people": "Near, Thomas; Dornburg, Alex", "repository": "USAP-DC", "science_program": null, "title": "Phylogenomics of Antarctic notothenioid fishes", "url": "https://www.usap-dc.org/view/dataset/601264"}, {"dataset_uid": "601262", "doi": "10.15784/601262", "keywords": "Adaptive Radiation; Antarctica; Fish; Notothenioidei; Phylogeny; Southern Ocean; Speciation", "people": "Near, Thomas; Dornburg, Alex", "repository": "USAP-DC", "science_program": null, "title": "Phylogenomics of Antarctic notothenioid fishes", "url": "https://www.usap-dc.org/view/dataset/601262"}], "date_created": "Sat, 29 Feb 2020 00:00:00 GMT", "description": "Understanding how groups of organisms respond to climate change is fundamentally important to assessing the impacts of human activities as well as understanding how past climatic shifts have shaped biological diversity over deep stretches of time. The fishes occupying the near-shore marine habitats around Antarctica are dominated by one group of closely related species called notothenioids. It appears dramatic changes in Antarctic climate were important in the origin and evolutionary diversification of this economically important lineage of fishes. Deposits of fossil fishes in Antarctica that were formed when the continent was experiencing milder temperatures show that the area was home to a much more diverse array of fish lineages. Today the waters of the Southern Ocean are very cold, and often below freezing, but notothenioids fishes exhibit a number of adaptions to live in this harsh set of marine habitats, including the presence of anti-freeze proteins. This research project will collect DNA sequences from hundreds of genes to infer the genealogical relationships of nearly all 124 notothenioid species, and use mathematical techniques to estimate the ages of species and lineages. Knowledge on the timing of evolutionary divergence in notothenioids will allow investigators to assess if timing of previous major climatic shifts in Antarctica are correlated with key events in the formation of the modern Southern Ocean fish fauna. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The project will support educational outreach activities to teenager groups and to the general public through a natural history museum exhibit and other public lectures. It will provide professional training opportunities for graduate students and a postdoctoral research scholar. \u003cbr/\u003e\u003cbr/\u003eAdaptive radiation, where lineages experience high rates of evolutionary diversification coincident with ecological divergence, is mostly studied in island ecosystems. Notothenioids dominate the fish fauna of the Southern Ocean and exhibit antifreeze glycoproteins that allow occupation of the subzero waters. Notothenioids are noted as one of the only examples of adaptive radiation among marine fishes, but the evolutionary history of diversification and radiation into different ecological habitats is poorly understood. This research will generate a species phylogeny (evolutionary history) for nearly all of the 124 recognized notothenioid species to investigate the mechanisms of adaptive radiation in this lineage. The phylogeny is inferred from approximately 350 genes sampled using next generation DNA sequencing and related techniques. Morphometric data are taken for museum specimens to investigate the tempo of morphological diversification and to determine if there are correlations between rates of lineage diversification and the origin of morphological disparity. The patterns of lineage, morphological, and ecological diversification in the notothenioid radiation will be compared to the paleoclimatic record to determine if past instances of global climate change have shaped the evolutionary diversification of this lineage of polar-adapted fishes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "FISH; Fish; AMD; USA/NSF; Southern Ocean; Amd/Us; NOT APPLICABLE; USAP-DC; MARINE ECOSYSTEMS; Notothenioidei; Phylogeny", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Near, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Phylogenomic Study of Adaptive Radiation in Antarctic Fishes", "uid": "p0010087", "west": -180.0}, {"awards": "1743035 Saba, Grace", "bounds_geometry": "POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2))", "dataset_titles": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; NBP1801 Expedition data; ru32-20180109T0531; Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "datasets": [{"dataset_uid": "200139", "doi": "10.1575/1912/bco-dmo.792478.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792478"}, {"dataset_uid": "200140", "doi": "", "keywords": null, "people": null, "repository": "ERDDAP", "science_program": null, "title": "ru32-20180109T0531", "url": "http://slocum-data.marine.rutgers.edu/erddap/tabledap/ru32-20180109T0531-profile-sci-delayed.html"}, {"dataset_uid": "200137", "doi": "10.1575/1912/bco-dmo.789299.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "url": "https://www.bco-dmo.org/dataset/789299"}, {"dataset_uid": "200138", "doi": "10.1575/1912/bco-dmo.792385.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792385"}, {"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}], "date_created": "Thu, 27 Feb 2020 00:00:00 GMT", "description": "Terra Nova Bay (western Ross Sea, Antarctica) supports dense populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), Antarctic silverfish (Pleuragramma antarcticum), and colonies of Ad\u00e9lie and Emperor penguins that feed primarily on crystal krill and silverfish. Absent from our understanding of the Ross Sea food web is zooplankton and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers and each other. The quantitative linkages between primary producers and the higher trophic levels, specifically, the processes responsible for the regulation of abundance and rates of middle trophic levels dominated by copepods and crystal krill (Euphausia crystallorophias), is virtually unknown. Given that the next century will see extensive changes in the Ross Sea\u2019s ice distributions and oceanography as a result of climate change, understanding the basic controls of zooplankton and silverfish abundance and distribution is essential. \r\nDuring a January \u2013 March 2018 cruise in the western Ross Sea, we deployed a glider equipped with an echo sounder (Acoustic Zooplankton Fish Profiler) that simultaneously measured depth, temperature, conductivity, chlorophyll fluorescence, and dissolved oxygen. Additionally, net tows, mid-water trawls, and crystal krill grazing experiments were conducted. Our study provided the first glider-based acoustic assessment of simultaneous distributions of multiple trophic levels in the Ross Sea, from which predator-prey interactions and the relationships between organisms and physics drivers (sea ice, circulation features) were investigated. We illustrated high variability in ocean physics, phytoplankton biomass, and crystal krill biomass and aggregation over time and between locations within Terra Nova Bay. Biomass of krill was highest in locations characterized by deeper mixed layers and highest integrated chlorophyll concentrations. Krill aggregations were consistently located at depth well below the mixed layer and chlorophyll maximum. Experiments investigating krill grazing, in combination with krill depth distributions relative to chlorophyll biomass, illuminate high krill grazing rates could be attributed to the occupation of a unique niche whereby they are opportunistically feeding on sinking high concentrations of detritus derived from surface blooms. The information on the abundance, distribution, and interactions of key species in multiple trophic levels resulting from this project provide a conceptual background to understand how this ecosystem might respond to future conditions under climate change.\r\nOur project tested the capability of a multi-frequency echo sounder on a glider for the first time. The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will pave the way for cost-effective, automated examination of entire food webs and ecosystems in regions all over the global ocean. A wide range of users including academic and government scientists, ecosystem-based fisheries managers, and monitoring programs including those conducted by OOI, IOOS, and NOAA will benefit from this project. This project also provided the opportunity to focus on broadening participation in research and articulating the societal benefits through education and innovative outreach programs. A data set from this project is being included in the new NSF-funded Polar CAP initiative, that will be used by a diverse and young audience to increase understanding of the polar system and the ability to reason with data. Finally, this project provided a unique field opportunity and excellent hand-on training for a post-doctoral researcher, a graduate student, and two undergraduate students.", "east": 174.0, "geometry": "POINT(169 -74.9)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; FISH; Terra Nova Bay; AQUATIC SCIENCES; PELAGIC; PLANKTON; USAP-DC; ANIMALS/VERTEBRATES", "locations": "Terra Nova Bay", "north": -72.2, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO; ERDDAP; R2R", "science_programs": null, "south": -77.6, "title": "Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea", "uid": "p0010086", "west": 164.0}, {"awards": "1341464 Robinson, Rebecca; 1341432 Brzezinski, Mark", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Riesselman, Christina; Brzezinski, Mark; Robinson, Rebecca; Jones, Colin; Kelly, Roger; Robinson, Rebecca ; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Jones, Janice L.; Brzezinski, Mark; Robinson, Rebecca; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Robinson, Rebecca ; Jones, Colin; Robinson, Rebecca; Riesselman, Christina", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Brzezinski, Mark; Jones, Janice L.; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience.\r\n\r\nThis project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1341680 Sletten, Ronald", "bounds_geometry": "POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": "Chemical and physical characterization of Beacon Valley and Victoria Valley permafrost cores", "datasets": [{"dataset_uid": "601247", "doi": "10.15784/601247", "keywords": "Aluminum-26; Antarctica; Be-10; Cosmogenic; Dry Valleys; Geochemistry; Permafrost", "people": "Sletten, Ronald S.", "repository": "USAP-DC", "science_program": null, "title": "Chemical and physical characterization of Beacon Valley and Victoria Valley permafrost cores", "url": "https://www.usap-dc.org/view/dataset/601247"}], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "Intellectual Merit: This project will yield new information on the long term Antarctic climate and landscape evolution from measurements of cosmogenic nuclides in quartz sand from two unique permafrost cores collected in Beacon Valley, Antarctica. The two cores have already been drilled in ice-cemented, sand-rich permafrost at 5.5 and 30.6 meters depth, and are currently in cold storage at the University of Washington. The cores are believed to record the monotonic accumulation of sand that has been blown into lower Beacon Valley and inflated the surface over time. The rate of accumulation and any hiatus in the accumulation are believed to reflect in part the advance and retreat of the Taylor Glacier. Preliminary measurements of cosmogenically-produced beryllium (10Be) and aluminum (26Al) in quartz sand in the 5.5-meter depth core reveal that it has been accreting at a rate of 2.5 meters/Myr for the past million years. Furthermore, prior to that time, lower Beacon Valley was most likely covered (shielded from the atmosphere thereby having no or very low production of cosmogenic nuclides in quartz) by Taylor Glacier from 1 to 3.5 Myr BP. These preliminary measurements also suggest that the 30.6 meter core may provide a record of over 10 million years. The emphasis is the full characterization of the core and analysis of cosmogenic nuclides (including cosmogenic neon) in the 30.6 meter permafrost core to develop a burial history of the sands and potentially a record the waxing and waning of the Taylor Glacier. This will allow new tests of our current understanding of surface dynamics and climate history in the McMurdo Dry Valleys (MDV) based on the dated stratigraphy of eolian sand that has been accumulating and inflating the surface for millions of years. This is a new process of surface inflation whose extent has not been well documented, and holds the potential to develop a continuous history of surface burial and glacial expansion. This project will provide a new proxy for understanding the climatic history of the Dry Valleys and will test models for the evolution of permafrost in Beacon Valley.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003e\u003cbr/\u003eThe landscape history of the McMurdo Dry Valleys is important because geological deposits there comprise the richest terrestrial record available from Antarctica. By testing the current age model for these deposits, we will improve understanding of Antarctica?s role in global climate change. This project will train one graduate and one undergraduate student in geochemistry, geochronology, and glacial and periglacial geology. They will participate substantively in the research and are expected to develop their own original ideas. Results from this work will be incorporated into undergraduate and graduate teaching curricula, will be published in the peer reviewed literature, and the data will be made public.", "east": 162.0, "geometry": "POINT(161 -77.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; BOREHOLES; Antarctica", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sletten, Ronald S.; Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ancient landscape-active Surfaces: Periglacial Hyperinflation in soils of Beacon Valley, Antarctica", "uid": "p0010068", "west": 160.0}, {"awards": "1443105 Steig, Eric", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core; South Pole high resolution ice core water stable isotope record for dD, d18O; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601239", "doi": "10.15784/601239", "keywords": "Antarctica; Cavity Ring Down Spectrometers; Delta 18O; Delta Deuterium; Deuterium Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Oxygen Isotope; Snow/ice; Snow/Ice; Stable Isotopes", "people": "Morris, Valerie; Schauer, Andrew; Jones, Tyler R.; Steig, Eric J.; White, James; Vaughn, Bruce; Kahle, Emma", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole high resolution ice core water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601239"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Steig, Eric J.; Vaughn, Bruce; White, James; Waddington, Edwin D.; Schauer, Andrew; Epifanio, Jenna; Kahle, Emma; Stevens, Max; Fudge, T. J.; Koutnik, Michelle; Buizert, Christo; Jones, Tyler R.; Conway, Howard; Morris, Valerie", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601429", "doi": "10.15784/601429", "keywords": "Antarctica; Climate; Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrogen; Ice; Ice Core; Ice Core Chemistry; Oxygen; Paleoclimate; Snow/ice; Snow/Ice; South Pole; Stable Isotopes", "people": "Jones, Tyler R.; Schauer, Andrew; Vaughn, Bruce; Kahle, Emma; White, James; Morris, Valerie; Steig, Eric J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core", "url": "https://www.usap-dc.org/view/dataset/601429"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}], "date_created": "Sun, 17 Nov 2019 00:00:00 GMT", "description": "This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible.\u003cbr/\u003e\u003cbr/\u003eThis project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "SPICEcore; D18O; LABORATORY; OXYGEN ISOTOPE ANALYSIS; Oxygen Isotope; South Pole; USAP-DC; GLACIERS/ICE SHEETS; Antarctica; AMD; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Steig, Eric J.; White, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "uid": "p0010065", "west": 0.0}, {"awards": "1443566 Bay, Ryan", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "datasets": [{"dataset_uid": "601222", "doi": "10.15784/601222", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; SPICEcore", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "url": "https://www.usap-dc.org/view/dataset/601222"}], "date_created": "Thu, 31 Oct 2019 00:00:00 GMT", "description": "This award supports the deployment and analysis of data from an oriented laser dust logger in the South Pole ice core borehole to complement study of the ice core record. Before the core is even processed, data from the borehole probe will immediately determine the depth-age relationship, augment 3D mapping of South Pole stratigraphy, aid in searches for the oldest ice in Antarctica, and reveal layers of volcanic or extraterrestrial fallout. Regarding the intellectual merit, the oriented borehole log will be essential for investigating features in the ice sheet that may have implications for ice core chronology, ice flow, ice sheet physical properties and stability in response to climate change. The tools and techniques developed in this program have applications in glaciology, biogeoscience and exploration of other planetary bodies. The program aims for a deeper understanding of the consequences and causes of abrupt climate change. The broader impacts of the project are that it will include outreach and education, providing a broad training ground for students and post-docs. Data and metadata will be made available through data centers and repositories such as the National Snow and Ice Data Center web portal. \u003cbr/\u003e\u003cbr/\u003eThe laser dust logger detects reproducible paleoclimate features at sub-centimeter depth scale. Dust logger data are being used for synchronizing records and dating any site on the continent, revealing accumulation anomalies and episodes of rapid ice sheet thinning, and discovering particulate horizons of special interest. In this project we will deploy a laser dust logger equipped with a magnetic compass to find direct evidence of preferentially oriented dust. Using optical scattering measurements from IceCube calibration studies at South Pole and borehole logs at WAIS Divide, we have detected a persistent anisotropy correlated with flow and crystal fabric which suggests that the majority of insoluble particulates must be located within ice grains. With typical concentrations of parts-per-billion, little is known about the location of impurities within the polycrystalline structure of polar ice. While soluble impurities are generally thought to concentrate at inter-grain boundaries and determine electrical conductivity, the fate of insoluble particulates is much less clear, and microscopic examinations are extremely challenging. These in situ borehole measurements will help to unravel intimate relationships between impurities, flow, and crystal fabric. Data from this project will further develop a unique record of South Pole surface roughness as a proxy for paleowind and provide new insights for understanding glacial radar propagation. This project has field work in Antarctica.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; ICE CORE RECORDS; USAP-DC", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Laser Dust Logging of a South Pole Ice Core", "uid": "p0010061", "west": 90.0}, {"awards": "1141839 Steig, Eric; 1142646 Twickler, Mark; 1142517 Aydin, Murat", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Hood, Ekaterina; Fudge, T. J.; Kennedy, Joshua A.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Aydin, Murat; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna; Ferris, David G.; Kalk, Michael", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Steig, Eric J.; Vaughn, Bruce; White, James; Waddington, Edwin D.; Schauer, Andrew; Epifanio, Jenna; Kahle, Emma; Stevens, Max; Fudge, T. J.; Koutnik, Michelle; Buizert, Christo; Jones, Tyler R.; Conway, Howard; Morris, Valerie", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601221", "doi": "10.15784/601221", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Depth; Ice Core Records; Snow/ice; Snow/Ice; SPICEcore", "people": "Kahle, Emma; Souney, Joseph Jr.; Twickler, Mark; Fegyveresi, John; Casey, Kimberly A.; Aydin, Murat; Steig, Eric J.; Nunn, Richard; Hargreaves, Geoff; Fudge, T. J.; Nicewonger, Melinda R.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601221"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}], "date_created": "Wed, 30 Oct 2019 00:00:00 GMT", "description": "This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; Antarctica; ANALYTICAL LAB; USA/NSF; AMD; South Pole; ICE CORE RECORDS; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark; Souney, Joseph Jr.; Aydin, Murat; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A 1500m Ice Core from South Pole", "uid": "p0010060", "west": 90.0}, {"awards": "1341728 Stone, John", "bounds_geometry": "POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81))", "dataset_titles": "Cosmogenic nuclide data, Harter Nunatak; Cosmogenic nuclide data, John Nunatak; Cosmogenic nuclide data, Mt Axtell; Cosmogenic nuclide data, Mt Goodwin; Cosmogenic nuclide data, Mt Tidd; Cosmogenic nuclide data, Mt Turcotte; Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "datasets": [{"dataset_uid": "200075", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Axtell", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200076", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Tidd", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601214", "doi": "10.15784/601214", "keywords": "Aluminum-26; Antarctica; Be-10; Bedrock Core; Beryllium-10; Chemistry:rock; Chemistry:Rock; Cosmogenic; Cosmogenic Dating; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Data; Pirrit Hills; Rocks; Solid Earth; Subglacial Bedrock", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "url": "https://www.usap-dc.org/view/dataset/601214"}, {"dataset_uid": "200078", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Goodwin", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200079", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Harter Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200080", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, John Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200077", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Turcotte", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Tue, 08 Oct 2019 00:00:00 GMT", "description": "This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past few million years, and if so, when and how frequently this occurred. The principal aim is to identify climatic conditions or thresholds in the climate system that led to ice-sheet collapse in the past, and assess the threat of climate change to vulnerable ice sheets in the future. We recovered a subglacial bedrock core from beneath 150 m of ice cover in the Pirrit Hills, in West Antarctica, and measured cosmogenic nuclide profiles to determine the bedrock exposure history. Cosmic-ray-produced Be-10 and Al-26 in the core indicate: (i) Continuous Pleistocene ice cover averaging ~200 m; and (ii) One or more pre-Pleistocene deglaciations that exposed the core site for ~200-800 years in the Pliocene, or \u003e 800 years, in the Miocene. Optically stimulated luminescence (OSL) dating of the core top precludes exposure to sunlight since ~450 ka, consistent with the Be-10 and Al-26 data. Trapped atmospheric argon in ice recovered from 80 cm above the bedrock surface indicates an age for the enclosing ice \u003e 2 Ma (delta 40Ar/36Ar = -0.15 per-mil). Together, these results rule out any Pleistocene thinning of ice in the Pirrit Hills by more than 150 m.", "east": -85.0, "geometry": "POINT(-85.65 -81.15)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "DEPTH AT SPECIFIC AGES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -81.3, "title": "EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse", "uid": "p0010057", "west": -86.3}, {"awards": "1443397 Kreutz, Karl; 1443663 Cole-Dai, Jihong; 1443336 Osterberg, Erich", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements; SPICEcore 400-480 m Major Ions SDSU; The South Pole Ice Core (SPICEcore) chronology and supporting data", "datasets": [{"dataset_uid": "601206", "doi": "10.15784/601206", "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Osterberg, Erich; Ferris, David G.; Ortman, Nikolas; Kahle, Emma; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Nicewonger, Melinda R.; Aydin, Murat; Morris, Valerie; Iverson, Nels; Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Waddington, Edwin D.; Alley, Richard; Epifanio, Jenna; Casey, Kimberly A.; Jones, Tyler R.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "url": "https://www.usap-dc.org/view/dataset/601206"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601675", "doi": "10.15784/601675", "keywords": "Antarctica; South Pole; SPICEcore", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.", "url": "https://www.usap-dc.org/view/dataset/601675"}, {"dataset_uid": "601430", "doi": "10.15784/601430", "keywords": "Antarctica; Ions; South Pole; SPICEcore", "people": "Larrick, Carleigh; Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore 400-480 m Major Ions SDSU", "url": "https://www.usap-dc.org/view/dataset/601430"}, {"dataset_uid": "601553", "doi": "10.15784/601553", "keywords": "Antarctica; Dust; Ice Core; South Pole", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "url": "https://www.usap-dc.org/view/dataset/601553"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Hood, Ekaterina; Fudge, T. J.; Kennedy, Joshua A.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Aydin, Murat; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna; Ferris, David G.; Kalk, Michael", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. \u003cbr/\u003e\u003cbr/\u003eThe investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators\u0027 efforts to disseminate outcomes of climate change science to the broader community.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; USAP-DC; Amd/Us; USA/NSF; LABORATORY; AMD", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Osterberg, Erich", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "uid": "p0010051", "west": -180.0}, {"awards": "1341385 Lee, Richard; 1341393 Denlinger, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Alaskozetes antarcticus Raw sequence reads; Belgica antarctica Integrated Genome and Transcriptome Project; Data from: Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect", "datasets": [{"dataset_uid": "200052", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Alaskozetes antarcticus Raw sequence reads", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA428758"}, {"dataset_uid": "200054", "doi": " https://doi.org/10.5061/dryad.29p7ng2", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect", "url": "https://datadryad.org/resource/doi:10.5061/dryad.29p7ng2"}, {"dataset_uid": "200053", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Belgica antarctica Integrated Genome and Transcriptome Project", "url": "https://www.ncbi.nlm.nih.gov/bioproject/175916"}], "date_created": "Mon, 12 Aug 2019 00:00:00 GMT", "description": "Polar regions are deserts that are not only cold but also lack access to free water. Antarctic insects have unique survival mechanisms including the ability to tolerate freezing and extensive dehydration, surviving the loss of 70% of their body water. How this is done is of interest not only for understanding seasonal adaptations of insects and how they respond to climate change, but the molecular and physiological mechanisms employed may offer valuable insights into more general mechanisms that might be exploited for cryopreservation and long-term storage of human tissues and organs for transplantation and other medical applications. The investigators will study the proteins that are responsible for removing water from the body, cell level consequences of this, and how the responsible genes vary between populations. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Each year a K-12 teacher will be a member of the field team and assist with fieldwork and outreach to school children and their teachers. Educational outreach efforts include presentations at local schools and national teacher meetings, providing lesson plans and podcasts on a website, and continuing to publish articles related to this research in education journals. In addition, undergraduate and graduate students will receive extensive training in all aspects of the research project with extended experiences that include publication of scientific papers and presentations at national meetings.\u003cbr/\u003e\u003cbr/\u003eThis project focuses on deciphering the physiological and molecular mechanisms that enable the Antarctic midge Belgica antarctica to survive environmental stress and the loss of most of its body water in the desiccating polar environment. This extremophile is an ideal system for investigating mechanisms of stress tolerance and local geographic adaptations and its genome has recently been sequenced. This project has three focal areas: 1) Evaluating the role of aquaporins (water channel proteins) in the rapid removal of water from the body by studying expression of their genes during dehydration; 2) Investigating the mechanism of metabolic depression and the role of autophagy (controlled breakdown of cellular components) as a mediator of stress tolerance by studying expression of the genes responsible for autophagy during the dehydration process; and 3) Evaluating the population structure, gene flow, and adaptive variation in physiological traits associated with stress tolerance using a genetic approach that takes advantage of the genomic sequence available for this species coupled with physiological and environmental data from the sampled populations and their habitats.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; USAP-DC; ARTHROPODS; NOT APPLICABLE", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Denlinger, David; Lee, Richard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "Dryad; NCBI GenBank", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Winter Survival Mechanisms and Adaptive Genetic Variation in an Antarctic Insect", "uid": "p0010048", "west": -180.0}, {"awards": "1443424 McMahon, Kelton; 1443386 Emslie, Steven; 1826712 McMahon, Kelton; 1443585 Polito, Michael", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Patterson, William; Kristan, Allyson; Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Polito, Michael; Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "Emslie, Steven; McCarthy, Matthew; Patterson, William; Wonder, Michael; McMahon, Kelton; Michelson, Chantel; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Clucas, Gemma; Herman, Rachael; Polito, Michael; Kalvakaalva, Rohit", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Patterson, William; Emslie, Steven; McKenzie, Ashley", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Emslie, Steven; Ciriani, Yanina", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change.\u003cbr/\u003e\u003cbr/\u003eThis research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Emslie, Steven; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "Figshare", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1443550 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data; SPICEcore Holocene CO2 and N2O data", "datasets": [{"dataset_uid": "601197", "doi": "10.15784/601197", "keywords": "Antarctica; Carbon Dioxide; Ice Core Gas Records; Nitrous Oxide; South Pole; SPICEcore", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Holocene CO2 and N2O data", "url": "https://www.usap-dc.org/view/dataset/601197"}, {"dataset_uid": "200055", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data", "url": "https://www.ncdc.noaa.gov/paleo-search/study/25530"}], "date_created": "Tue, 06 Aug 2019 00:00:00 GMT", "description": "The temperature of the earth is controlled, in part, by heat trapping gases that include carbon dioxide, methane, and nitrous oxide. Despite their importance to climate, direct measurements of these gases in the atmosphere are limited to the last 50 years at best. Air trapped in ice cores extends those data back hundreds of millennia, and measurements of greenhouse gases in ice cores underpin much of our understanding of global chemical cycles relevant to modern climate change. Existing records vary in quality and detail. The proposed work fills gaps in our knowledge of nitrous oxide and carbon dioxide over the last 10,000 years. New measurements from an ice core from the South Pole will be used to determine what role changes in ocean and land based processes played in controlling these gases, which decreased during the first 2,000 years of this time period, then gradually increased toward the present. The work will address a major controversy over whether early human activities could have impacted the atmosphere, and provide data to improve mathematical models of the land-ocean-atmosphere system that predict how future climate change will impact the composition of the atmosphere and climate. \u003cbr/\u003e\u003cbr/\u003eFor nitrous oxide the work will improve on existing concentration records It will also develop measurement of the isotopomers of nitrous oxide and explore their utility for understanding aspects of the Holocene nitrous oxide budget. The primary goal is to determine if marine and/or terrestrial emissions of nitrous oxide change in response to changes in Holocene climate. A new Holocene isotopic record for carbon dioxide (stable carbon and oxygen isotopes), will improve the precision of existing records by a factor 5 and increase the temporal resolution. These data will be used to evaluate controversial hypotheses about why carbon dioxide concentrations changed in the Holocene and provide insight into millennial scale processes in the carbon cycle, which are not resolved by current isotopic data. A graduate student and post doc will receive advanced training during and the student and principle investigator will conduct outreach efforts targeted at local middle school students. The proposed work will also contribute to teaching efforts by the PI and to public lectures on climate and climate change. The results will be disseminated through publications, data archive, and the OSU Ice Core Lab web site. New analytical methods of wide utility will also be developed and documented.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; CARBON DIOXIDE; NOT APPLICABLE; USAP-DC; TRACE GASES/TRACE SPECIES; NITROUS OXIDE", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Controls on Variations in Atmospheric Carbon Dioxide and Nitrous Oxide During the Last 10,000 years", "uid": "p0010043", "west": -180.0}, {"awards": "1543230 Ainley, David; 1542791 Salas, Leonardo; 1543311 LaRue, Michelle; 1543003 Stammerjohn, Sharon", "bounds_geometry": "POLYGON((-180 -64,-144 -64,-108 -64,-72 -64,-36 -64,0 -64,36 -64,72 -64,108 -64,144 -64,180 -64,180 -65.4,180 -66.8,180 -68.2,180 -69.6,180 -71,180 -72.4,180 -73.8,180 -75.2,180 -76.6,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.6,-180 -75.2,-180 -73.8,-180 -72.4,-180 -71,-180 -69.6,-180 -68.2,-180 -66.8,-180 -65.4,-180 -64))", "dataset_titles": "ContinentalWESEestimates; Counting seals from space tutorial; Fast Ice Tool; Weddell seals habitat suitability model for the Ross Sea", "datasets": [{"dataset_uid": "200234", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ContinentalWESEestimates", "url": "https://github.com/leosalas/ContinentalWESEestimates"}, {"dataset_uid": "200047", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Counting seals from space tutorial", "url": "https://www.int-res.com/articles/suppl/m612p193_supp.pdf"}, {"dataset_uid": "200045", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Fast Ice Tool", "url": "https://github.com/leosalas/FastIceCovars"}, {"dataset_uid": "200046", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Weddell seals habitat suitability model for the Ross Sea", "url": "https://github.com/leosalas/WeddellSeal_SOS"}], "date_created": "Fri, 02 Aug 2019 00:00:00 GMT", "description": "The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage \"arm-chair\" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project\u0027s interactive website. \u003cbr/\u003e\u003cbr/\u003eSpecifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation\u0027s Antarctic Science Program.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "COASTAL; Southern Ocean; COMMUNITY DYNAMICS; MAMMALS; SEA ICE; NOT APPLICABLE; Antarctica; PENGUINS; USAP-DC", "locations": "Antarctica; Southern Ocean", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Stamatiou, Kostas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub; Publication", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Determining Factors Affecting Distribution and Population Variability of the Ice-obligate Weddell Seal", "uid": "p0010041", "west": -180.0}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": null, "dataset_titles": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ; Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ; Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "datasets": [{"dataset_uid": "601173", "doi": "10.15784/601173 ", "keywords": "Antarctica; Carbon Isotopes; Driftwood; Eocene; Geochemistry; Geochronology; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Organic Carbon Isotopes; Seasonality; Seymour Island; Wood", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ", "url": "https://www.usap-dc.org/view/dataset/601173"}, {"dataset_uid": "601174", "doi": "10.15784/601174", "keywords": "Antarctica; Biota; Bivalves; Cucullaea; Eocene; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Oxygen Isotope; Paleotemperature; Retrotapes; Seasonality; Seymour Island", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601174"}, {"dataset_uid": "601175", "doi": "10.15784/601175 ", "keywords": "Antarctica; Atmosphere; Climate Model; Computer Model; Eocene; Genesis; Global Circulation Model; Modeling; Model Output; Seasonality; Temperature", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ", "url": "https://www.usap-dc.org/view/dataset/601175"}], "date_created": "Tue, 23 Apr 2019 00:00:00 GMT", "description": "In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth\u0027s past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth\u0027s ancient climate and what we can learn from it.\u003cbr/\u003e\u003cbr/\u003eAntarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic.", "east": -56.0, "geometry": "POINT(-56.5 -64.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "PALEOCLIMATE RECONSTRUCTIONS; USAP-DC; ISOTOPES; NOT APPLICABLE; MACROFOSSILS; Antarctica", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ivany, Linda; Lu, Zunli; Junium, Christopher; Samson, Scott", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.5, "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "uid": "p0010025", "west": -57.0}, {"awards": "1247510 Detrich, H. William", "bounds_geometry": null, "dataset_titles": "E-MTAB-6759: RNA-seq across tissues in four Notothenioid species (Antarctic icefish); Expedition Data; Expedition data of LMG1003; Expedition data of LMG1004; PRJNA420419: Chaenocephalus aceratus Genome sequencing; PRJNA66471: Notothenia coriiceps Genome Sequencing Notothenia coriiceps isolate:Sejong01 (black rockcod); S-BSST 132: Assembled Transcriptomes for Berthelot et al. (2018); SRA091269: Notothenia coriiceps RNA Raw Sequence Reads; SRP047484: RAD-tag Sequences of Genetically Mapped Notothenia coriiceps Embryos ; SRP118539: RAD-tag Sequences of Genetically Mapped Chaenocephalus aceratus Embryos", "datasets": [{"dataset_uid": "200146", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "SRP047484: RAD-tag Sequences of Genetically Mapped Notothenia coriiceps Embryos ", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRP047484"}, {"dataset_uid": "200142", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "PRJNA66471: Notothenia coriiceps Genome Sequencing Notothenia coriiceps isolate:Sejong01 (black rockcod)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/66471"}, {"dataset_uid": "200144", "doi": "", "keywords": null, "people": null, "repository": "Array Express", "science_program": null, "title": "E-MTAB-6759: RNA-seq across tissues in four Notothenioid species (Antarctic icefish)", "url": "https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6759/"}, {"dataset_uid": "200145", "doi": "", "keywords": null, "people": null, "repository": "BioStudies", "science_program": null, "title": "S-BSST 132: Assembled Transcriptomes for Berthelot et al. (2018)", "url": "https://www.ebi.ac.uk/biostudies/studies/S-BSST132"}, {"dataset_uid": "200093", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "SRP118539: RAD-tag Sequences of Genetically Mapped Chaenocephalus aceratus Embryos", "url": "https://www.ncbi.nlm.nih.gov/sra/SRP118539 "}, {"dataset_uid": "200143", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "PRJNA420419: Chaenocephalus aceratus Genome sequencing", "url": "https://www.ncbi.nlm.nih.gov/bioproject/420419"}, {"dataset_uid": "002684", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1003", "url": "https://www.rvdata.us/search/cruise/LMG1003"}, {"dataset_uid": "002685", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1004", "url": "https://www.rvdata.us/search/cruise/LMG1004"}, {"dataset_uid": "200026", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "SRA091269: Notothenia coriiceps RNA Raw Sequence Reads", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRA091269"}, {"dataset_uid": "001508", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0807"}, {"dataset_uid": "001509", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0806"}], "date_created": "Mon, 08 Apr 2019 00:00:00 GMT", "description": "Since the advent of Antarctic continental glaciation, the opening of the Drake Passage between South America and the Antarctic Peninsula, and the onset of cooling of the Southern Ocean ~40-25 million years ago, evolution of the Antarctic marine biota has been driven by the development of extreme cold temperatures. As circum-Antarctic coastal temperatures declined during this period from ~20\u00b0C to the modern -1.9 to +2.0\u00b0C (reached ~8-10 million years ago), the psychrophilic (cold-loving) ectotherms of the Southern Ocean evolved compensatory molecular, cellular, and physiological traits that enabled them to maintain normal metabolic function at cold temperatures. Today, these organisms are threatened by rapid warming of the Southern Ocean over periods measured in centuries (as much as 5\u00b0C/100 yr), a timeframe so short that re-adaptation and/or acclimatization to the \"new warm\" may not be possible. Thus, the long-term goals of this research project are: 1) to understand the biochemical and physiological capacities of the embryos of Antarctic notothenioid fish to resist or compensate for rapid oceanic warming; and 2) to assess the genetic toolkit available to support the acclimatization and adaptation of Antarctic notothenioid embryos to their warming habitat. The specific aims of this work are: 1) to determine the capacity of the chaperonin complex of notothenioid fishes to assist protein folding at temperatures between -4 and +20\u00b0C; and 2) to evaluate the genetic responses of notothenioid embryos, measured as global differential gene transcription, to temperature challenge, with -1.9\u00b0C as the \"normal\" control and +4 and +10\u00b0C as high temperature insults.\r\nThe physiology of embryonic development of marine stenotherms under future climate change scenarios is an important but understudied problem. This project will provide valuable insights into the capacity of Antarctic fish embryos to acclimatize and adapt to plausible climate change scenarios by examining multiple levels of biological organization, from the biochemical to the organismal. The results should also be broadly applicable to understanding the impact of global warming on marine biota worldwide. The research will also introduce graduate and undergraduate students to state-of-the-art biochemical, cellular, and molecular-biological research relevant to ecological and environmental issues of the Antarctic marine ecosystem.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e TRAWLS/NETS \u003e BOTTOM TRAWL", "is_usap_dc": false, "keywords": "AQUATIC SCIENCES; R/V LMG; USAP-DC; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCBI SRA", "repositories": "Array Express; BioStudies; NCBI BioProject; NCBI SRA; R2R", "science_programs": null, "south": null, "title": "Protein Folding and Embryogenesis in Antarctic Fishes: A Comparative Approach to Environmental Stress", "uid": "p0010024", "west": null}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": "POINT(-63.0796667 -61.5157)", "dataset_titles": "Expedition Data; Log Sheets of coral samples for LMG1509", "datasets": [{"dataset_uid": "601160", "doi": "10.15784/601160", "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "people": "Waller, Rhian", "repository": "USAP-DC", "science_program": null, "title": "Log Sheets of coral samples for LMG1509", "url": "https://www.usap-dc.org/view/dataset/601160"}, {"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. \u003cbr/\u003e\u003cbr/\u003eCold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.", "east": -63.0796667, "geometry": "POINT(-63.0796667 -61.5157)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e TRAWLS/NETS \u003e OTTER TRAWL", "is_usap_dc": true, "keywords": "AQUATIC SCIENCES; ANIMALS/INVERTEBRATES; R/V LMG; Southern Ocean; USAP-DC; WATER TEMPERATURE", "locations": "Southern Ocean", "north": -61.5157, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Waller, Rhian; Jay, Lunden", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -61.5157, "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "uid": "p0010017", "west": -63.0796667}, {"awards": "1750630 Smith, Craig", "bounds_geometry": "POLYGON((-64 -66,-63.3 -66,-62.6 -66,-61.9 -66,-61.2 -66,-60.5 -66,-59.8 -66,-59.1 -66,-58.4 -66,-57.7 -66,-57 -66,-57 -66.3,-57 -66.6,-57 -66.9,-57 -67.2,-57 -67.5,-57 -67.8,-57 -68.1,-57 -68.4,-57 -68.7,-57 -69,-57.7 -69,-58.4 -69,-59.1 -69,-59.8 -69,-60.5 -69,-61.2 -69,-61.9 -69,-62.6 -69,-63.3 -69,-64 -69,-64 -68.7,-64 -68.4,-64 -68.1,-64 -67.8,-64 -67.5,-64 -67.2,-64 -66.9,-64 -66.6,-64 -66.3,-64 -66))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Feb 2019 00:00:00 GMT", "description": "Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project was to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop was designed to bring scientists with expertise in Antarctic biological, ecological, and ecosystem sciences to Florida State University to share knowledge, identify important research knowledge gaps, and outline strategic plans for research. \r\n\r\nMajor outcomes from the project were as follows. The international workshop to share and review knowledge concerning the response of Antarctic ecosystems to ice-shelf collapse was held at the Florida State University Coastal and Marine Laboratory (FSUCML) on 18-19 November 2017. Thirty-eight U.S. and international scientists attended the workshop, providing expertise in biological, ecological, geological, biogeographical, and glaciological sciences. Twenty-six additional scientists were either not able to attend or were declined because of having reached maximum capacity of the venue or for not responding to our invitation before the registration deadline.\r\n\r\nThe latest results of ice-shelf research were presented, providing an overview of the current scientific knowledge and understanding of the biological, ecological,\r\ngeological and cryospheric processes associated with ice-shelf collapse and its\r\necosystem-level consequences. In addition, several presentations focused on future plans to investigate the impacts of the recent Larsen C collapse. The following presentations were given at the meeting:\r\n\r\n1) Cryospheric dynamics and ice-shelf collapse \u2013 past and future (M. Truffer,\r\nUniversity of Alaska, Fairbanks)\r\n2) The geological history and geological impacts of ice-shelf collapse on the Antarctic Peninsula (Scottt Ishman, Amy Leventer)\r\n3) Pelagic ecosystem responses to ice-shelf collapse (Mattias Cape, Amy Leventer)\r\n4) Benthic ecosystem response to ice-shelf collapse (Craig Smith, Pavica Sr\u0161en, Ann Vanreusel)\r\n5) Larsen C and biotic homogenization of the benthos (Richard Aronson, James\r\nMcClintock, Kathryn Smith, Brittany Steffel)\r\n6) British Antarctic Survey: plans for Larsen C investigations early 2018 and in the\r\nfuture (Huw Griffiths)\r\n7) Feedback on the workshop \u201cClimate change impacts on marine ecosystems:\r\nimplications for management of living resources and conservation\u201d held 19-22\r\nSeptember 2017, Cambridge, UK (Alex Rogers)\r\n8) Past research activities and plans for Larsen field work by the Alfred Wegener\r\nInstitute, Germany (Charlotte Havermans, Dieter Piepenburg.\r\n\r\nOne of the salient points emerging from the presentations and ensuing discussions was that, given our poor abilities to predict ecological outcomes of ice-shelf collapses, major cross-disciplinary efforts are needed on a variety of spatial and temporal scales to achieve a broader, predictive understanding of ecosystem\r\nconsequences of climatic warming and ice-shelf failure. As part of the workshop, the FSUCML Polar Academy Team\u2014Dr. Emily Dolan, Dr. Heidi Geisz, Barbara Shoplock, and Dr. Jeroen Ingels\u2014initiated AntICE: \"Antarctic Influences of Climate Change on Ecosystems\" (AntICE). They reached out to various groups of school children in the local area (and continue to do so). The AntICE Team have been interacting with these children at Wakulla High School and Wakulla Elementary in Crawfordville; children from the Cornerstone Learning Community, Maclay Middle School, Gilchrist Elementary, and the School of Arts and Sciences in Tallahassee; and the Tallahassee-area homeschooling community to educate them about Antarctic ecosystems and ongoing climate change. The underlying idea was to\r\nmake the children aware of climatic changes in the Antarctic and their effect on\r\necosystems so they, in turn, can spread this knowledge to their communities, family\r\nand friends \u2013 acting as \u2018Polar Ambassadors\u2019. We collaborated with the Polar-ICE\r\nproject, an NSF-funded educational project that established the Polar Literacy\r\nInitiative. This program developed the Polar Literacy Principles, which outline\r\nessential concepts to improve public understanding of Antarctic and Arctic\r\necosystems. In the Polar Academy work, we used the Polar Literacy principles, the\r\nPolar Academy Team\u2019s own Antarctic scientific efforts, and the experience of the FSU outreach and education program to engage with the children. We focused on the importance of Antarctic organisms and ecosystems, the uniqueness of its biota and the significance of its food webs, as well as how all these are changing and will\r\nchange further with climate change. Using general presentations, case studies,\r\nscientific methodology, individual experiences, interactive discussions and Q\u0026A\r\nsessions, the children were guided through the many issues Antarctic ecosystems\r\nare facing. Over 300 \u0027Polar ambassadors\u0027 attended the interactive lectures and\r\nafterwards took their creativity to high latitudes by creating welcome letters, displays, dioramas, sculptures, videos and online media to present at the scientific workshop. Over 50 projects were created by the children (Please see supporting files for images). We were also joined by a photographer, Ryan David Reines, to document the event. More information, media and links to online outreach products are available at https://marinelab.fsu.edu/labs/ingels/outreach/polar-academy/", "east": -57.0, "geometry": "POINT(-60.5 -67.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; USAP-DC; ECOLOGICAL DYNAMICS; NOT APPLICABLE; MARINE ECOSYSTEMS; Weddell Sea", "locations": "Weddell Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -69.0, "title": "Collaborative Research: RAPID/Workshop- Antarctic Ecosystem Research following Ice Shelf Collapse and Iceberg Calving Events", "uid": "p0010012", "west": -64.0}, {"awards": "1443472 Brook, Edward J.; 1443464 Sowers, Todd; 1443710 Severinghaus, Jeffrey", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole CH4 data for termination; South Pole Ice Core Isotopes of N2 and Ar; South Pole ice core (SPC14) discrete methane data; South Pole ice core total air content; South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2; SP19 Gas Chronology", "datasets": [{"dataset_uid": "601231", "doi": "10.15784/601231", "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core total air content", "url": "https://www.usap-dc.org/view/dataset/601231"}, {"dataset_uid": "601230", "doi": "10.15784/601230", "keywords": "Antarctica; Atmospheric CH4; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Data; Methane; Methane Concentration; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole CH4 data for termination", "url": "https://www.usap-dc.org/view/dataset/601230"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Hood, Ekaterina; Fudge, T. J.; Kennedy, Joshua A.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Aydin, Murat; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna; Ferris, David G.; Kalk, Michael", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601152", "doi": "10.15784/601152", "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "url": "https://www.usap-dc.org/view/dataset/601152"}, {"dataset_uid": "601517", "doi": "10.15784/601517", "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "people": "Morgan, Jacob; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Isotopes of N2 and Ar", "url": "https://www.usap-dc.org/view/dataset/601517"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today\u0027s concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. \u003cbr/\u003e \u003cbr/\u003eThis award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole.\u003cbr/\u003e\u003cbr/\u003eThe project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. \u003cbr/\u003e\u003cbr/\u003eThe increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; LABORATORY; Antarctica; NITROGEN ISOTOPES; USA/NSF; METHANE; Amd/Us; FIELD INVESTIGATION", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "uid": "p0010005", "west": 0.0}, {"awards": "1246407 Jenouvrier, Stephanie", "bounds_geometry": "POINT(70.2433 -49.6875)", "dataset_titles": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.; Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. and Weimerskirch, H., 2018. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non\u2010breeding season to reproductive performance in a long\u2010lived seabird. Functional ecology, 32(8), pp.2040-2053.; Jenouvrier, S., Desprez, M., Fay, R., Barbraud, C., Weimerskirch, H., Delord, K. and Caswell, H., 2018. Climate change and functional traits affect population dynamics of a long\u2010lived seabird. Journal of Animal Ecology, 87(4), pp.906-920.; Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "datasets": [{"dataset_uid": "601140", "doi": "10.15784/601140", "keywords": "Albatross; Animal Behavior Observation; Antarctica; Biota; Birds; Black-Browed Albatross (thalassarche Melanophris); Field Investigations; Foraging; Kerguelen Island; Ocean Island/plateau; Ocean Island/Plateau; Southern Ocean", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "url": "https://www.usap-dc.org/view/dataset/601140"}, {"dataset_uid": "601585", "doi": "10.15784/601585", "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "url": "https://www.usap-dc.org/view/dataset/601585"}, {"dataset_uid": "200008", "doi": "10.1111/1365-2435.13117", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. and Weimerskirch, H., 2018. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non\u2010breeding season to reproductive performance in a long\u2010lived seabird. Functional ecology, 32(8), pp.2040-2053.", "url": "https://datadryad.org/resource/doi:10.5061/dryad.pb209db"}, {"dataset_uid": "200007", "doi": "10.1111/1365-2656.12827.", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Jenouvrier, S., Desprez, M., Fay, R., Barbraud, C., Weimerskirch, H., Delord, K. and Caswell, H., 2018. Climate change and functional traits affect population dynamics of a long\u2010lived seabird. Journal of Animal Ecology, 87(4), pp.906-920.", "url": "https://doi.org/10.5061/dryad.h5vk5"}], "date_created": "Thu, 31 Jan 2019 00:00:00 GMT", "description": "Understanding the ecological consequences - present and future-of climate change is a central question in conservation biology. The goal of this project is to identify the effects of climate change on the Black-Browed Albatross, a seabird breeding in the Southern Ocean. The Black-Browed Albatross exhibits remarkable flight adaptations, using winds as an energy source to glide for long distances. This is the basis of their foraging strategy, by which they obtain food for themselves and their offspring. Climate change, however, is expected to modify wind patterns over the Southern Ocean. This project will analyze the effect of winds on life history traits (foraging behaviors, body conditions and demographic traits), and the effects of these traits on populations. New demographic models will provide the link between foraging behavior and the physical environment, and evaluate the persistence of this population in the face of climate change.\u003cbr/\u003e\u003cbr/\u003eUnderstanding and predicting population responses to climate change is important because the world?s climate will continue to change throughout the 21st century and beyond. To help guide conservation strategies and policy decisions in the face of climate change, reliable assessments of population extinction risks are urgently needed. The Black-Browed Albatross is considered endangered by the International Union for Conservation of Nature due to recent drastic reductions in its population size. This project will improve our understanding of the mechanisms by which climate affects the life history and populations of Black-Browed Albatross to improve prediction of extinction risks under future climate change.", "east": 70.2433, "geometry": "POINT(70.2433 -49.6875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Southern Ocean; NOT APPLICABLE; USAP-DC; BIRDS", "locations": "Southern Ocean", "north": -49.6875, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jenouvrier, Stephanie", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -49.6875, "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change", "uid": "p0010002", "west": 70.2433}, {"awards": "1341476 Moran, Amy", "bounds_geometry": "POINT(166.666 -77.84999)", "dataset_titles": "Cuticle morphology and oxygen gradients of Antarctic sea spiders; Physiological and biochemical measurements on Pycnogonida from McMurdo Sound; Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts; Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "datasets": [{"dataset_uid": "601142", "doi": "10.15784/601142", "keywords": "Antarctica; Biomechanics; Biota; Cold Adaptation; McMurdo Sound; Metabolism; Oceans; Oxygen; Pycnogonida; Southern Ocean", "people": "Woods, H. Arthur; Moran, Amy; Tobalske, Bret", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on Pycnogonida from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601142"}, {"dataset_uid": "601150", "doi": "10.15784/601150", "keywords": "Antarctica; Biota; Body Size; Cuticle; Metabolic Rate; Oxygen; Polar Gigantism; Respiration; Size Limits; Southern Ocean; Temperature", "people": "Woods, H. Arthur; Lane, Steven J.; Shishido, Caitlin; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601150"}, {"dataset_uid": "601145", "doi": "10.15784/601145", "keywords": "Antarctica; Benthos; Biota; Body Size; Cuticle; McMurdo Sound; Microelectrodes; Microscope; Microscopy; Oxygen; Pore; Respiration; Sea Spider; Southern Ocean", "people": "Woods, H. Arthur; Arthur Woods, H.", "repository": "USAP-DC", "science_program": null, "title": "Cuticle morphology and oxygen gradients of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601145"}, {"dataset_uid": "601149", "doi": "10.15784/601149", "keywords": "Antarctica; Barnacles; Biota; Cuticle; Epibionts; Fouling; Grooming; Locomotion; Oxygen; Respiration", "people": "Tobalske, Bret; Lane, Steven J.; Moran, Amy; Woods, H. Arthur; Shishido, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts", "url": "https://www.usap-dc.org/view/dataset/601149"}], "date_created": "Mon, 10 Dec 2018 00:00:00 GMT", "description": "Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as \u0027polar gigantism.\u0027 Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.\u003cbr/\u003e\u003cbr/\u003eThe prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.", "east": 166.666, "geometry": "POINT(166.666 -77.84999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": -77.84999, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy; Woods, H. Arthur", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.84999, "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "uid": "p0000007", "west": 166.666}, {"awards": "1341547 Stroeve, Julienne; 1341558 Ji, Rubao; 1341440 Jin, Meibing", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data; Ice-ocean-ecosystem model output; Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "datasets": [{"dataset_uid": "601115", "doi": "10.15784/601115", "keywords": "Antarctica; Pack Ice; Polynya; Sea Ice; Southern Ocean", "people": "Stroeve, Julienne", "repository": "USAP-DC", "science_program": null, "title": "Antarctic MIZ, Pack Ice and Polynya Maps from Passive Microwave Satellite Data", "url": "https://www.usap-dc.org/view/dataset/601115"}, {"dataset_uid": "601136", "doi": "10.15784/601136", "keywords": "Antarctica; Biota; Model Data; Oceans; Southern Ocean", "people": "Jin, Meibing", "repository": "USAP-DC", "science_program": null, "title": "Ice-ocean-ecosystem model output", "url": "https://www.usap-dc.org/view/dataset/601136"}, {"dataset_uid": "601219", "doi": "10.15784/601219", "keywords": "Antarctica; Biota; Chlorophyll; Chlorophyll Concentration; Oceans; Polynya; Sea Ice Concentration; Seasonal Ice Zone; Southern Ocean", "people": "Ji, Rubao", "repository": "USAP-DC", "science_program": null, "title": "Sea ice chlorophyll concentrations in Antarctic coastal polynyas and seasonal ice zones", "url": "https://www.usap-dc.org/view/dataset/601219"}], "date_created": "Tue, 20 Nov 2018 00:00:00 GMT", "description": "The aim of study is to understand how climate-related changes in snow and ice affect predator populations in the Antarctic, using the Ad\u00e9lie penguin as a focal species due to its long history as a Southern Ocean \u0027sentinel\u0027 species and the number of long-term research programs monitoring its abundance, distribution, and breeding biology. Understanding the environmental factors that control predator population dynamics is critically important for projecting the state of populations under future climate change scenarios, and for designing better conservation strategies for the Antarctic ecosystem. For the first time, datasets from a network of observational sites for the Ad\u00e9lie penguin across the entire Antarctic will be combined and analyzed, with a focus on linkages among the ice environment, primary production, and the population responses of Ad\u00e9lie penguins. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The results of this project can be used to illustrate intuitively to the general public the complex interactions between ice, ocean, pelagic food web and top predators. This project also offers an excellent platform to demonstrate the process of climate-change science - how scientists simulate climate change scenarios and interpret model results. This project supports the training of undergraduate and graduate students in the fields of polar oceanography, plankton and seabird ecology, coupled physical-biological modeling and mathematical ecology. The results will be broadly disseminated to the general oceanographic research community through scientific workshops, conferences and peer-reviewed journal articles, and to undergraduate and graduate education communities, K-12 schools and organizations, and the interested public through web-based servers using existing infrastructure at the investigators\u0027 institutions. The key question to be addressed in this project is how climate impacts the timing of periodic biological events (phenology) and how interannual variation in this periodic forcing influences the abundance of penguins in the Antarctic. The focus will be on the timing of ice algae and phytoplankton blooms because the high seasonality of sea ice and associated pulsed primary productivity are major drivers of the Antarctic food web. This study will also examine the responses of Ad\u00e9lie penguins to changes in sea ice dynamics and ice algae-phytoplankton phenology. Ad\u00e9lie penguins, like many other Antarctic seabirds, are long-lived, upper trophic-level predators that integrate the effects of sea ice on the food web at regional scales, and thus serve as a reliable biological indicator of environmental changes. The proposed approach is designed to accommodate the limits of measuring and modeling the intermediate trophic levels between phytoplankton and penguins (e.g., zooplankton and fish) at the pan-Antarctic scale, which are important but latent variables in the Southern Ocean food web. Through the use of remotely sensed and in situ data, along with state of the art statistical approaches (e.g. wavelet analysis) and numerical modeling, this highly interdisciplinary study will advance our understanding of polar ecosystems and improve the projection of future climate change scenarios.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; MARINE ECOSYSTEMS; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jin, Meibing; Stroeve, Julienne; Ji, Rubao", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin", "uid": "p0000001", "west": -180.0}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Allan Hills ice water stable isotope record for dD, d18O; Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Higgins, John; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Severinghaus, Jeffrey P.; Ng, Jessica; Higgins, John; Yan, Yuzhen; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Bender, Michael; Higgins, John; Yan, Yuzhen; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Higgins, John; Bender, Michael; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Yan, Yuzhen; Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Yan, Yuzhen; Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Yan, Yuzhen; Brook, Edward J.; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Yan, Yuzhen; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Kurbatov, Andrei V.; Higgins, John; Severinghaus, Jeffrey P.; Brook, Edward; Introne, Douglas; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores.\u003cbr/\u003e\u003cbr/\u003eBetween about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "1246293 Saba, Grace", "bounds_geometry": null, "dataset_titles": "2014 Antarctic krill growth experiment - submitted", "datasets": [{"dataset_uid": "002572", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "2014 Antarctic krill growth experiment - submitted", "url": "https://www.bco-dmo.org/project/721363"}], "date_created": "Fri, 14 Sep 2018 00:00:00 GMT", "description": "Climate change projections for this century suggest that the Southern Ocean will be the first region to be affected by seawater chemistry changes associated with enhanced carbon dioxide (CO2). Additionally, regions of the Southern Ocean are warming faster than any other locations on the planet. Ocean acidification and warming may act synergistically to impair the performance of different organisms by simultaneously increasing metabolic needs and reducing oxygen transport. However, no studies have measured krill acid-base regulation, metabolism, growth, or reproduction in the context of ocean acidification or synergistic \u0027greenhouse\u0027 conditions of elevated CO2 and temperature. In the present project, the investigators will conduct both short and prolonged exposure experiments at Palmer Station, Antarctica to determine the responses of Euphausia superba to elevated CO2 and temperature. The investigators will test hypotheses related to acid-base compensation and acclimation of various life stages of krill to elevated CO2 and temperature. Furthermore, they will determine these impacts on feeding, respiration, metabolism, growth, and reproduction.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic krill, Euphausia superba, is a key component of Antarctic food webs as they are a primary food source for many of the top predators in the Southern Ocean including baleen whales, seals, penguins, and other sea birds. This project will determine the responses of Antarctic krill exposed to elevated CO2 and temperature and whether or not krill have the capacity to fully compensate under future ocean conditions. The proposed field effort will be complemented by an extensive broader impact effort focused on bringing marine science to both rural and urban high school students in the Midwest (Kansas). The core educational objectives of this proposal are to 1) instruct students about potential careers in marine science, 2) engage students and promote their interest in the scientific process, critical thinking, and applications of science, mathematics, and technology, and 3) and increase student and teacher awareness and understanding of the oceans and global climate change, with special focus on the Western Antarctic Peninsula region. Finally, this project will engage undergraduate and graduate students in the production, analysis, presentation and publication of datasets.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Collaborative Research: Synergistic effects of Elevated Carbon Dioxide (CO2) and Temperature on the Metabolism, Growth, and Reproduction of Antarctic Krill (Euphausia Superba)", "uid": "p0000700", "west": null}, {"awards": "0839107 Powell, Ross; 0839142 Tulaczyk, Slawek; 0839059 Powell, Ross; 0838764 Anandakrishnan, Sridhar; 0838947 Tulaczyk, Slawek; 0838855 Jacobel, Robert; 0838763 Anandakrishnan, Sridhar", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Warny, Sophie; Scherer, Reed Paul; Baudoin, Patrick; Casta\u00f1eda, Isla; Askin, Rosemary; Coenen, Jason", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Warny, Sophie; Casta\u00f1eda, Isla; Baudoin, Patrick; Coenen, Jason; Scherer, Reed Paul; Askin, Rosemary", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "IRIS", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": "POLYGON((166.1631 -77.9007,166.19736 -77.9007,166.23162 -77.9007,166.26588 -77.9007,166.30014 -77.9007,166.3344 -77.9007,166.36866 -77.9007,166.40292 -77.9007,166.43718 -77.9007,166.47144 -77.9007,166.5057 -77.9007,166.5057 -77.90423,166.5057 -77.90776,166.5057 -77.91129,166.5057 -77.91482,166.5057 -77.91835,166.5057 -77.92188,166.5057 -77.92541,166.5057 -77.92894,166.5057 -77.93247,166.5057 -77.936,166.47144 -77.936,166.43718 -77.936,166.40292 -77.936,166.36866 -77.936,166.3344 -77.936,166.30014 -77.936,166.26588 -77.936,166.23162 -77.936,166.19736 -77.936,166.1631 -77.936,166.1631 -77.93247,166.1631 -77.92894,166.1631 -77.92541,166.1631 -77.92188,166.1631 -77.91835,166.1631 -77.91482,166.1631 -77.91129,166.1631 -77.90776,166.1631 -77.90423,166.1631 -77.9007))", "dataset_titles": "McMurdo Ice Shelf AWS data; McMurdo Ice Shelf GPS survey of vertical motion; Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica; Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "datasets": [{"dataset_uid": "601106", "doi": "10.15784/601106", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf AWS data", "url": "https://www.usap-dc.org/view/dataset/601106"}, {"dataset_uid": "601113", "doi": "10.15784/601113", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Photo/video; Photo/Video; Supraglacial Meltwater", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "url": "https://www.usap-dc.org/view/dataset/601113"}, {"dataset_uid": "601107", "doi": "10.15784/601107", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ice Shelf; Ice-Shelf Flexure; Snow/ice; Snow/Ice; Surface Melt", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf GPS survey of vertical motion", "url": "https://www.usap-dc.org/view/dataset/601107"}, {"dataset_uid": "601116", "doi": "10.15784/601116", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Snow/ice; Snow/Ice; Subglacial And Supraglacial Water Depth; Supraglacial Lake; Supraglacial Meltwater; Water Depth", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601116"}], "date_created": "Tue, 24 Jul 2018 00:00:00 GMT", "description": "Meltwater lakes that sit on top of Antarctica\u0027s floating ice shelves have likely contributed to the dramatic changes seen in Antarctica\u0027s glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society.\u003cbr/\u003e\u003cbr/\u003eThe proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that \u003e2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up.\u003cbr/\u003e\u003cbr/\u003eThe field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.", "east": 166.5057, "geometry": "POINT(166.3344 -77.91835)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "USAP-DC; AWOS", "locations": null, "north": -77.9007, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e AWOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "uid": "p0000138", "west": 166.1631}, {"awards": "1341311 Timmermann, Axel", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "784 ka transient Antarctic ice-sheet model simulation data", "datasets": [{"dataset_uid": "000247", "doi": "", "keywords": null, "people": null, "repository": "IBS Center for Climate Physics ICCP", "science_program": null, "title": "784 ka transient Antarctic ice-sheet model simulation data", "url": "http://climatedata.ibs.re.kr/grav/data/psu-love/antarctic-ice-sheet"}], "date_created": "Tue, 26 Jun 2018 00:00:00 GMT", "description": "This award supports a project to study the physical processes that synchronize glacial-scale variability between the Northern Hemisphere ice sheets and the Antarctic ice-sheet. Using a coupled numerical ice-sheet earth-system model, the research team will explore the cryospheric responses to past changes in greenhouse gas concentrations and variations in earth\u0027s orbit and tilt. First capturing the sensitivity of each individual ice-sheet to these forcings and then determining their joint variability induced by changes in sea level, ocean temperatures and atmospheric circulation, the researchers will quantify the relative roles of local versus remote effects on long-term ice volume variability. The numerical experiments will provide deeper physical insights into the underlying dynamics of past Antarctic ice-volume changes and their contribution to global sea level. Output from the transient earth system model simulations will be directly compared with ice-core data from previous and ongoing drilling efforts, such as West Antarctic Ice Sheet (WAIS) Divide. Specific questions that will be addressed include: 1) Did the high-latitude Southern Hemispheric atmospheric and oceanic climate, relevant to Antarctic ice sheet forcing, respond to local insolation variations, CO2, Northern Hemispheric changes, or a combination thereof?; 2) How did WAIS and East Antarctic Ice Sheet (EAIS) vary through the Last Glacial Termination and into the Holocene (21 ka- present)?; 3) Did the WAIS (or EAIS) contribute to rapid sea-level fluctuations during this period, such as Meltwater Pulse 1A? 4) Did WAIS collapse fully at Stage 5e (~ 125 ka), and what was its timing relative to the maximum Greenland retreat?; and 5) How did the synchronized behavior of Northern Hemisphere and Southern Hemisphere ice-sheet variations affect the strength of North Atlantic Deep Water and Antarctic Bottom Water formation and the respective overturning cells? The transient earth-system model simulations conducted as part of this project will be closely compared with paleo-climate reconstructions from ice cores, sediment cores and terrestrial data. This will generate an integrated understanding of the hemispheric contributions of deglacial climate change, the origin of meltwater pulses, and potential thresholds in the coupled ice-sheet climate system in response to different types of forcings. A well-informed long-term societal response to sea level rise requires a detailed understanding of ice-sheet sensitivities to external forcing. The proposed research will strongly contribute to this task through numerical modeling and paleo-data analysis. The research team will make the resulting model simulations available on the web-based data server at the Asia Pacific Data Research Center (APDRC) to enable further analysis by the scientific community. As part of this project a female graduate student and a postdoctoral researcher will receive training in earth-system and ice-sheet modeling and paleo-climate dynamics. This award has no field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Timmermann, Axel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IBS Center for Climate Physics ICCP", "repositories": "IBS Center for Climate Physics ICCP", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Bipolar Coupling of late Quaternary Ice Sheet Variability", "uid": "p0000379", "west": -180.0}, {"awards": "2023425 Schofield, Oscar; 1440435 Ducklow, Hugh", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Boyer, Keyvi; Bierlich, KC; Friedlaender, Ari; Dale, Julian; Nowacek, Douglas", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}, {"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}, {"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Hilton, Eric; Corso, Andrew; Desvignes, Thomas; Cheng, Chi-Hing; McDowell, Jan; Biesack, Ellen; Steinberg, Deborah", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00c3\u00a8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).\u003cbr/\u003e\u003cbr/\u003eThe current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1246045 Waddington, Edwin", "bounds_geometry": "POLYGON((-180 -70,-144 -70,-108 -70,-72 -70,-36 -70,0 -70,36 -70,72 -70,108 -70,144 -70,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,180 -82,180 -84,180 -86,180 -88,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88,-180 -86,-180 -84,-180 -82,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70))", "dataset_titles": "Code for inference of fabric from sonic velocity and thin-section measurements.; Code for models involving stochastic treatment of ice fabric", "datasets": [{"dataset_uid": "000243", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for inference of fabric from sonic velocity and thin-section measurements.", "url": "https://github.com/mjhay/neem_sonic_model"}, {"dataset_uid": "000244", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for models involving stochastic treatment of ice fabric", "url": "https://github.com/mjhay/stochastic_fabric"}], "date_created": "Mon, 02 Apr 2018 00:00:00 GMT", "description": "Waddington/1246045 \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate the onset and growth of folds and other disturbances seen in the stratigraphic layers of polar ice sheets. The intellectual merit of the work is that it will lead to a better understanding of the grain-scale processes that control the development of these stratigraphic features in the ice and will help answer questions such as what processes can initiate such disturbances. Snow is deposited on polar ice sheets in layers that are generally flat, with thicknesses that vary slowly along the layers. However, ice cores and ice-penetrating radar show that in some cases, after conversion to ice, and following lengthy burial, the layers can become folded, develop pinch-and-swell structures (boudinage), and be sheared by ice flow, at scales ranging from centimeters to hundreds of meters. The processes causing these disturbances are still poorly understood. Disturbances appear to develop first at the ice-crystal scale, then cascade up to larger scales with continuing ice flow and strain. Crystal-scale processes causing distortions of cm-scale layers will be modeled using Elle, a microstructure-modeling package, and constrained by fabric thin-sections and grain-elongation measurements from the West Antarctic Ice Sheet divide ice-core. A full-stress continuum anisotropic ice-flow model coupled to an ice-fabric evolution model will be used to study bulk flow of anisotropic ice, to understand evolution and growth of flow disturbances on the meter and larger scale. Results from this study will assist in future ice-core site selection, and interpretation of stratigraphy in ice cores and radar, and will provide improved descriptions of rheology and stratigraphy for ice-sheet flow models.The broader impacts are that it will bring greater understanding to ice dynamics responsible for stratigraphic disturbance. This information is valuable to constrain depth-age relationships in ice cores for paleoclimate study. This will allow researchers to put current climate change in a more accurate context. This project will provide three years of support for a graduate student as well as support and research experience for an undergraduate research assistant; this will contribute to development of talent needed to address important future questions in glaciology and climate change. The research will be communicated to the public through outreach events and results from the study will be disseminated through public and professional meetings as well as journal publications. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Waddington, Edwin D.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -90.0, "title": "Anisotropic Ice and Stratigraphic Disturbances", "uid": "p0000073", "west": -180.0}, {"awards": "1142108 Koch, Paul", "bounds_geometry": "POLYGON((-180 -55.1,-168.1 -55.1,-156.2 -55.1,-144.3 -55.1,-132.4 -55.1,-120.5 -55.1,-108.6 -55.1,-96.7 -55.1,-84.8 -55.1,-72.9 -55.1,-61 -55.1,-61 -57.4,-61 -59.7,-61 -62,-61 -64.3,-61 -66.6,-61 -68.9,-61 -71.2,-61 -73.5,-61 -75.8,-61 -78.1,-72.9 -78.1,-84.8 -78.1,-96.7 -78.1,-108.6 -78.1,-120.5 -78.1,-132.4 -78.1,-144.3 -78.1,-156.2 -78.1,-168.1 -78.1,180 -78.1,178.47 -78.1,176.94 -78.1,175.41 -78.1,173.88 -78.1,172.35 -78.1,170.82 -78.1,169.29 -78.1,167.76 -78.1,166.23 -78.1,164.7 -78.1,164.7 -75.8,164.7 -73.5,164.7 -71.2,164.7 -68.9,164.7 -66.6,164.7 -64.3,164.7 -62,164.7 -59.7,164.7 -57.4,164.7 -55.1,166.23 -55.1,167.76 -55.1,169.29 -55.1,170.82 -55.1,172.35 -55.1,173.88 -55.1,175.41 -55.1,176.94 -55.1,178.47 -55.1,-180 -55.1))", "dataset_titles": "Southern Ocean Pinnipeds", "datasets": [{"dataset_uid": "000242", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Southern Ocean Pinnipeds", "url": "https://www.bco-dmo.org/project/726874"}], "date_created": "Wed, 28 Feb 2018 00:00:00 GMT", "description": "Building on previously funded NSF research, the use of paleobiological and paleogenetic data from mummified elephant seal carcasses found along the Dry Valleys and Victoria Land Coast in areas that today are too cold to support seal colonies (Mirougina leonina; southern elephant seals; SES) supports the former existence of these seals in this region. The occurrence and then subsequent disappearance of these SES colonies is consistent with major shifts in the Holocene climate to much colder conditions at the last ~1000 years BCE). \u003cbr/\u003e\u003cbr/\u003eFurther analysis of the preserved remains of three other abundant pinnipeds ? crabeater (Lobodon carciophagus), Weddell (Leptonychotes weddelli) and leopard (Hydrurga leptonyx) will be studied to track changes in their population size (revealed by DNA analysis) and their diet (studied via stable isotope analysis). Combined with known differences in life history, preferred ice habitat and ecosystem sensitivity among these species, this paleoclimate proxy data will be used to assess their exposure and sensitivity to climate change in the Ross Sea region during the past ~1-2,000 years", "east": -61.0, "geometry": "POINT(-128.15 -66.6)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": -55.1, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Koch, Paul; Costa, Daniel; Hoelzel, A. Rus", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -78.1, "title": "Collaborative Research: Exploring the Vulnerability of Southern Ocean Pinnipeds to Climate Change - An Integrated Approach", "uid": "p0000410", "west": 164.7}, {"awards": "0944021 Brook, Edward J.; 0943466 Hawley, Robert; 0944307 Conway, Howard", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}, {"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Lee, James; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Clemens-Sewall, David; Giese, Alexandra; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "1341362 Gast, Rebecca", "bounds_geometry": "POLYGON((-180 -65,-176 -65,-172 -65,-168 -65,-164 -65,-160 -65,-156 -65,-152 -65,-148 -65,-144 -65,-140 -65,-140 -66.5,-140 -68,-140 -69.5,-140 -71,-140 -72.5,-140 -74,-140 -75.5,-140 -77,-140 -78.5,-140 -80,-144 -80,-148 -80,-152 -80,-156 -80,-160 -80,-164 -80,-168 -80,-172 -80,-176 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78.5,160 -77,160 -75.5,160 -74,160 -72.5,160 -71,160 -69.5,160 -68,160 -66.5,160 -65,162 -65,164 -65,166 -65,168 -65,170 -65,172 -65,174 -65,176 -65,178 -65,-180 -65))", "dataset_titles": "Dinoflagellate sequende data", "datasets": [{"dataset_uid": "000240", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Dinoflagellate sequende data", "url": "http://www.ncbi.nlm.nih.gov/bioproject/428208"}], "date_created": "Mon, 12 Feb 2018 00:00:00 GMT", "description": "Kleptoplasty, the temporary acquisition and use of functional chloroplasts derived from algal prey, is viewed as an important model for the early evolution of the permanent, endosymbiotically-derived chloroplasts found in all permanently photosynthetic eukaryotes. This project will study the evolutionary history and expression of plastid-targeted genes in an abundant Antarctic dinoflagellate that steals chloroplasts from an ecologically important alga, the haptophyte Phaeocystis. Algae play an important role in the fixation and export of CO2 in the Southern Ocean, and this project will explore the genetic basis for the function of these chimeric cells with regard to their functional adaptation to extreme environments and will study the evolutionary history and expression of plastid-targeted genes in both the host and recipient. The project seeks to determine whether the kleptoplastidic dinoflagellate utilizes ancestral plastid proteins to regulate its stolen plastid, and how their transcription is related to environmental factors that are relevant to the Southern Ocean environment (temperature and light). To accomplish these goals, the project will utilize high throughput transcriptome analysis and RNA-sequencing experiments with the dinoflagellate and Phaeocystis. \u003cbr/\u003e\u003cbr/\u003eThis work will help biologists understand the environmental success of this alternative nutritional strategy, and to assess the potential impact of anthropogenic climate change on the organism. The project will also contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will support the mentoring of a graduate student and a postdoctoral fellow. The work is being accomplished as an international collaboration between US and Canadian scientists, and in addition to publishing results in peer-reviewed journals, the investigators will incorporate aspects of this work into public outreach activities. These include field data analysis opportunities for middle school students and science-based art projects with local schools and museums.", "east": -140.0, "geometry": "POINT(-170 -72.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gast, Rebecca", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -80.0, "title": "You are what you eat: The Role of Kleptoplasty in an Antarctic Dinoflagellate", "uid": "p0000302", "west": 160.0}, {"awards": "1246353 Anderson, John", "bounds_geometry": "POLYGON((-180 -74,-144.9 -74,-109.8 -74,-74.7 -74,-39.6 -74,-4.5 -74,30.6 -74,65.7 -74,100.8 -74,135.9 -74,171 -74,171 -74.3,171 -74.6,171 -74.9,171 -75.2,171 -75.5,171 -75.8,171 -76.1,171 -76.4,171 -76.7,171 -77,135.9 -77,100.8 -77,65.7 -77,30.6 -77,-4.5 -77,-39.6 -77,-74.7 -77,-109.8 -77,-144.9 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -77,180 -76.7,180 -76.4,180 -76.1,180 -75.8,180 -75.5,180 -75.2,180 -74.9,180 -74.6,180 -74.3,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,180 -74,-180 -74))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; NBP1502A Cruise Core Data; NBP1502 Cruise Geophysics and underway data; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "people": "Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Prothro, Lindsay; Simkins, Lauren; Greenwood, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}, {"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "people": "Simkins, Lauren; Stearns, Leigh; Riverman, Kiya", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}, {"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601083", "doi": "10.15784/601083", "keywords": "Antarctica; Chemistry:sediment; Chemistry:Sediment; Geochronology; Marine Geoscience; Marine Sediments; NBP1502; R/v Nathaniel B. Palmer; Sediment Core", "people": "Anderson, John; Simkins, Lauren; Prothro, Lindsay", "repository": "USAP-DC", "science_program": null, "title": "NBP1502A Cruise Core Data", "url": "https://www.usap-dc.org/view/dataset/601083"}], "date_created": "Tue, 06 Feb 2018 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI hypothesizes that bedforms found in the Central and Joides troughs can be interpreted as having been formed by rapid retreat, and possible collapse of an ice stream that occupied this area. To test this hypothesis, the PI proposes to conduct a detailed marine geological and geophysical survey of Central and Joides Troughs in the western Ross Sea. This project will bridge gaps between the small and isolated areas previously surveyed and will acquire a detailed sedimentological record of the retreating grounding line. The PI will reconstruct the retreat history of the Central and Joides troughs to century-scale resolution using radiocarbon dating methods and by looking at geomorphic features that are formed at regular time intervals. Existing multibeam, deep tow side-scan sonar, and core data will provide a framework for this research. The western Ross Sea is an ideal study area to investigate a single ice stream and the dynamics controlling its stability, including interactions between both East and West Antarctic Ice Sheets. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes a post-doc, a graduate and two undergraduate students. The post-doc is involved with teaching an in-service K-12 teacher development and training course at Rice University for high-need teachers with a focus on curriculum enhancement. The project fosters collaboration for the PI and students with researchers at Louisiana State University and international colleagues at the Institute for Paleobiology at the Polish Academy of Sciences. The results from this project could lead to a better understanding of ice sheet and ice stream stability. This project will yield implications for society\u0027s understanding of climate change, as this work improves understanding of the behavior of ice sheets and their links to global climate.", "east": 179.99, "geometry": "POINT(175.495 -75.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS", "is_usap_dc": true, "keywords": "AMD; Amd/Us; USAP-DC; USA/NSF; R/V NBP; NBP1502", "locations": null, "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.0, "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "uid": "p0000395", "west": 171.0}, {"awards": "1341669 DeMaster, David", "bounds_geometry": "POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62))", "dataset_titles": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data; Expedition Data of NBP1203; Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "601304", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601304"}, {"dataset_uid": "601082", "doi": "10.15784/601082", "keywords": null, "people": "DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data", "url": "https://www.usap-dc.org/view/dataset/601082"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "001438", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1203", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601319", "doi": "10.15784/601319", "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "people": "Thomas, Carrie; DeMaster, David; Isla, Enrique; Smith, Craig; Taylor, Richard", "repository": "USAP-DC", "science_program": null, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "url": "https://www.usap-dc.org/view/dataset/601319"}], "date_created": "Sat, 03 Feb 2018 00:00:00 GMT", "description": "The PI requests support to analyze sediments from multi-cores and mega-cores previously collected from beneath the former Larsen B and Larsen A ice shelves. These unique cores will allow the PI to develop a time-integrated understanding of the benthic response to ice shelf collapse off the East Antarctic Peninsula over time periods as short as 5 years following ice shelf collapse up to \u003e170 years after collapse. High latitudes are responding to climate change more rapidly than the rest of the planet and the disappearance of ice shelves are a key manifestation of climate warming. The PI will investigate the newly created benthic environments and associated ecosystems that have resulted from the re-initiation of fresh planktonic material to the sediment-water interface. This proposal will use a new geochemical technique, based on naturally occurring 14C that can be used to assess the distribution and inventory of recently produced organic carbon accumulating in the sediments beneath the former Larsen A and B ice shelves. The PI will couple 14C measurements with 210Pb analyses to assess turnover times for sedimentary labile organic matter. By comparing the distributions and inventories of labile organic matter as well as the bioturbation intensities among different locations as a function of time following ice shelf collapse/retreat, the nature and timing of the benthic response to ice shelf collapse can be assessed.", "east": -58.0, "geometry": "POINT(-64 -65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Pb-210; C-14; NBP1203; Radioisotop; USAP-DC; R/V NBP; Species Abundance; Labile Organic Carbon; LABORATORY", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "uid": "p0000382", "west": -70.0}, {"awards": "0732625 Leventer, Amy; 0732602 Truffer, Martin; 0732711 Smith, Craig; 0732655 Mosley-Thompson, Ellen; 0732651 Gordon, Arnold; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "0838735 Nitsche, Frank O.", "bounds_geometry": "POLYGON((-140 -68,-136 -68,-132 -68,-128 -68,-124 -68,-120 -68,-116 -68,-112 -68,-108 -68,-104 -68,-100 -68,-100 -68.75,-100 -69.5,-100 -70.25,-100 -71,-100 -71.75,-100 -72.5,-100 -73.25,-100 -74,-100 -74.75,-100 -75.5,-104 -75.5,-108 -75.5,-112 -75.5,-116 -75.5,-120 -75.5,-124 -75.5,-128 -75.5,-132 -75.5,-136 -75.5,-140 -75.5,-140 -74.75,-140 -74,-140 -73.25,-140 -72.5,-140 -71.75,-140 -71,-140 -70.25,-140 -69.5,-140 -68.75,-140 -68))", "dataset_titles": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica; OSO0910 Expedition Data", "datasets": [{"dataset_uid": "000525", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "OSO0910 Expedition Data", "url": "https://www.marine-geo.org/tools/search/entry.php?id=OSO0910"}, {"dataset_uid": "000225", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/320080"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI.", "east": -100.0, "geometry": "POINT(-120 -71.75)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "BATHYMETRY; SHIPS; Southern Ocean; Antarctica; Polar; GLACIERS/ICE SHEETS; R/V NBP", "locations": "Polar; Southern Ocean; Antarctica", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "MGDS", "repositories": "MGDS", "science_programs": null, "south": -75.5, "title": "Ice sheet Dynamics and Processes along the West Antarctic Continental Shelf", "uid": "p0010001", "west": -140.0}, {"awards": "1543245 Rynearson, Tatiana", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP1701; NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1; Specific growth rate measurements for 43 Southern Ocean diatoms", "datasets": [{"dataset_uid": "601586", "doi": "10.15784/601586", "keywords": "Antarctica; Biota; NBP1701; Phytoplankton; R/v Nathaniel B. Palmer; Specific Growth Rate; Thermal Optimum Temperature", "people": "Bishop, Ian", "repository": "USAP-DC", "science_program": null, "title": "Specific growth rate measurements for 43 Southern Ocean diatoms", "url": "https://www.usap-dc.org/view/dataset/601586"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "200328", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=2248543458"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). \u003cbr/\u003e\u003cbr/\u003eBoth physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; NBP1701; R/V NBP; AMD; USA/NSF; Amd/Us; DIATOMS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rynearson, Tatiana; Bishop, Ian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "NCBI; R2R; USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change", "uid": "p0000850", "west": null}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 -52.6153,-168.67689 -52.6153,-157.35378 -52.6153,-146.03067 -52.6153,-134.70756 -52.6153,-123.38445 -52.6153,-112.06134 -52.6153,-100.73823 -52.6153,-89.41512 -52.6153,-78.09201 -52.6153,-66.7689 -52.6153,-66.7689 -55.18958,-66.7689 -57.76386,-66.7689 -60.33814,-66.7689 -62.91242,-66.7689 -65.4867,-66.7689 -68.06098,-66.7689 -70.63526,-66.7689 -73.20954,-66.7689 -75.78382,-66.7689 -78.3581,-78.09201 -78.3581,-89.41512 -78.3581,-100.73823 -78.3581,-112.06134 -78.3581,-123.38445 -78.3581,-134.70756 -78.3581,-146.03067 -78.3581,-157.35378 -78.3581,-168.67689 -78.3581,180 -78.3581,178.62318 -78.3581,177.24636 -78.3581,175.86954 -78.3581,174.49272 -78.3581,173.1159 -78.3581,171.73908 -78.3581,170.36226 -78.3581,168.98544 -78.3581,167.60862 -78.3581,166.2318 -78.3581,166.2318 -75.78382,166.2318 -73.20954,166.2318 -70.63526,166.2318 -68.06098,166.2318 -65.4867,166.2318 -62.91242,166.2318 -60.33814,166.2318 -57.76386,166.2318 -55.18958,166.2318 -52.6153,167.60862 -52.6153,168.98544 -52.6153,170.36226 -52.6153,171.73908 -52.6153,173.1159 -52.6153,174.49272 -52.6153,175.86954 -52.6153,177.24636 -52.6153,178.62318 -52.6153,-180 -52.6153))", "dataset_titles": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC; Expedition Data; Model output NOAA GFDL CM2_6 Cant Hant storage", "datasets": [{"dataset_uid": "000208", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Biogeochemical profiling float data from the Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) program.UCSD Research Data Collections DOI:10.6075/J09021PC", "url": "http://library.ucsd.edu/dc/object/bb66239018"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "601144", "doi": "10.15784/601144", "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "people": "Chen, Haidi", "repository": "USAP-DC", "science_program": null, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "url": "https://www.usap-dc.org/view/dataset/601144"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project seeks to drive a transformative shift in our understanding of the crucial role of the Southern Ocean in taking up anthropogenic carbon and heat, and resupplying nutrients from the abyss to the surface. An observational program will generate vast amounts of new biogeochemical data that will provide a greatly improved view of the dynamics and ecosystem responses of the Southern Ocean. A modeling component will apply these observations to enhancing understanding of the current ocean, reducing uncertainty in projections of future carbon and nutrient cycles and climate.\u003cbr/\u003e\u003cbr/\u003eBecause it serves as the primary gateway through which the intermediate, deep, and bottom waters of the ocean interact with the surface layers and thus the atmosphere, the Southern Ocean has a profound influence on the oceanic uptake of anthropogenic carbon and heat as well as nutrient resupply from the abyss to the surface. Yet it is the least observed and understood region of the world ocean. The oceanographic community is on the cusp of two major advances that have the potential to transform understanding of the Southern Ocean. The first is the development of new biogeochemical sensors mounted on autonomous profiling floats that allow sampling of ocean biogeochemistry and acidification in 3-dimensional space with a temporal resolution of five to ten days. The SOCCOM float program proposed will increase the average number of biogeochemical profiles measured per month in the Southern Ocean by ~10-30x. The second is that the climate modeling community now has the computational resources and physical understanding to develop fully coupled climate models that can represent crucial mesoscale processes in the Southern Ocean, as well as corresponding models that assimilate observations to produce a state estimate. Together with the observations, this new generation of models provides the tools to vastly improve understanding of Southern Ocean processes and the ability to quantitatively assess uptake of anthropogenic carbon and heat, as well as nutrient resupply, both today and into the future.\u003cbr/\u003e\u003cbr/\u003eIn order to take advantage of the above technological and modeling breakthroughs, SOCCOM will implement the following research programs:\u003cbr/\u003e* Theme 1: Observations. Scripps Institution of Oceanography will lead a field program to expand the number of Southern Ocean autonomous profiling floats and equip them with sensors to measure pH, nitrate, and oxygen. The University of Washington and Monterey Bay Aquarium Research Institute will design, build, and oversee deployment of the floats. Scripps will also develop a mesoscale eddying Southern Ocean state estimate that assimilates physical and biogeochemical data into the MIT ocean general circulation model.\u003cbr/\u003e* Theme 2: Modeling. University of Arizona and Princeton University, together with NOAA\u0027s Geophysical Fluid Dynamics Laboratory (GFDL), will use SOCCOM observations to develop data/model assessment metrics and next-generation model analysis and evaluation, with the goal of improving process level understanding and reducing the uncertainty in projections of our future climate.\u003cbr/\u003e\u003cbr/\u003eLed by Climate Central, an independent, non-profit journalism and research organization that promotes understanding of climate science, SOCCOM will collaborate with educators and media professionals to inform policymakers and the public about the challenges of climate change and its impacts on marine life in the context of the Southern Ocean. In addition, the integrated team of SOCCOM scientists and educators will:\u003cbr/\u003e* communicate data and results of the SOCCOM efforts quickly to the public through established data networks, publications, broadcast media, and a public portal;\u003cbr/\u003e* train a new generation of diverse ocean scientists, including undergraduate students, graduate students, and postdoctoral fellows versed in field techniques, data calibration, modeling, and communication of research to non-scientists;\u003cbr/\u003e* transfer new sensor technology and related software to autonomous instrument providers and manufacturers to ensure that they become widely useable.", "east": -66.7689, "geometry": "POINT(-130.26855 -65.4867)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; R/V NBP; NBP1701; CLIMATE MODELS", "locations": null, "north": -52.6153, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Sarmiento, Jorge; Rynearson, Tatiana", "platforms": "OTHER \u003e MODELS \u003e CLIMATE MODELS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "PI website", "repositories": "PI website; R2R; USAP-DC", "science_programs": null, "south": -78.3581, "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "uid": "p0000197", "west": 166.2318}, {"awards": "1141939 Lubin, Dan", "bounds_geometry": "POLYGON((-167.0365 -77.5203,-166.96385 -77.5203,-166.8912 -77.5203,-166.81855 -77.5203,-166.7459 -77.5203,-166.67325 -77.5203,-166.6006 -77.5203,-166.52795 -77.5203,-166.4553 -77.5203,-166.38265 -77.5203,-166.31 -77.5203,-166.31 -77.52527,-166.31 -77.53024,-166.31 -77.53521,-166.31 -77.54018,-166.31 -77.54515,-166.31 -77.55012,-166.31 -77.55509,-166.31 -77.56006,-166.31 -77.56503,-166.31 -77.57,-166.38265 -77.57,-166.4553 -77.57,-166.52795 -77.57,-166.6006 -77.57,-166.67325 -77.57,-166.7459 -77.57,-166.81855 -77.57,-166.8912 -77.57,-166.96385 -77.57,-167.0365 -77.57,-167.0365 -77.56503,-167.0365 -77.56006,-167.0365 -77.55509,-167.0365 -77.55012,-167.0365 -77.54515,-167.0365 -77.54018,-167.0365 -77.53521,-167.0365 -77.53024,-167.0365 -77.52527,-167.0365 -77.5203))", "dataset_titles": "Shortwave Spectroradiometer Data from Ross Island, Antarctica", "datasets": [{"dataset_uid": "601074", "doi": "10.15784/601074", "keywords": "Antarctica; Atmosphere; Meteorology; Radiosounding; Ross Island", "people": "Lubin, Dan", "repository": "USAP-DC", "science_program": null, "title": "Shortwave Spectroradiometer Data from Ross Island, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601074"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Antarctic clouds constitute an important parameter of the surface radiation budget and thus play a significant role in Antarctic climate and climate change. The variability in, and long term trends of, cloud optical and microphysical properties are therefore fundamental in parameterizing the mixed phase (water-snow-ice) coastal Antarctic stratiform clouds experienced around the continent.\u003cbr/\u003e\u003cbr/\u003eUsing a spectoradiometer that covers the wavelength range of 350 to 2200nm, the downwelled spectral irradiance at the earth surface (Ross Island) will be used to retrieve the optical depth, thermodynamic phase, liquid water droplet effective radius, and ice-cloud effective particle size of overhead clouds, at hourly intervals and for an austral summer season (Oct-March). Based on the very limited data sets that exist for the maritime Antarctic, expectations are that Ross Island (Lat 78 S) should exhibit clouds with:\u003cbr/\u003ea) An abundance of supercooled liquid water, and related mixed-phase cloud processes\u003cbr/\u003eb) Cloud nucleation from year round biogenic and oceanic sources, in an otherwise pristine environment\u003cbr/\u003ec) Simple cloud geometries of predominantly stratiform cloud decks\u003cbr/\u003e\u003cbr/\u003eIncreased understanding of the cloud properties in the region of the main USAP base, McMurdo station is also relevant to operational weather forecasting relevant to aviation. A range of educational and outreach activities are associate with the project, including provision of workshops for high school teachers will be carried out.", "east": -166.31, "geometry": "POINT(-166.67325 -77.54515)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; USAP-DC", "locations": null, "north": -77.5203, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lubin, Dan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.57, "title": "Antarctic Cloud Physics: Fundamental Observations from Ross Island", "uid": "p0000327", "west": -167.0365}, {"awards": "1245749 Levy, Joseph; 1246203 Gooseff, Michael; 1246342 Fountain, Andrew", "bounds_geometry": "POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119))", "dataset_titles": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica; Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "datasets": [{"dataset_uid": "000209", "doi": "", "keywords": null, "people": null, "repository": "OpenTopo", "science_program": null, "title": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica", "url": "http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.112016.3294.1"}, {"dataset_uid": "601075", "doi": "10.15784/601075", "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "url": "https://www.usap-dc.org/view/dataset/601075"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change.\u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.", "east": 166.95825, "geometry": "POINT(163.5318575 -77.747214)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; Not provided; LANDFORMS; NOT APPLICABLE", "locations": "Antarctica", "north": -77.2119, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "OpenTopo", "repositories": "OpenTopo; USAP-DC", "science_programs": null, "south": -78.282528, "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "uid": "p0000076", "west": 160.105465}, {"awards": "1565576 Pettit, Erin", "bounds_geometry": "POLYGON((-62.2 -65.5,-62.12 -65.5,-62.04 -65.5,-61.96 -65.5,-61.88 -65.5,-61.8 -65.5,-61.72 -65.5,-61.64 -65.5,-61.56 -65.5,-61.48 -65.5,-61.4 -65.5,-61.4 -65.53,-61.4 -65.56,-61.4 -65.59,-61.4 -65.62,-61.4 -65.65,-61.4 -65.68,-61.4 -65.71,-61.4 -65.74,-61.4 -65.77,-61.4 -65.8,-61.48 -65.8,-61.56 -65.8,-61.64 -65.8,-61.72 -65.8,-61.8 -65.8,-61.88 -65.8,-61.96 -65.8,-62.04 -65.8,-62.12 -65.8,-62.2 -65.8,-62.2 -65.77,-62.2 -65.74,-62.2 -65.71,-62.2 -65.68,-62.2 -65.65,-62.2 -65.62,-62.2 -65.59,-62.2 -65.56,-62.2 -65.53,-62.2 -65.5))", "dataset_titles": "Scar Inlet Terrestrial Radar Interferometry; Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "datasets": [{"dataset_uid": "601084", "doi": "10.15784/601084", "keywords": "Antarctica; Antarctic Peninsula; Atmosphere; Automated Weather Station; Flask Glacier; Foehn Winds; Glaciers/ice Sheet; Glaciers/Ice Sheet; LARISSA; Larsen B Ice Shelf; Meteorology; Scar Inlet; Weatherstation; Wind Speed", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "url": "https://www.usap-dc.org/view/dataset/601084"}, {"dataset_uid": "601078", "doi": "10.15784/601078", "keywords": "Antarctica; Antarctic Peninsula; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Radar Interferometer", "people": "Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Scar Inlet Terrestrial Radar Interferometry", "url": "https://www.usap-dc.org/view/dataset/601078"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "This award supports a Rapid Response Research (RAPID) project to observe the current weakened state of the Scar Inlet Ice Shelf, and potentially capture data during its anticipated disintegration. The Scar Inlet Ice Shelf (SIIS) is the southern remnant of the former Larsen B Ice Shelf, which disintegrated in March of 2002. Since then, the SIIS has weakened significantly but has not yet broken up. Cooler conditions than those seen prior to 2006 have reduced the chance of a disintegration in recent years, although a single warm season is likely to be enough to trigger such an event. The predicted \"Super El Nino\" for this austral summer may have significant effects on Antarctica\u0027s weather, potentially leading to a break-up or disintegration this year. Given the very weak state of the SIIS, it is urgent that we act now to better understand the processes involved in shelf disintegration or break-up of ice shelves. The goal of this work is to collect several key data sets, publish initial observations and preliminary conclusions, and then make the complete data record available to all scientists.\u003cbr/\u003e\u003cbr/\u003eExtreme changes in the stress conditions on the SIIS resulted from both the loss of the Larsen B ice plate and the continued inflow of ice from three large glaciers (Flask, Leppard, and Starbuck). The SIIS now has a number of large rifts and it is expected to break up or disintegrate in the very near future. Past research has made use of satellite data and weather instruments, establishing many of the current ideas regarding ice shelf break-ups and ice shelf weakening. Additional ground-based data to be collected under this study will test a number of hypotheses regarding pre-disintegration characteristics, triggering mechanisms, fracturing processes, runaway feedback effects, and stabilizing mechanisms. The project will collect extensive multi-instrument field observations of the SIIS and possibly capture a major disintegration event. In collaboration with the British Antarctic Survey, a team of 4 people will be deployed via Twin Otter for up to 4 weeks to a site with a broad view of the shelf and will install several temporary observing instruments there. The study derives its intellectual merit from the role of the Antarctic Peninsula as a microcosm of how other parts of Antarctica might evolve and de-glaciate in the next few centuries. The broader impacts include an opportunity to educate the public about the anticipated collapse of this remnant ice shelf and its relationship to future changes in Antarctica. The potential for wide media coverage (through a connection with the National Geographic) will underscore the critical changes scientists are observing in the crysophere driven by climate change. This proposal requires field work in Antarctica.", "east": -61.4, "geometry": "POINT(-61.8 -65.65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -65.5, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.8, "title": "RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf", "uid": "p0000274", "west": -62.2}, {"awards": "1245663 Lazzara, Matthew; 1245737 Cassano, John", "bounds_geometry": "POLYGON((161.714 -77.522,162.6077 -77.522,163.5014 -77.522,164.3951 -77.522,165.2888 -77.522,166.1825 -77.522,167.0762 -77.522,167.9699 -77.522,168.8636 -77.522,169.7573 -77.522,170.651 -77.522,170.651 -77.6702,170.651 -77.8184,170.651 -77.9666,170.651 -78.1148,170.651 -78.263,170.651 -78.4112,170.651 -78.5594,170.651 -78.7076,170.651 -78.8558,170.651 -79.004,169.7573 -79.004,168.8636 -79.004,167.9699 -79.004,167.0762 -79.004,166.1825 -79.004,165.2888 -79.004,164.3951 -79.004,163.5014 -79.004,162.6077 -79.004,161.714 -79.004,161.714 -78.8558,161.714 -78.7076,161.714 -78.5594,161.714 -78.4112,161.714 -78.263,161.714 -78.1148,161.714 -77.9666,161.714 -77.8184,161.714 -77.6702,161.714 -77.522))", "dataset_titles": "SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601054", "doi": "10.15784/601054", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; UAS", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601054"}], "date_created": "Wed, 22 Nov 2017 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AAWS) network, first commenced in 1978, is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS sites measure air-temperature, pressure, wind speed and direction at a nominal surface height of 3m. Other parameters such as relative humidity and snow accumulation may also be measured. Observational data from the AWS are collected via the DCS Argos system aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. \u003cbr/\u003e\u003cbr/\u003eThe surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations from the AAWS network have been used to check on satellite and remote sensing observations.", "east": 170.651, "geometry": "POINT(166.1825 -78.263)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e ADG; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS", "is_usap_dc": true, "keywords": "Automated Weather Station; Antarctica; AWS; FIXED OBSERVATION STATIONS", "locations": "Antarctica", "north": -77.522, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.004, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2013-2017", "uid": "p0000363", "west": 161.714}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eSouthern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": -65.21, "geometry": "POINT(-65.265 -64.33)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -64.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": -65.32}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((70 -68,70.5 -68,71 -68,71.5 -68,72 -68,72.5 -68,73 -68,73.5 -68,74 -68,74.5 -68,75 -68,75 -68.2,75 -68.4,75 -68.6,75 -68.8,75 -69,75 -69.2,75 -69.4,75 -69.6,75 -69.8,75 -70,74.5 -70,74 -70,73.5 -70,73 -70,72.5 -70,72 -70,71.5 -70,71 -70,70.5 -70,70 -70,70 -69.8,70 -69.6,70 -69.4,70 -69.2,70 -69,70 -68.8,70 -68.6,70 -68.4,70 -68.2,70 -68))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eSouthern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": 75.0, "geometry": "POINT(72.5 -69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": 70.0}, {"awards": "1246170 Hall, Brenda; 1246110 Stone, John", "bounds_geometry": "POLYGON((154 -79.75,154.7 -79.75,155.4 -79.75,156.1 -79.75,156.8 -79.75,157.5 -79.75,158.2 -79.75,158.9 -79.75,159.6 -79.75,160.3 -79.75,161 -79.75,161 -79.8,161 -79.85,161 -79.9,161 -79.95,161 -80,161 -80.05,161 -80.1,161 -80.15,161 -80.2,161 -80.25,160.3 -80.25,159.6 -80.25,158.9 -80.25,158.2 -80.25,157.5 -80.25,156.8 -80.25,156.1 -80.25,155.4 -80.25,154.7 -80.25,154 -80.25,154 -80.2,154 -80.15,154 -80.1,154 -80.05,154 -80,154 -79.95,154 -79.9,154 -79.85,154 -79.8,154 -79.75))", "dataset_titles": "Darwin and Hatherton Glaciers; Hatherton Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "601063", "doi": "10.15784/601063", "keywords": "Antarctica; Geochronology; Hatherton Glacier; Radiocarbon; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Hatherton Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601063"}, {"dataset_uid": "200038", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Darwin and Hatherton Glaciers", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Mon, 23 Oct 2017 00:00:00 GMT", "description": "This award supports a project to reconstruct past ice-surface elevations from detailed glacial mapping and dating of moraines (using 14C dates of algae from former ice-marginal ponds and 10Be surface exposure ages) in the region of the Darwin-Hatherton Glaciers in Antarctica in order to try and resolve very different interpretations that currently exist about the glacial history in the region. The results will be integrated with existing climate and geophysical data into a flow-line model to gain insight into glacier response to climate and ice-dynamics perturbations during the Late Glacial Maximum (LGM) in Antarctica. The work will contribute to a better understanding of both LGM ice thickness and whether or not there is any evidence that Antarctica contributed to Meltwater Pulse (MWP)-1A a very controversial topic in Antarctic glacial geology. The intellectual merit of the work relates to the fact that reconstructing past fluctuations of the Antarctic Ice Sheet (AIS) is critical for understanding the sensitivity of ice volume to sea-level and climatic change. Constraints on past behavior help put ongoing changes into context and provide a basis for predicting future sea-level rise. Broader impacts include the support of two graduate and two undergraduate students, as well as a female early-career investigator. Graduate students will be involved in all stages of the project from planning and field mapping to geochronological analyses, interpretation, synthesis and reporting. Two undergraduates will work on lab-based research from the project. The project also will include visits to K-12 classrooms to talk about glaciers and climate change, correspondence with teachers and students from the field, and web-based outreach. This award has field work in Antarctica.", "east": 161.0, "geometry": "POINT(157.5 -80)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; Antarctica", "locations": "Antarctica", "north": -79.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John; Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -80.25, "title": "Collaborative Research: Assessing the Antarctic Contribution to Sea-level Changes during the Last Deglaciation: Constraints from Darwin Glacier", "uid": "p0000304", "west": 154.0}, {"awards": "1103428 Thurber, Andrew", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "McMurdo Spiophanes beds 16s V4 region community composition from sediment cores at McMurdo Station, Antarctia on Sept 9th, 2012 (McMurdo Benthos project); Stable isotopic composition of McMurdo Benthos", "datasets": [{"dataset_uid": "000202", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "McMurdo Spiophanes beds 16s V4 region community composition from sediment cores at McMurdo Station, Antarctia on Sept 9th, 2012 (McMurdo Benthos project)", "url": "https://www.bco-dmo.org/dataset/716443"}, {"dataset_uid": "000201", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Stable isotopic composition of McMurdo Benthos", "url": "https://www.bco-dmo.org/dataset/716462"}], "date_created": "Tue, 10 Oct 2017 00:00:00 GMT", "description": "The biota of the world\u0027s seafloor is fueled by bursts of seasonal primary production. For food-limited sediment communities to persist, a balance must exist between metazoan consumption of and competition with bacteria, a balance which likely changes through the seasons. Polar marine ecosystems are ideal places to study such complex interactions due to stark seasonal shifts between heterotrophic and autotrophic communities, and temperatures that may limit microbial processing of organic matter. The research will test the following hypotheses: 1) heterotrophic bacteria compete with macrofauna for food; 2) as phytoplankton populations decline macrofauna increasingly consume microbial biomass to sustain their populations; and 3) in the absence of seasonal photosynthetic inputs, macrofaunal biodiversity will decrease unless supplied with microbially derived nutrition. Observational and empirical studies will test these hypotheses at McMurdo Station, Antarctica, where a high-abundance macro-infaunal community is adapted to this boom-and-bust cycle of productivity. The investigator will mentor undergraduates from a predominantly minority-serving institution, in the fields of invertebrate taxonomy and biogeochemistry. The general public and young scientists will be engaged through lectures at local K-12 venues and launch of an interactive website. The results will better inform scientists and managers about the effects of climate change on polar ecosystems and the mechanisms of changing productivity patterns on global biodiversity.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -78.0, "title": "PostDoctoral Research Fellowship", "uid": "p0000416", "west": 165.0}, {"awards": "1142007 Kurbatov, Andrei", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Core Tephra Analysis; Antarctic Tephra Data Base AntT static web site", "datasets": [{"dataset_uid": "601052", "doi": "10.15784/601052", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciology; Intracontinental Magmatism; IntraContinental Magmatism; Sample/collection Description; Sample/Collection Description; Tephra", "people": "Kurbatov, Andrei V.; Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tephra Data Base AntT static web site", "url": "https://www.usap-dc.org/view/dataset/601052"}, {"dataset_uid": "601038", "doi": "10.15784/601038", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Tephra", "people": "Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Antarctic Ice Core Tephra Analysis", "url": "https://www.usap-dc.org/view/dataset/601038"}], "date_created": "Fri, 06 Oct 2017 00:00:00 GMT", "description": "Many key questions in climate research (e.g. relative timing of climate events in different geographic areas, climate-forcing mechanisms, natural threshold levels in the climate system) are dependent on accurate reconstructions of the temporal and spatial distribution of past rapid climate change events in continental, atmospheric, marine and polar realms. This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. Development of this database will assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources. The AntT project relies on a cyberinfrastructure framework developed in house through NSF funded CDI-Type I: CiiWork for data assimilation, interpretation and open distribution model. In addition to collection and integration of existing information about volcanic products, this project will focus on filling the information gaps about unique physico-chemical characteristics of very fine (\u003c3 micrometer) volcanic particles (cryptotephra) that are present in Antarctic ice cores. This component of research will involve improving analytical methodology for detecting cryptotephra layers in ice, and will train a new generation of scientists to apply an array of modern state?of?the-art instrumentation available to the project team. \u003cbr/\u003e\u003cbr/\u003eThe recognized importance of tephra in establishing a chronological framework for volcanic and sedimentary successions has already resulted in the development of robust regional tephrochronological frameworks (e.g. Europe, Kamchatka, New Zealand, Western North America). The AntT project will provide this framework for Antarctic tephrochronology, as needed for precise correlation records between Antarctic ice cores (e.g. WAIS Divide, RICE, ITASE) and global paleoclimate archives. The results of AntT will be of particular significance to climatologists, paleoclimatologists, atmospheric chemists, geochemists, climate modelers, solar-terrestrial physicists, environmental statisticians, and policy makers for designing solutions to mitigate or cope with likely future impacts of climate change events on modern society.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Hartman, Laura; Wheatley, Sarah D.; Kurbatov, Andrei V.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "uid": "p0000328", "west": -180.0}, {"awards": "1142002 Kaplan, Michael", "bounds_geometry": "POLYGON((-58 -63.7,-57.95 -63.7,-57.9 -63.7,-57.85 -63.7,-57.8 -63.7,-57.75 -63.7,-57.7 -63.7,-57.65 -63.7,-57.6 -63.7,-57.55 -63.7,-57.5 -63.7,-57.5 -63.73,-57.5 -63.76,-57.5 -63.79,-57.5 -63.82,-57.5 -63.85,-57.5 -63.88,-57.5 -63.91,-57.5 -63.94,-57.5 -63.97,-57.5 -64,-57.55 -64,-57.6 -64,-57.65 -64,-57.7 -64,-57.75 -64,-57.8 -64,-57.85 -64,-57.9 -64,-57.95 -64,-58 -64,-58 -63.97,-58 -63.94,-58 -63.91,-58 -63.88,-58 -63.85,-58 -63.82,-58 -63.79,-58 -63.76,-58 -63.73,-58 -63.7))", "dataset_titles": "10Be and 14C data from northern Antarctic Peninsula", "datasets": [{"dataset_uid": "601051", "doi": "10.15784/601051", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPS; James Ross Island; Sample/collection Description; Sample/Collection Description; Solid Earth", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "10Be and 14C data from northern Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601051"}], "date_created": "Tue, 19 Sep 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to investigate last glacial maximum through Holocene glacial change on the northeastern Antarctic Peninsula, an area distinguished by dramatic ice shelf collapses and retreat of upstream glaciers. However, there is a lack of long-term context to know the relative significance of recent events over longer time scales. The PIs will obtain data on former ice margin positions, ice thicknesses, glacier retreat and thinning rates, and Holocene glacier change in the James Ross Island Archipelago and areas near the former Larsen-A ice shelf. These data include maximum- and minimum-limiting 14C and cosmogenic-nuclide exposure dates integrated with geomorphology and stratigraphy. Understanding the extent, nature, and history of glacial events is important for placing current changes in glacial extent into a long-term context. This research will also contribute to understanding the sensitivity of ice shelves and glaciers in this region to climate change. Records of changes in land-terminating glaciers will also address outstanding questions related to climate change since the LGM and through the Holocene. The PIs will collect samples during cooperative field projects with scientists of the Instituto Anta\u0026#769;rtico Argentino and the Korea Polar Research Institute planned as part of existing, larger, research projects.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe proposed work includes collaborations with Argentina and Korea. The PIs are currently involved in or are initiating education and outreach activities that will be incorporated into this project. These include interactions with the American Museum of Natural History, the United States Military Academy at West Point, and undergraduate involvement in their laboratories. This project provides a significant opportunity to engage the public as it focuses on an area where environmental changes are the object of attention in the popular media.", "east": -57.5, "geometry": "POINT(-57.75 -63.85)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; GLACIATION; Not provided", "locations": "Antarctic Peninsula", "north": -63.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Terrestrial Geological Context for Glacier Change in the Northeast Antarctica Peninsula", "uid": "p0000337", "west": -58.0}, {"awards": "1142122 Miller, Nathan", "bounds_geometry": "POLYGON((166.163 -76.665,166.2635 -76.665,166.364 -76.665,166.4645 -76.665,166.565 -76.665,166.6655 -76.665,166.766 -76.665,166.8665 -76.665,166.967 -76.665,167.0675 -76.665,167.168 -76.665,167.168 -76.782,167.168 -76.899,167.168 -77.016,167.168 -77.133,167.168 -77.25,167.168 -77.367,167.168 -77.484,167.168 -77.601,167.168 -77.718,167.168 -77.835,167.0675 -77.835,166.967 -77.835,166.8665 -77.835,166.766 -77.835,166.6655 -77.835,166.565 -77.835,166.4645 -77.835,166.364 -77.835,166.2635 -77.835,166.163 -77.835,166.163 -77.718,166.163 -77.601,166.163 -77.484,166.163 -77.367,166.163 -77.25,166.163 -77.133,166.163 -77.016,166.163 -76.899,166.163 -76.782,166.163 -76.665))", "dataset_titles": "Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification; Physiological and biochemical measurements on Antarctic dragonfish (Gymnodraco acuticeps) from McMurdo Sound; Physiological and biochemical measurements on juvenile Antarctic rockcod (Trematomus bernacchii) from McMurdo Sound; Thermal windows and metabolic performance curves in a developing Antarctic fish", "datasets": [{"dataset_uid": "601026", "doi": "10.15784/601026", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Fish; McMurdo Sound; Ocean Acidification; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Davis, Brittany; Miller, Nathan; Todgham, Anne; Flynn, Erin", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on Antarctic dragonfish (Gymnodraco acuticeps) from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601026"}, {"dataset_uid": "601040", "doi": "10.15784/601040", "keywords": "Antarctica; Biota; Fish; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Miller, Nathan; Todgham, Anne", "repository": "USAP-DC", "science_program": null, "title": "Thermal windows and metabolic performance curves in a developing Antarctic fish", "url": "https://www.usap-dc.org/view/dataset/601040"}, {"dataset_uid": "601039", "doi": "10.15784/601039", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Fish; McMurdo Sound; Ocean Acidification; Oceans; Physical Oceanography; Ross Sea; Southern Ocean", "people": "Todgham, Anne; Miller, Nathan", "repository": "USAP-DC", "science_program": null, "title": "Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2-acidification", "url": "https://www.usap-dc.org/view/dataset/601039"}, {"dataset_uid": "601025", "doi": "10.15784/601025", "keywords": "Antarctica; Biota; Fish; McMurdo Sound; Oceans; Ross Sea; Southern Ocean", "people": "Flynn, Erin; Miller, Nathan; Todgham, Anne; Davis, Brittany", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on juvenile Antarctic rockcod (Trematomus bernacchii) from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601025"}], "date_created": "Tue, 15 Aug 2017 00:00:00 GMT", "description": "Ocean acidification and increased temperatures are projected to be the primary impacts of global climate change on polar marine ecosystems over the next century. While recent research has focused on the effects of these drivers on calcifying organisms, less is known about how these changes may affect vertebrates. This research will focus on two Antarctic fishes, Trematomus bernacchii and Pagothenia borchgrevinki. Fish eggs and larvae will be collected in McMurdo Sound and reared under different temperature and pH regimes. Modern techniques will be used to examine subsequent changes in physiology, growth, development and gene expression over both short and long timescales. The results will fill a missing gap in our knowledge about the response of non-calcifying organisms to projected changes in pH and temperature. Results will be widely disseminated through publications as well as through presentations at national and international meetings; raw data will also be made available through open-access, web-based databases. This project will support the research and training of three graduate and three undergraduate students. As well, this project will foster the development of two modules on climate change and ocean acidification for an Introduction to Biology course.", "east": 167.168, "geometry": "POINT(166.6655 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.665, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Miller, Nathan; Todgham, Anne", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.835, "title": "RUI: Synergistic effects of Ocean Acidification and Warming on Larval Development in Antarctic Fishes", "uid": "p0000411", "west": 166.163}, {"awards": "1246190 Yu, Zicheng", "bounds_geometry": "POLYGON((-69 -64,-68.1 -64,-67.2 -64,-66.3 -64,-65.4 -64,-64.5 -64,-63.6 -64,-62.7 -64,-61.8 -64,-60.9 -64,-60 -64,-60 -64.4,-60 -64.8,-60 -65.2,-60 -65.6,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60.9 -68,-61.8 -68,-62.7 -68,-63.6 -68,-64.5 -68,-65.4 -68,-66.3 -68,-67.2 -68,-68.1 -68,-69 -68,-69 -67.6,-69 -67.2,-69 -66.8,-69 -66.4,-69 -66,-69 -65.6,-69 -65.2,-69 -64.8,-69 -64.4,-69 -64))", "dataset_titles": "Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula", "datasets": [{"dataset_uid": "601037", "doi": "10.15784/601037", "keywords": "Antarctica; Antarctic Peninsula; Biota; Moss; Paleoclimate; Sample/collection Description; Sample/Collection Description", "people": "Yu, Zicheng", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601037"}], "date_created": "Tue, 15 Aug 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis research will investigate how Antarctic peatbanks have responded to documented past warm climates on the Western Antarctic Peninsula over the last 1000 years. The work will extend understanding of climate controls on peat carbon accumulation to Antarctic peatbanks thus enabling a bi-polar perspective of ?first responder? ecosystem processes under warmer climate conditions. Understanding climate and ecosystem histories will help reveal processes and mechanisms that control the functioning of these and other polar ecosystems. Specifically, the investigators will evaluate outcomes of ?natural climate-warming experiments? that have occurred in the AP region at 65 degrees south over the last 1000 years. They will focus on two warm climate intervals in the Western Antarctic Peninsula: (1) the recent and ongoing warming of up to 6\u00c2\u00b0C in the last century, and (2) the Medieval Warm Period that occurred ~800 years ago. By collecting and analyzing peat cores and other biological and environmental data, the investigators will derive an independent temperature reconstruction from oxygen isotopes of moss cellulose over the last 1000 years to assess peatbank carbon response to documented warm climate conditions. The overall goal of the proposed project is to document formation ages and temporal changes in carbon-accumulating ecosystems over the last millennium in response to climate change as reconstructed from independent proxies. Also, their data will allow the investigators to understand the nature of reconstructed climate change in relation to atmosphere circulation and ocean conditions. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis research is directly relevant to understanding polar processes affecting soil carbon dynamics and will support an early career researcher. This project will provide training for undergraduate students, graduate student and a postdoctoral fellow and will develop teaching modules and outreach activities on polar climate and ecosystem changes.", "east": -60.0, "geometry": "POINT(-64.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Yu, Zicheng", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.0, "title": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula", "uid": "p0000341", "west": -69.0}, {"awards": "1246387 Guo, Weifu", "bounds_geometry": "POLYGON((-79.9183333 35.441666667,-55.16316667 35.441666667,-30.40800004 35.441666667,-5.65283341 35.441666667,19.10233322 35.441666667,43.85749985 35.441666667,68.61266648 35.441666667,93.36783311 35.441666667,118.12299974 35.441666667,142.87816637 35.441666667,167.633333 35.441666667,167.633333 25.9255333333,167.633333 16.4093999996,167.633333 6.8932666659,167.633333 -2.6228666678,167.633333 -12.1390000015,167.633333 -21.6551333352,167.633333 -31.1712666689,167.633333 -40.6874000026,167.633333 -50.2035333363,167.633333 -59.71966667,142.87816637 -59.71966667,118.12299974 -59.71966667,93.36783311 -59.71966667,68.61266648 -59.71966667,43.85749985 -59.71966667,19.10233322 -59.71966667,-5.65283341 -59.71966667,-30.40800004 -59.71966667,-55.16316667 -59.71966667,-79.9183333 -59.71966667,-79.9183333 -50.2035333363,-79.9183333 -40.6874000026,-79.9183333 -31.1712666689,-79.9183333 -21.6551333352,-79.9183333 -12.1390000015,-79.9183333 -2.6228666678,-79.9183333 6.8932666659,-79.9183333 16.4093999996,-79.9183333 25.9255333333,-79.9183333 35.441666667))", "dataset_titles": "Clumped isotope composition of modern cold water corals", "datasets": [{"dataset_uid": "000205", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Clumped isotope composition of modern cold water corals", "url": "http://www.earthchem.org/"}], "date_created": "Fri, 07 Jul 2017 00:00:00 GMT", "description": "This proposed research aims to produce high resolution, precise and accurate records of deep water temperatures in the Drake Passage over the past ~40,000 years, by applying the newly developed carbonate clumped isotope thermometer to a unique collection of modern and fossil deep-sea corals, and thus advance the understanding of the role of the Southern Ocean in modulating global climate. In addition, this study will provide further evaluation on the potential of this new thermometer to derive accurate estimates of past ocean temperatures from deep-sea coral skeletons. Funding will support an early-career junior scientist and a graduate student. \u003cbr/\u003e\u003cbr/\u003eDespite its crucial role in modulating global climate, rates and amplitudes of environmental changes in the Southern Ocean are often difficult to constrain. In particular, the knowledge about the deep water temperatures in the Southern Ocean during the last glacial cycle is extremely limited. This results both from the lack of well-dated climate archives for the deep Southern Ocean and from the fact that most existing temperature proxies (e.g. del18O and Mg/Ca of foraminifera and corals) suffer from the biological \u0027vital effects\u0027. The latter is especially problematic; it causes substantial challenges in interpreting these geochemical proxies and can lead to biases equivalent to tens of degrees in temperature estimates. Recent development of carbonate clumped isotope thermometer, holds new promises for reconstructing deep water temperatures in the Southern Ocean, since calibration studies of this thermometer in deep-sea corals suggest it is largely free of vital effects. This proposed research seeks to refine the calibration of carbonate clumped isotope thermometer in deep-sea corals at low temperatures, improve the experimental methods to obtain high precision in temperature estimates, and then apply this thermometer to a unique collection of modern and fossil deep-sea corals collected from the Drake Passage during two recent Office of Polar Programs (OPP)-funded cruises, that have already been dated by radiocarbon and U-series methods. By combining the reconstructed temperatures with the radiocarbon and U-Th ages for these deep-sea corals, this study will explore the relationships between these temperature changes and global climate changes.", "east": 167.633333, "geometry": "POINT(43.85749985 -12.1390000015)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": 35.441666667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Guo, Weifu", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -59.71966667, "title": "Reconstruction of Deep-Water Temperatures in the Drake Passage Over the Last Glacial Cycle: Application of Carbonate Clumped Isotope Thermometer to Absolutely-Dated Deep-Sea Corals", "uid": "p0000389", "west": -79.9183333}, {"awards": "1141993 Rich, Jeremy", "bounds_geometry": "POLYGON((-60 -70,-59.3 -70,-58.6 -70,-57.9 -70,-57.2 -70,-56.5 -70,-55.8 -70,-55.1 -70,-54.4 -70,-53.7 -70,-53 -70,-53 -70.9,-53 -71.8,-53 -72.7,-53 -73.6,-53 -74.5,-53 -75.4,-53 -76.3,-53 -77.2,-53 -78.1,-53 -79,-53.7 -79,-54.4 -79,-55.1 -79,-55.8 -79,-56.5 -79,-57.2 -79,-57.9 -79,-58.6 -79,-59.3 -79,-60 -79,-60 -78.1,-60 -77.2,-60 -76.3,-60 -75.4,-60 -74.5,-60 -73.6,-60 -72.7,-60 -71.8,-60 -70.9,-60 -70))", "dataset_titles": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "datasets": [{"dataset_uid": "601032", "doi": "10.15784/601032", "keywords": "Antarctica; Antarctic Peninsula; Bacteria; Biota; Genetic; Geochemistry; Palmer Station; Sample/collection Description; Sample/Collection Description; Sea Water; Southern Ocean", "people": "Rich, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601032"}], "date_created": "Thu, 15 Jun 2017 00:00:00 GMT", "description": "The Western Antarctic Peninsula (WAP) has experienced unprecedented warming and shifts in sea ice cover over the past fifty years. How these changes impact marine microbial communities, and subsequently how these shifts in the biota may affect the carbon cycle in surface waters is unknown. This work will examine how these ecosystem-level changes affect microbial community structure and function. This research will use modern metagenomic and transcriptomic approaches to test the hypothesis that the introduction of organic matter from spring phytoplankton blooms drives turnover in microbial communities. This research will characterize patterns in bacterial and archaeal succession during the transition from the austral winter at two long-term monitoring sites: Palmer Station in the north and Rothera Station in the south. This project will also include microcosm incubations to directly assess the effects of additions of organic carbon and melted sea ice on microbial community structure and function. The results of this work will provide a broader understanding of the roles of both rare and abundant microorganisms in carbon cycling within the WAP region, and how these communities may shift in structure and function in response to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. The research will provide training opportunities for both graduate and undergraduate students and will enhance international collaborations with the British Antarctic Survey.", "east": -53.0, "geometry": "POINT(-56.5 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rich, Jeremy", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula", "uid": "p0000409", "west": -60.0}, {"awards": "0944348 Taylor, Kendrick; 0944266 Twickler, Mark", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Summary of Results from the WAIS Divide Ice Core Project; WAIS Divide WDC06A Core Quality Versus Depth", "datasets": [{"dataset_uid": "601021", "doi": "10.15784/601021", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Summary of Results from the WAIS Divide Ice Core Project", "url": "https://www.usap-dc.org/view/dataset/601021"}, {"dataset_uid": "601030", "doi": "10.15784/601030", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Twickler, Mark; Taylor, Kendrick C.; Souney, Joseph Jr.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601030"}], "date_created": "Fri, 09 Jun 2017 00:00:00 GMT", "description": "Taylor/0944348\u003cbr/\u003e\u003cbr/\u003eThis award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Mark, Twickler; Taylor, Kendrick C.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000080", "west": -112.1115}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": "POINT(149 -80)", "dataset_titles": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound; Cortisol levels in Weddell seal fur; Seasonal Dive Data ; Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017; Weddell Seal Heat Flux Dataset; Weddell seal iron dynamics and oxygen stores across lactation; Weddell seal metabolic hormone data; Weddell Seal Molt Phenology Dataset; Weddell Seal Molt Survey Data; Weddell seal summer diving behavior", "datasets": [{"dataset_uid": "601137", "doi": "10.15784/601137", "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Burns, Jennifer; Beltran, Roxanne", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal summer diving behavior", "url": "https://www.usap-dc.org/view/dataset/601137"}, {"dataset_uid": "601027", "doi": "10.15784/601027", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "url": "https://www.usap-dc.org/view/dataset/601027"}, {"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}, {"dataset_uid": "601133", "doi": "10.15784/601133", "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Survey Data", "url": "https://www.usap-dc.org/view/dataset/601133"}, {"dataset_uid": "601560", "doi": "10.15784/601560", "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "people": "Tsai, EmmaLi", "repository": "USAP-DC", "science_program": null, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601560"}, {"dataset_uid": "601134", "doi": "10.15784/601134", "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Cortisol levels in Weddell seal fur", "url": "https://www.usap-dc.org/view/dataset/601134"}, {"dataset_uid": "601840", "doi": "10.15784/601840", "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "people": "Kirkham, Amy", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal metabolic hormone data", "url": "https://www.usap-dc.org/view/dataset/601840"}, {"dataset_uid": "601131", "doi": "10.15784/601131", "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Phenology Dataset", "url": "https://www.usap-dc.org/view/dataset/601131"}, {"dataset_uid": "601271", "doi": "10.15784/601271", "keywords": "Antarctica; Heat Flux; Infrared Thermography; Physiological Conditions; Surface Temperatures; Thermoregulation; Weddell Seal", "people": "Walcott, Skyla", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Heat Flux Dataset", "url": "https://www.usap-dc.org/view/dataset/601271"}, {"dataset_uid": "601338", "doi": "10.15784/601338", "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Dive Data ", "url": "https://www.usap-dc.org/view/dataset/601338"}], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay\u0027s Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. \u003cbr/\u003e\u003cbr/\u003eAn improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.", "east": 165.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; USAP-DC; Seal Dive Data; Weddell Seal", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "uid": "p0000229", "west": 165.0}, {"awards": "1246223 Hastings, Meredith", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide WDC06A Nitrate Isotope Record", "datasets": [{"dataset_uid": "601022", "doi": "10.15784/601022", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; WAIS Divide; WAIS Divide Ice Core", "people": "Buffen, Aron; Hastings, Meredith", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Nitrate Isotope Record", "url": "https://www.usap-dc.org/view/dataset/601022"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Hastings/1246223\u003cbr/\u003e\u003cbr/\u003eThis award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women\u0027s Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hastings, Meredith", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice", "uid": "p0000399", "west": -112.1115}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "datasets": [{"dataset_uid": "601008", "doi": "10.15784/601008", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "url": "https://www.usap-dc.org/view/dataset/601008"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "McConnell/1142166\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "uid": "p0000287", "west": -112.1115}, {"awards": "0944197 Waddington, Edwin; 0944191 Taylor, Kendrick", "bounds_geometry": "POLYGON((-180 -79,-173.3 -79,-166.6 -79,-159.9 -79,-153.2 -79,-146.5 -79,-139.8 -79,-133.1 -79,-126.4 -79,-119.7 -79,-113 -79,-113 -79.1,-113 -79.2,-113 -79.3,-113 -79.4,-113 -79.5,-113 -79.6,-113 -79.7,-113 -79.8,-113 -79.9,-113 -80,-119.7 -80,-126.4 -80,-133.1 -80,-139.8 -80,-146.5 -80,-153.2 -80,-159.9 -80,-166.6 -80,-173.3 -80,180 -80,150.9 -80,121.8 -80,92.7 -80,63.6 -80,34.5 -80,5.4 -80,-23.7 -80,-52.8 -80,-81.9 -80,-111 -80,-111 -79.9,-111 -79.8,-111 -79.7,-111 -79.6,-111 -79.5,-111 -79.4,-111 -79.3,-111 -79.2,-111 -79.1,-111 -79,-81.9 -79,-52.8 -79,-23.7 -79,5.4 -79,34.5 -79,63.6 -79,92.7 -79,121.8 -79,150.9 -79,-180 -79))", "dataset_titles": "Accumulation Rates from the WAIS Divide Ice Core; WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica; WAIS Divide Multi Track Electrical Measurements; WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "datasets": [{"dataset_uid": "601172", "doi": "10.15784/601172", "keywords": "Antarctic; Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; Wais Project; West Antarctic Ice Sheet", "people": "Fudge, T. J.; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": null, "title": "WAIS Divide Multi Track Electrical Measurements", "url": "https://www.usap-dc.org/view/dataset/601172"}, {"dataset_uid": "609591", "doi": "10.7265/N5B56GPJ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609591"}, {"dataset_uid": "601004", "doi": "10.15784/601004", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow Accumulation; WAIS Divide Ice Core", "people": "Buizert, Christo; Fudge, T. J.; Waddington, Edwin D.; Conway, Howard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Accumulation Rates from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/601004"}, {"dataset_uid": "601015", "doi": "10.15784/601015", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "url": "https://www.usap-dc.org/view/dataset/601015"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.", "east": -111.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Core Depth; National Ice Core Lab; Electrical Conductivity; FIELD INVESTIGATION; Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Fudge, T. J.; Taylor, Kendrick C.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "uid": "p0000026", "west": -113.0}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Gas measurement from Higgins et al., 2015 - PNAS; WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "datasets": [{"dataset_uid": "601010", "doi": "10.15784/601010", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601010"}, {"dataset_uid": "601013", "doi": "10.15784/601013", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601013"}, {"dataset_uid": "601012", "doi": "10.15784/601012", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601012"}, {"dataset_uid": "601014", "doi": "10.15784/601014", "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "people": "Higgins, John", "repository": "USAP-DC", "science_program": null, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "url": "https://www.usap-dc.org/view/dataset/601014"}, {"dataset_uid": "601009", "doi": "10.15784/601009", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m", "url": "https://www.usap-dc.org/view/dataset/601009"}, {"dataset_uid": "601011", "doi": "10.15784/601011", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601011"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538427\u003cbr/\u003eMcConnell \u003cbr/\u003eThis award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF\u0027s Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "uid": "p0000148", "west": -112.1115}, {"awards": "1245580 Castro, M. Clara", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases", "datasets": [{"dataset_uid": "600389", "doi": "10.15784/600389", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Critical Zone; Geochemistry; Noble Gas; Paleoclimate; Ross Ice Shelf; Ross Sea; Taylor Valley", "people": "Castro, M. Clara", "repository": "USAP-DC", "science_program": null, "title": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases", "url": "https://www.usap-dc.org/view/dataset/600389"}], "date_created": "Mon, 30 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eNoble gases in groundwater systems can indicate past climates in ice-free regions through estimation of noble gas temperatures. Traditional noble gas temperatures cannot be derived in ice-covered regions where water is not in contact with the atmosphere. The goal of the proposed work is to take advantage of noble gas properties in ice covered lakes at the ice/water interface to develop a new paleoclimate proxy with the potential to be routinely used in both polar and alpine glacial regions. The evolution of the Taylor Valley lakes is intimately connected to the dynamics of nearby glaciers, as well as the advance and retreat of the Ross Ice Shelf, both of which are dictated by climate change. The perennial ice cover of the lakes form at the water/ice interface and sublimate at the top rendering these lakes ideal to test and develop this new proxy. The proposed research involves conducting an extensive noble gas sampling campaign of lake water, stream water, ice covers and glacial ice. This data set, together with data continuously collected in the area will provide a solid basis to develop, test and refine mathematical models capable of accurately describing heavy noble gas concentration profiles as well as their overall inventory in the lakes over time. These will provide information on the occurrence of major climatic events while simultaneously providing temporal constraints on such events. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe findings of this work will be inserted into a new class that the PI has created at the University of Michigan targeted at non-science majors. It will create research opportunities for 1-2 undergraduates each year and will support a PhD student. The outcomes of this research could have strong societal relevance.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.733, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Castro, M. Clara; Doran, Peter; Kenig, Fabien", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases", "uid": "p0000388", "west": 162.167}, {"awards": "1340905 Doran, Peter", "bounds_geometry": "POLYGON((161 -77,161.3 -77,161.6 -77,161.9 -77,162.2 -77,162.5 -77,162.8 -77,163.1 -77,163.4 -77,163.7 -77,164 -77,164 -77.05,164 -77.1,164 -77.15,164 -77.2,164 -77.25,164 -77.3,164 -77.35,164 -77.4,164 -77.45,164 -77.5,163.7 -77.5,163.4 -77.5,163.1 -77.5,162.8 -77.5,162.5 -77.5,162.2 -77.5,161.9 -77.5,161.6 -77.5,161.3 -77.5,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3,161 -77.25,161 -77.2,161 -77.15,161 -77.1,161 -77.05,161 -77))", "dataset_titles": "Lake Bonney Autonomous Lake Profiler and Samplers (ALPS): Particulate Organic Carbon and Nitrogen Concentrations. doi:10.6073/pasta/0043c1728b4e51879970d59f2d0ce575", "datasets": [{"dataset_uid": "002521", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "Lake Bonney Autonomous Lake Profiler and Samplers (ALPS): Particulate Organic Carbon and Nitrogen Concentrations. doi:10.6073/pasta/0043c1728b4e51879970d59f2d0ce575", "url": "http://www.mcmlter.org/node/3957"}], "date_created": "Fri, 13 Jan 2017 00:00:00 GMT", "description": "EAGER: Collaborative Research: Habitability of Antarctic lakes and detectability of microbial life in icy environments by autonomous year-round instrumentation, is supported by the Antarctic Integrated System Science (AISS) and the Antarctic Organisms and Ecosystems (AOE) programs within the Antarctic Sciences section in the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will allow the measurement of year-round properties of the microbes and the surrounding water in Lake Bonney, a lake with four meters of permanent ice cover over forty meters of liquid water in the Dry Valleys of Antarctica. NSF funds will be used to support the deployment, and the science enabled by the deployment, and NASA (the National Aeronautics and Space Administration) funds will be used to purchase the equipment.\u003cbr/\u003e\u003cbr/\u003eIntellectual Merit: This research will be the first to make year-round measurements of the microbial community, and several associated environmental variables, in the continuously liquid portions of Lake Bonney, Antarctica. Three different types of equipment will be deployed in each of the lobes of Lake Bonney. The first instrument is an ITP (an ice-tethered profiler) that will measure physical parameters such as temperature, dissolved oxygen, and chlorophyll throughout the full depth of the liquid water portion of the lake, making measurements at least once each week. The second and third instruments will be used to collect discrete water samples at least every two weeks to determine A) the biological community (assessing metabolic and phylogenetic diversity) and B) the geochemistry (e.g., dissolved organic carbon, and dissolved inorganic nitrogen species). Such samplers have never been used to measure these properties year-round in the Antarctic. Cold temperatures, bottom lake water salinities that are four times greater than the ocean, the thick permanent ice cover, and the lack of sunlight to recharge batteries all present significant challenges for the project, thus classifying the work as an early, high-risk, high-reward activity (the acronym EAGER stands for Early-concept Grants for Exploratory Research).\u003cbr/\u003e\u003cbr/\u003eBroader Impacts: There is much interest in understanding the ecosystems of the Polar regions in an era of climate change. Logistical limitations dictate much of this work only take place in the summer, until new autonomous technologies can open the door for year-round measurements. This award will be the first to attempt year-round microbial sampling in Antarctica. The McMurdo Dry Valleys region is also the site of a Long-Term Ecological Research (LTER) Program, and the research conducted on this project with benefit from, and contribute to, the larger LTER project. The instruments used in the project will be purchased by NASA, so two separate agencies have agreed to explore the feasibility of an early stage project. There will be at least three graduate student trained during the project, and the team will also participate in outreach activities at several venues including the Crow Reservation in Montana.", "east": 164.0, "geometry": "POINT(162.5 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Doran, Peter; Takacs-Vesbach, Cristina; Priscu, John", "platforms": "Not provided", "repo": "LTER", "repositories": "LTER", "science_programs": "LTER", "south": -77.5, "title": "EAGER: Collaborative Research: Habitability of Antarctic Lakes and Detectability of Microbial Life in Icy Environments by Aautonomous Year-round Instrumentation", "uid": "p0000326", "west": 161.0}, {"awards": "0539578 Alley, Richard; 0539232 Cuffey, Kurt", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fitzpatrick, Joan; Cravens, Eric D.", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Alley, Richard; Fitzpatrick, Joan; Spencer, Matthew; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}, {"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Clow, Gary D.; Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fitzpatrick, Joan; Cravens, Eric D.", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": "POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235))", "dataset_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "datasets": [{"dataset_uid": "600387", "doi": "10.15784/600387", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "people": "Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "url": "https://www.usap-dc.org/view/dataset/600387"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.", "east": 166.280582, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.095235, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.139336, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "p0000424", "west": 166.280582}, {"awards": "1043576 Crockett, Elizabeth; 1043781 O\u0027Brien, Kristin", "bounds_geometry": "POLYGON((-64.45 -63.467,-64.2633 -63.467,-64.0766 -63.467,-63.8899 -63.467,-63.7032 -63.467,-63.5165 -63.467,-63.3298 -63.467,-63.1431 -63.467,-62.9564 -63.467,-62.7697 -63.467,-62.583 -63.467,-62.583 -63.5653,-62.583 -63.6636,-62.583 -63.7619,-62.583 -63.8602,-62.583 -63.9585,-62.583 -64.0568,-62.583 -64.1551,-62.583 -64.2534,-62.583 -64.3517,-62.583 -64.45,-62.7697 -64.45,-62.9564 -64.45,-63.1431 -64.45,-63.3298 -64.45,-63.5165 -64.45,-63.7032 -64.45,-63.8899 -64.45,-64.0766 -64.45,-64.2633 -64.45,-64.45 -64.45,-64.45 -64.3517,-64.45 -64.2534,-64.45 -64.1551,-64.45 -64.0568,-64.45 -63.9585,-64.45 -63.8602,-64.45 -63.7619,-64.45 -63.6636,-64.45 -63.5653,-64.45 -63.467))", "dataset_titles": "Electronic fishing logs; Expedition data of LMG1104; Redox Balance in Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "002687", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1104", "url": "https://www.rvdata.us/search/cruise/LMG1104"}, {"dataset_uid": "600382", "doi": "10.15784/600382", "keywords": "Antarctica; Antarctic Peninsula; Biota; Fish; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "O\u0027Brien, Kristin", "repository": "USAP-DC", "science_program": null, "title": "Redox Balance in Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600382"}, {"dataset_uid": "600390", "doi": "10.15784/600390", "keywords": "Antarctica; Biota; Southern Ocean", "people": "Crockett, Elizabeth", "repository": "USAP-DC", "science_program": null, "title": "Electronic fishing logs", "url": "https://www.usap-dc.org/view/dataset/600390"}], "date_created": "Tue, 06 Dec 2016 00:00:00 GMT", "description": "Antarctic channichthyid icefishes are stunning examples of the unique physiological traits that can arise during evolution in a constantly cold environment. Icefishes are the only vertebrates that as adults, lack the circulating oxygen-binding protein hemoglobin (Hb); several species within this family also lack the intracellular oxygen-binding protein myoglobin (Mb) in their heart ventricle. The loss of Hb and Mb has resulted in striking modifications in the cardiovascular system to ensure adequate tissue oxygenation, some of which are energetically costly. Recent indicate there may be at least one benefit to not expressing these heme-centered proteins - oxidized proteins and lipids are higher in red-blooded notothenioids compared to icefishes. The research will address the hypothesis that the loss of Hb and Mb reduces oxidative stress in icefishes compared to red-blooded notothenioid fishes, resulting in a lower rate of protein turnover and energetic cost savings. Specifically, the project will (1) Characterize levels of oxidative stress in red- and white-blooded notothenioid fishes, (2) Determine if red- and white-blooded notothenioids differ in their regulation of iron, (3) Determine if lower levels of oxidized proteins in icefishes result in lower rates of protein turnover and energetic cost savings, and (4) Determine if oxygen-binding proteins promote oxidative stress in-vivo and in-vitro.\u003cbr/\u003e\u003cbr/\u003eThe results will contribute to the understanding of iron-catalyzed oxidative stress, which is associated with the progression of Alzheimer\u0027s, Parkinson\u0027s and cardiovascular diseases. Moreover, the research will increase understanding of factors related to iron metabolism and oxidative stress in notothenioid fishes that may have played key roles in the success of channichthyid icefishes. The broader impacts include development of a website will enable teachers and students to learn more about the fascinating biology of Antarctic icefishes, as well as the impacts of global climate change and commercial fishing activities on Antarctic fishes. Additionally, Alaska Native high school and undergraduate students will be involved in research at the University of Alaska, Fairbanks.", "east": -62.583, "geometry": "POINT(-63.5165 -63.9585)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -63.467, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Crockett, Elizabeth; O\u0027Brien, Kristin", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.45, "title": "Collaborative research: Redox Balance in Antarctic Notothenioid fishes: Do Icefishes have an Advantage?", "uid": "p0000320", "west": -64.45}, {"awards": "0944794 Winberry, J. Paul; 0944671 Wiens, Douglas", "bounds_geometry": "POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7))", "dataset_titles": "Geophysical Study of Ice Stream Stick Slip; Whillans Ice Stream Stick-slip", "datasets": [{"dataset_uid": "000169", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Geophysical Study of Ice Stream Stick Slip", "url": "http://ds.iris.edu/mda/2C/?timewindow=2010-2011"}, {"dataset_uid": "609632", "doi": "10.7265/N5PC309V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Whillans Ice Stream", "people": "Alley, Richard; Wiens, Douglas; Anandakrishnan, Sridhar; Winberry, Paul", "repository": "USAP-DC", "science_program": null, "title": "Whillans Ice Stream Stick-slip", "url": "https://www.usap-dc.org/view/dataset/609632"}], "date_created": "Wed, 16 Nov 2016 00:00:00 GMT", "description": "This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth\u0027s response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.", "east": -152.0, "geometry": "POINT(-157.5 -84.2)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; Geodesy; GROUND-BASED OBSERVATIONS; Not provided; Seismic; Geodetic Gps Data", "locations": "West Antarctic Ice Sheet", "north": -83.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -84.7, "title": "Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics", "uid": "p0000053", "west": -163.0}, {"awards": "1043517 Clark, Peter; 1043018 Pollard, David; 1043485 Curtice, Josh", "bounds_geometry": "POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57))", "dataset_titles": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea; Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "datasets": [{"dataset_uid": "609639", "doi": "10.7265/N5NC5Z53", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "url": "https://www.usap-dc.org/view/dataset/609639"}, {"dataset_uid": "600123", "doi": "10.15784/600123", "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "people": "Kurz, Mark D.; Curtice, Josh", "repository": "USAP-DC", "science_program": null, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600123"}], "date_created": "Sat, 15 Oct 2016 00:00:00 GMT", "description": "1043517/Clark\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", "east": 165.35, "geometry": "POINT(164.425 -77.945)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "Ocean Depth; Not provided; Bed Elevation; Model Output; Sea Level Rise; Surface Accumulation Rate; Surface Melt Rate; Ocean Melt Rate; Total Ice Volume; Modeling; Calving Rate; Total Ice Area; LABORATORY", "locations": null, "north": -77.57, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.32, "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "p0000194", "west": 163.5}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Resampling of Deep Polar Ice Cores using Information Theory; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; WAIS Divide Ice Core Discrete CH4 (80-3403m)", "datasets": [{"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Morris, Valerie; Bradley, Elizabeth; Price, Michael; Garland, Joshua; White, James; Vaughn, Bruce; Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}, {"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601365", "doi": "10.15784/601365", "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Vaughn, Bruce; White, James; Morris, Valerie; Garland, Joshua", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Resampling of Deep Polar Ice Cores using Information Theory", "url": "https://www.usap-dc.org/view/dataset/601365"}, {"dataset_uid": "600169", "doi": "10.15784/600169", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/600169"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}], "date_created": "Thu, 15 Sep 2016 00:00:00 GMT", "description": "Steig/1043092\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "White, James; Vaughn, Bruce; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000078", "west": -112.08}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": "POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))", "dataset_titles": "Climate Change and Predatory Invasion of the Antarctic Benthos; Expedition Data; Material properties of the exoskeleton of Paralomis birsteini", "datasets": [{"dataset_uid": "600385", "doi": "10.15784/600385", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600385"}, {"dataset_uid": "601109", "doi": "10.15784/601109", "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "people": "Steffel, Brittan", "repository": "USAP-DC", "science_program": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "url": "https://www.usap-dc.org/view/dataset/601109"}, {"dataset_uid": "600171", "doi": "10.15784/600171", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600171"}, {"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}], "date_created": "Wed, 14 Sep 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": "POINT(-82.425 -64.21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -49.98, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Aronson, Richard", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -78.44, "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "p0000303", "west": -111.18}, {"awards": "1043580 Reusch, David", "bounds_geometry": "POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))", "dataset_titles": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "datasets": [{"dataset_uid": "600166", "doi": "10.15784/600166", "keywords": "Antarctica; Atmosphere; Climate Model; Meteorology; Surface Melt", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600166"}, {"dataset_uid": "600386", "doi": "10.15784/600386", "keywords": "Antarctica; Atmosphere; Atmospheric Model; Climate Model; Meteorology; Paleoclimate", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600386"}], "date_created": "Thu, 28 Jul 2016 00:00:00 GMT", "description": "The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. \u003cbr/\u003e\u003cbr/\u003eUsing contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. \u003cbr/\u003e\u003cbr/\u003eThe previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Reusch, David; Lampkin, Derrick", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "p0000447", "west": -180.0}, {"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": "POINT(175 -86)", "dataset_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "datasets": [{"dataset_uid": "600156", "doi": "10.15784/600156", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Hasiotis, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600156"}], "date_created": "Fri, 03 Jun 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": "POINT(175 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -86.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hasiotis, Stephen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "p0000423", "west": 175.0}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "datasets": [{"dataset_uid": "600159", "doi": "10.15784/600159", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "people": "Chen, Jianli", "repository": "USAP-DC", "science_program": null, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "url": "https://www.usap-dc.org/view/dataset/600159"}], "date_created": "Fri, 13 May 2016 00:00:00 GMT", "description": "1043750/Chen\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e GRACE LRR", "is_usap_dc": true, "keywords": "SATELLITES; GRACE; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chen, Jianli; Wilson, Clark; Blankenship, Donald D.; Tapley, Byron", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e NASA EARTH SYSTEM SCIENCE PATHFINDER \u003e GRACE; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "p0000415", "west": -180.0}, {"awards": "1043518 Brook, Edward J.", "bounds_geometry": "POINT(-112.08648 -79.46763)", "dataset_titles": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP; Early Holocene methane records from Siple Dome, Antarctica; Methan record", "datasets": [{"dataset_uid": "000176", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Methan record", "url": "https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core"}, {"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Ahn, Jinho; Yang, Ji-Woong", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}, {"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Ahn, Jinho; Yang, Ji-Woong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}, {"dataset_uid": "609628", "doi": "10.7265/N5JM27K4", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Rhodes, Rachel; McConnell, Joseph; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP", "url": "https://www.usap-dc.org/view/dataset/609628"}], "date_created": "Tue, 12 Jan 2016 00:00:00 GMT", "description": "1043500/Sowers\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 50 yr resolution methane data set that will play a pivotal role in developing the WAIS Divide timescale as well as providing a common stratigraphic framework for comparing climate records from Greenland and West Antarctica. Even higher resolution data are proposed for key intervals to assist in precisely defining the phasing of abrupt climate change between the hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP-2 cores throughout the last 110,000 years is also proposed, to establish the interpolar methan (CH4) gradient that will be used to identify geographic areas responsible for the climate related methane emission changes. The intellectual merit of the proposed work is that it will provide chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. One main objective is to understand the interpolar timing of millennial-scale climate change. This is an important scientific goal relevant to understanding climate change mechanisms in general. The proposed work will help establish a chronological framework for addressing these issues. In addition, this proposal addresses the question of what methane sources were active during the ice age, through the work on the interpolar methane gradient. This work is directed at the fundamental question of what part of the biosphere controlled past methane variations, and is important for developing more sophisticated understanding of those variations. The broader impacts of the work are that the ultra-high resolution CH4 record will directly benefit all ice core paleoclimate research and the chronological refinements will impact paleoclimate studies that rely on ice core timescales for correlation purposes. The project will support both graduate and undergraduate students and the PIs will participate in outreach to the public.", "east": -112.08648, "geometry": "POINT(-112.08648 -79.46763)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "WAIS Divide; Not provided; LABORATORY; Wais Divide-project; Methane Concentration", "locations": "WAIS Divide", "north": -79.46763, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Rhodes, Rachel; Brook, Edward J.; McConnell, Joseph", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCEI", "repositories": "NCEI; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46763, "title": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core", "uid": "p0000185", "west": -112.08648}, {"awards": "1142018 Arrigo, Kevin", "bounds_geometry": "POLYGON((-75.8 -61.08,-74.457 -61.08,-73.114 -61.08,-71.771 -61.08,-70.428 -61.08,-69.085 -61.08,-67.742 -61.08,-66.399 -61.08,-65.056 -61.08,-63.713 -61.08,-62.37 -61.08,-62.37 -61.684,-62.37 -62.288,-62.37 -62.892,-62.37 -63.496,-62.37 -64.1,-62.37 -64.704,-62.37 -65.308,-62.37 -65.912,-62.37 -66.516,-62.37 -67.12,-63.713 -67.12,-65.056 -67.12,-66.399 -67.12,-67.742 -67.12,-69.085 -67.12,-70.428 -67.12,-71.771 -67.12,-73.114 -67.12,-74.457 -67.12,-75.8 -67.12,-75.8 -66.516,-75.8 -65.912,-75.8 -65.308,-75.8 -64.704,-75.8 -64.1,-75.8 -63.496,-75.8 -62.892,-75.8 -62.288,-75.8 -61.684,-75.8 -61.08))", "dataset_titles": "Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems; Expedition Data", "datasets": [{"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}, {"dataset_uid": "600161", "doi": "10.15784/600161", "keywords": "Antarctica; Antarctic Peninsula; Biota; Chlorophyll; CTD Data; NBP1310; NBP1409; Oceans; Physical Oceanography; Phytoplankton; Sea Surface; Southern Ocean", "people": "Arrigo, Kevin", "repository": "USAP-DC", "science_program": null, "title": "Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600161"}], "date_created": "Mon, 11 Jan 2016 00:00:00 GMT", "description": "Global climate change is having significant effects on areas of the Southern Ocean, and a better understanding of this ecosystem will permit predictions about the large-scale implications of these shifts. The haptophyte Phaeocystis antarctica is an important component of the phytoplankton communities in this region, but little is known about the factors controlling its distribution. Preliminary data suggest that P. antarctica posses unique adaptations that allow it to thrive in regions with dynamic light regimes. This research will extend these results to identify the physiological and genetic mechanisms that affect the growth and distribution of P. antarctica. This work will use field and laboratory-based studies and a suite of modern molecular techniques to better understand the biogeography and physiology of this key organism. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of two graduate students and will foster an established international collaboration with Dutch scientists. Researchers on this project will participate in outreach programs targeting K12 teachers as well as high school students.", "east": -62.37, "geometry": "POINT(-69.085 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -61.08, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Arrigo, Kevin", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.12, "title": "Collaborative Research: Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "uid": "p0000446", "west": -75.8}, {"awards": "0944141 Ballard, Grant; 0944358 Dugger, Katie; 0944411 Ainley, David", "bounds_geometry": "POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9))", "dataset_titles": "Adelie penguin banding data 1994-2009; Adelie penguin chick counts 1997-2009; Adelie penguin chick measurements 1996 - 2009; Adelie penguin diet data 1996 - 2009; Adelie penguin dive data 1999-2009; Adelie penguin Geolocation Sensor data 2003-2007; Adelie penguin resighting data 1997-2009; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin satellite position data 2000-2009; Adelie penguin weighbridge data 1994-2009; Daily weather observations 1996-2009; Leopard Seal counts 1997-2009; PRBO/California Avian Data Center (CADC)", "datasets": [{"dataset_uid": "600007", "doi": "", "keywords": "Biota", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin chick counts 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600007"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "000154", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "PRBO/California Avian Data Center (CADC)", "url": "http://data.prbo.org/apps/penguinscience/"}, {"dataset_uid": "600005", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2009", "url": "https://www.usap-dc.org/view/dataset/600005"}, {"dataset_uid": "600006", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin chick measurements 1996 - 2009", "url": "https://www.usap-dc.org/view/dataset/600006"}, {"dataset_uid": "600008", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin diet data 1996 - 2009", "url": "https://www.usap-dc.org/view/dataset/600008"}, {"dataset_uid": "600009", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin Geolocation Sensor data 2003-2007", "url": "https://www.usap-dc.org/view/dataset/600009"}, {"dataset_uid": "600010", "doi": "", "keywords": "Biota; Oceans", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal counts 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600010"}, {"dataset_uid": "600011", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2009", "url": "https://www.usap-dc.org/view/dataset/600011"}, {"dataset_uid": "600012", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin satellite position data 2000-2009", "url": "https://www.usap-dc.org/view/dataset/600012"}, {"dataset_uid": "600013", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin dive data 1999-2009", "url": "https://www.usap-dc.org/view/dataset/600013"}, {"dataset_uid": "600014", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin weighbridge data 1994-2009", "url": "https://www.usap-dc.org/view/dataset/600014"}, {"dataset_uid": "600015", "doi": "", "keywords": null, "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Daily weather observations 1996-2009", "url": "https://www.usap-dc.org/view/dataset/600015"}], "date_created": "Sun, 13 Dec 2015 00:00:00 GMT", "description": "While changes in populations typically are tracked to gauge the impact of climate or habitat change, the process involves the response of individuals as each copes with an altered environment. In a study of Adelie penguins that spans 13 breeding seasons, results indicate that only 20% of individuals within a colony successfully raise offspring, and that they do so because of their exemplary foraging proficiency. Moreover, foraging appears to require more effort at the largest colony, where intraspecific competition is higher than at small colonies, and also requires more proficiency during periods of environmental stress. When conditions are particularly daunting, emigration dramatically increases, countering the long-standing assumption that Ad\u00e9lie penguins are highly philopatric. The research project will 1) determine the effect of age, experience and physiology on individual foraging efficiency; 2) determine the effect of age, experience, and individual quality on breeding success and survival in varying environmental and competitive conditions at the colony level; and 3) develop a comprehensive model for the Ross-Beaufort Island metapopulation dynamics. Broader impacts include training of interns, continuation of public outreach through the highly successful project website penguinscience.com, development of classroom materials and other standards-based instructional resources.", "east": 169.4, "geometry": "POINT(167.65 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Dugger, Katie; Ballard, Grant", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "CADC; USAP-DC", "science_programs": null, "south": -77.6, "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "uid": "p0000318", "west": 165.9}, {"awards": "1042883 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives; Roosevelt Island Climate Evolution Ice Core ICP-MS data", "datasets": [{"dataset_uid": "609621", "doi": "10.7265/N52J68SQ", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Roosevelt Island; Ross Ice Shelf", "people": "Mayewski, Paul A.; Kurbatov, Andrei V.; Beers, Thomas M.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Climate Evolution Ice Core ICP-MS data", "url": "https://www.usap-dc.org/view/dataset/609621"}, {"dataset_uid": "609636", "doi": "10.7265/N5WS8R6H", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Mayewski, Paul A.; Haines, Skylar; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives", "url": "https://www.usap-dc.org/view/dataset/609636"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "1042883/Mayewski\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Haines, Skylar; Kurbatov, Andrei V.; Mayewski, Paul A.; Beers, Thomas M.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)", "uid": "p0000193", "west": null}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Egg membrane and chick feather THg concentration and stable isotope composition; Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "datasets": [{"dataset_uid": "600145", "doi": "10.15784/600145", "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "people": "Patterson, William; Emslie, Steven; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "url": "https://www.usap-dc.org/view/dataset/600145"}, {"dataset_uid": "601459", "doi": "10.15784/601459", "keywords": "Adelie Penguin; Antarctica; Antarctic Peninsula; Mercury; Penguin", "people": "McKenzie, Ashley", "repository": "USAP-DC", "science_program": null, "title": "Egg membrane and chick feather THg concentration and stable isotope composition", "url": "https://www.usap-dc.org/view/dataset/601459"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; USAP-DC; FIELD INVESTIGATION; Amd/Us", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Emslie, Steven; Polito, Michael; Patterson, William", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "p0000317", "west": -180.0}, {"awards": "1245821 Brook, Edward J.; 1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}, {"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Dyonisius, Michael; Menking, James; Brook, Edward J.; Schilt, Adrian; Shackleton, Sarah; Severinghaus, Jeffrey P.; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Petrenko, Vasilii; Dyonisius, Michael", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Barker, Stephen; Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Marcott, Shaun; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Dyonisius, Michael; Barker, Stephen; Petrenko, Vasilii; Brook, Edward J.; Menking, Andy; Buffen, Aron; Bauska, Thomas; Shackleton, Sarah; Menking, James; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "1043522 Brook, Edward J.; 1043421 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": "WAIS Divide Replicate Core Methane Isotopic Data Set", "datasets": [{"dataset_uid": "601059", "doi": "10.15784/601059", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Replicate Core Methane Isotopic Data Set", "url": "https://www.usap-dc.org/view/dataset/601059"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1043421/Severinghaus\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed \"replicate coring\". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs\u0027 activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Core Gas Records; Firn Air Isotopes; LABORATORY; FIELD SURVEYS; Mass Spectrometry; Not provided; FIELD INVESTIGATION; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest", "uid": "p0000751", "west": -112.09}, {"awards": "1332492 Lohmann, Rainer", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "datasets": [{"dataset_uid": "600138", "doi": "10.15784/600138", "keywords": "Animal Tracking; Antarctica; Antarctic Peninsula; Atmosphere; Biota; Chemistry:fluid; Chemistry:Fluid; Human Dimensions; McMurdo Sound; Oceans; Palmer Station; Pollution; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean; Weddell Sea", "people": "Lohmann, Rainer", "repository": "USAP-DC", "science_program": null, "title": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "url": "https://www.usap-dc.org/view/dataset/600138"}], "date_created": "Tue, 09 Jun 2015 00:00:00 GMT", "description": "Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lohmann, Rainer", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB", "uid": "p0000344", "west": -180.0}, {"awards": "1321782 Costa, Daniel", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "datasets": [{"dataset_uid": "600137", "doi": "10.15784/600137", "keywords": "Animal Tracking; Antarctica; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "url": "https://www.usap-dc.org/view/dataset/600137"}], "date_created": "Wed, 03 Jun 2015 00:00:00 GMT", "description": "Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their \"hot-spots\" and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "uid": "p0000346", "west": -180.0}, {"awards": "1246484 Balco, Gregory", "bounds_geometry": "POLYGON((-62 -63.5,-61.8 -63.5,-61.6 -63.5,-61.4 -63.5,-61.2 -63.5,-61 -63.5,-60.8 -63.5,-60.6 -63.5,-60.4 -63.5,-60.2 -63.5,-60 -63.5,-60 -63.6,-60 -63.7,-60 -63.8,-60 -63.9,-60 -64,-60 -64.1,-60 -64.2,-60 -64.3,-60 -64.4,-60 -64.5,-60.2 -64.5,-60.4 -64.5,-60.6 -64.5,-60.8 -64.5,-61 -64.5,-61.2 -64.5,-61.4 -64.5,-61.6 -64.5,-61.8 -64.5,-62 -64.5,-62 -64.4,-62 -64.3,-62 -64.2,-62 -64.1,-62 -64,-62 -63.9,-62 -63.8,-62 -63.7,-62 -63.6,-62 -63.5))", "dataset_titles": "Data repositories for UC-Berkeley/BGC thermochronometry and thermochronology research", "datasets": [{"dataset_uid": "001232", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data repositories for UC-Berkeley/BGC thermochronometry and thermochronology research", "url": "http://noblegas.berkeley.edu/~noblegas/datarepository.html"}], "date_created": "Mon, 02 Mar 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PIs propose to use the (U-Th)/He system in apatite to investigate the exhumation history, development of the present topography, and pattern of glacial erosion in the central Antarctic Peninsula. The Antarctic Peninsula has been glaciated since the Eocene and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. To achieve these goals, the PIs will use a thermochronometric record of when and how the present glacial valley relief formed. A challenge to the proposed research is that, unlike Pleistocene glacial landscapes in temperate areas, the Peninsula is ice-covered and it is not possible to directly sample the bedrock surface. The PIs hope to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. Learning how the Antarctic Peninsula landscape formed is important to discern how the mechanics of glacial erosion operate on long time scales, and to understand how glaciers mediate the interaction between climate change and orogenic mass balance. This work addresses a fundamental question in Antarctic earth science of how to infer geologic and geomorphic processes active on an ice-covered and inaccessible landscape.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal will bring new researchers into the Antarctic research community. A proposed collaboration with British Antarctic Survey researchers will build an international collaboration. The outcomes of this project have ancillary importance to other fields and addresses fundamental challenges in Antarctic Earth Science.", "east": -60.0, "geometry": "POINT(-61 -64)", "instruments": null, "is_usap_dc": false, "keywords": "Antarctica; Not provided; ICE SHEETS; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shuster, David; Balco, Gregory", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -64.5, "title": "Antarctic Peninsula Exhumation and Landscape Development Investigated by Low-temperature Detrital Thermochronometry", "uid": "p0000067", "west": -62.0}, {"awards": "0944556 Barrett, John", "bounds_geometry": "POLYGON((160.6015 -76.9089,161.7382 -76.9089,162.8749 -76.9089,164.0116 -76.9089,165.1483 -76.9089,166.285 -76.9089,167.4217 -76.9089,168.5584 -76.9089,169.6951 -76.9089,170.8318 -76.9089,171.9685 -76.9089,171.9685 -77.73527,171.9685 -78.56164,171.9685 -79.38801,171.9685 -80.21438,171.9685 -81.04075,171.9685 -81.86712,171.9685 -82.69349,171.9685 -83.51986,171.9685 -84.34623,171.9685 -85.1726,170.8318 -85.1726,169.6951 -85.1726,168.5584 -85.1726,167.4217 -85.1726,166.285 -85.1726,165.1483 -85.1726,164.0116 -85.1726,162.8749 -85.1726,161.7382 -85.1726,160.6015 -85.1726,160.6015 -84.34623,160.6015 -83.51986,160.6015 -82.69349,160.6015 -81.86712,160.6015 -81.04075,160.6015 -80.21438,160.6015 -79.38801,160.6015 -78.56164,160.6015 -77.73527,160.6015 -76.9089))", "dataset_titles": "Ecosphere (Supplement), Ecological Society of America.", "datasets": [{"dataset_uid": "002538", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Ecosphere (Supplement), Ecological Society of America.", "url": "http://www.esapubs.org/archive/ecos/C004/014/suppl-1.php"}], "date_created": "Fri, 13 Feb 2015 00:00:00 GMT", "description": "Advances in molecular techniques have expanded our understanding of soil microbial communities, and raised important questions about regional and global patterns in microbial diversity. The proposed research will investigate the composition and activity of microbial communities across a range of geochemical and hydrologic soil conditions, and over local to regional scales in the Transantarctic Mountains, in order to assess controls over microbial biogeography. The research targets two areas in the Transantarctic mountains, the McMurdo Dry Valleys, and the Beardmore Glacier region further south, the latter representing an underexplored and inarguably more extreme soil environment. The research project will adopt an integrated approach, using molecular techniques and in situ assessment of biological activity in a quantitative biogeographical framework, with the goal of distinguishing fine versus broad scale controls over microbial community structure. The research is essential to determining the basic trophic status of extreme microbial food webs, and their sensitivity to climate change. The investigators will engage secondary and post-secondary educators through first person outreach as well as web-based communications and exercises. Two postdoctoral scientists will be trained in an interdisciplinary and international setting.", "east": 171.9685, "geometry": "POINT(166.285 -81.04075)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.9089, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John", "platforms": "Not provided", "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -85.1726, "title": "Collaborative Research: Controls over the Spatial Distribution and Activity of Microbial Communities in Antarctic Soils", "uid": "p0000350", "west": 160.6015}, {"awards": "0944087 Hamilton, Gordon", "bounds_geometry": "POLYGON((145 -80,147 -80,149 -80,151 -80,153 -80,155 -80,157 -80,159 -80,161 -80,163 -80,165 -80,165 -80.035,165 -80.07,165 -80.105,165 -80.14,165 -80.175,165 -80.21,165 -80.245,165 -80.28,165 -80.315,165 -80.35,163 -80.35,161 -80.35,159 -80.35,157 -80.35,155 -80.35,153 -80.35,151 -80.35,149 -80.35,147 -80.35,145 -80.35,145 -80.315,145 -80.28,145 -80.245,145 -80.21,145 -80.175,145 -80.14,145 -80.105,145 -80.07,145 -80.035,145 -80))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Jan 2015 00:00:00 GMT", "description": "This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier\u0027s flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society\u0027s need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.", "east": 165.0, "geometry": "POINT(155 -80.175)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "Sea Level Rise; FIELD INVESTIGATION; Glacier; LABORATORY; Outlet Glaciers; Boundary Conditions; Model; Numerical Model; FIELD SURVEYS; Antarctica; COMPUTERS; Not provided; Flow Dynamics", "locations": "Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stearns, Leigh; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -80.35, "title": "Collaborative Research: Byrd Glacier Flow Dynamics", "uid": "p0000319", "west": 145.0}, {"awards": "0632136 Nyblade, Andrew; 0632322 Wilson, Terry", "bounds_geometry": "POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70))", "dataset_titles": "Incorporated Research Institutions for Seismology (IRIS); University NAVSTAR Consortium (UNAVCO)", "datasets": [{"dataset_uid": "000131", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "University NAVSTAR Consortium (UNAVCO)", "url": "http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#groupingMod=contains;grouping=POLENET%20-%20ANET;scope=Station;sampleRate=normal"}, {"dataset_uid": "000132", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology (IRIS)", "url": "http://www.iris.edu/mda/YT?timewindow=2007-2018"}], "date_created": "Thu, 22 Jan 2015 00:00:00 GMT", "description": "This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet\u0027s current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth\u0027s deep interior and core through its location in the Earth\u0027s poorly instrumented southern hemisphere. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eBroader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.", "east": 170.0, "geometry": "POINT(75 -80)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctica; Bedrock; Ice/Rock Interface; Climate Change; Seismic; West Antarctic Ice Sheet; FIELD SURVEYS; LABORATORY; Not provided; FIELD INVESTIGATION; Mass Balance; COMPUTERS; Sub-Ice Sheet Geology; Sea Level; Terrestrial Heat Flux", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "UNAVCO", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets", "uid": "p0000315", "west": -20.0}, {"awards": "1447291 Place, Sean; 1040945 Place, Sean; 1040957 Sarmiento, Jorge", "bounds_geometry": "POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))", "dataset_titles": "Does the strength of the carbonate pump change with ocean stratification and acidification and how? Project data; NCBI GenBank RNA sequences, Pagothenia borchgrevinki; NCBI GenBank RNA sequences, Trematomus bernacchii; NCBI GenBank RNA sequences, Trematomus newnesi; NCBI links to BioProjects of total RNA isolated from Trematomus bernacchii gill tissues acclimated to elevated temperature and pCO2, July 2015", "datasets": [{"dataset_uid": "000184", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus bernacchii", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289753"}, {"dataset_uid": "000186", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus newnesi", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294787"}, {"dataset_uid": "000185", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Pagothenia borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294774"}, {"dataset_uid": "000219", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Does the strength of the carbonate pump change with ocean stratification and acidification and how? Project data", "url": "http://www.bco-dmo.org/project/521216"}, {"dataset_uid": "000166", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "NCBI links to BioProjects of total RNA isolated from Trematomus bernacchii gill tissues acclimated to elevated temperature and pCO2, July 2015", "url": "http://www.bco-dmo.org/dataset/665853"}, {"dataset_uid": "000165", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus newnesi", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294787"}, {"dataset_uid": "000164", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Pagothenia borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294774"}, {"dataset_uid": "000163", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank RNA sequences, Trematomus bernacchii", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA289753"}], "date_created": "Mon, 12 Jan 2015 00:00:00 GMT", "description": "The proposed research will investigate the interacting and potentially synergistic influence of two oceanographic features - ocean acidification and the projected rise in mean sea surface temperature - on the performance of Notothenioids, the dominant fish of the Antarctic marine ecosystem. Understanding the joint effects of acidification and temperature rise on these fish is a vital component of predicting the resilience of coastal marine ecosystems. Notothenioids have repeatedly displayed a narrow window of physiological tolerances when subjected to abiotic stresses. Given that evolutionary adaptation may have led to finely-tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs associated with acclimation to the multi-stressor environment expected from future atmospheric CO2 projections. Understanding these trade-offs will provide valuable insight into the capacity species have for responses to climate change via phenotypic plasticity. As an extension to functional measurements, this study will use evolutionary approaches to map variation in physiological responses onto the phylogeny of these fishes and the genetic diversity within species. These approaches offer insight into the historical constraints and future potential for evolutionary optimization. The research will significantly expand the genomic resources available to polar researchers and will support the training of graduate students and a post doc at an EPSCoR institution. Research outcomes will be incorporated into classroom curriculum.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": 90.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Place, Sean; Sarmiento, Jorge; Dudycha, Jeffry; Kwon, Eun-Young", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "BCO-DMO; NCBI GenBank", "science_programs": null, "south": -90.0, "title": "Ocean Acidification Category 1: Identifying Adaptive Responses of Polar Fishes in a Vulnerable Ecosystem", "uid": "p0000006", "west": -180.0}, {"awards": "0944201 Hofmann, Gretchen", "bounds_geometry": "POLYGON((-180 -68,-177 -68,-174 -68,-171 -68,-168 -68,-165 -68,-162 -68,-159 -68,-156 -68,-153 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "datasets": [{"dataset_uid": "600112", "doi": "10.15784/600112", "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "people": "Hofmann, Gretchen", "repository": "USAP-DC", "science_program": null, "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "url": "https://www.usap-dc.org/view/dataset/600112"}], "date_created": "Tue, 23 Dec 2014 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe research examine the effects of ocean acidification on embryos and larvae of a contemporary calcifier in the coastal waters of Antarctica, the sea urchin Sterechinus neumayeri. The effect of future ocean acidification is projected to be particularly threatening to calcifying marine organisms in coldwater, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. Due to a high magnesium (Mg) content of their calcitic hard parts, echinoderms are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Thus, cold-water, high latitude species with a high Mg-content in their hard parts are considered to be the \u0027first responders\u0027 to chemical changes in the surface oceans. Studies in this proposal will use several metrics to examine the physiological plasticity of contemporary urchin embryos and larvae to CO2-acidified seawater, to mimic the scenarios defined by IPCC models and by analyses of future acidification predicted for the Southern Ocean. The research also will investigats the biological consequences of synergistic interactions of two converging climate change-related stressors - CO2- driven ocean acidification and ocean warming. Specifically the research will (1) assess the effect of CO2-acidified seawater on the development of early embryos and larvae, (2) using morphometrics, examine changes in the larval endoskeleton in response to development under the high-CO2 conditions of ocean acidification, (3) using a DNA microarray, profile changes in gene expression for genes involved in biomineralization and other important physiological processes, and (4) measure costs and physiological consequences of development under conditions of ocean acidification. The proposal will support the training of undergraduates, graduate students and a postdoctoral fellow. The PI also will collaborate with the UC Santa Barbara Gevirtz Graduate School of Education to link the biological effects of ocean acidification to the chemical changes expected for the Southern Ocean using the \u0027Science on a Sphere\u0027 technology. This display will be housed in an education and public outreach center, the Outreach Center for Teaching Ocean Science (OCTOS), a new state-of-the-art facility under construction at UC Santa Barbara.", "east": -150.0, "geometry": "POINT(-175 -73)", "instruments": null, "is_usap_dc": true, "keywords": "MOORINGS", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hofmann, Gretchen", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e MOORINGS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "uid": "p0000352", "west": 160.0}, {"awards": "0838843 Kurbatov, Andrei; 0838849 Bender, Michael", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "1043167 White, James; 1043092 Steig, Eric", "bounds_geometry": null, "dataset_titles": "17O excess from WAIS Divide, 0 to 25 ka BP; WAIS Divide Ice Core Discrete CH4 (80-3403m); WAIS Divide WDC06A Oxygen Isotope Record", "datasets": [{"dataset_uid": "609629", "doi": "10.7265/N5GT5K41", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Oxygen Isotope Record", "url": "https://www.usap-dc.org/view/dataset/609629"}, {"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601413", "doi": "10.15784/601413", "keywords": "Antarctica; Ice Core; Oxygen Isotope; WAIS Divide", "people": "Schoenemann, Spruce; Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "17O excess from WAIS Divide, 0 to 25 ka BP", "url": "https://www.usap-dc.org/view/dataset/601413"}], "date_created": "Sat, 06 Dec 2014 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "AMD; ANALYTICAL LAB; USAP-DC; Amd/Us; LABORATORY; ICE CORE RECORDS; Antarctica; Wais Divide-project; FIELD SURVEYS; USA/NSF", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000010", "west": null}, {"awards": "0944220 Ponganis, Paul", "bounds_geometry": "POLYGON((-180 -68,-147 -68,-114 -68,-81 -68,-48 -68,-15 -68,18 -68,51 -68,84 -68,117 -68,150 -68,150 -69,150 -70,150 -71,150 -72,150 -73,150 -74,150 -75,150 -76,150 -77,150 -78,117 -78,84 -78,51 -78,18 -78,-15 -78,-48 -78,-81 -78,-114 -78,-147 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "datasets": [{"dataset_uid": "600113", "doi": "10.15784/600113", "keywords": "Antarctica; Biota; Electrocardiogram; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "url": "https://www.usap-dc.org/view/dataset/600113"}], "date_created": "Mon, 24 Nov 2014 00:00:00 GMT", "description": "Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.", "east": 150.0, "geometry": "POINT(-25 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "uid": "p0000349", "west": 160.0}, {"awards": "1043532 Grzymski, Joseph", "bounds_geometry": "POINT(-64 -64.7)", "dataset_titles": "NCBI GenBank Sequences# PRJNA244317, PRJNA242746", "datasets": [{"dataset_uid": "000168", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI GenBank Sequences# PRJNA244317, PRJNA242746", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Mon, 08 Sep 2014 00:00:00 GMT", "description": "The proposed research will investigate the genomic basis of the physiological and ecological transition of Antarctic marine phytoplankton from a cold dark winter to a warmer, brighter spring. During a field season at Palmer Station, functional genomics (using next generation sequencing technology to identify expressed genes) and in situ fluorometry (FRRF) will be integrated with classical ecological methods to investigate photosynthetic adaptation during phytoplankton species succession from late winter into spring. Using large data sets, this project will test whether amino acid usages differ based on expression. The specific objectives are (1) To characterize phytoplankton succession from the winter to spring transition, and (2) To correlate community gene expression profiles to adaptational differences among taxa. Broader impacts include training of a post doctoral researcher and two undergraduate science majors, with efforts to attract students from underrepresented groups. The P.I.s also will prepare presentations for the public, regarding research experiences, research results, and the importance of climate change.", "east": -64.0, "geometry": "POINT(-64 -64.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -64.7, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Grzymski, Joseph", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -64.7, "title": "Collaborative Research: Functional Genomics and Physiological Ecology of Seasonal Succession in Antarctic Phytoplankton: Adaptations to Light and Temperature", "uid": "p0000462", "west": -64.0}, {"awards": "1354231 Kowalewski, Douglas", "bounds_geometry": "POLYGON((-180 -70,-174 -70,-168 -70,-162 -70,-156 -70,-150 -70,-144 -70,-138 -70,-132 -70,-126 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-126 -85,-132 -85,-138 -85,-144 -85,-150 -85,-156 -85,-162 -85,-168 -85,-174 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "datasets": [{"dataset_uid": "600140", "doi": "10.15784/600140", "keywords": "Antarctica; Atmosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Model Data; Paleoclimate; Transantarctic Mountains", "people": "Kowalewski, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/600140"}], "date_created": "Thu, 28 Aug 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eNeogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eResults from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.", "east": -120.0, "geometry": "POINT(-160 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kowalewski, Douglas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "uid": "p0000463", "west": 160.0}, {"awards": "0944078 Albert, Mary", "bounds_geometry": "POINT(112.05 79.28)", "dataset_titles": "Firn Permeability and Density at WAIS Divide", "datasets": [{"dataset_uid": "609602", "doi": "10.7265/N57942NT", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Firn Permeability and Density at WAIS Divide", "url": "https://www.usap-dc.org/view/dataset/609602"}], "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn\u0027s ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "Firn Air; FIELD SURVEYS; Physics; GROUND-BASED OBSERVATIONS; Antarctica; Megadunes; Tomography; Wais Divide-project; Firn Core; FIELD INVESTIGATION; Not provided; Firn Permeability; LABORATORY; Visual Observations; Ice; Firn; WAIS Divide; Microstructure; Density", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Firn Metamorphism: Microstructure and Physical Properties", "uid": "p0000049", "west": -112.05}, {"awards": "0944343 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "Severinghaus/0944343\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop both a record of past local temperature change at the WAIS Divide site, and past mean ocean temperature using solubility effects on atmospheric krypton and xenon. The two sets of products share some of the same measurements, because the local temperature is necessary to make corrections to krypton and xenon, and thus synergistically support each other. Further scientific synergy is obtained by the fact that the mean ocean temperature is constrained to vary rather slowly, on a 1000-yr timescale, due to the mixing time of the deep ocean. Thus rapid changes are not expected, and can be used to flag methodological problems if they appear in the krypton and xenon records. The mean ocean temperature record produced will have a temporal resolution of 500 years, and will cover the entire 3400 m length of the core. This record will be used to test hypotheses regarding the cause of atmospheric carbon dioxide (CO2) variations, including the notion that deep ocean stratification via a cold salty stagnant layer caused atmospheric CO2 drawdown during the last glacial period. The local surface temperature record that results will synergistically combine with independent borehole thermometry and water isotope records to produce a uniquely precise and accurate temperature history for Antarctica, on a par with the Greenland temperature histories. This history will be used to test hypotheses that the ?bipolar seesaw? is forced from the North Atlantic Ocean, which makes a specific prediction that the timing of Antarctic cooling should slightly lag abrupt Greenland warming. The WAIS Divide ice core is expected to be the premier atmospheric gas record of the past 100,000 years for the foreseeable future, and as such, making this set of high precision noble gas measurements adds value to the other gas records because they all share a common timescale and affect each other in terms of physical processes such as gravitational fractionation. Broader impact of the proposed work: The clarification of timing of atmospheric CO2 and Antarctic surface temperature, along with deep ocean temperature, will aid in efforts to understand the feedbacks among CO2, temperature, and ocean circulation. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. A deeper understanding of the mechanism of deglaciation, and the role of atmospheric CO2, will go a long way towards clarifying a topic that has become quite confused in the public mind in the public debate over climate change. Elucidating the role of the bipolar seesaw in ending glaciations and triggering CO2 increases may also provide an important warning that this represents a potential positive feedback, not currently considered by IPCC. Education of one graduate student, and training of one technician, will add to the nation?s human resource base. Outreach activities will be enhanced and will to continue to entrain young people in discovery, and excitement will enhance the training of the next generation of scientists and educators.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": false, "keywords": "Noble Gas; FIELD INVESTIGATION; Climate; Xenon; FIELD SURVEYS; Ice Core; Antarctica; Krypton; LABORATORY", "locations": "Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.28, "title": "Noble Gases in the WAIS Divide Ice Core as Indicators of Local and Mean-ocean Temperature", "uid": "p0000430", "west": -112.05}, {"awards": "0636493 Chereskin, Teresa; 0635437 Donohue, Kathleen", "bounds_geometry": "POLYGON((-65.09 -54.96,-64.618 -54.96,-64.146 -54.96,-63.674 -54.96,-63.202 -54.96,-62.73 -54.96,-62.258 -54.96,-61.786 -54.96,-61.314 -54.96,-60.842 -54.96,-60.37 -54.96,-60.37 -55.661,-60.37 -56.362,-60.37 -57.063,-60.37 -57.764,-60.37 -58.465,-60.37 -59.166,-60.37 -59.867,-60.37 -60.568,-60.37 -61.269,-60.37 -61.97,-60.842 -61.97,-61.314 -61.97,-61.786 -61.97,-62.258 -61.97,-62.73 -61.97,-63.202 -61.97,-63.674 -61.97,-64.146 -61.97,-64.618 -61.97,-65.09 -61.97,-65.09 -61.269,-65.09 -60.568,-65.09 -59.867,-65.09 -59.166,-65.09 -58.465,-65.09 -57.764,-65.09 -57.063,-65.09 -56.362,-65.09 -55.661,-65.09 -54.96))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001521", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0710"}, {"dataset_uid": "001463", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1004"}, {"dataset_uid": "001476", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0908"}, {"dataset_uid": "001522", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1107"}, {"dataset_uid": "001490", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0812"}], "date_created": "Tue, 12 Aug 2014 00:00:00 GMT", "description": "The proposed work is a multi-year study of the transport of water through Drake Passage by the Antarctic Circumpolar Current (ACC). Drake Passage acts as a chokepoint that is not only well suited geographically for measuring the time-varying transport, but observations and computer models suggest that dynamical balances which control the transport are particularly effective here. An array of Current Meters and Pressure-recording Inverted Echo Sounders (CPIES) will be set out for a period of 4 years to quantify the transport and dynamics of the Antarctic Circumpolar Current. Data will be collected annually by acoustic telemetry, leaving the instruments undisturbed until recovered at the end of the project. \u003cbr/\u003e\u003cbr/\u003eThe Southern Ocean is believed to be especially sensitive to climate change, responding to winds that have increased over the past thirty years, and warming significantly more than the global ocean over the past fifty years. The proposed observations will resolve the seasonal and interannual variability of the total ACC transport, as well as its vertical and lateral structure. Although not submitted specifically to the International Polar Year (IPY) Program Solicitation, the proposed project contributes to the IPY goal of understanding environmental change in polar regions and represents a pulse of activity in the IPY time frame that will extend the legacy of the IPY. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. It is a scientific collaboration between the University of California, San Diego, and the University of Rhode Island.", "east": -60.37, "geometry": "POINT(-62.73 -58.465)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -54.96, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Donohue, Kathleen; Watts, D.; Tracey, Karen; Kennelly, Maureen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -61.97, "title": "Collaborative Research: Dynamics and Transport of the Antarctic Circumpolar Current in Drake Passage", "uid": "p0000543", "west": -65.09}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": "POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))", "dataset_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula; Expedition data of LMG1006", "datasets": [{"dataset_uid": "002722", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1006", "url": "https://www.rvdata.us/search/cruise/LMG1006"}, {"dataset_uid": "600105", "doi": "10.15784/600105", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "people": "Hollibaugh, James T.", "repository": "USAP-DC", "science_program": null, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/600105"}], "date_created": "Thu, 13 Mar 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \"winter water\" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \"circumpolar deep water\" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \"grows in\" during spring and summer after this water mass forms. \u003cbr/\u003e\u003cbr/\u003eThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.", "east": -64.0, "geometry": "POINT(-71.5 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "p0000359", "west": -79.0}, {"awards": "1043690 Scherer, Reed", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "datasets": [{"dataset_uid": "600127", "doi": "10.15784/600127", "keywords": "Antarctica; Biota; Diatom; Marine Sediments; Oceans; Sediment Core; Southern Ocean", "people": "Haji-Sheikh, Michael; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": null, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "url": "https://www.usap-dc.org/view/dataset/600127"}], "date_created": "Fri, 14 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eDiatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Haji-Sheikh, Michael; Scherer, Reed Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "uid": "p0000360", "west": -180.0}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "dataset_titles": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "600119", "doi": "10.15784/600119", "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "people": "Grim, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600119"}], "date_created": "Mon, 10 Feb 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Grim, Jeffrey", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "PostDoctoral Research Fellowship", "uid": "p0000482", "west": null}, {"awards": "1232962 Ledwell, James", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1310A", "datasets": [{"dataset_uid": "002658", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1310A", "url": "https://www.rvdata.us/search/cruise/NBP1310A"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Intellectual Merit: The Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is a study of ocean mixing in the Antarctic Circumpolar Current (ACC) which runs west to east all around the continent of Antarctica, south of the other continents. This current system is somewhat of a barrier to transport of heat, carbon dioxide and other important ocean constituents between the far south and the rest of the ocean, and mixing processes play an important role in those transports. DIMES is a multi-investigator cooperative project, led by physical oceanographers in the U.S. and in the U.K. A passive tracer and an array of sub-surface floats were deployed early in 2009 more than 2000 km west of Drake Passage on a surface of constant density about 1500 m deep between the Sub Antarctic Front and the Polar Front of the ACC. In early 2010 a U.S. led research cruise sampled the tracer, turbulence levels, and the velocity and density profiles that govern the generation of that turbulence, and additional U.K. led research cruises in 2011 and 2012 continue this sampling as the tracer has made its way through Drake Passage, into the Scotia Sea, and over the North Scotia Ridge, a track of more than 3000 km. The initial results show that diapycnal, i.e., vertical, mixing west of Drake Passage where the bottom is relatively smooth is no larger than in most other regions of the open ocean. In contrast, there are strong velocity shears and intense turbulence levels over the rough topography in Drake Passage and diapycnal diffusivity of the tracer more than 10 times larger in Drake Passage and to the east than west of Drake Passage.\u003cbr/\u003e\u003cbr/\u003eThe DIMES field program continues with the U.S. team collecting new velocity and turbulence data in the Scotia Sea. It is anticipated that the tracer will continue passing through the Scotia Sea until at least early 2014. The U.K. partners have scheduled sampling of the tracer on cruises at the North Scotia Ridge and in the eastern and central Scotia Sea in early 2013 and early 2014. The current project will continue the time series of the tracer at Drake Passage on two more U.S. led cruises, in late 2012 and late 2013. Trajectories through the Scotia Sea estimated from the tracer observations, from neutrally buoyant floats, and from numerical models will be used to accurately estimate mixing rates of the tracer and to locate where the mixing is concentrated. During the 2013 cruise the velocity and turbulence fields along high-resolution transects along the ACC and across the ridges of Drake Passage will be measured to see how far downstream of the ridges the mixing is enhanced, and to test the hypothesis that mixing is enhanced by breaking lee waves generated by flow over the rough topography.\u003cbr/\u003e\u003cbr/\u003eBroader Impacts: DIMES (see web site at http://dimes.ucsd.edu) involves many graduate students and post-doctoral researchers. Two graduate students, who would become expert in ocean turbulence and the processes generating it, will continue be trained on this project. The work in DIMES is ultimately motivated by the need to understand the overturning circulation of the global ocean. This circulation governs the transport and storage of heat and carbon dioxide within the huge oceanic reservoir, and thus plays a major role in regulating the earth?s climate. Understanding the circulation and how it changes in reaction to external forces is necessary to the understanding of past climate change and of how climate might change in the future, and is therefore of great importance to human well-being. The data collected and analyzed by the DIMES project will be assembled and made publicly available at the end of the project.\u003cbr/\u003e\u003cbr/\u003eThe DIMES project is a process experiment sponsored by the U.S. CLIVAR (Climate variability and predictability) program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Ledwell, James", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Studies of Turbulence and Mixing in the Antarctic Circumpolar Current, a Continuation of DIMES", "uid": "p0000846", "west": null}, {"awards": "1142107 Durbin, Edward", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1304", "datasets": [{"dataset_uid": "002660", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1304", "url": "https://www.rvdata.us/search/cruise/NBP1304"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "Krill, Euphausia superba, is a keystone species in the Antarctic ecosystem and provides the trophic link between microscopic plankton and charismatic megafauna such as penguins and whales. Recent evidence suggests krill may not be exclusively planktonivorous, which introduces the potential of new pathways of carbon flux through krill based ecosystems. A change in our view of krill from one of being herbivores to omnivores opens up several questions.\u003cbr/\u003e\u003cbr/\u003eClimate induced change in the extent, thickness and duration of overlying sea ice coverage is expected to change the prey fields available to krill, and to have subsequent effects on the suite of predators supported by krill. The nature of this benthic prey?krill link, which may be crucial in those parts of the seasonal cycle other than the well studied spring bloom, is yet to be determined. DNA techniques will be used to identify and quantify the prey organisms. \u003cbr/\u003e\u003cbr/\u003eThis project will measure the in situ feeding ecology and behavior of krill and, ultimately, the success of this key species. An overall goal is\u003cbr/\u003eto investigate seasonal changes in Euphausia superba in-situ feeding and swimming behavior in the Wilhelmina Bay region of the Western Antarctic Peninsula (WAP) area, known to be a region of changing climate. Understanding the biological impacts of climate change is important to societal and economic goals. The project scientists will additionally team with a marine and environmental reporting group to design presentations for an annual journalist meeting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Durbin, Edward", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Seasonal Trophic Roles of Euphausia Superba (STRES)", "uid": "p0000848", "west": null}, {"awards": "0934534 Sergienko, Olga", "bounds_geometry": "POLYGON((-106 -70,-105.4 -70,-104.8 -70,-104.2 -70,-103.6 -70,-103 -70,-102.4 -70,-101.8 -70,-101.2 -70,-100.6 -70,-100 -70,-100 -70.6,-100 -71.2,-100 -71.8,-100 -72.4,-100 -73,-100 -73.6,-100 -74.2,-100 -74.8,-100 -75.4,-100 -76,-100.6 -76,-101.2 -76,-101.8 -76,-102.4 -76,-103 -76,-103.6 -76,-104.2 -76,-104.8 -76,-105.4 -76,-106 -76,-106 -75.4,-106 -74.8,-106 -74.2,-106 -73.6,-106 -73,-106 -72.4,-106 -71.8,-106 -71.2,-106 -70.6,-106 -70))", "dataset_titles": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "datasets": [{"dataset_uid": "609626", "doi": "10.7265/N5XS5SBW", "keywords": "Antarctica; Arctic; Bindschadler Ice Stream; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Lambert Ice Stream; Macayeal Ice Stream; Pine Island Glacier; Thwaites Glacier", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "url": "https://www.usap-dc.org/view/dataset/609626"}], "date_created": "Thu, 06 Feb 2014 00:00:00 GMT", "description": "Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes.", "east": -100.0, "geometry": "POINT(-103 -73)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "Not provided; Inverse Modeling; GROUND-BASED OBSERVATIONS; Basal Shear Stress", "locations": null, "north": -70.0, "nsf_funding_programs": "Arctic Natural Sciences", "paleo_time": null, "persons": "Sergienko, Olga", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model\u0027s adjoint to support sea level change assessment", "uid": "p0000048", "west": -106.0}, {"awards": "0739515 Fagan, William", "bounds_geometry": "POLYGON((-68.383 -60.65,-66.10137 -60.65,-63.81974 -60.65,-61.53811 -60.65,-59.25648 -60.65,-56.97485 -60.65,-54.69322 -60.65,-52.41159 -60.65,-50.12996 -60.65,-47.84833 -60.65,-45.5667 -60.65,-45.5667 -61.4145,-45.5667 -62.179,-45.5667 -62.9435,-45.5667 -63.708,-45.5667 -64.4725,-45.5667 -65.237,-45.5667 -66.0015,-45.5667 -66.766,-45.5667 -67.5305,-45.5667 -68.295,-47.84833 -68.295,-50.12996 -68.295,-52.41159 -68.295,-54.69322 -68.295,-56.97485 -68.295,-59.25648 -68.295,-61.53811 -68.295,-63.81974 -68.295,-66.10137 -68.295,-68.383 -68.295,-68.383 -67.5305,-68.383 -66.766,-68.383 -66.0015,-68.383 -65.237,-68.383 -64.4725,-68.383 -63.708,-68.383 -62.9435,-68.383 -62.179,-68.383 -61.4145,-68.383 -60.65))", "dataset_titles": "Data Paper, ESA Ecology", "datasets": [{"dataset_uid": "000141", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Data Paper, ESA Ecology", "url": "http://dx.doi.org/10.1890/13-1108.1"}], "date_created": "Fri, 17 Jan 2014 00:00:00 GMT", "description": "This five-year project seeks to characterize decadal scale changes in penguin and seabird populations on the Antarctic Peninsula, and to identify the factors driving these long-term changes. Two interconnected research activities are proposed: 1. Continued, long-term monitoring and censusing of penguin and seabird populations at \u003e117 sites throughout the Antarctic Peninsula via opportunistic ship-based data collection. 2. Synthesis and quantitative analyses of datasets detailing long-term changes in five penguin and seabird species from diverse sites throughout the Antarctic Peninsula. When complete, the penguin/seabird database will incorporate data from the Antarctic Site Inventory (ASI), the CCAMLR database, the US AMLR database, the LTER database from Palmer Station, data from British and Argentine researchers, historic census data compiled by the Scientific Committee on Antarctic Research (SCAR), and, when possible, additional privately held datasets. Additional data for temperature change, sea ice coverage, the seasonal timing and intensity of human visitation, and other factors have been gathered and will be analyzed together with population trajectories within a spatially explicit framework. The research will include hierarchical statistical analyses to characterize the long-term population dynamics of several key polar species across multiple spatial scales (sites, regions, and the Peninsula). Analyses also will focus on specific subsets of the overall database to contrast visitor impacts on paired colonies, sites, and regions that share similar environmental conditions but differ in the intensity of tourism. \u003cbr/\u003e\u003cbr/\u003eThe Broader Impacts include (1) research training and first-time Antarctic experiences for a postdoctoral researcher and several graduate students, all of whom will then be better positioned to bring their expertise in spatial and/or quantitative/theoretical ecology to bear on questions in polar research; (2) assembly and analysis of a large, multi-season database of penguin and seabird time series from the Antarctic Peninsula that will be publicly available, (3) assistance in distinguishing the impacts of tourism versus climate change on seabird populations. Under the Environmental Protocol to the Antarctic Treaty, Treaty Parties are charged with regular and effective monitoring to assess the impacts of human activities. This project will uniquely assist Parties in fulfilling this mandate.", "east": -45.5667, "geometry": "POINT(-56.97485 -64.4725)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.65, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Fagan, William; Lynch, Heather", "platforms": "Not provided", "repo": "Publication", "repositories": "Publication", "science_programs": null, "south": -68.295, "title": "Collaborative Research: Multispecies, Multiscale Investigations of Longterm Changes in Penguin and Seabird Populations on the Antarctic Peninsula", "uid": "p0000465", "west": -68.383}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": "POLYGON((-63.72 -63.73,-62.893 -63.73,-62.066 -63.73,-61.239 -63.73,-60.412 -63.73,-59.585 -63.73,-58.758 -63.73,-57.931 -63.73,-57.104 -63.73,-56.277 -63.73,-55.45 -63.73,-55.45 -64.0876,-55.45 -64.4452,-55.45 -64.8028,-55.45 -65.1604,-55.45 -65.518,-55.45 -65.8756,-55.45 -66.2332,-55.45 -66.5908,-55.45 -66.9484,-55.45 -67.306,-56.277 -67.306,-57.104 -67.306,-57.931 -67.306,-58.758 -67.306,-59.585 -67.306,-60.412 -67.306,-61.239 -67.306,-62.066 -67.306,-62.893 -67.306,-63.72 -67.306,-63.72 -66.9484,-63.72 -66.5908,-63.72 -66.2332,-63.72 -65.8756,-63.72 -65.518,-63.72 -65.1604,-63.72 -64.8028,-63.72 -64.4452,-63.72 -64.0876,-63.72 -63.73))", "dataset_titles": "Go to the NSIDC and search for the data.; Standing Water Depth on Larsen B Ice Shelf", "datasets": [{"dataset_uid": "001996", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Go to the NSIDC and search for the data.", "url": "http://nsidc.org"}, {"dataset_uid": "609584", "doi": "10.7265/N500002K", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "people": "MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Standing Water Depth on Larsen B Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609584"}], "date_created": "Sat, 21 Dec 2013 00:00:00 GMT", "description": "MacAyeal/0944248\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a better understanding of the processes and conditions that trigger ice shelf instability and explosive disintegration. A significant product of the proposed research will be the establishment of parameterizations of micro- and meso-scale ice-shelf surface processes needed in large scale ice-sheet models designed to predict future sea level rise. The proposed research represents a 3-year effort to conduct numerical model studies of 6 aspects of surface-water evolution on Antarctic ice shelves. These 6 model-study areas include energy balance models of melting ice-shelf surfaces, with treatment of surface ponds and water-filled crevasses, distributed, Darcian water flow modeling to simulate initial firn melting, brine infiltration, pond drainage and crevasse filling, ice-shelf surface topography evolution modeling by phase change (surface melting and freezing), surface-runoff driven erosion and seepage flows, mass loading and flexure effects of ice-shelf and iceberg surfaces; feedbacks between surface-water loads and flexure stresses; possible seiche phenomena of the surface water, ice and underlying ocean that constitute a mechanism for, inducing surface crevassing., surface pond and crevasse convection, and basal crevasse thermohaline convection (as a phenomena related to area 5 above). The broader impacts of the proposed work bears on the socio-environmental concerns of climate change and sea-level rise, and will contribute to the important goal of advising public policy. The project will form the basis of a dissertation project of a graduate student whose training will contribute to the scientific workforce of the nation and the PI and graduate student will additionally participate in a summer science-enrichment program for high-school teachers organized by colleagues at the University of Chicago.", "east": -55.45, "geometry": "POINT(-59.585 -65.518)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e ETM+; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "Supraglacial Lake; LANDSAT-7; Melt Ponds; Standing Water Depth; Ice Shelf Stability", "locations": null, "north": -63.73, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-7", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -67.306, "title": "Model Studies of Surface Water Behavior on Ice Shelves", "uid": "p0000052", "west": -63.72}, {"awards": "0839007 Near, Thomas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Genetic Sequence Data", "datasets": [{"dataset_uid": "000151", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic Sequence Data", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Fri, 22 Nov 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThe teleost fish fauna in the waters surrounding Antarctica are completely dominated by a single clade of closely related species, the Notothenioidei. This clade offers an unprecedented opportunity to investigate the effects of deep time paleogeographic transformations and periods of global climate change on lineage diversification and facilitation of adaptive radiation. With over 100 species, the Antarctic notothenioid radiation has been the subject of intensive investigation of biochemical, physiological, and morphological adaptations associated with freezing avoidance in the subzero Southern Ocean marine habitats. However, broadly sampled time-calibrated phylogenetic hypotheses of notothenioids have not been used to examine patterns of adaptive radiation in this clade. The goals of this project are to develop an intensive phylogenomic scale dataset for 90 of the 124 recognized notothenioid species, and use this genomic resource to generate time-calibrated molecular phylogenetic trees. The results of pilot phylogenetic studies indicate a very exciting correlation of the initial diversification of notothenioids with the fragmentation of East Gondwana approximately 80 million years ago, and the origin of the Antarctic Clade adaptive radiation at a time of global cooling and formation of polar conditions in the Southern Ocean, approximately 35 million years ago. This project will provide research experiences for undergraduates, training for a graduate student, and support a post doctoral researcher. In addition the project will include three high school students from New Haven Public Schools for summer research internships.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Near, Thomas", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -90.0, "title": "Genomic Approaches to Resolving Phylogenies of Antarctic Notothenioid Fishes", "uid": "p0000497", "west": -180.0}, {"awards": "0948338 Mitchell, B. Gregory; 0948357 Measures, Christopher", "bounds_geometry": "POLYGON((-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-53 -60,-53 -60.45,-53 -60.9,-53 -61.35,-53 -61.8,-53 -62.25,-53 -62.7,-53 -63.15,-53 -63.6,-53 -64.05,-53 -64.5,-54 -64.5,-55 -64.5,-56 -64.5,-57 -64.5,-58 -64.5,-59 -64.5,-60 -64.5,-61 -64.5,-62 -64.5,-63 -64.5,-63 -64.05,-63 -63.6,-63 -63.15,-63 -62.7,-63 -62.25,-63 -61.8,-63 -61.35,-63 -60.9,-63 -60.45,-63 -60))", "dataset_titles": "Project: Blue Water Zone; Trace Metal data 2006 (ID3801); Trace Metals - 2004", "datasets": [{"dataset_uid": "000218", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Trace Metals - 2004", "url": "https://www.bco-dmo.org/dataset/3800"}, {"dataset_uid": "000173", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project: Blue Water Zone", "url": "http://www.bco-dmo.org/project/2145"}, {"dataset_uid": "000174", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Trace Metal data 2006 (ID3801)", "url": "https://www.bco-dmo.org/dataset/3801"}], "date_created": "Fri, 22 Nov 2013 00:00:00 GMT", "description": "The ocean plays a critical role in sequestering CO2 by exporting fixed carbon to the deep ocean through the biological pump. There is a pressing need to understand the systematics of carbon export in the Southern Ocean in the context of global warming because of the sensitivity of this region to climate change, already manifested as significant temperature increases. Numerous studies have indicated that Fe supply is a primary control on phytoplankton biomass and productivity in the Southern Ocean. The results from previous cruises in Feb-Mar 2004 and Jul-Aug 2006 have revealed the major natural Fe fertilization from Fe-rich shelf waters to the Fe-limited high nutrient low chlorophyll (HNLC) Antarctic Circumpolar Current Surface Water (ASW) in the southern Drake Passage, producing a series of phytoplankton blooms. Remaining questions include: How is natural Fe transported to the euphotic zone through small-meso-large scale horizontal-vertical transport and mixing in different HNLC ACC areas? How does plankton community structure evolve in response to a natural Fe addition, how does Fe speciation respond to biogeochemical processes, and how is Fe recycled to determine the longevity of phytoplankton blooms? How does the export of POC evolve as a function of upwelling-mixing, Fe addition-recycling and bacteria-plankton structure? This synthesis proposal will address these fundamental questions using a unique dataset combining multiyear physical, Fe and biogeochemical data collected between 2004 and 2006 from 2 NSF-funded Fe fertilization experiment cruises and 3 Antarctic Marine Living Resource (AMLR) cruises in the southern Drake Passage and southwestern Scotia Sea through collaboration with scientists in the AMLR program and US Southern Ocean GLOBEC projects. All investigators involved in this study are engaged in graduate and undergraduate instruction, and mentoring of postdoctoral researchers. Each P.I. will incorporate key elements of the proposed syntheses in our lectures, problem sets and group projects. The project includes support to convene a 4-5 day international workshop on natural Fe fertilization at Woods Hole Oceanographic Institution. The workshop will include scientists from United Kingdom, France and Germany who have conducted natural Fe fertilization experiments, and Korea and China who are planning to conduct natural Fe fertilization experiments. The participation of graduate students and postdoctoral scholars will be especially encouraged. The results will be published in a Deep-Sea Research II special issue.", "east": -53.0, "geometry": "POINT(-58 -62.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mitchell, B.; Azam, Farooq; Barbeau, Katherine; Gille, Sarah; Holm-Hansen, Osmund; Measures, Christopher; Selph, Karen", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -64.5, "title": "Collaborative Research: Modeling and synthesis study of a natural iron fertilization site in the Southern Drake Passage", "uid": "p0000071", "west": -63.0}, {"awards": "0838911 Hofmann, Eileen; 0838892 Burns, Jennifer; 0838937 Costa, Daniel", "bounds_geometry": "POLYGON((160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,180 -68,180 -68.8,180 -69.6,180 -70.4,180 -71.2,180 -72,180 -72.8,180 -73.6,180 -74.4,180 -75.2,180 -76,178 -76,176 -76,174 -76,172 -76,170 -76,168 -76,166 -76,164 -76,162 -76,160 -76,160 -75.2,160 -74.4,160 -73.6,160 -72.8,160 -72,160 -71.2,160 -70.4,160 -69.6,160 -68.8,160 -68))", "dataset_titles": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea; Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "datasets": [{"dataset_uid": "600025", "doi": "10.15784/600025", "keywords": "Antarctica; Biota; Oceans; Ross Sea; Southern Ocean", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600025"}, {"dataset_uid": "601835", "doi": "10.15784/601835", "keywords": "Aerobic; Antarctica; Cryosphere; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601835"}, {"dataset_uid": "600101", "doi": "10.15784/600101", "keywords": "Biota; Oceans; Ross Sea; Seals; Southern Ocean", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600101"}], "date_created": "Mon, 11 Nov 2013 00:00:00 GMT", "description": "Abstract \u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eMarine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.", "east": 180.0, "geometry": "POINT(170 -72)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer; Hofmann, Eileen; Costa, Daniel", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "p0000661", "west": 160.0}, {"awards": "1043367 Aciego, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 01 Nov 2013 00:00:00 GMT", "description": "Aciego/1043367\u003cbr/\u003e\u003cbr/\u003eThis award supports the development of a new method for determining the absolute age of samples from deep ice cores. The project will: (1) prove the efficacy of the Uranium-series dating method on a high accumulation rate ice core, and (2) address the uncertainties in the age dating of the EPICA Dronning-Maud Land (EDML) ice core in the lower 300 m. The well-dated upper section of the ice core (down to 150,000 years at 2415.7 m) will provide excellent constraints to validate the ages determined by the U-series method. After verification, and possible adjustments to the laboratory chemistry, the method will be applied to a suite of ice samples of unknown age in the lower part of the EDML ice core. Within the lower 300 m of this ice core, the climate records are disturbed by tilting and folding of the ice, and, due to the uncertainties in how the ice has flowed, it is impossible to determine if accurate age dates can be obtained to access the record of climate change, or if mixing of the ice is too incoherent. As part of the methodology, the PI will measure surface area of dust included in the ice using a gas adsorption technique developed for ultra-small samples; these measurements will be made on a BET nano-scale which is to be purchased from the funding of this project. Intellectual Merit: The proposed research will contribute to our understanding of geophysical processes that fold and tilt ice. This will allow new paleoclimate records to be recovered from ice cores that have been physically deformed and disturbed and previously did not permit accurate dating. Broader Impacts: This funding will provide support for one PhD graduate student and contribute to their training as a researcher in geochemistry and paleoclimate studies. The PI will teach classes in earth surface processes (including glaciology) and in advanced isotope geochemistry. Work related to this research will be integrated as a teaching tool into the classroom to provide a hands-on, relevant learning experience. Furthermore, samples examined as part of this research will be made available from the AWI archive in Bremerhaven, Germany as part of the collaboration between the PI in the United States and the European ice core community.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Aciego, Sarah", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Detangling Flow Regimes and Paleoclimate in the Deepest Section of the EDML Ice Core using U-series Ages.", "uid": "p0000712", "west": null}, {"awards": "0839078 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Oct 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a robust analytical technique for measuring the stable isotopes of CO2 in air trapped in polar ice, and to reconstruct the \u00e413C of CO2 over the last glacial to interglacial transition (20,000 to 10,000 years BP) and through the Holocene. The bulk of these measurements will be made on newly cored ice from the WAIS Divide Ice Core. A robust record \u00e413C of CO2 will be a valuable addition to the rich data produced from this project. The intellectual merit of the proposed work relates to the fact that explaining glacial-interglacial changes in atmospheric CO2 remains a major challenge for paleoclimatology. The lack of a coherent, widely accepted explanation underscores uncertainties in the basic mechanisms that control the carbon cycle, and that lack of understanding limits our ability to confidently predict how the carbon cycle will change in the future, in the face of a potentially major perturbation of both global temperature and the CO2 content of the atmosphere. A widely accepted record of this parameter could transform our understanding of how the carbon cycle and climate change are linked. The broader impacts of the work include training of graduate student at OSU who will conduct much of the lab work and will also participate in fieldwork at the WAIS Divide Core site. The student will also participate in a number of organized outreach efforts and will develop his own outreach effort, through weblogs and other communication of his research. The PIs will communicate the results from this project to a variety of audiences through academic courses and public talks. The proposed work addresses a major topic in biogeochemistry, the origin of glacial-interglacial CO2 cycles. The results are relevant to understanding changes in the carbon cycle due to human activities because the lack of clear understanding of past variations contributes to public uncertainty about the importance of modern climate change. The proposed funding will also contribute to analytical infrastructure at OSU and develop an analytical capability for an ice core measurement currently not available in the United States.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; Mix, Alan", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Developing a glacial-interglacial record of delta-13C of atmospheric CO2", "uid": "p0000260", "west": null}, {"awards": "1043779 Mellish, Jo-Ann", "bounds_geometry": "POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))", "dataset_titles": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "datasets": [{"dataset_uid": "600130", "doi": "10.15784/600130", "keywords": "Antarctica; Biota; Oceans; Ross Sea; Sea Ice; Seals; Sea Surface; Southern Ocean", "people": "Mellish, Jo-Ann", "repository": "USAP-DC", "science_program": null, "title": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "url": "https://www.usap-dc.org/view/dataset/600130"}], "date_created": "Sun, 22 Sep 2013 00:00:00 GMT", "description": "Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk.", "east": 166.73334, "geometry": "POINT(166.283335 -77.69653)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.51528, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mellish, Jo-Ann", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87778, "title": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING", "uid": "p0000343", "west": 165.83333}, {"awards": "0724929 Simms, Alexander", "bounds_geometry": null, "dataset_titles": "Optically Stimulated Luminescence Ages of Raised Beaches; Optically stimulated luminescence-dated raised beaches from the western Antarctic Peninsula; Relative sea-level history of Marguerite Bay, Antarctic Peninsula derived from optically stimulated luminescence-dated beach cobbles.", "datasets": [{"dataset_uid": "000232", "doi": "", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Relative sea-level history of Marguerite Bay, Antarctic Peninsula derived from optically stimulated luminescence-dated beach cobbles.", "url": "https://doi.org/10.1594/PANGAEA.818537"}, {"dataset_uid": "600026", "doi": "10.15784/600026", "keywords": "Antarctica; Antarctic Peninsula; Sample/collection Description; Sample/Collection Description; Solid Earth", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Optically Stimulated Luminescence Ages of Raised Beaches", "url": "https://www.usap-dc.org/view/dataset/600026"}, {"dataset_uid": "000231", "doi": "", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Optically stimulated luminescence-dated raised beaches from the western Antarctic Peninsula", "url": "https://doi.pangaea.de/10.1594/PANGAEA.818518"}], "date_created": "Fri, 23 Aug 2013 00:00:00 GMT", "description": "This Small Grant for Exploratory Research explores the possibility of dating beach deposits on the Antarctic Peninsula using Optical Stimulated Luminescence (OSL). This area is undergoing uplift in response to glacial retreat, and dating these deposits will allow for estimations of ice sheet thickness during the last glacial maximum through the creation of new sea level curves. Accurate reconstructions of ice sheet size are critical to predicting sea level rise in response to global warming. In terms of other broader impacts, this project supports a graduate student, who is learning cutting edge analytical techniques while applying them to questions of global climate change.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Sea Level; Not provided; Paleoclimate", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Simms, Alexander", "platforms": "Not provided", "repo": "PANGAEA", "repositories": "PANGAEA; USAP-DC", "science_programs": null, "south": null, "title": "SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula", "uid": "p0000266", "west": null}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Abrupt Change in Atmospheric CO2 During the Last Ice Age; High-resolution Atmospheric CO2 during 7.4-9.0 ka", "datasets": [{"dataset_uid": "609527", "doi": "10.7265/N5QF8QT5", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "High-resolution Atmospheric CO2 during 7.4-9.0 ka", "url": "https://www.usap-dc.org/view/dataset/609527"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}], "date_created": "Thu, 08 Aug 2013 00:00:00 GMT", "description": "This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CO2 ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; CO2 Concentrations; Ice Core Gas Age; CO2 Uncertainty; LABORATORY; Ice Core Depth; Not provided; CH4 Concentrations", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE; NOT APPLICABLE", "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Atmospheric CO2 and Abrupt Climate Change", "uid": "p0000179", "west": null}, {"awards": "0838810 Hulbe, Christina", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 01 Jul 2013 00:00:00 GMT", "description": "Hulbe/0838810 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Kamb Ice S