Ocean Acidification Category 1: Identifying Adaptive Responses of Polar Fishes in a Vulnerable Ecosystem
Start Date:
2014-08-18
End Date:
2015-04-30
Description/Abstract
The proposed research will investigate the interacting and potentially synergistic influence of two oceanographic features - ocean acidification and the projected rise in mean sea surface temperature - on the performance of Notothenioids, the dominant fish of the Antarctic marine ecosystem. Understanding the joint effects of acidification and temperature rise on these fish is a vital component of predicting the resilience of coastal marine ecosystems. Notothenioids have repeatedly displayed a narrow window of physiological tolerances when subjected to abiotic stresses. Given that evolutionary adaptation may have led to finely-tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs associated with acclimation to the multi-stressor environment expected from future atmospheric CO2 projections. Understanding these trade-offs will provide valuable insight into the capacity species have for responses to climate change via phenotypic plasticity. As an extension to functional measurements, this study will use evolutionary approaches to map variation in physiological responses onto the phylogeny of these fishes and the genetic diversity within species. These approaches offer insight into the historical constraints and future potential for evolutionary optimization. The research will significantly expand the genomic resources available to polar researchers and will support the training of graduate students and a post doc at an EPSCoR institution. Research outcomes will be incorporated into classroom curriculum.
Personnel
Funding
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
Datasets
Publications
Platforms and Instruments
|
This project has been viewed 33 times since May 2019 (based on unique date-IP combinations)