Project Information
COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. The long-term changes occurring at these colonies are representative of changes throughout the Ross Sea, where 30% of all Adelie penguins reside, and are in some way related to changing climate. The recent grounding of two very large icebergs against Ross and Beaufort islands, with associated increased variability in sea-ice extent, has provided an unparalleled natural experiment affecting wild, interannual swings in colony productivity, foraging effort, philopatry and recruitment. Results of this natural experiment can provide insights into the demography and geographic population structuring of this species, having relevance Antarctic-wide in understanding its future responses to climate change as well as interpreting its amazingly well known Holocene history. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). An increased effort will focus on understanding factors that affect over-winter survival. The hypothesis is that the age structure of Cape Crozier has changed over the past thirty years and no longer reflects the smaller colonies nearby. Based on recent analyses, it appears that the Ross Island penguins winter in a narrow band of sea ice north of the Antarctic Circle (where daylight persists) and south of the southern boundary of the Antarctic Circumpolar Current (where food abounds). More extensive winter ice takes the penguins north of that boundary where they incur higher mortality. Thus, where a penguin winters may be due to the timing of its post-breeding departure (which differs among colonies), which affects where it first encounters sea ice on which to molt and where it will be transported by the growing ice field. Foraging effort and interference competition for food suggested as factors driving the geographic structuring of colonies. The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. Information will be related to sea-ice conditions as quantified by satellite images. Demographic and foraging-effort models will be used to synthesize results. The iceberg natural experiment is an unparalleled opportunity to investigate the demographics of a polar seabird and its response to climate change. The marked, interannual variability in apparent philopatry, with concrete data being collected on its causes, is a condition rarely encountered among studies of vertebrates. Broader impacts include collaborating with New Zealand and Italian researchers, involving high school teachers and students in the fieldwork and continuing a website to highlight results to both scientists and the general public.
Person Role
Ballard, Grant Investigator
Antarctic Organisms and Ecosystems Award # 0439759
Data Management Plan
None in the Database
Product Level:
Not provided
Platforms and Instruments

This project has been viewed 15 times since May 2019 (based on unique date-IP combinations)