IEDA
Project Information
New constraints on 14C reservoirs around the Antarctic Peninsula and the Southern Ocean based on historically-harvested whale bones
Start Date:
2022-08-01
End Date:
2024-07-31
Description/Abstract
Much of our understanding of ice sheet behavior due to warming temperatures is based on how past ice sheets responded to warming associated with the end of the last ice age, 20,000 years ago. These studies rely on accurate dating of features left behind by the past ice sheets. The most commonly used method for determining the age of these features over the last ~40,000 years is radiocarbon dating. However, radiocarbon dating is not without its nuances, which are particularly pronounced around Antarctica. One of these nuances is determining the offset between the materials measured radiocarbon age and its true age. The purpose of this research is to use historically harvested whale bones from the Antarctic Peninsula, whose age is independently known, to determine that offset. A better understanding of that offset will allow more accurate estimates of past rates of ice sheet and sea-level changes across the Antarctic Peninsula over the last ~40,000 years. Much of our understanding of how the Antarctic Ice Sheet will respond to future climate changes is based on studies of its past behavior. Those studies often rely on reconstructing its evolution since the Last Glacial Maximum, 20,000 years ago. Radiocarbon dating is the most commonly used method of dating Quaternary deposits for these reconstructions. However, the use of radiocarbon in Antarctica is hampered by some of the largest and least constrained radiocarbon reservoirs on the planet. The purpose of this research is to determine the radiocarbon reservoir for whale bones. This research will leverage an existing collection of 25 whale bones used for prior DNA research to determine the late Holocene radiocarbon reservoir for the Antarctic Peninsula. The whale bones are from specimens harvested at the turn of the 20th century prior to nuclear testing in the 1950s. Thus, their radiocarbon age will provide valuable new constraints on the radiocarbon reservoir for shallow waters around Antarctica. An added benefit of this approach is that given the DNA determination, we will also be able to determine if that radiocarbon reservoir varies across three species of whales, thus testing the common assumption that the radiocarbon reservoir does not vary significantly across different species. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Person Role
Simms, Alexander Investigator and contact
Funding
Antarctic Earth Sciences Award # 2200448
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided

This project has been viewed 44 times since May 2019 (based on unique date-IP combinations)