Project Information
Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea
Short Title:
Using Multiple Stable Isotopes to Investigate Holocene Ecological Responses by Adelie Penguins
Start Date:
End Date:
Project Website(s)
Stable isotope analyses of carbon and nitrogen (δ13C and δ15N) are commonly used to investigate animal migration, foraging locations and diet, especially in marine species that can travel over great distances. One other stable isotope, sulfur (δ34S), is not as commonly used but is increasingly being applied to refine and corroborate data obtained from carbon and nitrogen analyses. Collagen is one of the best tissues for these analyses as it is abundant in bone, preserves well, and can be easily extracted for analysis. In the Ross Sea region, the cold, dry environment has been conductive for the preservation of Adélie penguin (Pygoscelis adeliae) bones, feathers, eggshell and even mummified remains, at active and abandoned colonies that date from before the Last Glacial Maximum (>45,000 yrs ago) through the Holocene. Most of these colonies are associated with one of three polynyas, or highly productive areas of open water surrounded by sea ice in the Ross Sea. Thus, this species is an excellent bioindicator for marine conditions, past and present, and its colonies have appeared and disappeared throughout this region with changing climate and sea ice regimes for millennia. Current warming trends are inducing relatively rapid ecological responses by this species and some of the largest colonies in the Ross Sea are likely to be abandoned in the next 50 years from rising sea level. The recently established Ross Sea Marine Protected Area aims to protect Adélie penguins and other species in this region from human impacts and knowledge on how this species responds to climate change, past and present, will support this goal. We propose to investigate ecological responses in diet and foraging behavior of the Adélie penguin to known climatic events that occurred in the middle to late Holocene, specifically, before, during and after a warming period known as the penguin ‘optimum’ at 2000 - 4000 cal yr before present (BP). We will apply for the first time a suite of three stable isotope analyses (δ13C, δ15N, δ34S) on chick bones and feathers, as well as prey remains, from active and abandoned colonies in the Ross Sea. We will use existing tissue samples (~60-80 bones) collected by PI Emslie with NSF support since 2001 and supplement these with newly collected samples of bones and feathers in this project. We will conduct compound-specific isotope analyses of carbon on essential amino acids from collagen from a selected sample of 30-40 bones that span the past 5000 yrs to provide corroboratory information. We will apply three-dimensional Bayesian niche models and/or community metrics using R scripts in these analyses to identify isotopic ‘signatures’ of existing and past foraging grounds and polynyas used by Adélie penguins in the southern, central, and northern Ross Sea. This four-year study will the first of its kind to apply multiple stable isotope analyses to investigate a living species of seabird over millennia in a region where it still exists today. Broader Impacts: The PIs are committed to public engagement and enhancement of K-12 education in the STEM sciences. Broader impacts of this research will include support and training for one Ph.D., two M.S., and eight undergraduate students in the Department of Biology and Marine Biology, and two M.A. students in the Watson School of Education at the University of North Carolina Wilmington (UNCW). The last two students will continue to expand on a detailed polar curriculum that was initiated in previous NSF grants for 2nd and 4th grade students, and most recently for 9-12th grade students now available on PI Emslie’s website ( Additional curricula for K-12 students will be designed and tested in this project, which will include visitation to local K-12 schools. As in previous awards, we will focus on schools that serve historically under-represented groups in the sciences. We will work with the UNCW Center for Education in STEM Sciences to assess the efficacy of this new curricula. All curricula will be uploaded on the Educational Resource Commons website. Field work will include blogs and active question-answer sessions with students at these schools. We will continue to post project information and updates on PI Emslie’s website and YouTube channel. Our partnership with tour ship companies will provide a platform for onboard lectures on the importance of scientific research as well as citizen science opportunities for another sector of the public. This proposal requires fieldwork in the Antarctic.
Person Role
Emslie, Steven Investigator and contact
Lane, Chad S Co-Investigator
Polito, Michael Investigator
Antarctic Organisms and Ecosystems Award # 2135696
Antarctic Organisms and Ecosystems Award # 2135695
AMD - DIF Record(s)
Deployment Type
Steve Emslie general deployment
TBD general deployment
Data Management Plan
Product Level:
1 (processed data)

This project has been viewed 21 times since May 2019 (based on unique date-IP combinations)