Project Information
High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques
This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.
Person Role
Liu, Hongxing Investigator and contact
Jezek, Kenneth Co-Investigator
Antarctic Glaciology Award # 0126149
Data Management Plan
None in the Database
Product Level:
Not provided

This project has been viewed 12 times since May 2019 (based on unique date-IP combinations)