Project Information
Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core
Start Date:
End Date:
WAIS Divide Ice Core

This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.
Person Role
McConnell, Joseph Investigator
Antarctic Glaciology Award # 1142166
AMD - DIF Record(s)
Data Management Plan
None in the Database
Repository Title (link) Status
USAP-DC WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m exist
  1. Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., … Sowers, T. A. (2015). The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP). Climate of the Past Discussions, 11(4), 3425–3474. (doi:10.5194/cpd-11-3425-2015)
  2. Fegyveresi, J. M., Alley, R. B., Fitzpatrick, J. J., Cuffey, K. M., McConnell, J. R., Voigt, D. E., … Stevens, N. T. (2016). Five millennia of surface temperatures and ice core bubble characteristics from the WAIS Divide deep core, West Antarctica. Paleoceanography, 31(3), 416–433. (doi:10.1002/2015pa002851)
  3. Pasteris, D. R., McConnell, J. R., Das, S. B., Criscitiello, A. S., Evans, M. J., Maselli, O. J., … Layman, L. (2014). Seasonally resolved ice core records from West Antarctica indicate a sea ice source of sea-salt aerosol and a biomass burning source of ammonium. Journal of Geophysical Research: Atmospheres, 119(14), 9168–9182. (doi:10.1002/2013jd020720)
  4. Arienzo, M. M., McConnell, J. R., Murphy, L. N., Chellman, N., Das, S., Kipfstuhl, S., & Mulvaney, R. (2017). Holocene black carbon in Antarctica paralleled Southern Hemisphere climate. Journal of Geophysical Research: Atmospheres, 122(13), 6713–6728. (doi:10.1002/2017jd026599)
  5. McConnell, J. R., Burke, A., Dunbar, N. W., Köhler, P., Thomas, J. L., Arienzo, M. M., … Winckler, G. (2017). Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences, 114(38), 10035–10040. (doi:10.1073/pnas.1705595114)
  6. D'Andrilli, J., C.M. Foreman, M. Sigl, J.C. Priscu, J.R. McConnell (2017), "A 21,000-year record of fluorescent organic matter markers in the WAIS Divide ice core", Clim. Past 13(5), pp. 533-544. doi:10.5194/cp-13-533-2017. (doi:10.5194/cp-13-533-2017)
  7. D'Andrilli, J., Foreman, C. M., Sigl, M., Priscu, J. C., & McConnell, J. R. (2016). A 21,000 year record of organic matter quality in the WAIS Divide ice core. (doi:10.5194/cp-2016-119)
  8. Rhodes, R. H., Brook, E. J., McConnell, J. R., Blunier, T., Sime, L. C., Faïn, X., & Mulvaney, R. (2017). Atmospheric methane variability: Centennial-scale signals in the Last Glacial Period. Global Biogeochemical Cycles, 31(3), 575–590. (doi:10.1002/2016gb005570)
  9. Mitchell, L. E., Buizert, C., Brook, E. J., Breton, D. J., Fegyveresi, J., Baggenstos, D., … Ahn, J. (2015). Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research: Atmospheres, 120(6), 2558–2574. (doi:10.1002/2014jd022766)
  10. Santibanez, P. A., Maselli, O. J.,, Greenwood, M. C., Grieman, M., Saltzman, E.S., McConnell, J.R, & Priscu, J.C. (2017). Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene. Accepted at Global Change Biology. (doi:10.1111/gcb.14042)
  11. Garland, J., Jones, T. R., Neuder, M., White, J. W., & Bradley, E. (2019). An information-theoretic approach to extracting climate signals from deep polar ice cores. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(10), 101105. (doi:10.1063/1.5127211)
  12. Sigl M, Fudge TJ, Winstrup M, Cole-Dai J, Ferris D, McConnell JR, Taylor KC, Welten KC, Woodruff TE, Adolphi F, Bisiaux M, Brook EJ, Buizert C, Caffee MW, Dunbar NW, Edwards R, Geng L, Iverson N, Koffman B, Layman L, Maselli OJ, McGwire K, Muscheler R, Nishiizumi K, Pasteris DR, Rhodes RH, Sowers TA. 2016. The WAIS Divide deep ice core WD2014 chronology -Part 2: Annual-layer counting (0.31 ka BP). Climate of the Past, 12, p. 769-786. doi: 10.5194/cp-12-769-2016. (doi:10.5194/cp-12-769-2016)
  13. Cole‐Dai, J., Ferris, D. G., Kennedy, J. A., Sigl, M., McConnell, J. R., Fudge, T. J., … Souney, J. M. (2021). Comprehensive Record of Volcanic Eruptions in the Holocene (11,000 years) From the WAIS Divide, Antarctica Ice Core. Journal of Geophysical Research: Atmospheres, 126(7). (doi:10.1029/2020jd032855)