[{"awards": "2332418 Zappa, Christopher", "bounds_geometry": "POLYGON((163 -71,164.2 -71,165.4 -71,166.6 -71,167.8 -71,169 -71,170.2 -71,171.4 -71,172.6 -71,173.8 -71,175 -71,175 -71.5,175 -72,175 -72.5,175 -73,175 -73.5,175 -74,175 -74.5,175 -75,175 -75.5,175 -76,173.8 -76,172.6 -76,171.4 -76,170.2 -76,169 -76,167.8 -76,166.6 -76,165.4 -76,164.2 -76,163 -76,163 -75.5,163 -75,163 -74.5,163 -74,163 -73.5,163 -73,163 -72.5,163 -72,163 -71.5,163 -71))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 28 Apr 2025 00:00:00 GMT", "description": "Non-Technical Abstract The deep world ocean is flooded with near 0\u00b0C water, drawn from the margins of Antarctica. Antarctic Bottom Water, as it is referred to, is mainly derived from cold water formed the over the continental shelves of the Weddell and Ross Seas, where the coastal water is exposed to frigid polar air masses spreading off the Antarctic ice sheet. Antarctic Bottom Water is a key component of the global ocean overturning system, which is fundamental to the global ocean heat, carbon and nutrient inventories, and hence the climate and marine ecosystem. The processes producing the dense shelf waters involve small scale factors associated with ocean/atmosphere/sea and glacial ice interaction. What is lacking from previous work is a coordinated, synchronous observational study of the seaward spreading, from formation, to export across the continental shelf edge, to its descent into the deep ocean. This work fills the gap, by investigating the characteristics of dense shelf water formed within Terra Nova Bay, Ross Sea, its transformation, modification and northward spreading within the Drygalski Trough in the western Ross Sea, feeding into the spill-over at the continental slope into the deep boundary current adjacent to Cape Adare. The sequence of events will be observed with a series of instrumented moorings along the pathway from Terra Nova Bay, along the Drygalski Trough and onto the boundary current adjacent to Cape Adare. The project is an international collaboration that involves the USA (this proposal), S. Korea, New Zealand and Italy. Technical Abstract The lower kilometer or two of the world ocean is flooded with near 0\u00b0C water derived from the Southern Ocean, the Antarctic Bottom Water (AABW). The cold end-member of AABW is formed over various sectors of the continental shelf of Antarctica, notable in the Weddell and Ross Seas. The governing processes producing the dense shelf waters involve small scale spatial and temporal factors associated with ocean/sea ice interaction, often related to coastal polynyas and katabatic winds, along with further modification by ocean-glacial ice interaction. There have been studies of the formation of dense shelf water, of export of shelf water over the shelf/slope, the descent of gravity currents into the AABW realm, and of flow paths of AABW spreading across the deep ocean well into the northern hemisphere. What is lacking is a coordinated, synchronous observational study of the seaward spreading, from formation of the dense shelf water to its spreading to the shelf/slope break and descent into the deep ocean. This program fills the gap, by investigating the characteristics of dense shelf water formed within Terra Nova Bay (TNB), Ross Sea, its transformation, modification and northward spreading within the Drygalski Trough in the western Ross Sea, feeding into the spill-over at the continental slope and the deep boundary current adjacent to Cape Adare. The team will deploy a series of moorings \u2013 two heavily instrumented full water column moorings within TNB to capture high-salinity shelf water (HSSW) production and a series of bottom-focused moorings to evaluate the transformation and northward spreading of the dense saline water. The broad science goals of the project will be addressed by this program through a coordinated analysis of these mooring measurements. The project is an international collaboration that involves the USA (this proposal), S. Korea, New Zealand and Italy. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 175.0, "geometry": "POINT(169 -73.5)", "instruments": null, "is_usap_dc": true, "keywords": "Terra Nova Bay; SALINITY/DENSITY; OCEAN CURRENTS; Ross Sea; POLYNYAS; TURBULENCE; OCEAN TEMPERATURE; WATER MASSES; OCEAN MIXED LAYER", "locations": "Ross Sea; Terra Nova Bay", "north": -71.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Zappa, Christopher; Gordon, Arnold", "platforms": null, "repositories": null, "science_programs": null, "south": -76.0, "title": "Formation, Transformation, and Northward Spreading of Dense Saline Water Derived from Terra Nova Bay, Ross Sea, Antarctica", "uid": "p0010506", "west": 163.0}, {"awards": "2324092 MacKie, Emma", "bounds_geometry": null, "dataset_titles": "Ensemble of subglacial topography beneath Denman Glacier generated by geostatistical Monte Carlo Markov Chain under mass conservation principle", "datasets": [{"dataset_uid": "601927", "doi": "10.15784/601927", "repository": "USAP-DC", "science_program": null, "title": "Ensemble of subglacial topography beneath Denman Glacier generated by geostatistical Monte Carlo Markov Chain under mass conservation principle", "url": "http://www.usap-dc.org/view/dataset/601927"}], "date_created": "Mon, 21 Apr 2025 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Cryosphere; Denman Glacier; East Antarctica; Geostatistics; Ice Thickness; MCMC; Model Data; Monte Carlo Markov Chain; Subglacial Topography", "locations": "East Antarctica; Antarctica; Denman Glacier", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Shao, Niya; Michael, Field; McCormack, Felicity; MacKie, Emma", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1918338 VanTongeren, Jill", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Apr 2025 00:00:00 GMT", "description": "Voluminous outpourings of iron-rich molten rock (magma), which can initiate from deep within the earth, occur regularly throughout geologic time. Understanding volcanic eruptions requires knowledge of the magmatic plumbing systems and magma chambers that feed eruptions. While many magma chambers are typically emplaced in the shallow subsurface of the earth, only rarely are the entirety of the solidified remnants of these chambers later exposed at the surface of the earth for study. One such magma chamber, the Dufek Intrusion, exists in Antarctica. The Dufek Intrusion is part of the Ferrar magmatic event, which was triggered by the separation or rifting of South America, Africa and Antarctic continents approximately 182 million years ago. The research objectives focus on analyzing existing samples to understand the thermal and chemical evolution of the magma in the Dufek Intrusion magma chamber and deciphering whether the exposed sections are part of the same magma chamber or represent two separate magma chambers. Results from this study may result in the research community questioning the assumption that small intrusions crystallized faster than larger layered intrusions such as the Dufek Intrusion. This project supports multiple early career researchers and provides laboratory training for undergraduate students. Preliminary high-precision U-Pb ages from zircon throughout the Dufek Intrusion show that rocks thought to represent the lowermost section of stratigraphy (the Dufek Massif) are younger than the rocks thought to represent the uppermost section (the Forrestal Range). This study tests whether the zircon ages represent a cooling profile of a single large layered intrusion, or whether the Dufek Massif and Forrestal Range are two separate smaller intrusions. Crystallization temperatures of the cumulus phases (plagioclase and clinopyroxene) and the zircons, as well as cooling rates from the cumulus phases will be obtained to test the cooling profile hypothesis. The research team will construct thermal models of emplacement and cooling to compare with the laboratory analyses. In order to test the two intrusions hypothesis, the team will analyze zircon Hf isotopic compositions and whole rock Sr, Nd, Pb isotopes from samples of the two intrusions to determine whether they are similar and therefore genetically related. Results will provide important constraints on the duration of magmatism associated with continental breakup and present a coherent picture of the construction of (possibly) one of the largest magmatic intrusions exposed on earth today. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; Ferrar Magmatic Province", "locations": "Ferrar Magmatic Province", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "VanTongeren, Jill", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "The Dufek Intrusion Ages: Crystallization or Cooling?", "uid": "p0010505", "west": null}, {"awards": "2322117 Buckley, Bradley", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 27 Feb 2025 00:00:00 GMT", "description": "Part 1: This project focuses on a group of ecologically important species of fishes which inhabit the frigid waters of Antarctica. They represent a key link in the polar food web as they are prey for penguins, seals and toothed whales. These fish have evolved in the constant, extreme cold for millions of years and therefore, are very sensitive to the increasing water temperatures associated with global warming. These studies will investigate the impacts of incremental heat exposure on the biology of these fishes by examining their ability to respond, or inability to respond, to elevated temperatures. The project will employ cutting-edge technology to examine responses at the cellular level that may help these environmentally sensitive fishes adapt to the challenges of global warming. The primary goal is to increase our collective understanding of how polar ecosystems are likely to be impacted in the coming decades. Part 2: The proposed research is designed to use an existing bank of frozen tissues from a species of cold-adapted Antarctic fish to investigate protein-level responses to heat stress. These samples were collected earlier in the PI\u0027s career during fieldwork at McMurdo Station, Antarctica. Four tissues (control as well as heat- stressed) will be analyzed via mass spectrometry to characterize their proteome, defined as the entire complement of proteins in a sample. This includes both identification and quantification of these proteins. The goal is to determine what mechanisms of response to elevated temperature are available to the extremely cold-adapted, stenothermic fishes of Antarctica. Follow-up analyses will use immunoblotting (Western blotting) with antibodies specific to a sub-set of proteins revealed to be heat-responsive in the proteomic analyses. As this is a Mid-Career Advancement Award, training and mentorship in proteomic analyses for the PI will be supported, with time spent at the partner institution, the University of California, Davis. Intellectual Merit While there has been an increase in the use of genomic technologies to probe gene expression profiles in Antarctic species, few studies exist looking at protein level changes during exposure to heat stress in these organisms. Therefore, the proposed studies would represent a large leap forward in our understanding of how these environmentally sensitive species can, or cannot, respond at the cellular level as the Earth continues to warm and water temperatures rise. As proteins do the \"work\" in the cell, it\u0027s vital to understand which proteins are present and in what quantity and how dynamic this \"proteome\" is during stress. The proposed studies would provide this information for thousands of proteins, using already existing samples. The findings would be entirely novel and would allow us a much better picture of how animals that evolved in the cold for millions of years are likely to respond to climate change. Broader Impacts The PI has established relationships with several regional K-12 institutions and will continue to provide outreach in the form of classroom visits and the creation of classroom curricula. The PI has an on-going collaboration with the Oregon Coast Aquarium (Newport, OR) to create novel teaching materials for grades 6-8. The Aquarium has partners in surrounding school districts and will help disseminate videos about marine biology and climate change. Modules concerning polar species will be created under this proposal. An interactive website will be created demonstrating the Antarctic food web. All of the proteomic analyses and libraries generated under this award will be made publicly available for use by any interested researcher. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Sound; Fish; MARINE ECOSYSTEMS; WATER TEMPERATURE; Antarctic; FISH", "locations": "McMurdo Sound; Antarctic", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Buckley, Bradley; Kueltz, Dietmar", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms", "uid": "p0010501", "west": null}, {"awards": "1744961 Olesik, John", "bounds_geometry": "POLYGON((161.711586 -77.75758,161.71322740000002 -77.75758,161.7148688 -77.75758,161.71651020000002 -77.75758,161.7181516 -77.75758,161.719793 -77.75758,161.72143440000002 -77.75758,161.7230758 -77.75758,161.72471720000001 -77.75758,161.7263586 -77.75758,161.728 -77.75758,161.728 -77.75784200000001,161.728 -77.758104,161.728 -77.758366,161.728 -77.758628,161.728 -77.75889000000001,161.728 -77.759152,161.728 -77.75941399999999,161.728 -77.759676,161.728 -77.759938,161.728 -77.7602,161.7263586 -77.7602,161.72471720000001 -77.7602,161.7230758 -77.7602,161.72143440000002 -77.7602,161.719793 -77.7602,161.7181516 -77.7602,161.71651020000002 -77.7602,161.7148688 -77.7602,161.71322740000002 -77.7602,161.711586 -77.7602,161.711586 -77.759938,161.711586 -77.759676,161.711586 -77.75941399999999,161.711586 -77.759152,161.711586 -77.75889000000001,161.711586 -77.758628,161.711586 -77.758366,161.711586 -77.758104,161.711586 -77.75784200000001,161.711586 -77.75758))", "dataset_titles": "Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP; Taylor Glacier Atmospheric Mineral Nanoparticles and Microparticles in Antarctic Ice during the last Climatic Cycle", "datasets": [{"dataset_uid": "200426", "doi": "https://doi.org/10.25921/bd1k-mv46", "keywords": null, "people": null, "repository": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive", "science_program": null, "title": "Taylor Glacier Atmospheric Mineral Nanoparticles and Microparticles in Antarctic Ice during the last Climatic Cycle", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/40380"}, {"dataset_uid": "601879", "doi": "10.15784/601879", "keywords": "Antarctica; Cryosphere; Particle Size; Taylor Glacier", "people": "Kutuzov, Stanislav; Gabrielli, Paolo; Olesik, John; Lowry, Greg; Sullivan, Ryan; Carter, Lucas; Lomax-Vogt, Madeleine", "repository": "USAP-DC", "science_program": null, "title": "Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP", "url": "https://www.usap-dc.org/view/dataset/601879"}], "date_created": "Mon, 06 Jan 2025 00:00:00 GMT", "description": "The main goal of this project is to identify and geochemically characterize atmospheric mineral nanoparticles in pre-industrial Antarctic ice during the last climatic cycle. Recent technological and industrial development is introducing a large number of natural and engineered nanoparticles into Earth\u0027s atmosphere. These constitute a concern for human health, mainly due to their high chemical reactivity. While many atmospheric nanoparticle studies have been performed in modern urban environments, there is essentially no information about their occurrence in a pristine pre-industrial atmosphere. This information is critical, as it constitutes an important benchmark for comparison to the modern atmosphere. Information on nanoparticles from the pre-industrial atmosphere can be obtained from atmospheric mineral nanoparticles that are entrapped in remote pre-industrial Antarctic ice covering the last climatic cycles. Mineral nanoparticles can also affect several climatic processes. First, they directly influence the global energy balance by reflecting solar radiation and indirectly influence through changes in cloud formation (and clouds also reflect solar radiation). Second, atmospheric mineral nanoparticles such as iron oxides could have fertilized the oceans, causing blooms of marine phytoplankton that may have drawn part of the atmospheric carbon dioxide into the oceans during glacial ages (the \"biological pump\"). Third, a significant amount of extraterrestrial material entering the Earth atmosphere is thought to be transported to the poles as nanoparticles called \"meteoric smoke\" that form polar stratospheric clouds implicated in changes of the ozone hole. This project aims to establish the natural background of unknown classes of glacial particles whose size is below the detection limit of the conventional dust analyzers. The team will take advantage of ice samples from the \"horizontal ice core\", already extracted from the remote Taylor Glacier (coastal East Antarctica) covering the last ~44,000 years. These ancient samples are particularly suited to project scope because i) a large ice volume is available ii) the team expects to find a markedly different geochemistry between nanoparticles deposited during the last glacial age and during the current interglacial. A set of advanced techniques including Transmission Electron Microscopy, Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS), spICP-Time of Flight MS, and Field Flow Fractionation will be employed to determine mineral nanoparticle sizes, number/volume, and chemical composition. So far, the elemental composition of dust entrapped in polar ice has been mainly determined by Inductively Coupled Plasma Sector Field Mass Spectrometry and it is generally assumed to be descriptive of the coarse aeolian dust fraction. However, project will test whether or not the determined elemental composition is instead mainly linked to the previously unobserved smaller mineral nanoparticle content. Results on nanoparticles will be compared with a set of new experiments of total dust composition measured by Inductively Coupled Plasma Sector Field Mass Spectrometry, using the same ice samples from Taylor Glacier. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 161.728, "geometry": "POINT(161.719793 -77.75889000000001)", "instruments": null, "is_usap_dc": true, "keywords": "MICROPARTICLE CONCENTRATION; Taylor Glacier", "locations": "Taylor Glacier", "north": -77.75758, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Olesik, John", "platforms": null, "repo": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive", "repositories": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive; USAP-DC", "science_programs": null, "south": -77.7602, "title": "Atmospheric Mineral Nanoparticles in Antarctic Ice during the last Climatic Cycle", "uid": "p0010492", "west": 161.711586}, {"awards": "2422677 Hall, Brenda", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 29 Oct 2024 00:00:00 GMT", "description": "Non-Technical The future response of the East Antarctic Ice Sheet (EAIS) to climate change and its consequent effect on global sea level remains a pressing problem, with implications for societal well-being, the economy, and national security. Projections of future ice-sheet behavior rely in part on understanding gained from ice-sheet response to past climate change, which can be found in geologic records. This project uses geologic features produced at the base of the ice sheet to examine a large change in EAIS behavior and to place ages on when this change occurred. By comparison to climate records from the same time, the project results will allow assessment of ice-sheet response to a climate that likely was warmer than at present. Such information will improve understanding of possible ice-sheet responses to a warming climate, as well as the underlying mechanisms. A better assessment of the likely EAIS response to future warming climate will aid in setting national and international policy and improve public welfare, by promoting more accurate predictions of the amounts and rates of sea-level rise. This project will contribute to the education of young scientists, thereby increasing the STEM workforce, which is in the national interest. A general-audience book will be produced to explain the importance of Antarctica to the public. Technical Accurate, well-dated reconstructions of the behavior of the East Antarctic Ice Sheet (EAIS) afford insight into its response to future climate change. This project uses new insights in subglacial hydrology and erosion to identify and date a major missing piece of Antarctic glacial history, involving massive expansion of the EAIS over the Transantarctic Mountains. This expansion led to formation of an extensive erosional landscape that was characterized by subglacial meltwater and represents a significant shift in ice-sheet behavior. Understanding the age and reasons for such an expansion are important in part, because the subglacial meltwater must have been linked to the Wilkes Subglacial Basin \u2013 an area thought to be susceptible to large-scale ice collapse under warm climates. The project will constrain the extent and age of this surface through 1) detailed geomorphological mapping from imagery, 2) reassessment of existing chronologic data, and 3) new surface exposure dating of existing samples. Results will test the hypothesis that the scoured surface and the ice-sheet behavior that it represents is much younger than its traditionally assigned age of \u226514 Ma and thus relevant to current investigations into ice-sheet behavior under warmer-than-present climates. The work affords mentoring opportunities for students of all ages and will include the production of a book on the landscapes of the Transantarctic Mountains designed to introduce the public to the importance of Antarctica. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica; GLACIAL LANDFORMS", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Erosional landscapes of the Transantarctic Mountains produced by East Antarctic subglacial water?", "uid": "p0010488", "west": null}, {"awards": "1841228 Lyons, W. Berry", "bounds_geometry": "POLYGON((163.37428 -77.558627,163.3922735 -77.558627,163.410267 -77.558627,163.4282605 -77.558627,163.446254 -77.558627,163.4642475 -77.558627,163.482241 -77.558627,163.5002345 -77.558627,163.518228 -77.558627,163.5362215 -77.558627,163.554215 -77.558627,163.554215 -77.56397510000001,163.554215 -77.5693232,163.554215 -77.5746713,163.554215 -77.5800194,163.554215 -77.5853675,163.554215 -77.59071560000001,163.554215 -77.5960637,163.554215 -77.60141180000001,163.554215 -77.6067599,163.554215 -77.612108,163.5362215 -77.612108,163.518228 -77.612108,163.5002345 -77.612108,163.482241 -77.612108,163.4642475 -77.612108,163.446254 -77.612108,163.4282605 -77.612108,163.410267 -77.612108,163.3922735 -77.612108,163.37428 -77.612108,163.37428 -77.6067599,163.37428 -77.60141180000001,163.37428 -77.5960637,163.37428 -77.59071560000001,163.37428 -77.5853675,163.37428 -77.5800194,163.37428 -77.5746713,163.37428 -77.5693232,163.37428 -77.56397510000001,163.37428 -77.558627))", "dataset_titles": "Commonwealth Stream Diel Water Chemistry; Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica; isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601848", "doi": "10.15784/601848", "keywords": "Antarctica; Buried Ice; Cryosphere; Stable Isotopes; Stable Water Isotopes; Taylor Valley", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601848"}, {"dataset_uid": "601844", "doi": "10.15784/601844", "keywords": "Antarctica; Commonwealth Stream; Cryosphere; Diel; Inlandwaters; McMurdo Dry Valleys; Stream Chemistry; Water Chemisty", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Commonwealth Stream Diel Water Chemistry", "url": "https://www.usap-dc.org/view/dataset/601844"}, {"dataset_uid": "601847", "doi": "10.15784/601847", "keywords": "Antarctica; Cryosphere; Nutrients; Stable Isotopes; Taylor Valley; Trace Elements", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601847"}], "date_created": "Wed, 16 Oct 2024 00:00:00 GMT", "description": "Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.554215, "geometry": "POINT(163.4642475 -77.5853675)", "instruments": null, "is_usap_dc": true, "keywords": "SURFACE WATER CHEMISTRY; Iron Fertilization; McMurdo Dry Valleys; Weathering", "locations": "McMurdo Dry Valleys", "north": -77.558627, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lyons, W. Berry; Gardner, Christopher B.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.612108, "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "uid": "p0010483", "west": 163.37428}, {"awards": "2336328 Larochelle, Stacy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 08 Oct 2024 00:00:00 GMT", "description": "Ice sheets lose ice mass through gravity-driven flow to the ocean where ice breaks into icebergs and melts, contributing to global sea level rise. Water commonly found at the base of ice sheets facilitates this process by lubricating the ice-rock interface. The recent discovery of vast, kilometer-thick groundwater reservoirs beneath the Antarctic Ice Sheet thus raises important questions about the potential impact of groundwater on ice flow. It has been hypothesized that groundwater flow to the ice-sheet bed may accelerate ice flow as the ice sheet shrinks in response to global warming. Evaluating this hypothesis is challenging due to poorly understood interactions between water, ice, and rock, but is crucial for anticipating the response of ice sheets and sea level to climate change. Understanding how groundwater responds to a changing ice sheet also has important implications for the heat, chemical elements, and microorganisms it stores and transports. To assess the impact of groundwater processes on ice dynamics, a new idealized modeling framework will be developed, incorporating several novel hydromechanical couplings between ice sheets, subglacial drainage systems, and groundwater aquifers. This framework will enable testing the hypotheses that (1) aquifers decelerate ice mass loss in the absence of a well-developed subglacial drainage system, but that (2) an efficient, channelized drainage system can reduce and even reverse this decelerating effect, and that (3) the impact of these phenomena is most pronounced for steep ice flowing rapidly over thick sedimentary basins and depends in a complex way on aquifer permeability. Existing geodetic, seismic, and other geophysical datasets at well-studied Thwaites Glacier and Whillans Ice Stream will be used to constrain model parameters and investigate the impact of groundwater processes in contrasting glaciologic settings. This work will help rule out or highlight subglacial groundwater as one of the next major challenges for efforts to predict the future of the Antarctic Ice Sheet and sea-level rise on decadal to millennial timescales. The project will contribute to educating the next generation of scientists by supporting an early-career PI and a graduate student, as well as participation in a field and research educational program in Alaska and the production of chapters for an online, open-source, free interactive textbook. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GROUND WATER; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Larochelle, Stacy; Kingslake, Jonathan", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Modeling the Coupled Dynamics of Groundwater, Subglacial Hydrology and Ice Sheets", "uid": "p0010479", "west": null}, {"awards": "2324998 Daane, Jacob; 1955368 Daane, Jacob", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Aug 2024 00:00:00 GMT", "description": "Part I: Nontechnical description The ecologically important notothenioid fish of the Southern Ocean surrounding Antarctica will be studied to address questions central to polar, evolutionary, and adaptational biology. The rapid diversification of the notothenioids into \u003e120 species following a period of Antarctic glaciation and cooling of the Southern Ocean is thought to have been facilitated by key evolutionary innovations, including antifreeze glycoproteins to prevent freezing and bone reduction to increase buoyancy. In this project, a large dataset of genomic sequences will be used to evaluate the genetic mechanisms that underly the broad pattern of novel trait evolution in these fish, including traits relevant to human diseases (e.g., bone density, renal function, and anemia). The team will develop new STEM-based research and teaching modules for undergraduate education at Northeastern University. The work will provide specific research training to scholars at all levels, including a post-doctoral researcher, a graduate student, undergraduate students, and high school students. The team will also contribute to public outreach, including, in part, the develop of teaching videos in molecular evolutionary biology and accompanying educational supplements. Part II: Technical description The researchers will leverage their comprehensive notothenioid phylogenomic dataset comprising \u003e250,000 protein-coding exons and conserved non-coding elements across 44 ingroup and 2 outgroup species to analyze the genetic origins of three iconic notothenioid traits: (1) loss of erythrocytes by the icefish clade in a cold, stable and highly-oxygenated marine environment; (2) reduction in bone mass and retention of juvenile skeletal characteristics as buoyancy mechanisms to facilitate foraging; and (3) loss of kidney glomeruli to retain energetically expensive antifreeze glycoproteins. The team will first track patterns of change in erythroid-related genes throughout the notothenioid phylogeny. They will then examine whether repetitive evolution of a pedomorphic skeleton in notothenioids is based on parallel or divergent evolution of genetic regulators of heterochrony. Third, they will determine whether there is mutational bias in the mechanisms of loss and re-emergence of kidney glomeruli. Finally, identified genetic mechanisms of evolutionary change will be validated by experimental testing using functional genomic strategies in the zebrafish model system. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; FISH", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Daane, Jacob; Detrich, H. William", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "ANT LIA: Collaborative Research: Evolutionary Patterns and Mechanisms of Trait Diversification in the Antarctic Notothenioid Radiation", "uid": "p0010473", "west": -180.0}, {"awards": "0087144 Conway, Howard", "bounds_geometry": "POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))", "dataset_titles": "Impulse HF radar data from Conway Ridge", "datasets": [{"dataset_uid": "601810", "doi": "10.15784/601810", "keywords": "Antarctica; Cryosphere; Siple Coast", "people": "Hoffman, Andrew; Christianson, Knut; Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Impulse HF radar data from Conway Ridge", "url": "https://www.usap-dc.org/view/dataset/601810"}], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\\sim3000$ and $\\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly.", "east": -130.0, "geometry": "POINT(-140 -84.25)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER ELEVATION/ICE SHEET ELEVATION; Siple Coast", "locations": "Siple Coast", "north": -83.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hoffman, Andrew; Conway, Howard", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Glacial History of Ridge AB, West Antarctica", "uid": "p0010470", "west": -150.0}, {"awards": "2336354 Juarez Rivera, Marisol", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "datasets": [{"dataset_uid": "601839", "doi": "10.15784/601839", "keywords": "Antarctica; Cryosphere; Dry Valleys; Lake Fryxell; Laminae; Microbial Mat; Thickness", "people": "Mackey, Tyler; Juarez Rivera, Marisol; Sumner, Dawn; Paul, Ann; Hawes, Ian", "repository": "USAP-DC", "science_program": null, "title": "Lake Fryxell 2022-2023 benthic microbial mat thickness and number of laminae", "url": "https://www.usap-dc.org/view/dataset/601839"}], "date_created": "Fri, 05 Jul 2024 00:00:00 GMT", "description": "Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Stable Isotopes; MINERALS; LAKE/POND; ISOTOPES; Organic Matter; McMurdo Dry Valleys; SEDIMENTARY ROCKS", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Juarez Rivera, Marisol", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "RAPID: Is Biomass Mobilization at Ice-covered Lake Fryxell, Antarctica reaching a Critical Threshold?", "uid": "p0010467", "west": 160.0}, {"awards": "1903681 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8; Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "datasets": [{"dataset_uid": "601592", "doi": "10.15784/601592", "keywords": "Antarctica; Nitrous Oxide; Taylor Glacier", "people": "Menking, Andy; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Preliminary nitrous oxide site preference isotopic data for last deglaciation from Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601592"}, {"dataset_uid": "601803", "doi": "10.15784/601803", "keywords": "Antarctica; Cryosphere; Ice Core; Nitrous Oxide; Taylor Glacier", "people": "Menking, Andy; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Final N2O isotopic data including isotopomer ratios for the last deglaciation and Heinrich Stadia 4/Dansgaard Oeschger Event 8", "url": "https://www.usap-dc.org/view/dataset/601803"}], "date_created": "Wed, 19 Jun 2024 00:00:00 GMT", "description": "The objective of this project is to understand why the nitrous oxide (N2O) content of the atmosphere was lower during the last ice age (about 20,000-100,000 years ago) than in the subsequent warm period (10,000 years ago to present) and why it fluctuated during climate changes within the ice age. Nitrous oxide is a greenhouse gas that contributes to modern global warming. It is thought that modern warming will in turn cause increases in natural sources of nitrous oxide from bacteria in soils and the ocean, creating a \"positive feedback.\" However, the amount these sources will increase is uncertain because the different ways that nitrous oxide are produced, and how sensitive they are to warmer climate, are not well known. This project will measure a unique property of the nitrous oxide molecule in very large ancient air samples from a glacier in Antarctica. This method can distinguish between different microbial processes that produce nitrous oxide but it has not been applied yet to the time periods in question. The data will provide information about how natural climate changes affect nitrous oxide production. This, in turn, will be useful for predicting future changes and for understanding why the Earth\u0027s climate shifts from ice ages to warm periods and back again. Ice-core records of greenhouse gas isotopic composition are useful for determining past changes in natural source and sink strengths and for understanding how natural emissions are linked to climate change. This project will develop two records of the intramolecular site preference of Nitrogen-15 in N2O. One record spans the last deglaciation (10,000-21,000 years ago) when atmospheric N2O concentration rose by 30 percent, and the other record spans millennial-scale climate changes during the last ice age when N2O varied by smaller amounts (Heinrich Stadial 4 and Dansgaard Oeschger 8, 35,000-41,000 years ago). The records will be used to understand what changes in the nitrogen cycle caused atmospheric N2O concentration to vary and what mechanisms link the N2O emissions to climate change. Ideally, studying the two different time periods will isolate the millennial climate responses entangled with the full deglacial sequence, creating a clearer picture of how N2O biogeochemistry responds to climate change. This work will also allow exploration of an isotopic tracer for in situ production of N2O that contaminates the atmospheric signal in particularly dusty ice. The project will use a unique, well-dated suite of ice samples from Taylor Glacier, Antarctica and continuous flow isotope ratio mass spectrometry on a custom gas extraction line operated in the Oregon State University laboratory. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Taylor Glacier; Nitrous Oxide; TRACE GASES/TRACE SPECIES; Ice Core; Stable Isotopes; NITROUS OXIDE", "locations": "Taylor Glacier", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Deciphering Changes in Atmospheric Nitrous Oxide Concentration During the Last Ice Age Using the Intramolecular Site-Preference of Nitrogen Isotopes", "uid": "p0010465", "west": -180.0}, {"awards": "2301026 Amsler, Charles", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 May 2024 00:00:00 GMT", "description": "General abstract Most organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. Technical abstract Existing macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MACROALGAE (SEAWEEDS); Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; Krueger-Hadfield, Stacy", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Historical and Contemporary Drivers of Macroalgal Reproductive System Variation along the Western Antarctic Peninsula", "uid": "p0010460", "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Feb 2024 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.\u003cbr/\u003e \u003cbr/\u003e \u003cbr/\u003eTo understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; BENTHIC; PENGUINS; FLUORESCENCE; PHYTOPLANKTON", "locations": "Palmer Station", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010448", "west": null}, {"awards": "2333940 Zhong, Shijie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 08 Jan 2024 00:00:00 GMT", "description": "Satellite observations of Earth\u2019s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth\u2019s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth\u2019s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS; CRUSTAL MOTION; COMPUTERS; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE", "locations": "WAIS", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Zhong, Shijie", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica", "uid": "p0010441", "west": -180.0}, {"awards": "2224760 Gooseff, Michael", "bounds_geometry": "POINT(162.87 -77)", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER", "datasets": [{"dataset_uid": "200379", "doi": "", "keywords": null, "people": null, "repository": "Environmental Data Initiative (EDI)", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Tue, 14 Nov 2023 00:00:00 GMT", "description": "Non-technical Abstract The McMurdo Dry Valleys LTER seeks to understand how changes in the temporal variability of ecological connectivity interact with existing landscape legacies to alter the structure and functioning of this extreme polar desert ecosystem. This research has broad implications, as it will help us to understand how natural ecosystems respond to ongoing anthropogenic global change. At the same time, this project also serves an important educational and outreach function, providing immersive research and educational experiences to students and artists from diverse backgrounds, and helping to ensure a diverse and well-trained next generation of leaders in polar ecosystem science and stewardship. Ultimately, the results of this project will help us to better understand and prepare for the effects of climate change and develop scientific insights that are relevant far beyond Antarctic ecosystems. The McMurdo Dry Valleys (MDVs) make up an extreme polar desert ecosystem in the largest ice-free region of Antarctica. The organisms in this ecosystem are generally small. Bacteria, microinvertebrates, cyanobacterial mats, and phytoplankton can be found across the streams, soils, glaciers, and ice-covered lakes. These organisms have adapted to the cold and arid conditions that prevail outside of lakes for all but a brief period in the austral summer when the ecosystem is connected by liquid water. In the summer when air temperatures rise barely above freezing, soils warm and glacial meltwater flows through streams into the open moats of lakes. Most biological activity across the landscape occurs in summer. Through the winter, or polar night (6 months of darkness), glaciers, streams, and soil biota are inactive until sufficient light, heat, and liquid water return, while lake communities remain active all year. Over the past 30 years, the MDVs have been disturbed by cooling, heatwaves, floods, rising lake levels, as well as permafrost and lake ice thaw. Considering the clear ecological responses to this variation in physical drivers, and climate models predicting further warming and more precipitation, the MDV ecosystem sits at a threshold between the current extreme cold and dry conditions and an uncertain future. This project seeks to determine how important the legacy of past events and conditions versus current physical and biological interactions shape the current ecosystem. Four hypotheses will be tested, related to 1) whether the status of specific organisms are indicative ecosystem stability, 2) the relationship between legacies of past events to current ecosystem resilience (resistance to big changes), 3) carryover of materials between times of high ecosystem connectivity and activity help to maintain ecosystem stability, and 4) changes in disturbances affect how this ecosystem persists through the annual polar night (i.e., extended period of dark and cold). Technical Abstract In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world\u2019s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education \u0026 Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 162.87, "geometry": "POINT(162.87 -77)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; ABLATION ZONES/ACCUMULATION ZONES; SOIL TEMPERATURE; DIATOMS; FIELD INVESTIGATION; PERMANENT LAND SITES; BUOYS; GROUND-BASED OBSERVATIONS; SEDIMENTS; SNOW WATER EQUIVALENT; SPECIES/POPULATION INTERACTIONS; WATER-BASED PLATFORMS; FIXED OBSERVATION STATIONS; VIRUSES; PHYTOPLANKTON; ACTIVE LAYER; FIELD SURVEYS; RADIO TRANSMITTERS; DATA COLLECTIONS; ECOLOGICAL DYNAMICS; LANDSCAPE; GROUND WATER; SNOW/ICE CHEMISTRY; LAND-BASED PLATFORMS; ANIMALS/INVERTEBRATES; ECOSYSTEM FUNCTIONS; HUMIDITY; GEOCHEMISTRY; SURFACE WINDS; RIVERS/STREAM; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; SNOW; LAND RECORDS; ATMOSPHERIC PRESSURE; SURFACE TEMPERATURE; ATMOSPHERIC RADIATION; BACTERIA/ARCHAEA; AIR TEMPERATURE; GLACIERS; SNOW/ICE TEMPERATURE; SOIL CHEMISTRY; METEOROLOGICAL STATIONS; WATER QUALITY/WATER CHEMISTRY; TERRESTRIAL ECOSYSTEMS; MOORED; PROTISTS; STREAMFLOW STATION; Dry Valleys; LAKE/POND; LAKE ICE; SNOW DEPTH; AQUATIC ECOSYSTEMS; SNOW DENSITY; FIELD SITES", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H.", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e RADIO TRANSMITTERS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e STREAMFLOW STATION; WATER-BASED PLATFORMS; WATER-BASED PLATFORMS \u003e BUOYS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "Environmental Data Initiative (EDI)", "repositories": "Environmental Data Initiative (EDI)", "science_programs": "LTER", "south": -77.0, "title": "LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem", "uid": "p0010440", "west": 162.87}, {"awards": "2341344 Baker, Bill", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Sep 2023 00:00:00 GMT", "description": "Non-technical project description Museums of natural history, such as the Smithsonian National Museum of Natural History (NMNH) in Washington, D.C., are repositories for, among other things, biological specimens. Specimens stored at the NMNH were obtained over many decades and across the globe, resulting in what is currently a treasure trove of biological and chemical information. Chemical compounds (metabolites) found in the tissues of, for example, marine invertebrates, can record the organism\u2019s response to a changing environment. This project seeks to establish a strategy for analyzing these compounds in Antarctic marine invertebrates held in the NMNH. These organisms are especially valuable for studies of their metabolites as such information will contribute to our understanding of the history of the polar environment and how organisms are able to adapt to extreme habitats. Further, studies of these rare and difficult to obtain metabolites have broad impacts in biotechnology and human health. Technical description of the project This project seeks to develop a workflow for the analysis of metabolites in archival marine invertebrate specimens held in the Smithsonian National Museum of Natural History (NMNH). Recent advances in mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, both instrumental as well as analysis platforms, enable the detection and annotation of chemical structures in these otherwise difficult to obtain metabolites. In particular, NMR strategy (Pure Shift NMR) will be implemented to increase sensitivity toward these sample-limited analytes. Further, the workflow will be applied in an analysis of storage methods used by the NMNH with the aim of understanding how best to preserve specimens for future metabolomics analyses. With an optimized workflow established, additional applications to inform our understanding of adaptation and (cryptic) speciation in the extreme habitats found in Antarctica are possible. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ANIMALS/INVERTEBRATES", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Baker, Bill", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "EAGER: Metabolomics Analysis of Archival Marine Invertebrates", "uid": "p0010435", "west": null}, {"awards": "2034874 Salesky, Scott; 2035078 Giometto, Marco", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "1. A non-technical explanation of the project\u0027s broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC RADIATION; DATA COLLECTIONS; SNOW/ICE; SNOW; FIELD INVESTIGATION; AIR TEMPERATURE; HUMIDITY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Salesky, Scott; Giometto, Marco; Das, Indrani", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling", "uid": "p0010433", "west": null}, {"awards": "2317263 Cross, Andrew", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Aug 2023 00:00:00 GMT", "description": "The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these \u2014 viscous flow \u2014 is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a \"crystal orientation fabric\" (COF). Historically, ice flow has been modeled using an equation, termed \u201cGlen\u2019s law\u201d, that describes ice-flow rate as a function of temperature and stress. Glen\u2019s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, \u201csuperplastic\u201d conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 \u00b5m to 1000 \u00b5m will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30\u00b0C to -10\u00b0C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; Rheology; ROCKS/MINERALS/CRYSTALS; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cross, Andrew", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Microstructural Evolution during Superplastic Ice Creep", "uid": "p0010430", "west": null}, {"awards": "1847173 Duddu, Ravindra", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 07 Jul 2023 00:00:00 GMT", "description": "Iceberg calving is a complex natural fracture process and a dominant cause of mass loss from the floating ice shelves on the margins of the Antarctic ice sheet. There is concern that rapid changes at these ice shelves can destabilize parts of the ice sheet and accelerate their contribution to sea-level rise. The goal of this project is to understand and simulate the fracture mechanics of calving and to develop physically-consistent calving schemes for ice-sheet models. This would enable more reliable estimation of Antarctic mass loss by reducing the uncertainty in projections. The research plan is integrated with an education and outreach plan that aims to (1) enhance computational modeling skills of engineering and Earth science students through a cross-college course and a high-performance computing workshop and (2) increase participation and diversity in engineering and sciences by providing interdisciplinary research opportunities to undergraduates and by deploying new cyberlearning tools to engage local K-12 students in the Metro Nashville Public Schools in computational science and engineering, and glaciology. This project aims to provide fundamental understanding of iceberg calving by advancing the frontiers in computational fracture mechanics and nonlinear continuum mechanics and translating it to glaciology. The project investigates crevasse propagation using poro-damage mechanics models for hydrofracture that are consistent with nonlinear viscous ice rheology, along with the thermodynamics of refreezing in narrow crevasses at meter length scales. It will develop a fracture-physics based scheme to better represent calving in ice-sheet models using a multiscale method. The effort will also address research questions related to calving behavior of floating ice shelves and glaciers, with the goal of enabling more reliable prediction of calving fronts in whole-Antarctic ice-sheet simulations over decadal-to-millennial time scales. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIER MOTION/ICE SHEET MOTION", "locations": "United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Duddu, Ravindra", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "CAREER: Fracture Mechanics of Antarctic Ice Shelves and Glaciers - Representing Iceberg Calving in Ice Sheet Models and Developing Cyberlearning Tools for Outreach", "uid": "p0010423", "west": null}, {"awards": "2021699 Trusel, Luke", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic ice sheet daily surface melt detection from ASCAT (2007-2022); ASCAT-ERA5 Antarctic Peninsula Daily Surface Meltwater Production (2007-2022); Trusel et al 2022, Geophysical Research Letters: Publication data and code", "datasets": [{"dataset_uid": "200362", "doi": "10.5281/zenodo.7995543", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "ASCAT-ERA5 Antarctic Peninsula Daily Surface Meltwater Production (2007-2022)", "url": "https://zenodo.org/record/7995543"}, {"dataset_uid": "200363", "doi": "10.5281/zenodo.6374343", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Trusel et al 2022, Geophysical Research Letters: Publication data and code", "url": "https://zenodo.org/record/6374343"}, {"dataset_uid": "200364", "doi": "10.5281/zenodo.7995998", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Antarctic ice sheet daily surface melt detection from ASCAT (2007-2022)", "url": "https://zenodo.org/record/7995998"}], "date_created": "Fri, 02 Jun 2023 00:00:00 GMT", "description": "Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; Surface Hydrology", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Trusel, Luke; Moussavi, Mahsa", "platforms": null, "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes", "uid": "p0010422", "west": -180.0}, {"awards": "1643575 Kanatous, Shane; 1644004 Trumble, Stephen; 1644256 Costa, Daniel", "bounds_geometry": "POLYGON((-66.534369 -52.962091,-65.3857434 -52.962091,-64.2371178 -52.962091,-63.0884922 -52.962091,-61.9398666 -52.962091,-60.791241 -52.962091,-59.6426154 -52.962091,-58.4939898 -52.962091,-57.3453642 -52.962091,-56.1967386 -52.962091,-55.048113 -52.962091,-55.048113 -54.530129,-55.048113 -56.098167000000004,-55.048113 -57.666205000000005,-55.048113 -59.234243,-55.048113 -60.802281,-55.048113 -62.370319,-55.048113 -63.938357,-55.048113 -65.506395,-55.048113 -67.074433,-55.048113 -68.642471,-56.1967386 -68.642471,-57.3453642 -68.642471,-58.4939898 -68.642471,-59.6426154 -68.642471,-60.791241 -68.642471,-61.9398666 -68.642471,-63.0884922 -68.642471,-64.2371178 -68.642471,-65.3857434 -68.642471,-66.534369 -68.642471,-66.534369 -67.074433,-66.534369 -65.506395,-66.534369 -63.938356999999996,-66.534369 -62.370319,-66.534369 -60.802281,-66.534369 -59.234243,-66.534369 -57.666205,-66.534369 -56.098167000000004,-66.534369 -54.530129,-66.534369 -52.962091))", "dataset_titles": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal; Leopard Seal Diving behavior data; Leopard Seal movement data", "datasets": [{"dataset_uid": "601690", "doi": "10.15784/601690", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal Diving behavior data", "url": "https://www.usap-dc.org/view/dataset/601690"}, {"dataset_uid": "200361", "doi": "https://doi.org/10.5061/dryad.ksn02v75b", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "url": "https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.ksn02v75b"}, {"dataset_uid": "601689", "doi": "10.15784/601689", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Movement Data; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal movement data", "url": "https://www.usap-dc.org/view/dataset/601689"}], "date_created": "Fri, 12 May 2023 00:00:00 GMT", "description": "This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.", "east": -55.048113, "geometry": "POINT(-60.791241 -60.802281)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; Diving Behavior; MAMMALS; MARINE ECOSYSTEMS; Movement Patterns; Leopard Seal", "locations": "Antarctic Peninsula", "north": -52.962091, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Trumble, Stephen J; Kanatous, Shane", "platforms": null, "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -68.642471, "title": "Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal", "uid": "p0010419", "west": -66.534369}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ; Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation; Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica; Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "datasets": [{"dataset_uid": "601737", "doi": "10.15784/601737", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "people": "Edwards, Jon S.; Rosen, Julia; Martin, Kaden; Lee, James; Riddell-Young, Benjamin; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "url": "https://www.usap-dc.org/view/dataset/601737"}, {"dataset_uid": "601736", "doi": "10.15784/601736", "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "people": "Brook, Edward J.; Edwards, Jon S.; Lee, James; Martin, Kaden; Blunier, Thomas; Fischer, Hubertus; Schmitt, Jochen; Rosen, Julia; Buizert, Christo; Riddell-Young, Benjamin; M\u00fchl, Michaela", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601736"}, {"dataset_uid": "601813", "doi": "10.15784/601813", "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "people": "Bauska, Thomas; Brook, Edward J.; Clark, Reid; Iseli, Rene; Menking, Andy; Fischer, Hubertus; Schmitt, Jochen; Lee, James; Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601813"}, {"dataset_uid": "601683", "doi": "10.15784/601683", "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601683"}], "date_created": "Mon, 01 May 2023 00:00:00 GMT", "description": "This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are \"fingerprints\" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. The project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; TRACE GASES/TRACE SPECIES; METHANE", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "uid": "p0010416", "west": -180.0}, {"awards": "1542902 Chereskin, Teresa; 2001646 Chereskin, Teresa", "bounds_geometry": "POLYGON((-68 -54,-66.7 -54,-65.4 -54,-64.1 -54,-62.8 -54,-61.5 -54,-60.2 -54,-58.9 -54,-57.6 -54,-56.3 -54,-55 -54,-55 -55,-55 -56,-55 -57,-55 -58,-55 -59,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-56.3 -64,-57.6 -64,-58.9 -64,-60.2 -64,-61.5 -64,-62.8 -64,-64.1 -64,-65.4 -64,-66.7 -64,-68 -64,-68 -63,-68 -62,-68 -61,-68 -60,-68 -59,-68 -58,-68 -57,-68 -56,-68 -55,-68 -54))", "dataset_titles": "Joint Archive for shipboard ADCP data; World Ocean Database", "datasets": [{"dataset_uid": "200355", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "World Ocean Database", "url": "https://www.nodc.noaa.gov/OC5/SELECT/dbsearch/dbsearch.html"}, {"dataset_uid": "200354", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Joint Archive for shipboard ADCP data", "url": "https://uhslc.soest.hawaii.edu/sadcp/"}], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "Part 1: On frequent crossings of the Drake Passage on the US Antarctic vessel ARSV Laurence M. Gould, a range of underway measurements are taken. These data represent one of the few repeat year around shipboard measurements in the Southern Ocean. With close to two decades of data now available, the primary science objectives of this proposal are to continue to analyze the Drake Passage time series. Part 2: Some of the analyses are (1) describe and relate the seasonal and long-term ocean energy distribution to wind, buoyancy and topographic forcing and sinks, and (2) describe and relate seasonal and long-term changes in the ACC fronts, water masses and upwelling to biogeochemical and climate variability. High-resolution, near-repeat Expendable Bathythermograph (XBT) and Acoustic Doppler Current Profiler (ADCP) transect sampling in Drake Passage is thus used to study modes of variability in ocean temperature, salinity, currents and backscatter in the Antarctic Circumpolar Current (ACC) on seasonal to interannual time frames, and on space scales from current cores to eddies. This project is a continuation of the longstanding support for collecting the ADCP and other underway data on USAP vessels, such as the ASRV Laurence M Gould This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-61.5 -59)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG; Drake Passage; WATER TEMPERATURE; Antarctic Circumpolar Current; Heat Flux", "locations": "Drake Passage", "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Chereskin, Teresa; Sprintall, Janet", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -64.0, "title": "High Resolution Underway Air-Sea Observations in Drake Passage for Climate Science", "uid": "p0010409", "west": -68.0}, {"awards": "1543445 Zhang, Jing", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf; Antarctic passive microwave Kmeans derived surface melt days, 1979-2020", "datasets": [{"dataset_uid": "601685", "doi": "10.15784/601685", "keywords": "Antarctica; Glaciology; Larsen C Ice Shelf; Model Data; Surface Energy Budget; Surface Mass Balance; WRF Model", "people": "Luo, Liping; Zhang, Jing", "repository": "USAP-DC", "science_program": null, "title": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601685"}, {"dataset_uid": "601457", "doi": "10.15784/601457", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Melt Days; Passive Microwave; Snow/ice; Snow/Ice; Surface Melt", "people": "Fahnestock, Mark; Johnson, Andrew; Hock, Regine", "repository": "USAP-DC", "science_program": null, "title": "Antarctic passive microwave Kmeans derived surface melt days, 1979-2020", "url": "https://www.usap-dc.org/view/dataset/601457"}], "date_created": "Fri, 24 Feb 2023 00:00:00 GMT", "description": "Hock/1543432 Over the last half century the Antarctic Peninsula has been among the most rapidly warming regions in the world. This has led to increased glacier melt, widespread glacier retreat, ice-shelf collapses, and glacier speed-ups. Many of these changes are driven by changing precipitation and increased melt due to warmer air temperatures. This project will use a combination of two models - a regional atmospheric model and a model of processes at the glacier surface - to simulate future changes in temperature and snowfall, and the resulting changes in glacier mass. The combination of models will be tested against the observational record (since 1979 when satellite observations became available), to verify that it can reproduce observed change, and then run to the year 2100. Results will provide better estimates of the impacts of future climate changes over the Antarctic Pensinsula and the expected glacier mass changes driven by the evolving climate. The project will use the large changes observed on the Peninsula to validate a model framework suitable for understanding the impact of these changes on the glaciers and ice shelves there, with the goal of developing optimally constrained future climate and surface mass change scenarios for the region. The framework will provide both a coherent picture of the impacts of past changes on the region\u0027s ice cover, and also the best available constraints on forcings that will determine ice mass loss from this region going forward under a standard scenario. The Weather Forecasting and Research (WRF) Model will be used over the domain of the Antarctic Peninsula and neighboring islands to quantify trends in spatio-temporal patterns of mass change with a focus on surface melt. The WRF model will be enhanced to account for the specific conditions of glacier surfaces, and the modified model will be used to simulate climate conditions and resulting surface mass budgets and melt over the period 1979-2100. Tying modeled past climate changes to the surface and satellite-based observational record will provide a foundation for interpreting projected future change. Results will be validated using available weather station observations, surface mass-balance data, and satellite-derived records of melt. The activity will foster partnerships through collaboration with colleagues in Spain, Germany and The Netherlands and will support an early-career postdoctoral researcher and two graduate students, introduce undergraduate and high-school students to original research and provide training of students through inclusion of data and results in course curriculums.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; MODELS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Zhang, Jing; Hock, Regine; Fahnestock, Mark", "platforms": "OTHER \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model", "uid": "p0010408", "west": -180.0}, {"awards": "2219065 Hood, John", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "SPT Treasury Record of AGN With Historical Activity and Time-series (STRAWHAT) Catalog", "datasets": [{"dataset_uid": "200460", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "SPT Treasury Record of AGN With Historical Activity and Time-series (STRAWHAT) Catalog", "url": "https://spt3g.ncsa.illinois.edu/datasets/spt_agn_lightcurves/"}], "date_created": "Mon, 19 Dec 2022 00:00:00 GMT", "description": "This project will investigate the change in brightness of objects known as Active Galactic Nuclei (AGN) using microwave telescopes. AGN are powered by matter falling onto supermassive black holes. The primary objective of this research is to undertake a study of AGN brightness fluctuations using light in multiple wavelengths. By studying the connections between the fluctuations at different wavelengths, we can learn what causes these fluctuations. The data produced under this project will be publicly released to enable other scientific investigations. The broader impacts of this project include the training of graduate students in the Fisk-Vanderbilt Masters-to-PhD Bridge program. In addition, the researcher will continue to work with the NAACP (ACT-SO) and First Discoveries programs as a science mentor, advisor and teacher for local pre-K and high school students and classrooms. The researcher has introduced a new process that uses repurposed Cosmic Microwave Background (CMB) data from the South Pole Telescope to produce millimeter-wavelength light curves of AGN with the goal of conducting a multi-wavelength correlation study. This study will be use the measured correlations between different wavelength emissions from AGN to better understand the origin and production of observed gamma-ray emissions. This project will fund the first large-scale effort to use CMB data for AGN monitoring and will provide a foundational observing program/strategy that will be implemented in future CMB experiments. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": null, "is_usap_dc": true, "keywords": "SOLAR ENERGETIC PARTICLE FLUX; ATMOSPHERIC RADIATION; South Pole Station", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Hood, John", "platforms": null, "repo": "GenBank", "repositories": "GenBank", "science_programs": null, "south": -90.0, "title": "OPP-PRF: Millimeter-wave Blazar Monitoring With Cosmic Microwave Background Experiments: A New Tool for Probing Blazar Physics", "uid": "p0010399", "west": 0.0}, {"awards": "1644234 Phillips, Fred", "bounds_geometry": "POLYGON((166.17 -77.3,166.32799999999997 -77.3,166.486 -77.3,166.644 -77.3,166.802 -77.3,166.95999999999998 -77.3,167.118 -77.3,167.276 -77.3,167.434 -77.3,167.59199999999998 -77.3,167.75 -77.3,167.75 -77.34,167.75 -77.38,167.75 -77.42,167.75 -77.46,167.75 -77.5,167.75 -77.54,167.75 -77.58,167.75 -77.62,167.75 -77.66,167.75 -77.7,167.59199999999998 -77.7,167.434 -77.7,167.276 -77.7,167.118 -77.7,166.95999999999998 -77.7,166.802 -77.7,166.644 -77.7,166.486 -77.7,166.32799999999997 -77.7,166.17 -77.7,166.17 -77.66,166.17 -77.62,166.17 -77.58,166.17 -77.54,166.17 -77.5,166.17 -77.46,166.17 -77.42,166.17 -77.38,166.17 -77.34,166.17 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "Nontechnical Description: The age of rocks and soils at the surface of the Earth can help answer multiple questions that are important for human welfare, including: when did volcanoes erupt and are they likely to erupt again? when did glaciers advance and what do they tell us about climate? what is the frequency of hazards such as landslides, floods, and debris flows? how long does it take soils to form and is erosion of soils going to make farming unsustainable? One method that is used thousands of times every year to address these questions is called \u0027cosmogenic surface-exposure dating\u0027. This method takes advantage of cosmic rays, which are powerful protons and neutrons produced by supernova that constantly bombard the Earth\u0027s atmosphere. Some cosmic rays reach Earth\u0027s surface and produce nuclear reactions that result in rare isotopes. Measuring the quantity of the rare isotopes enables the length of time that the rock or soil has been exposed to the atmosphere to be calculated. The distribution of cosmic rays around the globe depends on Earth\u0027s magnetic field, and this distribution must be accurately known if useful exposure ages are to be obtained. Currently there are two remaining theories, narrowed down from many, of how to calculate this distribution. Measurements from a site that is at both high altitude and high latitude (close to the poles) are needed to test the two theories. This study involves both field and lab research and includes a Ph.D. student and an undergraduate student. The research team will collect rocks from lava flows on an active volcano in Antarctica named Mount Erebus and measure the amounts of two rare isotopes: 36Cl and 3He. The age of eruption of the samples will be determined using a highly accurate method that does not depend on cosmic rays, called 40Ar/39Ar dating. The two cosmic-ray theories will be used to calculate the ages of the samples using the 36Cl and 3He concentrations and will then be compared to the ages calculated from the 40Ar/39Ar dating. The accurate cosmic-ray theory will be the one that gives the same ages as the 40Ar/39Ar dating. Identification of the accurate theory will enable use of the cosmogenic surface dating methods anywhere on earth. Technical Description: Nuclides produced by cosmic rays in rocks at the surface of the earth are widely used for Quaternary geochronology and geomorphic studies and their use is increasing every year. The recently completed CRONUS-Earth Project (Cosmic-Ray Produced Nuclides on Earth) has systematically evaluated the production rates and theoretical underpinnings of cosmogenic nuclides. However, the CRONUS-Earth Project was not able to discriminate between the two leading theoretical approaches: the original Lal model (St) and the new Lifton-Sato-Dunai model (LSD). Mathematical models used to scale the production of the nuclides as a function of location on the earth, elevation, and magnetic field configuration are an essential component of this dating method. The inability to distinguish between the two models was because the predicted production rates did not differ sufficiently at the location of the calibration sites. The cosmogenic-nuclide production rates that are predicted by the two models differ significantly from each other at Erebus volcano, Antarctica. Mount Erebus is therefore an excellent site for testing which production model best describes actual cosmogenic-nuclide production variations over the globe. The research team recently measured 3He and 36Cl in mineral separates extracted from Erebus lava flows. The exposure ages for each nuclide were reproducible within each flow (~2% standard deviation) and in very good agreement between the 3He and the 36Cl ages. However, the ages calculated by the St and LSD scaling methods differ by ~15-25% due to the sensitivity of the production rate to the scaling at this latitude and elevation. These results lend confidence that Erebus qualifies as a suitable high- latitude/high-elevation calibration site. The remaining component that is still lacking is accurate and reliable independent (i.e., non-cosmogenic) ages, however, published 40Ar/39Ar ages are too imprecise and typically biased to older ages due to excess argon contained in melt inclusions. The research team\u0027s new 40Ar/39Ar data show that previous problems with Erebus anorthoclase geochronology are now overcome with modern mass spectrometry and better sample preparation. This indicates a high likelihood of success for this proposal in defining an accurate global scaling model. Although encouraging, much remains to be accomplished. This project will sample lava flows over 3 km in elevation and determine their 40Ar/39Ar and exposure ages. These combined data will discriminate between the two scaling methods, resulting in a preferred scaling model for global cosmogenic geochronology. The LSD method contains two sub-methods, the \u0027plain\u0027 LSD scales all nuclides the same, whereas LSDn scales each nuclide individually. The project can discriminate between these models using 3He and 36Cl data from lava flows at different elevations, because the first model predicts that the production ratio for these two nuclides will be invariant with elevation and the second that there should be ~10% difference over the range of elevations to be sampled. Finally, the project will provide a local, finite-age calibration site for cosmogenic-nuclide investigations in Antarctica.", "east": 167.75, "geometry": "POINT(166.95999999999998 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; Mount Erebus; VOLCANO", "locations": "Mount Erebus", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Phillips, Fred; Kyle, Philip; Heizler, Matthew T", "platforms": null, "repositories": null, "science_programs": null, "south": -77.7, "title": "A Test of Global and Antarctic Models for Cosmogenic-nuclide Production Rates using High-precision Dating of 40Ar/39Ar Lava Flows from Mount Erebus", "uid": "p0010397", "west": 166.17}, {"awards": "1543533 Johnson, Jesse; 1543530 van der Veen, Cornelis", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Van der Veen/1543530 The objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. To adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Sheet Dynamics; MODELS; Iceberg Calving; GLACIERS/ICE SHEETS; Numerical Glacier Modeling; Basal Sliding; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "van der Veen, Cornelis; Stearns, Leigh; Paden, John", "platforms": "OTHER \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers", "uid": "p0010387", "west": -180.0}, {"awards": "2135185 Resing, Joseph; 2135184 Arrigo, Kevin; 2135186 Baumberger, Tamara", "bounds_geometry": "POLYGON((155 -61,156.5 -61,158 -61,159.5 -61,161 -61,162.5 -61,164 -61,165.5 -61,167 -61,168.5 -61,170 -61,170 -61.2,170 -61.4,170 -61.6,170 -61.8,170 -62,170 -62.2,170 -62.4,170 -62.6,170 -62.8,170 -63,168.5 -63,167 -63,165.5 -63,164 -63,162.5 -63,161 -63,159.5 -63,158 -63,156.5 -63,155 -63,155 -62.8,155 -62.6,155 -62.4,155 -62.2,155 -62,155 -61.8,155 -61.6,155 -61.4,155 -61.2,155 -61))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 30 Sep 2022 00:00:00 GMT", "description": "Phytoplankton blooms throughout the world\u2019s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University\u2019s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford\u2019s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford\u2019s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford\u2019s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial \u201cradiator\u201d pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship\u2019s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(162.5 -62)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; Antarctica; TRACE ELEMENTS; Hydrothermal Vent; Phytoplankton; Primary Production", "locations": "Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph", "platforms": null, "repositories": null, "science_programs": null, "south": -63.0, "title": "Collaborative Research: Understanding the Massive Phytoplankton Blooms over the Australian-Antarctic Ridge", "uid": "p0010381", "west": 155.0}, {"awards": "2026648 Tobin, Thomas; 2025724 Harwood, David; 2020728 Huber, Brian", "bounds_geometry": "POLYGON((-56.93 -64.2,-56.894 -64.2,-56.858 -64.2,-56.822 -64.2,-56.786 -64.2,-56.75 -64.2,-56.714 -64.2,-56.678 -64.2,-56.642 -64.2,-56.606 -64.2,-56.57 -64.2,-56.57 -64.214,-56.57 -64.22800000000001,-56.57 -64.242,-56.57 -64.256,-56.57 -64.27000000000001,-56.57 -64.284,-56.57 -64.298,-56.57 -64.312,-56.57 -64.32600000000001,-56.57 -64.34,-56.606 -64.34,-56.642 -64.34,-56.678 -64.34,-56.714 -64.34,-56.75 -64.34,-56.786 -64.34,-56.822 -64.34,-56.858 -64.34,-56.894 -64.34,-56.93 -64.34,-56.93 -64.32600000000001,-56.93 -64.312,-56.93 -64.298,-56.93 -64.284,-56.93 -64.27000000000001,-56.93 -64.256,-56.93 -64.242,-56.93 -64.22800000000001,-56.93 -64.214,-56.93 -64.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 15 Sep 2022 00:00:00 GMT", "description": "Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.57, "geometry": "POINT(-56.75 -64.27000000000001)", "instruments": null, "is_usap_dc": true, "keywords": "Seymour Island; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTARY ROCKS; MICROFOSSILS; FIELD INVESTIGATION", "locations": "Seymour Island", "north": -64.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tobin, Thomas; Totten, Rebecca", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -64.34, "title": "Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction", "uid": "p0010377", "west": -56.93}, {"awards": "1744562 Loose, Brice", "bounds_geometry": "POLYGON((-180 -71,-179.9 -71,-179.8 -71,-179.7 -71,-179.6 -71,-179.5 -71,-179.4 -71,-179.3 -71,-179.2 -71,-179.1 -71,-179 -71,-179 -71.7,-179 -72.4,-179 -73.1,-179 -73.8,-179 -74.5,-179 -75.2,-179 -75.9,-179 -76.6,-179 -77.3,-179 -78,-179.1 -78,-179.2 -78,-179.3 -78,-179.4 -78,-179.5 -78,-179.6 -78,-179.7 -78,-179.8 -78,-179.9 -78,180 -78,177.5 -78,175 -78,172.5 -78,170 -78,167.5 -78,165 -78,162.5 -78,160 -78,157.5 -78,155 -78,155 -77.3,155 -76.6,155 -75.9,155 -75.2,155 -74.5,155 -73.8,155 -73.1,155 -72.4,155 -71.7,155 -71,157.5 -71,160 -71,162.5 -71,165 -71,167.5 -71,170 -71,172.5 -71,175 -71,177.5 -71,-180 -71))", "dataset_titles": "Expedition Data of NBP1704; NBP1704 Expedition Data; PIPERS Noble Gases", "datasets": [{"dataset_uid": "200329", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Expedition Data of NBP1704", "url": "https://www.marine-geo.org/tools/entry/NBP1704"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}], "date_created": "Wed, 14 Sep 2022 00:00:00 GMT", "description": "Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -179.0, "geometry": "POINT(168 -74.5)", "instruments": null, "is_usap_dc": true, "keywords": "Helium Isotopes; R/V NBP; DISSOLVED GASES; POLYNYAS; Ross Sea", "locations": "Ross Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Loose, Brice", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "MGDS", "repositories": "MGDS; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Measuring Dissolved Gases to Reveal the Processes that Drive the Solubility Pump and Determine Gas Concentration in Antarctic Bottom Water", "uid": "p0010376", "west": 155.0}, {"awards": "2205008 Walker, Catherine", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Most of the mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean\u2019s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, overall, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes. This study focuses on four main hypotheses: 1) Variations of coastal polynya extent are correlated with those of the ice shelf melt rates, and this correlation varies around Antarctica; 2) Polynya extent modulates a feedback between ice shelf melt and accretion regimes through stratification of local waters; 3) Polynya extent together with seafloor bathymetry regulate the volume of warm offshore waters that reach ice margins; and 4) The strength of the feedback between polynya and glacier ice varies with geographic setting and influences the long-term stability of the glacial system. Observational data, including ice-penetrating radar, radar and laser altimetry, and in situ hydrographic data, and derived data sets from the Southern Ocean State Estimate (SOSE) project and BedMachine Antarctica, will be used in conjunction with ocean (MIT global circulation model, MITgcm) and ice sheet (Ice sheet and Sea-level System Model, ISSM) models to reveal underlying dynamics. The joint analysis of the observational data enables an investigation of polynya, ocean, and ice shelf signals and their interplay over time across a range of settings. The results of this data analysis also provide inputs and validation data for the modeling tasks, which will allow for characterization of the feedbacks in our observations. The coupled modeling will enable us to examine the interaction between polynya circulation and ice shelves in different dynamical regimes and to understand ice and ocean feedback over time. Diagnosing and interpreting the pan-Antarctic spatial variability of the polynya-ice shelf interaction are the main objectives of this research and separates this study from other projects targeted at the interactive processes in specific regions. As such, this research focuses on seven preliminary target sites around the Antarctic coast to establish a framework for interpreting coupled ice shelf-ocean variability across a diverse range of geographic settings. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; ICE EXTENT; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Walker, Catherine; Zhang, Weifeng; Seroussi, Helene", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Investigating the Role of Coastal Polynya Variability in Modulating Antarctic Marine-Terminating Glacier Drawdown", "uid": "p0010364", "west": -180.0}, {"awards": "2147553 Rotella, Jay; 2147554 Chen, Nancy; 1640481 Rotella, Jay", "bounds_geometry": "POLYGON((162 -74.95,162.8 -74.95,163.6 -74.95,164.4 -74.95,165.2 -74.95,166 -74.95,166.8 -74.95,167.6 -74.95,168.4 -74.95,169.2 -74.95,170 -74.95,170 -75.295,170 -75.64,170 -75.985,170 -76.33,170 -76.67500000000001,170 -77.02000000000001,170 -77.36500000000001,170 -77.71000000000001,170 -78.055,170 -78.4,169.2 -78.4,168.4 -78.4,167.6 -78.4,166.8 -78.4,166 -78.4,165.2 -78.4,164.4 -78.4,163.6 -78.4,162.8 -78.4,162 -78.4,162 -78.055,162 -77.71000000000001,162 -77.36500000000001,162 -77.02000000000001,162 -76.67500000000001,162 -76.33,162 -75.985,162 -75.64,162 -75.295,162 -74.95))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "datasets": [{"dataset_uid": "601837", "doi": "10.15784/601837", "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601837"}], "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Part 1: Non-technical description This is a continuation of a long-term population dynamics study (1978-present) using an intensive mark-recapture tagging of Weddell seals in Erebus Bay, Antarctica. Past work has become a global model for population studies of large animals. Results have documented strong annual variation in reproduction, abundance, and population composition. This program will add components to evaluate the demographic role of immigrant mothers, evaluate possible drivers of annual variation in overall population dynamics, assess genetic differences between immigrant and locally born mothers, and document patterns of gene flow among seal colonies in the Ross Sea region. These new aspects will focus on understanding of population structure, function, and genetics and provide key information for predicting how the seal population will respond to environmental change. The addition of genetic approaches will advance available data for multiple groups in multiple countries working on Weddell Seals. This work includes an early career scientists training program for faculty university graduate and undergraduate students and well as a defined program for data sharing. The research is paired with active education and outreach programs, social media, websites, educational resources, videos and high-profile public lecture activities. The informal science education program will expand on the project\u2019s successful efforts at producing and delivering short-form videos that have been viewed over 1.6 million times to date. In addition, the education program will add new topics such as learning about seals using genomics and how seals respond to a changing world to a multimedia-enhanced electronic book about the project\u2019s long-term research on Weddell seals, which will be freely available to the public early in the project. Part 2: Technical description Reliable predictions are needed for how populations of wild species, especially those at high latitudes, will respond to future environmental conditions. This study will use a strategic extension of the long-term demographic research program that has been conducted annually on the Erebus Bay population of Weddell seals since 1978 to help meet that need. Recent analyses of the study population indicate strong annual variation in reproduction, abundance, and population composition. The number of new immigrant mothers that join the population each year has recently grown such that most new mothers are now immigrants. Despite the growing number of immigrants, the demographic importance and geographic origins of immigrants are unknown. The research will (1) add new information on drivers of annual variation in immigrant numbers, (2) compare and combine information on the vital rates and demographic role of immigrant females and their offspring with that of locally born females, and (3) add genomic analyses that will quantify levels of genetic variation in and gene flow among the study population and other populations in the Ross Sea. The project will continue the long-term monitoring of the population at Erebus Bay and characterize population dynamics and the role of immigration using a combination of mark-recapture analyses, stochastic population modeling, and genomic analyses. The study will continue to provide detailed data on individual seals to other science teams, educate and mentor individuals in the next generation of ecologists, introduce two early-career, female scientists to Antarctic research, and add genomics approaches to the long-term population study of Erebus Bay Weddell seals. The research will be complemented with a robust program of training and an informal science education program. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(166 -76.67500000000001)", "instruments": null, "is_usap_dc": true, "keywords": "SPECIES/POPULATION INTERACTIONS; McMurdo Sound", "locations": "McMurdo Sound", "north": -74.95, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Chen, Nancy", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Collaborative Research: The Drivers and Role of Immigration in the Dynamics of the Largest Population of Weddell Seals in Antarctica under Changing Conditions", "uid": "p0010361", "west": 162.0}, {"awards": "2149518 Fudge, Tyler", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "datasets": [{"dataset_uid": "601854", "doi": "10.15784/601854", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah; Fudge, T. J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "url": "https://www.usap-dc.org/view/dataset/601854"}], "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Ice cores provide valuable records of past climate such as atmospheric concentrations of greenhouse gasses and unmatched evidence of past abrupt climate change. Key to understanding past climate changes are the measurements of annual layers that are used to determine the age of the ice, and the timing and pace of major climate events. The current measurement limit for annual layers in ice cores is at the centimeter scale. This project aims to improve the depth resolution of measurements of the chemical impurities in ice using measurements such as electrical conductivity, hyperspectral imaging, major elements measured with laser ablation, and ice grain properties. This will advance understanding of the preservation and layering in ice cores and improve the accuracy and length of annual timescales for existing ice cores. Most of the past time preserved in an ice core is near the bed where the layers have been thinned to only a fraction of their original thickness. Interpreting highly compressed portions of ice cores is increasingly important as projects target climate records in basal ice, and old ice recovered from blue-ice areas. This project will integrate precisely co-registered electrical conductivity measurements, hyperspectral imaging, laser ablation mass spectrometer measurements of impurities, and ice physical properties to investigate sub-centimeter chemical and physical variations in polar ice. Critical to resolving thin ice layers is understanding the across-core variations that may obscure or distort the vertical layering. Analyses will be focused on samples from the WDC-06A (WAIS Divide), SPC-14 (South Pole), and GISP2 (Greenland Ice Sheet Project 2) ice cores that have well-established seasonal cycles that yielded benchmark timescales, as well a large-diameter ice core from the Allan Hills blue ice area. This work will develop state-of-the-art instrumentation and FAIR (findable, accessible, interoperable, and reusable) data handling workflow at the National Science Foundation Ice Core Facility available to the community both to enhance understanding of existing ice cores, and for use in future projects. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE CORE RECORDS; Ice Core", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Fegyveresi, John M", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections", "uid": "p0010365", "west": -180.0}, {"awards": "1654922 de la Pena, Santiago", "bounds_geometry": "POINT(0 -90)", "dataset_titles": " South Pole Weather and Accumulation Measurements 2017-2020", "datasets": [{"dataset_uid": "601591", "doi": "10.15784/601591", "keywords": "Accumulation; Antarctica; Snow; South Pole; Surface Mass Balance", "people": "de la Pe\u00f1a, Santiago", "repository": "USAP-DC", "science_program": null, "title": " South Pole Weather and Accumulation Measurements 2017-2020", "url": "https://www.usap-dc.org/view/dataset/601591"}], "date_created": "Tue, 02 Aug 2022 00:00:00 GMT", "description": "Non-Technical Description: Snow accumulation in the interior of the Antarctic Ice Sheet, and how much snow is redistributed by wind are important components of the climate system of Antarctica, yet remain largely unknown. Because of the extreme meteorological conditions found in Antarctica, direct observations of snowfall and related weather are few, leaving a gap in the regional climate records in the continent. Snow accumulation across the Antarctic Ice Sheet is a critical component for the assessment of the contribution of Antarctica to sea level rise, and accurate measurements are required to evaluate results from regional climate models, used to reconstruct climate trends of the recent past for the whole ice sheet. Owing to the size of Antarctica alone, small fluctuations in the total snow accumulation at the surface have a significant effect on the mass budget of the ice sheet and thus on global sea level. In this work will develop an instrument suite for deployment at the South Pole research station in Antarctica. The monitoring station will have new state-of-the-art sensors will record measurements of weather, snow accumulation, and structural conditions within the layer of packed snow. The autonomous system will be tested in the coldest and darkest winter on the planet, and will provide the first continuous measurements of snow accumulation processes in the interior of the ice sheet, which will be used to validate atmospheric and regional climate models. Technical Description: The overarching goal of the proposed work is to improve our understanding of the spatiotemporal variability in ice-sheet surface mass balance and densification rates within the layer of firn, a layer roughly 100 m thick consisting of the buried and compacted snow that has yet to densify into solid ice. For this, we will A) design and install a cost-efficient, reliable, and easily deployable surface mass balance and firn monitoring system for Antarctica; B) adapt the system to operate autonomously for long periods of time under the harshest meteorological conditions; C) use observations for evaluation of surface mass balance simulated by atmospheric reanalyzes and regional climate model; and D) measure the surface mass balance, surface density, and firn compaction rates to derive ice sheet surface elevation change in areas with low ice dynamics. The set up of the monitoring station is unique in that it is able to monitor separately height change due to surface mass balance variability and absolute surface mass balance, the latter in units of water equivalence, and differentiation of the two is crucial for understanding the role of surface processes in ice sheet mass balance. An installed sonic ranger will provide hourly measurements of surface height change that is due to snow accumulation. Surface height change alone is not sufficient to evaluate atmospheric models of surface mass balance, which is measured in in units of mass; a key variable missing is density. To overcome this, the system will be equipped with a SnowFox sensor that is able to capture the variations in surface mass balance in terms of mass through time. Combining the height change with mass change will allow us to determine the density of the material as well, which is very important for conversion of observed height changes due to surface processes into mass changes. Therefore, we aim to better evaluate the short-term variability in surface height and mass fluctuations due to surface mass balance to improve our understanding of the total mass change and to evaluate atmospheric models, which are typically used for ice sheet-wide mass balance studies.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": null, "is_usap_dc": true, "keywords": "South Pole; SNOW", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Instrumentation and Support; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "de la Pe\u00f1a, Santiago", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "EAGER: An Operational System to Measure Surface Mass Balance Deep in the Interior of the Antarctic Ice Sheet", "uid": "p0010360", "west": 0.0}, {"awards": "1745081 Bernard, Kim; 1745018 Fraser, William; 1745009 Kohut, Josh; 1744884 Oliver, Matthew; 1745023 Hennon, Tyler; 1745011 Klinck, John", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}, {"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crustal thicknesses in Antarctica from Sp receiver functions; Lithospheric thicknesses in Antarctica from Sp receiver functions", "datasets": [{"dataset_uid": "601899", "doi": "10.15784/601899", "keywords": "Antarctica; Cryosphere; LAB; Lithosphere; Lithospheric Thickness", "people": "Brown, Sarah; Fischer, Karen", "repository": "USAP-DC", "science_program": null, "title": "Lithospheric thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601899"}, {"dataset_uid": "601898", "doi": "10.15784/601898", "keywords": "Antarctica; Crust; Cryosphere; Moho", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Crustal thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601898"}], "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "1947646 Shevenell, Amelia; 1947657 Dodd, Justin; 1947558 Leckie, Robert", "bounds_geometry": "POLYGON((-180 -72.5,-177.6 -72.5,-175.2 -72.5,-172.8 -72.5,-170.4 -72.5,-168 -72.5,-165.6 -72.5,-163.2 -72.5,-160.8 -72.5,-158.4 -72.5,-156 -72.5,-156 -73.15,-156 -73.8,-156 -74.45,-156 -75.1,-156 -75.75,-156 -76.4,-156 -77.05,-156 -77.7,-156 -78.35,-156 -79,-158.4 -79,-160.8 -79,-163.2 -79,-165.6 -79,-168 -79,-170.4 -79,-172.8 -79,-175.2 -79,-177.6 -79,180 -79,178.4 -79,176.8 -79,175.2 -79,173.6 -79,172 -79,170.4 -79,168.8 -79,167.2 -79,165.6 -79,164 -79,164 -78.35,164 -77.7,164 -77.05,164 -76.4,164 -75.75,164 -75.1,164 -74.45,164 -73.8,164 -73.15,164 -72.5,165.6 -72.5,167.2 -72.5,168.8 -72.5,170.4 -72.5,172 -72.5,173.6 -72.5,175.2 -72.5,176.8 -72.5,178.4 -72.5,-180 -72.5))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 08 Jun 2022 00:00:00 GMT", "description": "Nontechnical abstract Presently, Antarctica\u2019s glaciers are melting as Earth\u2019s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica\u2019s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica\u2019s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica\u2019s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth\u2019s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970\u2019s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. The research provides experience for three graduate students and seven undergraduate students via a multi-institutional REU program focused on increasing diversity in Antarctic Earth Sciences. Technical Abstract Deep-sea sediments reveal that the Miocene Climatic Optimum (MCO) was the warmest climate interval of the last ~20 Ma, was associated with global carbon cycle changes and ice growth, and immediately preceded the Middle Miocene Climate Transition (MMCT; ~14 Ma), one of three major intervals of Antarctic ice expansion and global cooling. Ice-proximal studies are required to assess: where and when ice grew, ice sheet extent, continental shelf geometry, high-latitude heat and moisture supply, oceanic and/or atmospheric temperature influence on ice dynamics, regional sea ice extent, meltwater input, and regions of bottom water formation. Existing studies indicate that ice expanded beyond the Transantarctic Mountains and onto the prograding Ross Sea continental shelf multiple times between ~17 and 13.5 Ma. However, these records are either too ice-proximal/terrestrial to adequately assess ocean-ice interactions or under-studied. To address this data gap, this work will: 1) generate micropaleontologic and geochemical records of oceanic and atmospheric temperature, water depth, ocean circulation, and paleoproductivity from existing Ross Sea marine sedimentary sequences, and 2) use these proxy records to test the hypothesis that dynamic glacial expansion in the Ross Sea sector during the MCO was driven by heat and moisture transport to the high latitudes during an interval of enhanced climate sensitivity. Downcore geochemical and micropaleontologic studies will focus on an expanded (120 m/my) early to middle Miocene (~17-16 Ma) diatom-bearing/rich mudstone/diatomite unit from IODP Site U1521, drilled on the Ross Sea continental shelf. A hiatus (~16-14.6 Ma) suggests ice expansion during the MCO, followed by diamictite to mudstone unit indicative of slight retreat (14.6 -14 Ma) immediately preceding the MMCT. Data from Site U1521 will be integrated with foraminiferal geochemical and micropaleontologic data from DSDP Leg 28 (1972/73) and RISP J-9 (1978-79) to develop a MCO to late Miocene regional view of ocean-ice sheet interactions using legacy core material previously processed for foraminifera. This integrated record will: 1) document the timing and extent of glacial advances and retreats across the prograding Ross Sea shelf during the middle and late Miocene, 2) provide orbital-scale paleotemperature reconstructions (TEX86, Mg/Ca, \u03b418O, MBT/CBT) to establish atmosphere-ocean-ice interactions during an extreme high-latitude warm interval, and 3) provide orbital-scale nutrient/paleoproductivity, ocean circulation, and paleoenvironmental data required to assess climate feedbacks associated with Miocene Antarctic ice sheet and global climate system development. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -156.0, "geometry": "POINT(-176 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; LABORATORY; AMD; PALEOCLIMATE RECONSTRUCTIONS; Ross Sea; USAP-DC; USA/NSF", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Proposal: Miocene Climate Extremes: A Ross Sea Perspective from IODP Expedition 374 and DSDP Leg 28 Marine Sediments", "uid": "p0010335", "west": 164.0}, {"awards": "1945127 Moffat, Carlos", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Freshwater discharges from melting high-latitude continental ice glacial reserves strongly control salt budgets, circulation and associated ocean water mass formation arising from polar ice shelves. These are different in nature than freshwater inputs associated with riverine coastal inputs. The PI proposes an observational deployment to measure a specific, previously-identified example of a coastal freshwater-driven current, the Antarctic Peninsula Coastal Current (APCC). The research component of this CAREER project aims to improve understanding of the dynamics of freshwater discharge around the Antarctic continent. Associated research questions pertain to the i) controls on the cross- and along-shelf spreading of fresh, buoyant coastal currents, ii) the role of distributed coastal freshwater sources (as opposed to \u0027point\u0027 source river outflow sources typical of lower latitudes), and iii) the contribution of these coastal currents to water mass transformation and heat transfer on the continental shelf. An educational CAREER program component leverages a series of field experiences and research outputs including data, model outputs, and theory, to bring polar science to the classroom and the general public, as well as training a new polar scientist. This combined strategy will allow the investigator to lay the foundation for a successful academic career as a researcher and teacher at the University of Delaware. The project will also provide the opportunity to train a PhD student. Informal outreach efforts will include giving public lectures at University of Deleware\u0027s sponsored events, including Coast Day, a summer event that attracts 8000-10000 people, and remote lectures from the field using an existing outreach network. This proposal requires fieldwork in the Antarctic. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; R/V LMG; TURBULENCE; USAP-DC; OCEAN CURRENTS; Antarctic Peninsula; AMD; USA/NSF; HEAT FLUX", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Moffat, Carlos", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repositories": null, "science_programs": null, "south": null, "title": "CAREER: The Transformation, Cross-shore Export, and along-shore Transport of Freshwater on Antarctic Shelves", "uid": "p0010330", "west": null}, {"awards": "1951090 Stukel, Michael", "bounds_geometry": "POLYGON((-80 -63,-78.2 -63,-76.4 -63,-74.6 -63,-72.8 -63,-71 -63,-69.2 -63,-67.4 -63,-65.6 -63,-63.8 -63,-62 -63,-62 -63.7,-62 -64.4,-62 -65.1,-62 -65.8,-62 -66.5,-62 -67.2,-62 -67.9,-62 -68.6,-62 -69.3,-62 -70,-63.8 -70,-65.6 -70,-67.4 -70,-69.2 -70,-71 -70,-72.8 -70,-74.6 -70,-76.4 -70,-78.2 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "BCO-DMO Project Page", "datasets": [{"dataset_uid": "200294", "doi": null, "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "BCO-DMO Project Page", "url": "https://www.bco-dmo.org/project/838048"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children\u2019s book, \u201cPlankton do the Strangest Things\u201d, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms. This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years\u2019 worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-71 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Palmer Station; USAP-DC; BIOGEOCHEMICAL CYCLES; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Stukel, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -70.0, "title": "Quantifying Processes Driving Interannual Variability in the Biological Carbon Pump in the Western Antarctic Peninsula", "uid": "p0010332", "west": -80.0}, {"awards": "2037670 Heine, John; 2037598 Alberto, Filipe", "bounds_geometry": "POLYGON((162 -76,162.8 -76,163.6 -76,164.4 -76,165.2 -76,166 -76,166.8 -76,167.6 -76,168.4 -76,169.2 -76,170 -76,170 -76.3,170 -76.6,170 -76.9,170 -77.2,170 -77.5,170 -77.8,170 -78.1,170 -78.4,170 -78.7,170 -79,169.2 -79,168.4 -79,167.6 -79,166.8 -79,166 -79,165.2 -79,164.4 -79,163.6 -79,162.8 -79,162 -79,162 -78.7,162 -78.4,162 -78.1,162 -77.8,162 -77.5,162 -77.2,162 -76.9,162 -76.6,162 -76.3,162 -76))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 23 May 2022 00:00:00 GMT", "description": "Climate change is changing the number of sea-ice free days in coastal polar environments, which is impacting Antarctic communities. This study will evaluate the change in macroalgae (seaweed) communities to increased light availability in order to predict if macroalgae will be able to spread to newly ice-free locations faster than invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) in shallow underwater rocky habitats. Study sites will include multiple locations in McMurdo Sound, Ross Sea, Antarctica. This study will establish patterns in plant properties, genetic diversity and reproductive characteristics of two species of seaweeds, Phyllophora antarctica and Iridaea cordata in relation to depth and light. Long-term changes will be assesed by comparing to results from a survey in 1980. This will be the first study in the region to estimate the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on shifts in macroalgal communities in McMurdo Sound. Three-dimensional photogrammetry will also be used to evaluate benthic community structure on the newly discovered offshore Dellbridge Seamount. Visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in polar ecology and factors causing changes in marine community ecosystem structure in this important region. This project is evaluating macroalgae biogeography in Antarctic coastal waters near McMurdo Sound, a relatively understudied region that is experiencing large changes in fast sea ice coverage. The population ecology and genetic diversity of nearshore shallow and deeper offshore benthic macroalgal communities of Phyllophora antarctica and Iridaea cordata will be assessed for percentage cover, biomass, blade length, and reproductive characteristics at seven locations: Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount in McMurdo Sound, Antarctica. The team is also assessing differential reproductive successes at different depths and comparing results to populations surveyed in 1980. The genetic diversity of the two species is being estimated using a combination of whole genome sequencing and species-specific microsatellite genetic markers. Samples from this study will be compared to samples collected from other regions in Antarctica such as the South Shetland Islands and Antarctic Peninsula. In addition, a macroalgal assemblage and 3D models of the community structure will be generated using photogrammetry from the newly discovered Dellbridge Seamount that is located 2 km offshore in McMurdo Sound. With the addition of photogrammetry and 3D visualization to this research, web-based applications will be used to engage and educate the public in subtidal polar ecology, population genetics, and the importance of Antarctic science to their lives. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(166 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; McMurdo Sound; USAP-DC; Amd/Us; COMMUNITY DYNAMICS; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS); USA/NSF", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Heine, John; Goldberg, Nisse; Alberto, Filipe", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound", "uid": "p0010322", "west": 162.0}, {"awards": "1744856 Bromirski, Peter; 1744958 Wei, Yong; 1744759 Dunham, Eric; 1246151 Bromirski, Peter", "bounds_geometry": null, "dataset_titles": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves; Datasets for Model Simulations of Tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Thwaites); Datasets of bathymetric model grids for model simulations of tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves; Model simulation data of tsunami propagation in the Pacific Ocean; Model simulations of tsunami propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Ross Sea); Model Tsunami Propagation Simulation From Circum-Pacific Subduction Zones to West Antarctic Ice Shelves; Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "datasets": [{"dataset_uid": "601561", "doi": "10.15784/601561", "keywords": "Amundsen Sea; Antarctica; Glaciology", "people": "Tazhimbetov, Nurbek; Almquist, Martin; Dunham, Eric", "repository": "USAP-DC", "science_program": null, "title": "Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "url": "https://www.usap-dc.org/view/dataset/601561"}, {"dataset_uid": "200424", "doi": "N/A", "keywords": null, "people": null, "repository": "NOAA Center for Tsunami Research (NCTR)", "science_program": null, "title": "Model Tsunami Propagation Simulation From Circum-Pacific Subduction Zones to West Antarctic Ice Shelves", "url": " https://nctr.pmel.noaa.gov/antarctica/ "}, {"dataset_uid": "601922", "doi": "10.15784/601922", "keywords": "Antarctica; Cryosphere; Model Simulation; Ross Ice Shelf; Ross Sea Ice Shelf; Subduction Zone Earthquakes; Tsunami; Tsunami impact; West Antarctica Ice Shelf", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Model simulations of tsunami propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Ross Sea)", "url": "https://www.usap-dc.org/view/dataset/601922"}, {"dataset_uid": "601921", "doi": "10.15784/601921", "keywords": "Antarctica; Cryosphere; Model Output; Model Simulation; Pacific Ocean; Subduction Zone Earthquakes; Tsunami; Tsunami impact; West Antarctic Ice Sheet", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Model simulation data of tsunami propagation in the Pacific Ocean", "url": "https://www.usap-dc.org/view/dataset/601921"}, {"dataset_uid": "200323", "doi": "10.25740/qy001dt7463", "keywords": null, "people": null, "repository": "Stanford Digital Repository", "science_program": null, "title": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves", "url": "https://doi.org/10.25740/qy001dt7463"}, {"dataset_uid": "601924", "doi": "10.15784/601924", "keywords": "Antarctica; Cryosphere; Model Simulation; Pacific Ocean; Subduction Zone Earthquakes; Tsunami; Tsunami impact; West Antarctica Ice Shelf", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Datasets of bathymetric model grids for model simulations of tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves", "url": "https://www.usap-dc.org/view/dataset/601924"}, {"dataset_uid": "601923", "doi": "10.15784/601923", "keywords": "Antarctica; Cryosphere; Model Simulation; Ross Sea Ice Shelf; Thwaites Region; Tsunami; Tsunami impact; West Antarctica Ice Shelf", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Datasets for Model Simulations of Tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Thwaites)", "url": "https://www.usap-dc.org/view/dataset/601923"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences. This project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; AMD; Amd/Us; SEA ICE; Amundsen Sea; USAP-DC; USA/NSF; Ross Ice Shelf; MODELS", "locations": "Amundsen Sea; Ross Ice Shelf", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Dunham, Eric; Bromirski, Peter; Wei, Yong", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "NOAA Center for Tsunami Research (NCTR); Stanford Digital Repository; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?", "uid": "p0010320", "west": null}, {"awards": "2146791 Lai, Chung Kei Chris", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 May 2022 00:00:00 GMT", "description": "Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. As a part of this work, two graduate students will receive interdisciplinary training and each year two undergraduate students will be trained in experimental fluid mechanics to assist in this work and develop their own research projects. This project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Glacier-Ocean Boundary Layer; Alaska; USAP-DC; USA/NSF; ABLATION ZONES/ACCUMULATION ZONES; GLACIERS; AMD; Amd/Us; Antarctica; LABORATORY", "locations": "Antarctica; Alaska", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lai, Chung; Robel, Alexander", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Revising Models of the Glacier-Ocean Boundary Layer with Novel Laboratory Experiments ", "uid": "p0010317", "west": null}, {"awards": "2148517 Hancock, Cathrine", "bounds_geometry": "POLYGON((-60 -55,-51 -55,-42 -55,-33 -55,-24 -55,-15 -55,-6 -55,3 -55,12 -55,21 -55,30 -55,30 -57,30 -59,30 -61,30 -63,30 -65,30 -67,30 -69,30 -71,30 -73,30 -75,21 -75,12 -75,3 -75,-6 -75,-15 -75,-24 -75,-33 -75,-42 -75,-51 -75,-60 -75,-60 -73,-60 -71,-60 -69,-60 -67,-60 -65,-60 -63,-60 -61,-60 -59,-60 -57,-60 -55))", "dataset_titles": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023; Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "datasets": [{"dataset_uid": "601652", "doi": "10.15784/601652", "keywords": "Antarctica; ANTXXIV/3; Argo Float; Artoa4argo; GPS Data; RAFOS; US Argo Program; Weddell Sea", "people": "Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Under ice trajectories for RAFOS enabled profiling floats in the Weddell Gyre", "url": "https://www.usap-dc.org/view/dataset/601652"}, {"dataset_uid": "601852", "doi": "10.15784/601852", "keywords": "Antarctica; Continental Slope; Cryosphere; Eddy; Float Trajectory; HAFOS; Weddell Sea", "people": "Boebel, Olaf; Hancock, Cathrine", "repository": "USAP-DC", "science_program": null, "title": "Trajectories for APEX floats 9223 and 9224 from acoustic tracking using artoa4argo, Mar 2022-Feb 2023", "url": "https://www.usap-dc.org/view/dataset/601852"}], "date_created": "Fri, 25 Mar 2022 00:00:00 GMT", "description": "The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or \"mesoscale\" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics. This project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 30.0, "geometry": "POINT(-15 -65)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN CURRENTS; WATER MASSES; BUOYS; USA/NSF; Weddell Sea; AMD; USAP-DC; Amd/Us", "locations": "Weddell Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hancock, Cathrine; Speer, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Weddell Gyre Mean Circulation and Eddy Statistics from Floats", "uid": "p0010310", "west": -60.0}, {"awards": "1643534 Cassar, Nicolas", "bounds_geometry": "POLYGON((-83 -62,-80.3 -62,-77.6 -62,-74.9 -62,-72.2 -62,-69.5 -62,-66.8 -62,-64.1 -62,-61.4 -62,-58.7 -62,-56 -62,-56 -63.1,-56 -64.2,-56 -65.3,-56 -66.4,-56 -67.5,-56 -68.6,-56 -69.7,-56 -70.8,-56 -71.9,-56 -73,-58.7 -73,-61.4 -73,-64.1 -73,-66.8 -73,-69.5 -73,-72.2 -73,-74.9 -73,-77.6 -73,-80.3 -73,-83 -73,-83 -71.9,-83 -70.8,-83 -69.7,-83 -68.6,-83 -67.5,-83 -66.4,-83 -65.3,-83 -64.2,-83 -63.1,-83 -62))", "dataset_titles": "Palmer LTER 18S rRNA gene metabarcodin; rDNA amplicon sequencing of WAP microbial community", "datasets": [{"dataset_uid": "200286", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "rDNA amplicon sequencing of WAP microbial community", "url": "https://www.ncbi.nlm.nih.gov/sra/SRR6162326/"}, {"dataset_uid": "200285", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Palmer LTER 18S rRNA gene metabarcodin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA508517"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of \"High Biomass and Low NCP\" and those with \"Low Biomass and High NCP\" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans.", "east": -56.0, "geometry": "POINT(-69.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; USAP-DC; BIOGEOCHEMICAL CYCLES; AMD; USA/NSF; LABORATORY; Amd/Us", "locations": "West Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cassar, Nicolas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI", "repositories": "NCBI", "science_programs": null, "south": -73.0, "title": "Biological and Physical Drivers of Oxygen Saturation and Net Community Production Variability along the Western Antarctic Peninsula", "uid": "p0010303", "west": -83.0}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": "POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Royal Society Range Headland Moraine Belt Radiocarbon Data; Salmon Valley Radiocarbon Data", "datasets": [{"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}, {"dataset_uid": "601556", "doi": "10.15784/601556", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Salmon Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601556"}, {"dataset_uid": "601555", "doi": "10.15784/601555", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601555"}, {"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth\u0027s climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. ", "east": 164.6, "geometry": "POINT(164.1 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Amd/Us; AMD; USA/NSF; GLACIAL LANDFORMS; USAP-DC; Royal Society Range; GLACIER ELEVATION/ICE SHEET ELEVATION", "locations": "Royal Society Range", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "uid": "p0010302", "west": 163.6}, {"awards": "1946326 Doran, Peter", "bounds_geometry": "POLYGON((161 -77.4,161.3 -77.4,161.6 -77.4,161.9 -77.4,162.2 -77.4,162.5 -77.4,162.8 -77.4,163.1 -77.4,163.4 -77.4,163.7 -77.4,164 -77.4,164 -77.46,164 -77.52,164 -77.58,164 -77.64,164 -77.7,164 -77.76,164 -77.82,164 -77.88,164 -77.94,164 -78,163.7 -78,163.4 -78,163.1 -78,162.8 -78,162.5 -78,162.2 -78,161.9 -78,161.6 -78,161.3 -78,161 -78,161 -77.94,161 -77.88,161 -77.82,161 -77.76,161 -77.7,161 -77.64,161 -77.58,161 -77.52,161 -77.46,161 -77.4))", "dataset_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data; EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "datasets": [{"dataset_uid": "601521", "doi": "10.15784/601521", "keywords": "Antarctica; Carbon-14; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Doran, Peter; Stone, Michael", "repository": "USAP-DC", "science_program": null, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: in situ 14C data", "url": "https://www.usap-dc.org/view/dataset/601521"}, {"dataset_uid": "601520", "doi": "10.15784/601520", "keywords": "Antarctica; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "people": "Stone, Michael; Doran, Peter", "repository": "USAP-DC", "science_program": "LTER", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data", "url": "https://www.usap-dc.org/view/dataset/601520"}], "date_created": "Mon, 31 Jan 2022 00:00:00 GMT", "description": "Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with \"old carbon\" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.0, "geometry": "POINT(162.5 -77.7)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; Taylor Valley; AGE DETERMINATIONS; USA/NSF; AMD; USAP-DC", "locations": "Taylor Valley", "north": -77.4, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Doran, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -78.0, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "uid": "p0010294", "west": 161.0}, {"awards": "2039419 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.3,161.2 -77.3,161.4 -77.3,161.6 -77.3,161.8 -77.3,162 -77.3,162.2 -77.3,162.4 -77.3,162.6 -77.3,162.8 -77.3,163 -77.3,163 -77.35,163 -77.4,163 -77.45,163 -77.5,163 -77.55,163 -77.6,163 -77.65,163 -77.7,163 -77.75,163 -77.8,162.8 -77.8,162.6 -77.8,162.4 -77.8,162.2 -77.8,162 -77.8,161.8 -77.8,161.6 -77.8,161.4 -77.8,161.2 -77.8,161 -77.8,161 -77.75,161 -77.7,161 -77.65,161 -77.6,161 -77.55,161 -77.5,161 -77.45,161 -77.4,161 -77.35,161 -77.3))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 16 Dec 2021 00:00:00 GMT", "description": "The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master\u2019s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.0, "geometry": "POINT(162 -77.55)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Amd/Us; SEDIMENTS; USA/NSF; AMD; Dry Valleys; USAP-DC", "locations": "Dry Valleys", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Holocene and Late Pleistocene Stream Deposition in the McMurdo Dry Valleys, Antarctica as a Proxy for Glacial Meltwater and Paleoclimate", "uid": "p0010285", "west": 161.0}, {"awards": "1744785 Barrett, John", "bounds_geometry": "POLYGON((-180 -77.62,-145.683 -77.62,-111.366 -77.62,-77.049 -77.62,-42.732 -77.62,-8.415 -77.62,25.902 -77.62,60.219 -77.62,94.536 -77.62,128.853 -77.62,163.17 -77.62,163.17 -77.618,163.17 -77.616,163.17 -77.614,163.17 -77.612,163.17 -77.61,163.17 -77.608,163.17 -77.606,163.17 -77.604,163.17 -77.602,163.17 -77.6,128.853 -77.6,94.536 -77.6,60.219 -77.6,25.902 -77.6,-8.415 -77.6,-42.732 -77.6,-77.049 -77.6,-111.366 -77.6,-145.683 -77.6,180 -77.6,178.319 -77.6,176.638 -77.6,174.957 -77.6,173.276 -77.6,171.595 -77.6,169.914 -77.6,168.233 -77.6,166.552 -77.6,164.871 -77.6,163.19 -77.6,163.19 -77.602,163.19 -77.604,163.19 -77.606,163.19 -77.608,163.19 -77.61,163.19 -77.612,163.19 -77.614,163.19 -77.616,163.19 -77.618,163.19 -77.62,164.871 -77.62,166.552 -77.62,168.233 -77.62,169.914 -77.62,171.595 -77.62,173.276 -77.62,174.957 -77.62,176.638 -77.62,178.319 -77.62,-180 -77.62))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "datasets": [{"dataset_uid": "200260", "doi": "doi:10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "url": "https://doi.org/10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4"}], "date_created": "Tue, 30 Nov 2021 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.19, "geometry": "POINT(-16.82 -77.61)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ECOSYSTEM FUNCTIONS; FIELD SURVEYS; USAP-DC; USA/NSF; Taylor Valley; Amd/Us", "locations": "Taylor Valley", "north": -77.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John; Salvatore, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.62, "title": "Collaborative Research: Remote characterization of microbial mats in Taylor Valley, Antarctica through in situ sampling and spectral validation", "uid": "p0010281", "west": 163.17}, {"awards": "1644094 Caffee, Marc; 1644128 Welten, Kees", "bounds_geometry": "POINT(-112.12 -79.48)", "dataset_titles": "WAIS Divide Core 10Be data, 2850-3240 m", "datasets": [{"dataset_uid": "601692", "doi": "10.15784/601692", "keywords": "10Be; Antarctica; Beryllium; Cosmogenic Radionuclides; Ice Core Data; WAIS Divide", "people": "Caffee, Marc; Woodruff, Thomas; Welten, Kees", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Core 10Be data, 2850-3240 m", "url": "https://www.usap-dc.org/view/dataset/601692"}], "date_created": "Mon, 15 Nov 2021 00:00:00 GMT", "description": "Welten/1644128 This award supports a project to use existing samples from the West Antarctic Ice Sheet (WAIS) Divide ice core to align its timescale with that of the Greenland ice cores using common chronological markers. The upper 2850 m of the WAIS Divide core, which was drilled to a depth of 3405 m, has been dated with high precision. The timescale of the remaining (bottom) 550 m of the core has larger uncertainties, limiting our understanding of the timing of abrupt climate events in Antarctica relative to those in Greenland during the last ice age. The intellectual merit of this project is to further constrain the relative timing of these abrupt climate events in Greenland and Antarctica to obtain crucial insight into the underlying mechanism. The main objective of this project is to improve the current timescale of the WAIS Divide core from 31,000 to 65,000 years ago by synchronizing this core with the Greenland ice cores using common signals in Beryllium-10, a radioactive isotope of Be that is produced in the atmosphere by cosmic rays and is deposited onto the snow within 1-2 years of its production. The 10Be flux is largely independent of climate signals since its production varies with solar activity and the geomagnetic field. This project will further strengthen collaborations between the PI\u0027s in Berkeley and Purdue with ice core researchers in the US and Europe, involve undergraduate students in many aspects of its research, and continue outreach to under-represented students. The direct ice-to-ice synchronization of the WAIS Divide ice core with the Greenland Ice Core Chronology (GICC05) using cosmogenic 10Be is expected to reduce the uncertainty in the relative timing of more than 20 abrupt climate events in Greenland and Antarctica to a few decades. To achieve this goal the investigators will obtain a continuous high-resolution record of 10Be in the WAIS Divide core from 2850 to 3390 m depth, and compare the obtained 10Be record with existing 10Be records of the Greenland ice cores, including GISP2 and NGRIP. The scientists will separate 10Be from ~1000 ice samples of the WAIS Divide core and measure the 10Be concentration in each sample using accelerator mass spectrometry (AMS). Broader impacts of the 10Be measurements are that they will also provide information on the Laschamp event, a ~2000 year long period of low geomagnetic field strength around 41,000 years ago, and improve the calibration of the 14C dating method for organic samples older than 30,000 years. The broader impacts of the project include (1) the involvement and training of undergraduate students in ice core research and accelerator mass spectrometry measurements, (2) the incorporation of ice core and climate research into ongoing outreach programs at Purdue University and Berkeley SSL, (3) better understanding of abrupt climate changes in the past will improve our ability to predict future climate change, (4) evaluating the possible threat of a future geomagnetic excursion in the next few hundred years. This award does not require support in Antarctica.", "east": -112.12, "geometry": "POINT(-112.12 -79.48)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; LABORATORY; Amd/Us; WAIS Divide; AMD; USAP-DC; DEPTH AT SPECIFIC AGES", "locations": "WAIS Divide", "north": -79.48, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Welten, Kees; Caffee, Marc", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.48, "title": "Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements", "uid": "p0010280", "west": -112.12}, {"awards": "2136938 Tedesco, Marco; 2136940 Newman, Dava; 2136939 Cervone, Guido", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications; Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "datasets": [{"dataset_uid": "601841", "doi": "10.15784/601841", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "Alexander, Patrick; Tedesco, Marco; L\u00fctjens, Bj\u00f6rn; Fettweis, Xavier; Cervone, Guido; Antwerpen, Raphael", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601841"}, {"dataset_uid": "601842", "doi": "10.15784/601842", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "Tedesco, Marco; Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601842"}], "date_created": "Mon, 08 Nov 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Climate change is promoting increased melting in Greenland and Antarctica, contributing to the global sea level rise. Understanding what drives the increase and the amount of meltwater from the ice sheets is paramount to improve our skills to project future sea level rise and associated consequences. Melting in Antarctica mostly occurs along ice shelves (tongues of ice floating in the water). They do not contribute directly to sea level when they melt but their disappearance allows the glaciers at the top to flow faster towards the ocean, increasing the contribution of Antarctica to sea level rise. Satellite data can only offer a partial view of what is happening, either because of limited coverage or because of the presence of clouds, which often obstruct the view in this part of the world. Models, on the other hand, can provide estimates but the spatial detail they can provide is still limited by many factors. This project will use artificial intelligence to overcome these problems and to merge satellite data and model outputs to generate daily maps of surface melting with unprecedented detail. These techniques are similar to those used in cell phones to sharpen images or to create landscapes that look \u201creal\u201d but are only existing in the \u201ccomputer world,\u201d but they have never been applied to melting in Antarctica for improving estimates of sea level rise. Meltwater in Antarctica has been shown to impact ice shelf stability through the fracturing and flexural processes. Image scarcity has often forced the community to use general climate and regional climate models to explore hydrological features. Notwithstanding models having been considerably refined over the past years, they still require improvements in capturing the processes driving the energy balance and, most importantly, the feedback among the drivers and the energy balance terms that drive the hydrological processes. Moreover, spatial resolution is still too coarse to properly capture hydrological processes, especially over ice shelves. Machine learning (ML) tools can help in this regard, especially when it is computationally infeasible to run physics-based models at desired resolutions in space and time, like in the case of ice shelf surface hydrology. This project will train Generative Adversarial Networks (GANs) with the outputs of a regional climate model and remote sensing data to generate unprecedented, high-resolution (100 m) maps of surface melting. Beside improving the spatial resolution, and hence providing a long-needed and crucial dataset to the polar community, the tool here proposed will be able to provide satellite-like maps on a daily basis, hence addressing also those issues related to the lack of spatial coverage. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; Amd/Us; AMD; USA/NSF; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure; Polar Cyberinfrastructure; Polar Cyberinfrastructure", "paleo_time": null, "persons": "Tedesco, Marco", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "uid": "p0010277", "west": -180.0}, {"awards": "2139051 Guitard, Michelle", "bounds_geometry": "POLYGON((-45 -57,-44.3 -57,-43.6 -57,-42.9 -57,-42.2 -57,-41.5 -57,-40.8 -57,-40.1 -57,-39.4 -57,-38.7 -57,-38 -57,-38 -57.5,-38 -58,-38 -58.5,-38 -59,-38 -59.5,-38 -60,-38 -60.5,-38 -61,-38 -61.5,-38 -62,-38.7 -62,-39.4 -62,-40.1 -62,-40.8 -62,-41.5 -62,-42.2 -62,-42.9 -62,-43.6 -62,-44.3 -62,-45 -62,-45 -61.5,-45 -61,-45 -60.5,-45 -60,-45 -59.5,-45 -59,-45 -58.5,-45 -58,-45 -57.5,-45 -57))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Antarctic Ice Sheet stability remains a large uncertainty in predicting future sea level. Presently, the greatest ice mass loss is observed in locations where relatively warm water comes into contact with glaciers and ice shelves, melting them from below. This has led researchers to hypothesize that the interactions that occur between the ocean and the ice are important for determining ice sheet stability and that increased warm water presence will accelerate Antarctic ice mass loss and lead to greater sea level rise in the coming century. To better predict future ice sheet behavior, it is critical to understand past ice-ocean interactions around Antarctica, especially during warm periods and at times when Earth\u2019s climate was undergoing major changes. Past Antarctic ice mass and environmental conditions like ocean temperature can be reconstructed using sediments, which capture an environmental record as they accumulate on the ocean floor. By looking at sediment composition and by analyzing geochemical signatures within the sediment, it is possible to piece together a record of climate change on hundred- to million-year timescales. This project will reconstruct upper ocean temperatures and Antarctic ice retreat/advance cycles from 2.6 to 0.7 million years ago, which encompasses the Mid-Pleistocene Transition, a time in Earth\u2019s history that marks the shift from 41-thousand year glacial cycles to 100-thousand year glacial cycles. A record will be generated from existing sediment cores collected from the Scotia Sea during International Ocean Discovery Program Expedition 382. The Mid-Pleistocene Transition (MPT; ~1.25\u20130.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth\u2019s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6\u20130.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -38.0, "geometry": "POINT(-41.5 -59.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; SEA SURFACE TEMPERATURE; USAP-DC; USA/NSF; LABORATORY; AMD; Scotia Sea", "locations": "Scotia Sea", "north": -57.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Michelle, Guitard", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -62.0, "title": "Investigating the influence of ocean temperature on Antarctic Ice Sheet evolution during the early to middle Pleistocene ", "uid": "p0010275", "west": -45.0}, {"awards": "2139002 Huth, Alexander", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "datasets": [{"dataset_uid": "601718", "doi": "10.15784/601718", "keywords": "Antarctica; Glaciology; Iceberg; Ice Shelf Dynamics; Larsen C Ice Shelf; Model Data; Modeling", "people": "Huth, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601718"}], "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Icebergs influence climate by controlling how freshwater from ice sheets is distributed into the ocean, where roughly half of ice sheet mass loss is attributed to iceberg calving in the current climate. The freshwater deposited by icebergs as they drift and melt can affect ocean circulation, sea-ice formation, and biological primary productivity. Furthermore, calving of icebergs from ice shelves, the floating extensions of ice sheets, can influence ice sheet evolution and sea-level rise by reducing the resistive stresses provided by ice shelves on the seaward flow of upstream grounded ice. The majority of mass calved from ice shelves occurs in the form of tabular icebergs, which are typically hundreds of meters thick and on the order of tens to hundreds of kilometers in length and width. Tabular calving occurs when full-thickness ice shelf fractures known as rifts propagate to the edges of the ice shelf. These calving events are infrequent, often with decades between events on an individual ice shelf. Changes in tabular calving behavior, i.e., the size and frequency of calving events, can strongly influence climate and ice sheet evolution. However, tabular calving behavior, and how it responds to changes in climate, is neither well understood nor accurately represented in climate models. In this project, a tabular calving parameterization for climate models will be developed. The parameterization will be derived according to data generated from a series of realistic and idealized century-scale tabular calving simulations, which will be performed with a novel ice flow and damage framework that can be applied at the scale of individual ice sheet-ice shelf systems: the CD-MPM-SSA (Continuum Damage Material Point Method for Shelfy-Stream Approximation). During these simulations, the geometry of the ice shelf, mechanical/rheological properties of the ice, and climate forcings such as ocean temperature will be varied to determine the rifting and calving response. The calving parameterization derived from these experiments will be implemented in a Geophysical Fluid Dynamics Laboratory (GFDL) climate model, where it will be coupled with a bonded-particle iceberg model. Then, experiments will be run to study the feedback between changes in iceberg calving behavior and climate. Success of this project will improve our understanding and representation of the ice mass budget, ice sheet evolution, and ocean freshwater fluxes, and will improve projections of climate change and sea-level rise. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; ICEBERGS; AMD; Antarctic Ice Sheet; USA/NSF; GLACIERS/ICE SHEETS; Amd/Us; MODELS", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Huth, Alex", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "OPP-PRF Calving, Icebergs, and Climate", "uid": "p0010276", "west": -180.0}, {"awards": "2035637 Tabor, Clay; 2035580 Aarons, Sarah", "bounds_geometry": null, "dataset_titles": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "datasets": [{"dataset_uid": "601825", "doi": "10.15784/601825", "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}, {"dataset_uid": "601822", "doi": "10.15784/601822", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Deuterium; Hydrogen; Ice; Ice Core Data; Isotope; Oxygen; Water", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "601821", "doi": "10.15784/601821", "keywords": "ALHIC1903; Allan Hills; Antarctica; Blue Ice; Cryosphere; Dust; Leach; Rare Earth Element", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "601820", "doi": "10.15784/601820", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Dust; Ice Core Data; Isotope; Nd; Neodymium; Sr; Strontium", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601820"}], "date_created": "Wed, 06 Oct 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet. This project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MICROPARTICLE CONCENTRATION; FIELD SURVEYS; GEOCHEMISTRY; ICE EXTENT; Amd/Us; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; AMD; Allan Hills; ICE CORE RECORDS; USAP-DC", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aarons, Sarah; Tabor, Clay", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "uid": "p0010270", "west": null}, {"awards": "1745043 Simkins, Lauren; 1745055 Stearns, Leigh", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Circum-Antarctic grounding-line sinuosity; Elevation transects from Pine Island Bay; Pennell Trough, Ross Sea bathymetry and glacial landforms", "datasets": [{"dataset_uid": "601484", "doi": "10.15784/601484", "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "people": "Riverman, Kiya; Stearns, Leigh; Simkins, Lauren", "repository": "USAP-DC", "science_program": null, "title": "Circum-Antarctic grounding-line sinuosity", "url": "https://www.usap-dc.org/view/dataset/601484"}, {"dataset_uid": "601474", "doi": "10.15784/601474", "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "people": "Simkins, Lauren; Prothro, Lindsay; Anderson, John; Greenwood, Sarah; Eareckson, Elizabeth; Munevar Garcia, Santiago", "repository": "USAP-DC", "science_program": null, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "url": "https://www.usap-dc.org/view/dataset/601474"}, {"dataset_uid": "601774", "doi": "10.15784/601774", "keywords": "Antarctica; Bed Roughness; Cryosphere; Geomorphology; Pine Island Bay", "people": "Munevar Garcia, Santiago", "repository": "USAP-DC", "science_program": null, "title": "Elevation transects from Pine Island Bay", "url": "https://www.usap-dc.org/view/dataset/601774"}], "date_created": "Tue, 28 Sep 2021 00:00:00 GMT", "description": "Current ice mass loss in Antarctica is largely driven by changes at glacier grounding lines, where inland ice transitions from being grounded to floating in the ocean. The rate and pattern of glacier retreat in these circumstances is thought to be controlled by the terrain under the ice. This project incorporates evidence of past ice-retreat events and other field data, such as grounding-line positions and dates, subglacial topography, and meltwater features, into numerical models of ice flow to investigate the influence that grounding-line processes and subglacial topography have on glacier retreat rates over the past 15,000 years. Recent observations suggest that Antarctic ice mass loss is largely driven by perturbations at or near the grounding line. However, the lack of information on subglacial and grounding-line environments causes large uncertainties in projections of mass loss and sea-level rise. This project will integrate geologic data from the deglaciated continental shelf into numerical models of varying complexity from one to three-dimensions. Rarely do numerical ice-sheet models of Antarctica have multiple constraints on dynamics over the past ~15,000 years (a period that spans the deglaciation of the Antarctic continental shelf since the Last Glacial Maximum). The geologic constraints include grounding-line positions, deglacial chronologies, and information on grounding line-ice shelf processes. The models will be used to investigate necessary perturbations and controls that meet the geological constraints. The multidisciplinary approach of merging geologic reconstructions of paleo-ice behavior with numerical models of ice response will allow the research team to test understanding of subglacial controls on grounding-line dynamics and assess the stability of modern grounding lines. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE SEDIMENTS; USAP-DC; Amd/Us; GLACIERS; BATHYMETRY; GLACIAL LANDFORMS; Antarctica; AMD; USA/NSF; R/V NBP", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Simkins, Lauren; Stearns, Leigh; Anderson, John; van der Veen, Cornelis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations", "uid": "p0010269", "west": -180.0}, {"awards": "2049332 Chu, Winnie", "bounds_geometry": "POLYGON((-180 -75,-175 -75,-170 -75,-165 -75,-160 -75,-155 -75,-150 -75,-145 -75,-140 -75,-135 -75,-130 -75,-130 -76.1,-130 -77.2,-130 -78.3,-130 -79.4,-130 -80.5,-130 -81.6,-130 -82.7,-130 -83.8,-130 -84.9,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,177.5 -86,175 -86,172.5 -86,170 -86,167.5 -86,165 -86,162.5 -86,160 -86,157.5 -86,155 -86,155 -84.9,155 -83.8,155 -82.7,155 -81.6,155 -80.5,155 -79.4,155 -78.3,155 -77.2,155 -76.1,155 -75,157.5 -75,160 -75,162.5 -75,165 -75,167.5 -75,170 -75,172.5 -75,175 -75,177.5 -75,-180 -75))", "dataset_titles": "Frozen Legacies - This repository hosts scientific journals and processing codes via Python and MATLab for the historical SPRI-NSF-TUD Campaign in Antarctica.", "datasets": [{"dataset_uid": "200466", "doi": "", "keywords": null, "people": null, "repository": "Frozen Legacies ", "science_program": null, "title": "Frozen Legacies - This repository hosts scientific journals and processing codes via Python and MATLab for the historical SPRI-NSF-TUD Campaign in Antarctica.", "url": "https://github.com/tarzona/frozenlegacies"}], "date_created": "Wed, 15 Sep 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Ice shelves play a critical role in restricting the seaward flow of grounded glacier ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore influence the future contribution of the Antarctic Ice Sheet to global sea-level rise. The Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicated that the Ross Ice Shelf\u2019s mass loss is roughly balanced by its mass gain. However, more recent work that extends further back in time reveals the ice shelf is likely not in steady state, with possible long-term thinning since the late 1990s. Consequently, to accurately interpret modern-day ice-shelf changes, long-term observations are critical to evaluate how these recent variations fit into the historical context of ice-shelf variability. This project will examine more than four decades of historical and modern airborne radar sounding observations of the Ross Ice Shelf (spanning 1971 to 2017) to investigate ice-shelf changes on decadal timescales. The team will process, calibrate, and analyze radar data collected during 1971-79 field campaigns and compare them against modern observations collected between 2011-17. They will estimate basal melt rates by examining changes in ice-shelf thickness, and will determine other important metrics for melt, including ice-shelf roughness, englacial temperature, and marine-ice formation. The project will support the education of a Ph.D. student at each of the three participating institutions. In addition, the project will support the training of undergraduate and high-school researchers in radioglaciology and Antarctic sciences. The project will test the hypothesis that, over decadal timescales, the basal melt rates beneath the Ross Ice Shelf have been low, particularly under shallow ice drafts, leading to overall thickening and increased buttressing potential. The team aims to provide a direct estimate of basal melt rates based on changes in ice-shelf thickness that occurred between 1971 and 2017. This project will extend similar work completed at Thwaites Glacier and improve the calibration methods on the vertical scaling for fast-time and depth conversion. The work will also leverage the dense modern surveys to improve the geolocation of radar film collected on earlier field campaigns to produce a more precise comparison of local shelf thickness with the modern data. In addition, the team will conduct englacial attenuation analysis to calculate englacial temperature to infer the trends in local basal melting. They will also examine the radiometric and scatterometric character of bed echoes at the ice-ocean boundary to characterize changes in ice-shelf basal roughness, marine-ice formation related to local basal freezing, and structural damage from fracture processes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -130.0, "geometry": "POINT(-167.5 -80.5)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctic Ice Sheet; GLACIER THICKNESS/ICE SHEET THICKNESS; USAP-DC; AMD; Transantarctic Mountains; Amd/Us; Siple Coast; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; USA/NSF; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctic Ice Sheet; Siple Coast; Transantarctic Mountains", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chu, Winnie; Schroeder, Dustin; Siegfried, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "Frozen Legacies ", "repositories": "Frozen Legacies ", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Investigating Four Decades of Ross Ice Shelf Subsurface Change with Historical and Modern Radar Sounding Data", "uid": "p0010265", "west": 155.0}, {"awards": "2039432 Grapenthin, Ronni", "bounds_geometry": "POLYGON((165.5 -77.1,165.91 -77.1,166.32 -77.1,166.73 -77.1,167.14 -77.1,167.55 -77.1,167.96 -77.1,168.37 -77.1,168.78 -77.1,169.19 -77.1,169.6 -77.1,169.6 -77.18,169.6 -77.26,169.6 -77.34,169.6 -77.42,169.6 -77.5,169.6 -77.58,169.6 -77.66,169.6 -77.74,169.6 -77.82,169.6 -77.9,169.19 -77.9,168.78 -77.9,168.37 -77.9,167.96 -77.9,167.55 -77.9,167.14 -77.9,166.73 -77.9,166.32 -77.9,165.91 -77.9,165.5 -77.9,165.5 -77.82,165.5 -77.74,165.5 -77.66,165.5 -77.58,165.5 -77.5,165.5 -77.42,165.5 -77.34,165.5 -77.26,165.5 -77.18,165.5 -77.1))", "dataset_titles": "Erebus GPS timeseries ", "datasets": [{"dataset_uid": "601471", "doi": "10.15784/601471", "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "people": "Grapenthin, Ronni", "repository": "USAP-DC", "science_program": null, "title": "Erebus GPS timeseries ", "url": "https://www.usap-dc.org/view/dataset/601471"}], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.", "east": 169.6, "geometry": "POINT(167.55 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; TECTONICS; USAP-DC; Amd/Us; AMD; CRUSTAL MOTION; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Grapenthin, Ronni", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "uid": "p0010255", "west": 165.5}, {"awards": "1744832 Severinghaus, Jeffrey; 1745007 Mayewski, Paul; 1745006 Brook, Edward J.; 0838843 Kurbatov, Andrei; 1744993 Higgins, John", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903; Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903; I-165-M GPR Field Report 2019-2020; MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903; Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "datasets": [{"dataset_uid": "601897", "doi": "10.15784/601897", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601897"}, {"dataset_uid": "601896", "doi": "10.15784/601896", "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601896"}, {"dataset_uid": "601895", "doi": "10.15784/601895", "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "people": "Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "url": "https://www.usap-dc.org/view/dataset/601895"}, {"dataset_uid": "601878", "doi": "10.15784/601878", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.; Hishamunda, Valens; Kalk, Michael; Brook, Edward; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "url": "https://www.usap-dc.org/view/dataset/601878"}, {"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Nesbitt, Ian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth\u0027s climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth\u0027s climate system driven by variations in the eccentricity, precession, and obliquity of Earth\u0027s orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth\u0027s climate system oscillated between glacial and interglacial states every ~40,000 years (the \"40k world\"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the \"100k world\"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (\u003c200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "2114839 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector; Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "datasets": [{"dataset_uid": "601900", "doi": "10.15784/601900", "keywords": "Amundsen Sea Sector; Antarctica; Cryosphere; Glaciation; Grain Size; Pliocene; Sediment Core Data; Sedimentology", "people": "Mino-Moreira, Lisbeth; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601900"}, {"dataset_uid": "601907", "doi": "10.15784/601907", "keywords": "40Ar/39Ar; Amundsen Sea; Amundsen Sea Sector; Antarctica; Cryosphere; Ice-Rafted Detritus; IODP; Paleoclimate; Pliocene; Provenance; Sedimentology", "people": "Hemming, Sidney R.; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector", "url": "https://www.usap-dc.org/view/dataset/601907"}], "date_created": "Wed, 25 Aug 2021 00:00:00 GMT", "description": "The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of \u003e 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current \u201cicehouse\u201d period ~3.3 Ma. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; TERRIGENOUS SEDIMENTS; Amd/Us; SEDIMENTS; FIELD SURVEYS; Amundsen Sea; USAP-DC; AMD", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "uid": "p0010252", "west": null}, {"awards": "2046437 Zitterbart, Daniel", "bounds_geometry": "POLYGON((-60 -55,-53 -55,-46 -55,-39 -55,-32 -55,-25 -55,-18 -55,-11 -55,-4 -55,3 -55,10 -55,10 -57.5,10 -60,10 -62.5,10 -65,10 -67.5,10 -70,10 -72.5,10 -75,10 -77.5,10 -80,3 -80,-4 -80,-11 -80,-18 -80,-25 -80,-32 -80,-39 -80,-46 -80,-53 -80,-60 -80,-60 -77.5,-60 -75,-60 -72.5,-60 -70,-60 -67.5,-60 -65,-60 -62.5,-60 -60,-60 -57.5,-60 -55))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical description: Understanding human-induced changes on biodiversity is one of the most important scientific challenges we face today. This is especially true for marine environments that are home to much of the world\u2019s biomass and biodiversity. A particularly effective approach to investigate the effects of climate change on marine ecosystems is to monitor top-predator populations such as seabirds or marine mammals. The food web in the Southern Ocean in relatively small and involves few species, therefore climate-induced variations at the prey species level directly affect the predator species level. For example, seabirds, like penguins, are ideal to detect and study these ecosystem changes. This study combines traditional methods to study emperor penguin population dynamics with the use of an autonomous vehicle to conduct the population dynamic measurements with less impact and higher accuracy. This project leverages an existing long-term emperor penguin observatory at the Atka Bay colony which hosts penguins living in the Weddell sea and the Atlantic sector of the Southern Ocean. The study will kickstart the collection of a multi-decadal data set in an area of the Southern Ocean that has been understudied. It will fill important gaps in ecological knowledge on the state of the Emperor penguin and its adaptive capabilities within a changing world. Finally, the project supports NSF goals of training new generations of scientists through collaborative training of undergraduate students and the creation of a new class on robotics for ecosystem study. Emperor penguins are an iconic species that few people will ever see in the wild. Through the technology developed in this proposal, the public can be immersed in real-time into the life of an emperor penguin colony. Public outreach will be achieved by showcasing real-time video and audio footage of emperor penguins from the field as social media science and engineering-themed educational materials. Part II: Technical description: Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive Global Positioning System-Time Domain Reflectometry (GPS-TDR) datasets from Very High Frequency VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies. The new data will contribute to intelligent establishment of marine protected areas in Antarctica. The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 10.0, "geometry": "POINT(-25 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Antarctica; Dronning Maud Land; FIELD SURVEYS; Amd/Us; Atka Bay; MARINE ECOSYSTEMS; USAP-DC; USA/NSF", "locations": "Atka Bay; Antarctica; Dronning Maud Land", "north": -55.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Zitterbart, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "\r\nCAREER: Development of Unmanned Ground Vehicles for Assessing the Health of Secluded Ecosystems (ECHO)", "uid": "p0010245", "west": -60.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Diatom assemblage from IODP Site U1357; Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula; Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357; Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments; ODP Site 1098 deglacial diatom assemblage; Sediment chemistry of ODP Site 1098", "datasets": [{"dataset_uid": "601816", "doi": "10.15784/601816", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "people": "Robinson, Rebecca; Kelly, Roger; Jones, Colin; Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601816"}, {"dataset_uid": "601818", "doi": "10.15784/601818", "keywords": "Antarctica; Cryosphere; Geochemistry; Sediment; Wilkes Land", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601818"}, {"dataset_uid": "601727", "doi": "10.15784/601727", "keywords": "Antarctica", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments", "url": "https://www.usap-dc.org/view/dataset/601727"}, {"dataset_uid": "601777", "doi": "10.15784/601777", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Sediment Core Data", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "ODP Site 1098 deglacial diatom assemblage", "url": "https://www.usap-dc.org/view/dataset/601777"}, {"dataset_uid": "601778", "doi": "10.15784/601778", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Dove, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Sediment chemistry of ODP Site 1098", "url": "https://www.usap-dc.org/view/dataset/601778"}, {"dataset_uid": "601817", "doi": "10.15784/601817", "keywords": "Antarctica; Cryosphere; Wilkes Land", "people": "Kelly, Roger; Dove, Isabel; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "url": "https://www.usap-dc.org/view/dataset/601817"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; USAP-DC; Antarctica; ISOTOPES; MARINE SEDIMENTS; LABORATORY; USA/NSF; NITROGEN; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "uid": "p0010234", "west": -180.0}, {"awards": "1952199 Schneider, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Variable-resolution CESM2 over Antarctica (ANTSI): Monthly outputs used for evaluation", "datasets": [{"dataset_uid": "200417", "doi": "10.5281/zenodo.7335891", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Variable-resolution CESM2 over Antarctica (ANTSI): Monthly outputs used for evaluation", "url": "https://zenodo.org/records/7335892"}], "date_created": "Wed, 21 Jul 2021 00:00:00 GMT", "description": "The Antarctic Ice Sheet (AIS) is sensitive to and an indicator of climate change. While ice loss is largely driven by ocean warming, this might be mitigated by enhanced snowfall on the ice sheet. By developing an understanding of the processes governing snowfall variability and change on the AIS, this project will contribute to understanding the long-term role of the AIS as a contributor to sea-level rise. This project is strongly embedded in the collaborative, open-source framework of the Community Earth System Model version 2 (CESM2) and will deliver new datasets of Antarctic precipitation for use by the research community. The project will help to build a diverse geoscience workforce by recruiting and training a student to be directly involved in the research through the Significant Opportunities in Atmospheric Research and Science (SOARS) program. The project will leverage the Climate Model Intercomparison Project 6 climate model ensemble as a whole, and CESM2 in particular, to disentangle the major sources of uncertainty and to elucidate the underlying mechanisms of Antarctic precipitation change, with a particular focus on the role of atmospheric circulation changes relative to the role of atmospheric warming. Using the variable resolution capabilities of CESM2, the team will provide the community with precipitation estimates at a very high horizontal resolution. The analyses will also use a forthcoming 100-member large ensemble. The project seeks to answer the following questions: 1) How well does the CESM2 represent the present-day Antarctic surface climate, precipitation, and surface mass balance, including the mean and its variability? 2) What is the sensitivity of simulated Antarctic precipitation to model resolution in present-day and future climates? 3) What are the roles of thermodynamics (warming atmosphere and ocean) and dynamics (changes in atmospheric circulation) in observed and projected snowfall changes? How do these break down into forced and internal variability? In particular, is there a significant forced precipitation trend due to circulation changes driven by stratospheric ozone depletion and recovery and increases in greenhouse gas concentration? 4) What processes and boundary conditions drive the ensemble spread of Antarctic precipitation in single-model and multi-model ensembles? How does the spread driven by initial surface conditions (including sea ice cover, surface fluxes, inversion strength) compare with the irreducible uncertainty due to internal climate system variability? This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; ICE SHEETS; Amd/Us; Antarctica; AMD; SNOW; MODELS; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Schneider, David; Datta, Rajashree Tri", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Uncertainty and Mechanisms of Antarctica\u2019s Changing Snowfall and its Role in Sea Level Change", "uid": "p0010233", "west": -180.0}, {"awards": "1943550 McDonald, Birgitte", "bounds_geometry": "POLYGON((168 -77,168.3 -77,168.6 -77,168.9 -77,169.2 -77,169.5 -77,169.8 -77,170.1 -77,170.4 -77,170.7 -77,171 -77,171 -77.1,171 -77.2,171 -77.3,171 -77.4,171 -77.5,171 -77.6,171 -77.7,171 -77.8,171 -77.9,171 -78,170.7 -78,170.4 -78,170.1 -78,169.8 -78,169.5 -78,169.2 -78,168.9 -78,168.6 -78,168.3 -78,168 -78,168 -77.9,168 -77.8,168 -77.7,168 -77.6,168 -77.5,168 -77.4,168 -77.3,168 -77.2,168 -77.1,168 -77))", "dataset_titles": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony; Post-molt emperor penguin foraging ecology", "datasets": [{"dataset_uid": "601688", "doi": "10.15784/601688", "keywords": "Animal Tracking; Antarctica; Biota; Emperor Penguin; GPS; Late Chick Rearing; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Late chick-rearing foraging ecology of emperor penguins from the Cape Crozier colony", "url": "https://www.usap-dc.org/view/dataset/601688"}, {"dataset_uid": "601686", "doi": "10.15784/601686", "keywords": "Antarctica; Biota; Emperor Penguin; NBP2302; Post-Molt; Ross Sea", "people": "McDonald, Birgitte", "repository": "USAP-DC", "science_program": null, "title": "Post-molt emperor penguin foraging ecology", "url": "https://www.usap-dc.org/view/dataset/601686"}], "date_created": "Tue, 20 Jul 2021 00:00:00 GMT", "description": "Part I: Non-technical Summary Understanding the mechanisms that animals use to find and acquire food is a fundamental question in ecology. The survival and success of marine predators depends on their ability to locate prey in a variable or changing environment. To do this the predators need to be able to adjust foraging behavior depending on the conditions they encounter. Emperor penguins are ice-dependent, top predators in Antarctica. However, they are vulnerable to environmental changes that alter food web or sea ice coverage, and environmental change may lead to changes in penguin foraging behavior, and ultimately survival and reproduction success. Despite their importance in the Southern Ocean ecosystem, relatively little is known about the specific mechanisms Emperor penguins use to find and acquire food. This study combines a suite of technological and analytical tools to gain essential knowledge on Ross Sea penguin foraging energetics, ecology, and habitat use during critical periods in their life history, especially during late chick-rearing periods. Energy management is particularly crucial during this time as parents need to feed both themselves and their rapidly growing offspring, while being constrained to regions near the colony. Penguin ecology and habitat preference will also be evaluated after the molt and through early reproduction. This study fills important ecological knowledge gaps on the energy balance, diet, and habitat use by penguins during these critical periods. Finally, the project furthers the NSF goals of training new generations of scientists through training of undergraduates, graduate students and a postdoctoral researcher. Public outreach activities will be aligned with another NSF funded project designed to provide science training in afterschool and camp programs that target underrepresented groups. Part II: Technical summary This project will identify behavioral and physiological variability in foraging Emperor penguins that can be directly linked to individual success in the marine environment using an ecological theoretical framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor penguins at Cape Crozier using fine-scale movement and video data loggers during the energetically demanding life history phase of late chick-rearing. Specifically, this study will 1) Estimate the relationship of foraging efficiency to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient these penguins are to environmental change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The team will: 1) Investigate penguin inter- and intra-individual behavioral variability during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor penguins in the Antarctic ecosystem. This includes development of two university courses, training of undergraduate and graduate students, and a collaboration with the NSF funded \u201cPolar Literacy: A model for youth engagement and learning\u201d program to develop after school and camp curriculum that target undeserved and underrepresented groups. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 171.0, "geometry": "POINT(169.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; PENGUINS; MARINE ECOSYSTEMS; USA/NSF; Ross Sea; FIELD SURVEYS; USAP-DC; AMD", "locations": "Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "McDonald, Birgitte", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Foraging Ecology and Physiology of Emperor Penguins in the Ross Sea", "uid": "p0010232", "west": 168.0}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Bergelin, Marie; Putkonen, Jaakko", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "datasets": [{"dataset_uid": "601464", "doi": "10.15784/601464", "repository": "USAP-DC", "science_program": null, "title": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "url": "http://www.usap-dc.org/view/dataset/601464"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Antarctic Peninsula; Biomass Burning; Black Carbon; Dronning Maud Land; East Antarctic Plateau; Ice Core", "locations": "Antarctic Peninsula; Dronning Maud Land; East Antarctic Plateau; Antarctica", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Chellman, Nathan; McConnell, Joseph", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1744878 Lazzara, Matthew; 1745097 Cassano, John", "bounds_geometry": "POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet. This atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and hence rising global sea levels. An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet, is envisioned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower at the West Antarctic ice sheet divide field camp. An additional unmanned aerial system field campaign will be conducted during the second year of this project and will supplement the West Antarctic ice sheet tall tower observations by sampling the depths of the boundary layer. The broader subject of the Antarctic ABL clearly supports a range of research activities ranging from the physics of turbulent mixing, its parameterization and constraints on meteorological forecasts, and even climatological effects, such as surface mass and energy balances. With the coming of the Thwaites WAIS program, a suite of metrological observables would be a welcome addition to the joint NSF/NERC (UK) Thwaites field campaigns. The meteorologists of this proposal have pioneered 30-m tall tower (TT) and unmanned aerial system (UAS) development in the Antarctic, and are well positioned to successfully carry out and analyze this work. In turn, the potential for these observations to advance our understanding of how the atmosphere exchanges heat with the ice sheet is high. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -109.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Amd/Us; HUMIDITY; ATMOSPHERIC TEMPERATURE; West Antarctic Ice Sheet; BOUNDARY LAYER TEMPERATURE; USAP-DC; ATMOSPHERIC PRESSURE MEASUREMENTS; FIELD SURVEYS; BOUNDARY LAYER WINDS; USA/NSF", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet", "uid": "p0010225", "west": -115.0}, {"awards": "1947882 Robel, Alexander", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Uncertainty in projections of future sea level rise comes, in part, from ice-sheet melting under the influence of unpredictable variations in ocean and atmospheric temperature near ice sheets. Using state-of-the-art modeling techniques, the Antarctic Ice Sheet Large Ensemble (AISLENS) Project will estimate the range of possible Antarctic Ice Sheet melt during the recent past and over the next several centuries that could result from such climate variations. The AISLENS Project will also facilitate research by providing modeling output as an open product to the broader climate and glaciology communities. The project will support an early career faculty member, and interdisciplinary training for a graduate student, postdoctoral fellow and undergraduate student. As a part of this project, an undergraduate course on \"Sea Level Rise and Coastal Engineering\" will be also developed, bringing together Earth Science and Civil Engineering students in an interdisciplinary setting and contributing to their education in sea level science and coastal adaptation. This will be done in the geographic context of the Southeastern US, the region of most concentrated vulnerability to sea-level rise in the US. The primary goal of the proposed research is to understand and quantify the role of internal climate variability in driving ice loss from the Antarctic Ice Sheet over the recent past and into the future. The AISLENS Project will encompass hundreds of simulations of Antarctic ice sheet evolution from 1950 to 2300 forced by realistic variations in climate, including snowfall and melt from fluctuating oceanic and atmospheric temperatures. Plausible realizations of Antarctic climate forcing will be generated from stochastic emulation of output from the Energy Exascale Earth System Model (E3SM) under past and future emissions scenarios. These realizations of variable climate will be used to force the MPAS Albany Land Ice (MALI) model, a state-of-the-art model of ice flow in the Antarctic Ice Sheet. In this project, AISLENS will be used to conduct uncertainty and attribution analyses. In the uncertainty analysis, the evolution of ensemble spread in simulations of the future evolution of the Antarctic Ice Sheet will be systematically decomposed to determine which temporal and spatial scales of climate variability contribute the most to future ice-sheet projection uncertainty. In the attribution analysis, a range of satellite-based observations of recent Antarctic ice loss will be compared to the envelope of internal variability of Antarctic ice loss simulated in AISLENS simulations encompassing the recent past. This analysis will provide context to recent observations indicating significant variability of Antarctic climate forcing and provide a possible path forward for conducting robust statistical inference studies for observed ice-sheet changes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; Antarctic Ice Sheet; AMD; USAP-DC; USA/NSF; MODELS; Amd/Us", "locations": "Antarctic Ice Sheet; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Robel, Alexander", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": null, "title": "The Antarctic Ice Sheet Large Ensemble (AISLENS) Project: Assessing the Role of Climate Variability in Past and Future Ice Sheet Mass Loss", "uid": "p0010223", "west": null}, {"awards": "2023303 Purkey, Sarah; 2023244 Stewart, Andrew; 2023259 Thompson, Andrew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024); Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639); Ocean CFC reconstructed data product", "datasets": [{"dataset_uid": "200428", "doi": "", "keywords": null, "people": null, "repository": "NOAA\u0027s National Centers for Environmental Information (NCEI)", "science_program": null, "title": "Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639)", "url": "https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0210639"}, {"dataset_uid": "200427", "doi": "10.6084/m9.figshare.26787751", "keywords": null, "people": null, "repository": "Figshare (open repository)", "science_program": null, "title": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024)", "url": "https://doi.org/10.6084/m9.figshare.26787751"}, {"dataset_uid": "601752", "doi": "10.15784/601752", "keywords": "Antarctica; CFCs; GLODAP; Ocean Model; Ocean Ventilation; Southern Ocean", "people": "Gebbie, Jack; Purkey, Sarah; Cimoli, Laura", "repository": "USAP-DC", "science_program": null, "title": "Ocean CFC reconstructed data product", "url": "https://www.usap-dc.org/view/dataset/601752"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quanti\ufb01ed via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward \ufb02ow and distribution between the Atlantic, Indian and Paci\ufb01c basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad\u00b4elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth\u0027s climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a \u201cconduit\" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC \u201cblends\" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "AMD; MODELS; USAP-DC; WATER MASSES; Southern Ocean; Amd/Us; OCEAN CURRENTS; COMPUTERS; Antarctic Circumpolar Current; USA/NSF", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Thompson, Andrew; Purkey, Sarah", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "NOAA\u0027s National Centers for Environmental Information (NCEI)", "repositories": "Figshare (open repository); NOAA\u0027s National Centers for Environmental Information (NCEI); USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?", "uid": "p0010220", "west": -180.0}, {"awards": "1947094 Sidor, Christian", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "Non-technical Abstract Around 252 million years ago, a major mass extinction wiped out over 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime devoid of a permanent ice cap. Compared to lower latitudes, relatively little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continents more polar location shielded it from the worst of the extinctions effects. As the result of a NSF-sponsored deep field camp in 2017/2018, a remarkable collection of vertebrate fossils was discovered in the rocks of the Shackleton Glacier region. This collection includes the best preserved and most complete materials of fossil amphibians ever recovered from Antarctica, including two previously undescribed species. This grant supports one postdoctoral researcher with expertise in fossil amphibians to describe and interpret the significance of these fossils, including their identification, relationships, and how they fit into the terrestrial ecosystem of Antarctica and other southern hemisphere terrestrial assemblages in light of the major reorganization of post-extinction environments. Historical collections of fossil amphibians will also be reviewed as part of this work. Undergraduate students at the University of Washington will be actively involved as part of this research and learn skills like hard tissue histology and CT data manipulation. Public engagement in Antarctic science will be accomplished at the University of Washington Burke Museum, which is the Washington State museum of natural history and culture. Specifically, a new exhibit on Antarctic amphibians will be developed as part of the paleontology gallery, which sees over 100,000 visitors per year. Technical Abstract This two-year project will examine the evolution of Triassic temnospondyls based on a remarkable collection of fossils recently recovered from the Shackleton Glacier region of Antarctica. Temnospondyls collected from the middle member of the Fremouw Formation are part of the first collection of identifiable tetrapod fossils from this stratigraphic interval. Thorough anatomical description and comparisons of these fossils will add new faunal information and also aid in determining if this horizon is Early or Middle Triassic in age. Exquisitely preserved temnospondyl material from the lower Fremouw Formation will permit more precise identification than previously possible and will provide insights into the earliest stages of their radiation in the extinction recovery interval. Overall, the Principal Investigator and Postdoctoral Researcher will spearhead an effort to revise the systematics of the Antarctic members of Temnospondyli and properly contextualize them in the framework of Triassic tetrapod evolution. The research team will also take advantage of the climate-sensitive nature of fossil amphibians to better understand patterns of seasonality at high-latitudes during the early Mesozoic by subjecting selected fossils to histological analysis. Preliminary data suggest that temnospondyls were exceptionally diverse and highly endemic immediately after the end-Permian extinction, when compared to their distribution before and after this interval. If confirmed, this macroevolutionary pattern could be used to predict the response of modern amphibians to future climate perturbations. Overall, this research will provide new insights into the vertebrate fauna of the Fremouw Formation, as well as shed light on the evolution of terrestrial ecosystems in southern Pangea in the wake of the Permian-Triassic mass extinction. As part of the broader impacts, the research team will help to develop an exhibit featuring some of the best preserved fossils from Antarctica to explain to the public how paleontologists use fossils and rocks to understand past climates like the Triassic \u0027hot-house\u0027 world that lacked permanent ice caps at the poles. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Temnospondyls; MACROFOSSILS; USA/NSF; FIELD SURVEYS; Permian Extinction; Triassic; Amd/Us; USAP-DC; AMD; ANIMALS/VERTEBRATES; Shackleton Glacier", "locations": "Shackleton Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN", "persons": "Sidor, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "A non-amniote perspective on the recovery from the end-Permian extinction at high latitudes: paleobiology of Early Triassic temnospondyls from Antarctica", "uid": "p0010217", "west": null}, {"awards": "2022920 Zhan, Zhongwen", "bounds_geometry": "POINT(180 -90)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth\u0027s crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; South Pole Station; GLACIERS/ICE SHEETS; NSF/USA; Amd/Us; SEISMIC SURFACE WAVES; SEISMOLOGICAL STATIONS; USAP-DC", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Zhan, Zhongwen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "EAGER: Pilot Fiber Seismic Networks at the Amundsen-Scott South Pole Station", "uid": "p0010214", "west": 180.0}, {"awards": "1341376 Tabor, Neil; 1341475 Smith, Nathan; 2001033 Makovicky, Peter; 1341304 Sidor, Christian; 1341645 Makovicky, Peter", "bounds_geometry": "POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84))", "dataset_titles": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "datasets": [{"dataset_uid": "601511", "doi": "10.15784/601511", "keywords": "Allan Hills; Antarctica; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "people": "Makovicky, Peter", "repository": "USAP-DC", "science_program": null, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "url": "https://www.usap-dc.org/view/dataset/601511"}], "date_created": "Tue, 29 Jun 2021 00:00:00 GMT", "description": "Around 252 million years ago, a major mass extinction wiped out upwards of 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime and became devoid of glaciers. Little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continent\u0027s high latitude location shielded it from the worst of the extinction\u0027s effects. The Shackleton Glacier region is the best place to study this extinction in Antarctica because it exposes an abundance of correct age rocks and relevant fossils were found there in the 1960s and 1980s. For this research, paleontologists will study fossil vertebrates that span from about 260 to 240 million years ago to understand how life evolved at high latitudes in the face of massive climate change. In addition, geologists will use fossil soils and fossil plant matter to more precisely reconstruct the climate of Antarctica across this extinction boundary. These data will allow for a more complete understanding of ancient climates and how Antarctic life compared to that at lower latitudes. Undergraduate and graduate students will be actively involved in this research. Public engagement in Antarctic science will be accomplished at several natural history museums. This three-year project will examine the evolution of Permo-Triassic paleoenvironments and their vertebrate communities by conducting fieldwork in the Shackleton Glacier region of Antarctica. The team will characterize the Permo-Triassic boundary within Shackleton area strata and correlate it to other stratigraphic successions in the region (e.g. via stable carbon isotope stratigraphy of fossilized plant organic matter). The researchers will use multiple types of data to assess the paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude (~70\u00b0 S) tetrapod fauna of the entire Triassic and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. The biology of Triassic vertebrates from Antarctica will be compared to conspecifics from lower paleolatitudes through analysis of growth in bone and tusk histology. An interdisciplinary approach will be used to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region.", "east": -160.0, "geometry": "POINT(-177.5 -85.5)", "instruments": null, "is_usap_dc": true, "keywords": "REPTILES; FIELD SURVEYS; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; Triassic; USAP-DC; TERRESTRIAL ECOSYSTEMS; MACROFOSSILS; Amd/Us; Fossils; Shackleton Glacier; LAND RECORDS; ANIMALS/VERTEBRATES; AMD", "locations": "Shackleton Glacier", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "uid": "p0010213", "west": 165.0}, {"awards": "1744965 Diao, Minghui; 1744946 Gettelman, Andrew", "bounds_geometry": "POINT(166.7 -77.8)", "dataset_titles": "AWARE_Campaign_Data; Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign; Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "datasets": [{"dataset_uid": "200225", "doi": "10.26023/V925-2H41-SD0F", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 25 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/290779"}, {"dataset_uid": "200224", "doi": "10.26023/KFSD-Y8DQ-YC0D", "keywords": null, "people": null, "repository": "UCAR", "science_program": null, "title": "Diao, M. (2020). VCSEL 1 Hz Water Vapor Data Version 1.0 for NSF SOCRATES Campaign", "url": "https://data.eol.ucar.edu/dataset/552.051"}, {"dataset_uid": "200223", "doi": "10.17632/x6n4r3yxb2.1", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "AWARE_Campaign_Data", "url": "http://dx.doi.org/10.17632/x6n4r3yxb2.1"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica. This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 166.7, "geometry": "POINT(166.7 -77.8)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; CLIMATE MODELS; USA/NSF; SNOW; Amd/Us; USAP-DC; Chile; ATMOSPHERIC WATER VAPOR; ATMOSPHERIC TEMPERATURE; Antarctica; Southern Ocean; AMD", "locations": "Antarctica; Southern Ocean; Chile", "north": -77.8, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Diao, Minghui; Gettelman, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e CLIMATE MODELS", "repo": "UCAR", "repositories": "Publication; UCAR", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Ice Supersaturation over the Southern Ocean and Antarctica, and its Role in Climate", "uid": "p0010209", "west": 166.7}, {"awards": "1933764 Enderlin, Ellyn; 1643455 Enderlin, Ellyn", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crane Glacier centerline observations and modeling results ; Remotely-sensed iceberg geometries and meltwater fluxes", "datasets": [{"dataset_uid": "601617", "doi": "10.15784/601617", "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "people": "Enderlin, Ellyn; Aberle, Rainey; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "repository": "USAP-DC", "science_program": null, "title": "Crane Glacier centerline observations and modeling results ", "url": "https://www.usap-dc.org/view/dataset/601617"}, {"dataset_uid": "601679", "doi": "10.15784/601679", "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "people": "Enderlin, Ellyn; Aberle, Rainey; Oliver, Caitlin; Dryak, Mariama; Miller, Emily; Dickson, Adam", "repository": "USAP-DC", "science_program": null, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "url": "https://www.usap-dc.org/view/dataset/601679"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amery Ice Shelf; FIELD SURVEYS; Totten Glacier; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctic Peninsula; ICEBERGS; Mertz Glacier; OCEAN TEMPERATURE; USA/NSF; Amd/Us; Amundsen Sea; Ronne Ice Shelf; Filchner Ice Shelf; AMD", "locations": "Antarctic Peninsula; Totten Glacier; Ronne Ice Shelf; Filchner Ice Shelf; Amery Ice Shelf; Mertz Glacier; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Enderlin, Ellyn", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "uid": "p0010210", "west": -180.0}, {"awards": "1644159 Jacobs, Stanley", "bounds_geometry": "POLYGON((-180 -72.5,-177 -72.5,-174 -72.5,-171 -72.5,-168 -72.5,-165 -72.5,-162 -72.5,-159 -72.5,-156 -72.5,-153 -72.5,-150 -72.5,-150 -73.15,-150 -73.8,-150 -74.45,-150 -75.1,-150 -75.75,-150 -76.4,-150 -77.05,-150 -77.7,-150 -78.35,-150 -79,-153 -79,-156 -79,-159 -79,-162 -79,-165 -79,-168 -79,-171 -79,-174 -79,-177 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.35,162 -77.7,162 -77.05,162 -76.4,162 -75.75,162 -75.1,162 -74.45,162 -73.8,162 -73.15,162 -72.5,163.8 -72.5,165.6 -72.5,167.4 -72.5,169.2 -72.5,171 -72.5,172.8 -72.5,174.6 -72.5,176.4 -72.5,178.2 -72.5,-180 -72.5))", "dataset_titles": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020; Ross Island area salinity and temperature records 1956 to 2020", "datasets": [{"dataset_uid": "601611", "doi": "10.15784/601611", "keywords": "Amundsen Sea; Antarctica; Chemistry:Water; CTD; D18O; NBP0001; NBP0702; NBP0901; NBP1901; NBP2002; Oceans; Oxygen Isotope; R/v Nathaniel B. Palmer; Seawater Isotope; Southern Ocean", "people": "Hennig, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "url": "https://www.usap-dc.org/view/dataset/601611"}, {"dataset_uid": "601458", "doi": "10.15784/601458", "keywords": "Antarctica; CTD; Oceans; Physical Oceanography; Ross Island; Ross Sea; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Ross Island area salinity and temperature records 1956 to 2020", "url": "https://www.usap-dc.org/view/dataset/601458"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Overview and Intellectual merit: This project extends and combines historical and recent ocean data sets to investigate ice-ocean-interactions along the Pacific continental margin of the West Antarctic Ice Sheet. The synthesis focuses on the strikingly different environments on and near the cold Ross Sea and warm Amundsen Sea continental shelves, where available measurements reach back to ~1958 and 1994, respectively. On the more extensively covered Ross Sea continental shelf, multiple reoccupations of ocean stations and transects are used to extend our knowledge of long-term ocean freshening and the mass balance of the world?s largest ice shelf. On the more rugged Amundsen Sea continental shelf, which contains the earth?s fastest melting ice shelves, continuing research on observed thermohaline variability also pursues connections between outer shelf shoals and vulnerable ice shelf grounding zones. This interdisciplinary work updates a prior study of ice shelf response to ocean thermal forcing, and uses chemical tracers to measure changes in shelf, deep and bottom water transformations and production rates. Broader Impacts : Recent and potential future rates of sea level rise are the primary broad-scale impacts of the ice and ocean changes revealed by observations in the study area. The overriding question is whether global and regional sea levels will accelerate gradually, allowing carbon usage reductions to head off the worst consequences, or so rapidly that they will contribute to major social and economic upheavals. Collaborations and data acquired by foreign vessels are also utilized to better understand the causes of rapid change in these shelf seas and ice shelves, along with associated wider implications. Data that are re-gridded, re-edited or newly collated will be archived, and results made available via presentations, publications, and press releases if warranted. This proposal does not require fieldwork in the Antarctic This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -150.0, "geometry": "POINT(-174 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; USA/NSF; COMPUTERS; Ross Sea; SHIPS; USAP-DC; SALINITY/DENSITY; OCEAN TEMPERATURE", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "West Antarctic Ice Shelf- Ocean Interactions ", "uid": "p0010208", "west": 162.0}, {"awards": "1844793 Aksoy, Mustafa", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Firn Brightness Temperatures Measured by AMSR2 and SSMIS (Concordia, Vostok, and the Entire Ice Sheet)); In-Situ Density, Temperature, Grain Size, and Layer Thickness data for the Antarctic Ice Sheet", "datasets": [{"dataset_uid": "601551", "doi": "10.15784/601551", "keywords": "Antarctica; Antarctic Ice Sheet", "people": "Kar, Rahul; Aksoy, Mustafa; Kaurejo, Dua", "repository": "USAP-DC", "science_program": null, "title": "In-Situ Density, Temperature, Grain Size, and Layer Thickness data for the Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/601551"}, {"dataset_uid": "601550", "doi": "10.15784/601550", "keywords": "Antarctica; Antarctic Ice Sheet; Satellite; Vostok", "people": "Aksoy, Mustafa; Kaurejo, Dua; Kar, Rahul", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Firn Brightness Temperatures Measured by AMSR2 and SSMIS (Concordia, Vostok, and the Entire Ice Sheet))", "url": "https://www.usap-dc.org/view/dataset/601550"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "This project will test the hypothesis that physical and thermal properties of Antarctic firn--partially compacted granular snow in an intermediate stage between snow and glacier ice--can be remotely measured from space. Although these properties, such as internal temperature, density, grain size, and layer thickness, are highly relevant to studies of Antarctic climate, ice-sheet dynamics, and mass balance, their measurement currently relies on sparse in-situ surveys under challenging weather conditions. Sensors on polar-orbiting satellites can observe the entire Antarctic every few days during their years-long lifetime. Consequently, the approaches developed in this study, when coupled with the advancing technologies of small and low-cost CubeSats, aim to contribute to Antarctic science and lead to cost-effective, convenient, and accurate long-term analyses of the Antarctic system while reducing the human footprint on the continent. Moreover, the project will be solely based on publicly-available datasets; thus, while contributing to interdisciplinary undergraduate and graduate research and education at the grantee\u0027s institution, the project will also encourage engagement of citizen scientists through its website. The overarching goal of this project is to characterize Antarctic firn layers in terms of their thickness, physical temperature, density, and grain size through multi-frequency microwave radiometer measurements from space. Electromagnetic penetration depth changes with frequency in ice; thus, multi-frequency radiometers are able to profile firn layer properties versus depth. To achieve its objective, the project will utilize the Global Precipitation Measurement (GPM) satellite constellation as a single multi-frequency microwave radiometer system with 11 frequency channels observing the Antarctic Ice Sheet. Archived in-situ measurements of Antarctic firn density, grain size, temperature, and layer thickness will be collected and separated into training and test datasets. Microwave emissions simulated using the training data will be compared to GPM constellation measurements to evaluate and improve state-of-the-art forward microwave emission models. Based on these models, the project will develop numerical retrieval algorithms for the thermal and physical properties of Antarctic firn. Results of retrievals will be validated using the test dataset, and uncertainty and error analyses will be conducted. Lastly, changes in the thermal and physical characteristics of Antarctic firn will be examined through long-term retrieval studies exploiting GPM constellation measurements. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIRN; Amd/Us; USA/NSF; ICE SHEETS; SNOW DENSITY; Multi-Frequency Passive Remote Sensing; University At Albany; USAP-DC; SNOW/ICE TEMPERATURE; SATELLITES; SNOW/ICE", "locations": "University At Albany", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Aksoy, Mustafa", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Characterization of Antarctic Firn by Multi-Frequency Passive Remote Sensing from Space", "uid": "p0010206", "west": -180.0}, {"awards": "1846837 Bowman, Jeff", "bounds_geometry": null, "dataset_titles": "PRJNA894514; PRJNA901488", "datasets": [{"dataset_uid": "200479", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "PRJNA894514", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA894514"}, {"dataset_uid": "200480", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "PRJNA901488", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA901488"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean\u0027s primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as \"master recyclers\", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model. This project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project will use a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, researchers will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model\u0027s data assimilation methods. There is an extensive education and outreach component to this project that is designed to engage students and the public in diverse activities centered on Antarctic microbiota and marine sciences. A new module on Antarctic marine science will be developed for the popular Sally Ride Science program, and two existing undergraduate courses at UC San Diego will be strengthened with laboratory modules introducing emerging technology, and with cutting-edge polar science. A PhD student and a post-doctoral researcher will be supported by this project. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Magmatic Volatiles; BACTERIA/ARCHAEA; VIRUSES; USA/NSF; Palmer Station; ECOSYSTEM FUNCTIONS; COMMUNITY DYNAMICS; LABORATORY; Amd/Us; PROTISTS; AMD; USAP-DC", "locations": "Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowman, Jeff; Connors, Elizabeth", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCBI SRA", "repositories": "NCBI SRA", "science_programs": null, "south": null, "title": "CAREER: Understanding microbial heterotrophic processes in coastal Antarctic waters", "uid": "p0010201", "west": null}, {"awards": "1739027 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-110.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; Thwaites Glacier; USAP-DC; USA/NSF; Magmatic Volatiles; AMD; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; ICE SHEETS; Amd/Us", "locations": "Thwaites Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -80.0, "title": "NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin", "uid": "p0010199", "west": -125.0}, {"awards": "1640481 Rotella, Jay", "bounds_geometry": "POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season; Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "datasets": [{"dataset_uid": "601837", "doi": "10.15784/601837", "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601837"}, {"dataset_uid": "200300", "doi": " https://doi.org/10.15784/601125 ", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601125"}], "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "The consequences of variation in maternal effects on the ability of offspring to survive, reproduce, and contribute to future generations has rarely been evaluated in polar marine mammals. This is due to the challenges of having adequate data on the survival and reproductive outcomes for numerous offspring born in diverse environmental conditions to mothers with known and diverse sets of traits. This research project will evaluate the survival and reproductive consequences of early-life environmental conditions and variation in offspring traits that are related to maternal attributes (e.g. birth date, birth mass, weaning mass, and swimming behavior) in a population of individually marked Weddell seals in the Ross Sea. Results will allow an evaluation of the importance of different types of individuals to the Weddell Seal\u0027s population sustenance and better assessments of factors contributing to the population dynamics in the past and into the future. The project allows for documentation of specific individual seal\u0027s unique histories and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate ecology students, producing science-outreach videos, and developing a multi-media iBook regarding the project\u0027s science activities, goals and outcomes. The research has the broad objective of evaluating the importance of diverse sources of variation in pup characteristics to survival and reproduction. The study will (1) record birth dates, body mass metrics, and time spent in the water for multiple cohorts of pups (born to known-age mothers) in years with different environmental conditions; (2) mark all pups born in the greater Erebus Bay study area and conduct repeated surveys to monitor fates of these pups through the age of first reproduction; and (3) use analyses specifically designed for data on animals that are individually marked and resighted each year to evaluate hypotheses about how variation in birth dates, pup mass, time spent in the water by pups, and environmental conditions relate to variation in early-life survival and recruitment for those pups. The research will also allow the documentation of the population status that will contribute to the unique long-term database for the local population that dates back to 1978.", "east": 170.0, "geometry": "POINT(166 -76.9)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ANIMAL ECOLOGY AND BEHAVIOR; Amd/Us; FIELD INVESTIGATION; Ross Sea; USA/NSF; USAP-DC", "locations": "Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Garrott, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.8, "title": "The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator", "uid": "p0010198", "west": 162.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": "POLYGON((163 -76,163.3 -76,163.6 -76,163.9 -76,164.2 -76,164.5 -76,164.8 -76,165.1 -76,165.4 -76,165.7 -76,166 -76,166 -76.2,166 -76.4,166 -76.6,166 -76.8,166 -77,166 -77.2,166 -77.4,166 -77.6,166 -77.8,166 -78,165.7 -78,165.4 -78,165.1 -78,164.8 -78,164.5 -78,164.2 -78,163.9 -78,163.6 -78,163.3 -78,163 -78,163 -77.8,163 -77.6,163 -77.4,163 -77.2,163 -77,163 -76.8,163 -76.6,163 -76.4,163 -76.2,163 -76))", "dataset_titles": "Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound; Effect of temperature on cleavage rate of Antarctic invertebrates; Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates; Egg diameters of Colossendeis megalonyx; Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones.; Temperature acclimation and acclimatization of sea spider larvae; Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates; Video of Colossendeis megalonyx behavior around egg mass", "datasets": [{"dataset_uid": "601869", "doi": null, "keywords": "Antarctica; Cryosphere; McMurdo; McMurdo Sound", "people": "Thurber, Andrew; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Survey Metadata. All counts of Odontaster validus from SSWS surveys at the McMurdo Intake Jetty and Cinder Cones.", "url": "https://www.usap-dc.org/view/dataset/601869"}, {"dataset_uid": "601887", "doi": "10.15784/601887", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Toh, Ming Wei Aaron; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Effect of temperature on cleavage rate of Antarctic invertebrates", "url": "https://www.usap-dc.org/view/dataset/601887"}, {"dataset_uid": "601886", "doi": "10.15784/601886", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Toh, Ming Wei Aaron; Moran, Amy; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Temperature effects on proximal composition and development rate of embryos and larvae of four Antarctic invertebrates", "url": "https://www.usap-dc.org/view/dataset/601886"}, {"dataset_uid": "601870", "doi": "10.15784/601870", "keywords": "Antarctica; Cryosphere; McMurdo Sound; Salinity; Temperature", "people": "Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Benthic seawater temperature and conductivity measurements at six sites in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601870"}, {"dataset_uid": "601717", "doi": "10.15784/601717", "keywords": "Antarctica; McMurdo", "people": "Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Egg diameters of Colossendeis megalonyx", "url": "https://www.usap-dc.org/view/dataset/601717"}, {"dataset_uid": "601888", "doi": "10.15784/601888", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Toh, MIng Wei Aaron; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Effect of temperature on oxygen consumption rates of larvae of four Antarctic marine invertebrates", "url": "https://www.usap-dc.org/view/dataset/601888"}, {"dataset_uid": "601889", "doi": "10.15784/601889", "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "people": "Moran, Amy; Toh, MIng Wei Aaron; Lobert, Graham", "repository": "USAP-DC", "science_program": null, "title": "Temperature acclimation and acclimatization of sea spider larvae", "url": "https://www.usap-dc.org/view/dataset/601889"}, {"dataset_uid": "601716", "doi": "10.15784/601716", "keywords": "Antarctica; McMurdo; Pycnogonida; Sea Spider", "people": "Lobert, Graham; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Video of Colossendeis megalonyx behavior around egg mass", "url": "https://www.usap-dc.org/view/dataset/601716"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Cold-blooded animals in the Antarctic ocean have survived in near-constant, extreme cold conditions for millions of years and are very sensitive to even small changes in water temperature. However, the consequences of this extreme thermal sensitivity for the energetics, development, and survival of developing embryos is not well understood. This award will investigate the effect of temperature on the metabolism, growth rate, developmental rate, and developmental energetics of embryos and larvae of Antarctic marine ectotherms. The project will also measure annual variation in temperature and oxygen at different sites in McMurdo Sound, and compare embryonic and larval metabolism in winter and summer to determine the extent to which these life stages can acclimate to seasonal shifts. This research will provide insight into the ability of polar marine animals and ecosystems to withstand warming polar ocean conditions. Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1 deg C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 166.0, "geometry": "POINT(164.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; McMurdo Sound; AMD; BENTHIC; USA/NSF; FIELD INVESTIGATION", "locations": "McMurdo Sound", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "uid": "p0010187", "west": 163.0}, {"awards": "1935438 McCarthy, Christine", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 03 Jun 2021 00:00:00 GMT", "description": "The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change\u2014the quantity relevant for estimating the ice sheet\u2019s sea-level contribution\u2014requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (\u003e 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "AMD; LABORATORY; USA/NSF; COMPUTERS; USAP-DC; FIRN; Antarctic Ice Sheet; Amd/Us", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "McCarthy, Christine M.; Kingslake, Jonathan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Understanding Firn Rheology Through Laboratory Compaction Experiments and Radar Data", "uid": "p0010185", "west": null}, {"awards": "1743310 Kingslake, Jonathan", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Vulnerability of Antarctica\u2019s ice shelves to meltwater-driven fracture", "datasets": [{"dataset_uid": "601395", "doi": "10.15784/601395", "keywords": "Antarctica; Computer Model; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meltwater; Model Data", "people": "Lai, Ching-Yao", "repository": "USAP-DC", "science_program": null, "title": "Vulnerability of Antarctica\u2019s ice shelves to meltwater-driven fracture", "url": "https://www.usap-dc.org/view/dataset/601395"}], "date_created": "Wed, 02 Jun 2021 00:00:00 GMT", "description": "Ice shelves slow the movement of the grounded ice sheets that feed them. This reduces the rate at which ice sheets lose mass to the oceans and contribute to sea-level rise. But ice shelves can be susceptible to collapse, particularly when surface meltwater accumulates in vulnerable areas. Meltwater lakes can create and enlarge fractures within the ice shelves, thereby triggering or hastening ice-shelf collapse. Also, water refreezing within ice shelves warms the ice and could affect the flow of the ice by changing its viscosity, which depends on temperature. The drainage of water across the surface of Antarctica and where it accumulates has received little attention. This drainage was assumed to be insignificant, but recent work shows that meltwater can drain for tens of kilometers across ice-shelf surfaces and access areas that would otherwise not accumulate meltwater. Surface meltwater drainage could play a major role in the future stability of ice sheets. This drainage is the focus of this project. The team will develop and test physics-based mathematical models of water flow and ice-shelf flow, closely informed by remote sensing observations, to ask (1) how drainage systems will grow in response to the increased melt rates that are predicted for this century, (2) how this drainage is influenced by ice dynamics and (3) whether enlarged drainage systems could deliver meltwater to areas of ice shelves that are vulnerable to water-driven collapse. The team hypothesizes that refreezing of meltwater in snow and firn will prove important for hydrology by impacting the permeability of the snow/firn and for ice-shelf dynamics by releasing latent heat within the ice and lowering ice viscosity. The project will examine these issues by (1) conducting a remote sensing survey of the structure and temporal evolution of meltwater systems around Antarctica, (2) developing and analyzing mathematical models of water flow across ice shelves, and (3) examining idealized and realistic models of ice-shelf flow. This project will support a first-time NSF PI, a post-doctoral researcher and a graduate student. An outreach activity will make use of the emerging technology of Augmented Reality to visualize the dynamics of ice sheets in three dimensions to excite the public about glaciology at outreach events around New York City. This approach will be made publicly available for wider use as Augmented Reality continues to grow in popularity. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; USAP-DC; Antarctica; ICE SHEETS; Amd/Us; Ice Shelf; COMPUTERS; Surface Meltwater", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kingslake, Jonathan", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Satellite observations and modelling of surface meltwater flow and its impact on ice shelves", "uid": "p0010184", "west": -180.0}, {"awards": "1543501 Howat, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "The Reference Model of Antarctica", "datasets": [{"dataset_uid": "200218", "doi": "", "keywords": null, "people": null, "repository": "PGC", "science_program": null, "title": "The Reference Model of Antarctica", "url": "https://www.pgc.umn.edu/data/rema/"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "Howat/1543501 This award will provide support to map the topography of the Antarctic continent at high spatial resolution and precision to measure ice sheet change, constrain models, correct satellite observations and support logistics. Antarctica remains the most poorly mapped landmass on Earth, yet, accurate and complete surface topography is essential for a wide range of scientific and logistical activities. The group will use a combination of very high-resolution satellite imagery, existing ground and airborne survey data and the NSF\u0027s supercomputer infrastructure to construct the Reference Elevation Model of Antarctica (REMA): a continuous, time-stamped reference surface that will be one to two orders of magnitude higher resolution than currently available. REMA will be constructed from stereoscopic, submeter resolution imagery collected by the WorldView satellite constellation, obtained at no cost in partnership with the National Geospatial Intelligence Agency and the NSF-supported Polar Geospatial Center (PGC). The high spatial and radiometric resolution of the imagery enables photogrammetric digital elevation model (DEM) extraction over low contrast terrains such as snow, ice and shadows. These DEM\u0027s have horizontal and vertical offsets of up to several meters that can be reduced to the DEM relative accuracy of 0.2 meter with a single ground control point. We will use available control points from ground and lidar surveys to register individual DEMs and optimized, least-squares co-registration to provide control between overlapping DEM\u0027s over large regions. REMA will have a posting of 10 meters and accuracy better than 1 meter. It will be distributed openly by the Polar Geospatial Center. This project will involve substantial undergraduate participation, providing training in geospatial science and remote sensing, and REMA will be used extensively for the outreach programs of the Byrd Polar and Climate Research Center. This project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Topography; AMD; USA/NSF; Amd/Us; USAP-DC; Antarctica; ICE SHEETS; COMPUTERS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Howat, Ian; Myoung-Jong Noh, ", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "PGC", "repositories": "PGC", "science_programs": null, "south": -90.0, "title": "The Reference Elevation Model of Antarctica", "uid": "p0010180", "west": -180.0}, {"awards": "1935870 Ballard, Grant; 1935901 Dugger, Katie", "bounds_geometry": "POLYGON((-180 -60,-177 -60,-174 -60,-171 -60,-168 -60,-165 -60,-162 -60,-159 -60,-156 -60,-153 -60,-150 -60,-150 -61.8,-150 -63.6,-150 -65.4,-150 -67.2,-150 -69,-150 -70.8,-150 -72.6,-150 -74.4,-150 -76.2,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -76.2,165 -74.4,165 -72.6,165 -70.8,165 -69,165 -67.2,165 -65.4,165 -63.6,165 -61.8,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; P2P 2022-2023 Adelie Penguin Biologging Data", "datasets": [{"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}, {"dataset_uid": "601928", "doi": null, "keywords": "Adelie Penguin; Antarctica; Biologging; Cape Crozier; Cryosphere; Ross Sea", "people": "Ainley, David; Ballard, Grant; Schmidt, Annie", "repository": "USAP-DC", "science_program": null, "title": "P2P 2022-2023 Adelie Penguin Biologging Data", "url": "https://www.usap-dc.org/view/dataset/601928"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "Part 1: Non-technical description Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Ad\u00e9lie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Ad\u00e9lie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of \u003e1 million hits per month and use by \u003e300 classrooms/~10,000 students) will be continued. Each field season will also have \u2018Live From the Penguins\u2019 Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. Part II: Technical description: Leveraging 25 years of data on marked individuals from two Ad\u00e9lie penguin colonies in the Ross Sea, combined with new biologging tags that track detailed penguin foraging efforts and environmental conditions, researchers will accomplish three major goals: 1) assess the quality of natal conditions by determining how environmental conditions, relative prey availability, and diet composition influence parental foraging behavior, chick provisioning, and fledging mass; 2) determine the spatial distribution and foraging behavior of juvenile Ad\u00e9lie penguins and the relative influence of natal versus post-fledging environmental conditions on their survival; and 3) determine the role of natal and post-fledging conditions in shaping individual life history traits and colony growth. Data from several types of penguin-borne biologging devices will be used to provide multiple lines of evidence for how early-life conditions and penguin behavior relate to penguin energetics and population size. This study is the first to integrate salinity, temperature, light level, depth, accelerometry, video loggers, and GPS data with longitudinal demographic information, providing an unprecedented ability to understand how penguins use the environment and enabling new insights from previously collected data. Changes in salinity due to increased glacial melt have important implications for sea ice formation, ocean circulation and productivity of the Southern Ocean, and potentially global temperature change. The penguin-borne sensors deployed in this study will support the NSF Office of Polar Programs priority: How does society more efficiently observe and measure the polar regions? It represents only the second study to track juvenile Ad\u00e9lie penguins at sea, the first in the Ross Sea region, the first with substantial sample sizes, and the first to assess juvenile survival rates directly, integrating early life factors and environmental conditions to better understand colony growth trajectories. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -150.0, "geometry": "POINT(-172.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "Ross Island; AMD; MARINE ECOSYSTEMS; Amd/Us; Adelie Penguin; USAP-DC; USA/NSF; FIELD SURVEYS", "locations": "Ross Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Varsani, Arvind; Dugger, Katie; Orben, Rachael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies", "uid": "p0010179", "west": 165.0}, {"awards": "1852617 Carlstrom, John", "bounds_geometry": "POINT(0 -90)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "This award is to support measurements of the 14-billion-year cosmic microwave background (CMB) light with the South Pole Telescope (SPT) to address some of the most basic and compelling questions in cosmology: What is the origin of the Universe? What is the Universe made of? What is the mass scale of the neutrinos? When did the first stars and galaxies form and how was the Universe reionized? What is the Dark Energy that is accelerating the expansion of the Universe? The SPT plays a unique role in the pursuit of these questions. Its siting is ideal for ultra-low-noise imaging surveys of the sky at the millimeter and sub-millimeter radio wavelengths. The SPT is supported by the NSF\u0027s Amundsen-Scott South Pole Station, which is the best operational site on Earth for mm-wave sky surveys. This unique geographical location allows SPT to obtain extremely sensitive 24/7 observations of targeted low Galactic foreground regions of the sky. The telescope\u0027s third-generation, SPT-3G receiver has 16,000 detectors configured for polarization-sensitive observations in three millimeter-wave bands. The proposed operation includes five years of sky surveys to obtain ultra-deep measurements of a 1500 square degree field and to produce and publicly archive essential data products from the survey. The telescope\u0027s CMB temperatures and polarization power spectrum will play a central role in probing the nature of current tensions among cosmological parameter estimations from different data sets and determining if their explanation requires physics beyond the current LCDM model. The data will help constraining the Dark Energy properties that affect the growth of large structures through both the CMB lensing and abundance of galaxy clusters. The proposed operations also support SPT\u0027s critical role in the Event Horizon Telescope (EHT), a global array of telescopes to image the event horizon around the black hole at the center of Milky Way Galaxy. This award addresses and advances the science objectives and goals of the NSF\u0027s \"Windows on the Universe: The Era of Multi-Messenger Astrophysics\" program. The proposed research activity will also contribute to the training of the next generation of scientists by integrating graduate and undergraduate education with the technology development, astronomical observations, and scientific analyses of SPT data. Research and education are integrated by bringing research activities into the undergraduate classroom and sharing of forefront research with non-scientists extending it beyond the university through a well-established educational network that reaches a wide audience at all levels of the educational continuum. Through museum partnerships and new media, the SPT outreach and educational efforts reach large numbers of individuals while personalizing the experience. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e RADIO WAVE DETECTORS \u003e RADIO TELESCOPES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; Adelie Penguin; THERMAL INFRARED; South Pole Station; Amd/Us; OBSERVATORIES", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Astrophysics and Geospace Sciences; Antarctic Science and Technology", "paleo_time": null, "persons": "Carlstrom, John; Holzapfel, William; Benson, Bradford", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e OBSERVATORIES", "repositories": null, "science_programs": null, "south": -90.0, "title": "South Pole Telescope Operations and Data Products", "uid": "p0010176", "west": 0.0}, {"awards": "1543325 Landolt, Scott; 1543377 Seefeldt, Mark", "bounds_geometry": "POLYGON((166.918 -77.8675,167.2997 -77.8675,167.6814 -77.8675,168.0631 -77.8675,168.4448 -77.8675,168.8265 -77.8675,169.2082 -77.8675,169.5899 -77.8675,169.9716 -77.8675,170.3533 -77.8675,170.735 -77.8675,170.735 -77.98145,170.735 -78.0954,170.735 -78.20935,170.735 -78.3233,170.735 -78.43725,170.735 -78.5512,170.735 -78.66515,170.735 -78.7791,170.735 -78.89305,170.735 -79.007,170.3533 -79.007,169.9716 -79.007,169.5899 -79.007,169.2082 -79.007,168.8265 -79.007,168.4448 -79.007,168.0631 -79.007,167.6814 -79.007,167.2997 -79.007,166.918 -79.007,166.918 -78.89305,166.918 -78.7791,166.918 -78.66515,166.918 -78.5512,166.918 -78.43725,166.918 -78.3233,166.918 -78.20935,166.918 -78.0954,166.918 -77.98145,166.918 -77.8675))", "dataset_titles": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "datasets": [{"dataset_uid": "601441", "doi": "10.15784/601441", "keywords": "Accumulation; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Precipitation; Ross Ice Shelf; Snow; Snow/ice; Snow/Ice; Weatherstation; Weather Station Data", "people": "Seefeldt, Mark", "repository": "USAP-DC", "science_program": null, "title": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "url": "https://www.usap-dc.org/view/dataset/601441"}], "date_created": "Tue, 27 Apr 2021 00:00:00 GMT", "description": "Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. Project goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications.", "east": 170.735, "geometry": "POINT(168.8265 -78.43725)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; Amd/Us; USA/NSF; SNOW; Wind Data; WEATHER STATIONS; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.8675, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Seefeldt, Mark; Landolt, Scott", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.007, "title": "Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation", "uid": "p0010173", "west": 166.918}, {"awards": "2317097 Venturelli, Ryan; 1738989 Venturelli, Ryan", "bounds_geometry": "POLYGON((-114 -74,-112.2 -74,-110.4 -74,-108.6 -74,-106.8 -74,-105 -74,-103.2 -74,-101.4 -74,-99.6 -74,-97.8 -74,-96 -74,-96 -74.2,-96 -74.4,-96 -74.6,-96 -74.8,-96 -75,-96 -75.2,-96 -75.4,-96 -75.6,-96 -75.8,-96 -76,-97.8 -76,-99.6 -76,-101.4 -76,-103.2 -76,-105 -76,-106.8 -76,-108.6 -76,-110.4 -76,-112.2 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica; Cosmogenic-Nuclide data at ICE-D; Firn and Ice Density at Winkie Nunatak; Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif; Ice-penetrating radar data from the Thwaites Glacier grounding zone; In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers; NBP1902 Expedition data; Pine Island Bay Relative Sea-Level Data", "datasets": [{"dataset_uid": "200083", "doi": "10.7284/908147", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1902 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1902"}, {"dataset_uid": "200296", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601705", "doi": "10.15784/601705", "keywords": "Antarctica; Cosmogenic Radionuclides; Mount Murphy; Subglacial Bedrock", "people": "Balco, Gregory; Goehring, Brent; Venturelli, Ryan", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers", "url": "https://www.usap-dc.org/view/dataset/601705"}, {"dataset_uid": "601677", "doi": "10.15784/601677", "keywords": "Antarctica; Ice Penetrating Radar; Pine Island Glacier; Subglacial Bedrock", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "200 MHz ground-penetrating radar from Winkie Nunatak, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601677"}, {"dataset_uid": "601838", "doi": "10.15784/601838", "keywords": "Antarctica; Cryosphere; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Density; Ice Core Records; Snow/ice; Snow/Ice", "people": "Venturelli, Ryan", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Firn and Ice Density at Winkie Nunatak", "url": "https://www.usap-dc.org/view/dataset/601838"}, {"dataset_uid": "601860", "doi": "10.15784/601860", "keywords": "Antarctica; Cryosphere; Grounding Zone; Ice Penetrating Radar; Thwaites Glacier", "people": "Goehring, Brent; Balco, Greg; Campbell, Seth", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the Thwaites Glacier grounding zone", "url": "https://www.usap-dc.org/view/dataset/601860"}, {"dataset_uid": "601834", "doi": "10.15784/601834", "keywords": "Antarctica; Cryosphere; Mount Murphy", "people": "Campbell, Seth; Balco, Greg; Goehring, Brent", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Ice-penetrating radar data from the northern embayment of the Mt. Murphy massif", "url": "https://www.usap-dc.org/view/dataset/601834"}, {"dataset_uid": "601554", "doi": "10.15784/601554", "keywords": "Antarctica; Pine Island Bay; Radiocarbon; Raised Beaches", "people": "Braddock, Scott; Hall, Brenda", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pine Island Bay Relative Sea-Level Data", "url": "https://www.usap-dc.org/view/dataset/601554"}], "date_created": "Tue, 16 Mar 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-105 -75)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; GLACIERS/ICE SHEETS; GLACIAL LANDFORMS; LABORATORY; Amd/Us; USAP-DC; GLACIATION; Amundsen Sea; USA/NSF", "locations": "Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Goehring, Brent; Hall, Brenda; Campbell, Seth; Venturelli, Ryan A; Balco, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "R2R", "repositories": "ICE-D; R2R; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System", "uid": "p0010165", "west": -114.0}, {"awards": "2048351 Lindow, Julia", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 26 Feb 2021 00:00:00 GMT", "description": "Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; FIELD INVESTIGATION; LABORATORY; Transantarctic Mountains; USAP-DC; GLACIAL LANDFORMS; Amd/Us", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lindow, Julia; Kurz, Mark D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "New Cosmogenic 21Ne and 10Be Measurements in the Transantarctic Mountains", "uid": "p0010163", "west": null}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022); Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Eastern Ice Shelf GPS displacements; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites; Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "datasets": [{"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Klinger, Marin; Wild, Christian; Scambos, Ted; Wallin, Bruce; Truffer, Martin; Alley, Karen; Pettit, Erin; Muto, Atsu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601925", "doi": "10.15784/601925", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; Ice Shelf; Ice Velocity; Thwaites Glacier", "people": "Pettit, Erin; Alley, Karen; Wild, Christian; Scambos, Ted; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Eastern Ice Shelf GPS displacements", "url": "https://www.usap-dc.org/view/dataset/601925"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Truffer, Martin; Pettit, Erin; Scambos, Ted; Muto, Atsu; Alley, Karen; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601914", "doi": null, "keywords": "Antarctica; Cryosphere; Glaciology; Ice Shelf; Thwaites Glacier; Velocity", "people": "Wild, Christian; Alley, Karen; Muto, Atsuhiro; Scambos, Ted; Pettit, Erin; Truffer, Martin; Luckman, Adrian; Lilien, David; Banerjee, Debangshu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022", "url": "https://www.usap-dc.org/view/dataset/601914"}, {"dataset_uid": "601904", "doi": "10.15784/601904", "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Shelf; Remote Sensing; Satellite Imagery; Thwaites; Thwaites Glacier; Velocity", "people": "Pettit, Erin; Alley, Karen; Wild, Christian; Banerjee, Debangshu; Lilien, David; Truffer, Martin; Muto, Atsuhiro; Luckman, Adrian; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "url": "https://www.usap-dc.org/view/dataset/601904"}, {"dataset_uid": "601903", "doi": "10.15784/601903", "keywords": "Antarctica; Cryosphere; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Thwaites", "people": "Lilien, David; Alley, Karen; Truffer, Martin; Luckman, Adrian; Wild, Christian; Banerjee, Debangshu; Pettit, Erin; Scambos, Ted; Muto, Atsuhiro", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022)", "url": "https://www.usap-dc.org/view/dataset/601903"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Segabinazzi-Dotto, Tiago; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Pettit, Erin; Wild, Christian; Alley, Karen; Scambos, Ted; Muto, Atsuhiro; Truffer, Martin; Pomraning, Dale; Wallin, Bruce; Roccaro, Alexander", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1443525 Schwartz, Susan", "bounds_geometry": "POLYGON((-165 -83.8,-163 -83.8,-161 -83.8,-159 -83.8,-157 -83.8,-155 -83.8,-153 -83.8,-151 -83.8,-149 -83.8,-147 -83.8,-145 -83.8,-145 -83.92,-145 -84.04,-145 -84.16,-145 -84.28,-145 -84.4,-145 -84.52,-145 -84.64,-145 -84.76,-145 -84.88,-145 -85,-147 -85,-149 -85,-151 -85,-153 -85,-155 -85,-157 -85,-159 -85,-161 -85,-163 -85,-165 -85,-165 -84.88,-165 -84.76,-165 -84.64,-165 -84.52,-165 -84.4,-165 -84.28,-165 -84.16,-165 -84.04,-165 -83.92,-165 -83.8))", "dataset_titles": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "datasets": [{"dataset_uid": "200201", "doi": "https://doi.org/10.7914/SN/YD_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YD (2012-2017): Whillians Ice Stream Subglacial Access Research Drilling", "url": "http://www.fdsn.org/networks/detail/YD_2012/"}], "date_created": "Fri, 12 Feb 2021 00:00:00 GMT", "description": "This project evaluates the role that water and rock/ice properties at the base of a fast moving glacier, or ice stream, play in controlling its motion. In Antarctica, where surface melting is limited, the speed of ice flow through the grounding zone (where ice on land detaches, and begins to float on ocean water) controls the rate at which glaciers contribute to sea level rise. The velocity of the ice stream is strongly dependent on resistance from the bed, so understanding the processes that control resistance to flow is critical in predicting ice sheet mass balance. In fact, the Intergovernmental Panel on Climate Change (IPCC) recognized this and stated in their 4th assessment report that reliable predictions of future global sea-level rise require improved understanding of ice sheet dynamics, which include basal controls on fast ice motion. Drilling to obtain direct observations of basal properties over substantial regions is prohibitively expensive. This project uses passive source seismology to \"listen to\" and analyze sounds generated by water flow and/or sticky spots at the ice/bed interface to evaluate the role that basal shear stress plays in ice flow dynamics. Because polar science is captivating to both scientists and the general public, it serves as an excellent topic to engage students at all levels with important scientific concepts and processes. In conjunction with this research, polar science educational materials will be developed to be used by students spanning middle school through the University level. Starting in summer 2015, a new polar science class for high school students in the California State Summer School for Mathematics and Science (COSMOS) will be offered at the University of California-Santa Cruz. This curriculum will be shared with the MESA Schools Program, a Santa Cruz and Monterey County organization that runs after-school science clubs led by teachers at several local middle and high schools with largely minority and underprivileged populations. This proposal extends the period of borehole and surface geophysical monitoring of the Whillians Ice Stream (WIS) established under a previous award for an additional 2 years. Data from the WIS network demonstrated that basal heterogeneity, revealed by microseismicity, shows variation over scales of 100\u0027s of meters. An extended observation period will allow detailed seismic characterization of ice sheet bed properties over a crucial length scale comparable to the local ice thickness. Due to the fast ice velocity (\u003e300 m/year), a single instrumented location will move approximately 1 km during the extended 3 year operational period, allowing continuous monitoring of seismic emissions as the ice travels over sticky spots and other features in the bed (e.g., patches of till or subglacial water bodies). Observations over ~1km length scales will help to bridge a crucial gap in current observations of basal conditions between extremely local observations made in boreholes and remote observations of basal shear stress inferred from inversions of ice surface velocity data.", "east": -145.0, "geometry": "POINT(-155 -84.4)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "Whillans Ice Stream", "north": -83.8, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Schwartz, Susan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "IRIS", "repositories": "IRIS", "science_programs": "WISSARD", "south": -85.0, "title": "High Resolution Heterogeneity at the Base of Whillans Ice Stream and its Control on Ice Dynamics", "uid": "p0010159", "west": -165.0}, {"awards": "1643795 Mikesell, Thomas", "bounds_geometry": "POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))", "dataset_titles": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "datasets": [{"dataset_uid": "601423", "doi": "10.15784/601423", "keywords": "Antarctica; Crust; Moho; Seismic Tomography; Seismology; Seismometer; Shear Wave Velocity; Surface Wave Dispersion; West Antarctica", "people": "Mikesell, Dylan", "repository": "USAP-DC", "science_program": "POLENET", "title": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "url": "https://www.usap-dc.org/view/dataset/601423"}], "date_created": "Fri, 15 Jan 2021 00:00:00 GMT", "description": "Non-technical description: Global sea-level rise is a significant long-term risk for human population and infrastructure. To mitigate and properly react to this threat, society needs accurate predictions of future sea-level variations. The largest uncertainty in these predictions comes from estimating the amount of ice that melts from polar ice sheets, especially from the West Antarctica ice sheet. Right now, scientists estimate the mass variations of ice sheets in two ways. The first way is using airplanes and repeated flybys to monitor the variation of ice sheet topography and estimate the gain or loss of ice. The second way is using satellite measurements to track gravity fluctuations that correlate with the variation of ice sheet volume. Both techniques work, but both have limitations including cost and resolution. This project uses a passive seismic monitoring method to estimate the change in weight of the ice pressing on the Earth\u0027s crust. One advantage of this seismic method is that vibrations are recorded continuously; therefore, it is possible to monitor the changes of the ice sheet with better temporal resolution. The sensitivity of the seismic waves also provides a picture of the structure of the interface between the ice and the rocks beneath the ice, where most of the dynamics and changes of the ice sheet take place. This information is difficult to obtain with other methods. In this project, the researchers will process and analyze previously acquired seismic data from the POLENET-ANET array, measuring variations in seismic wave speed through time to assess the amount of ice lost or gained. They will also determine important information about the mechanical properties at the ice-rock interface. The project will support a postdoctoral scholar to develop this new branch of seismological research and more generally the field of environmental seismology. This project will also support the education of a PhD student who will work in close collaboration with the postdoctoral scholar and the two researchers. Technical description: The researchers plan to monitor ice-mass variations in the West-Antarctic ice sheet by measuring and interpreting seismic velocity changes in crust beneath the ice sheet. This project will extend similar work already completed on the Greenland ice sheet, where ice-mass fluctuations were found to lead to poroelastic changes in the crust and modify the seismic-wave velocity. This investigation uses a passive seismology method, whereby repetitive seismic noise correlation functions are computed from records of Earth\u0027s ambient seismic noise field. Measurements of the temporal changes in the correlation functions are made and then related to variations of the poroelastic properties of the crust. The physical model for the relationship between ice-mass change and surface-wave velocity change has previously been verified using GRACE satellite data in Greenland. This project will specifically focus on the recent rapid ice loss in Western Antarctica using data from the POLENET-ANET seismic network. A comparison between the ice-sheet behaviors in Greenland and Antarctica will provide clarification about the underlying physical processes responsible for the observed seismic velocity changes. This new method will be a transformative approach to monitor ice sheets with the potential for much higher spatial and temporal resolution than existing methods. The fact that this method relies on seismic waves makes the approach completely independent from other modern ice-sheet monitoring techniques.", "east": -98.0, "geometry": "POINT(-116.25 -79.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; SEISMIC SURFACE WAVES; West Antarctica", "locations": "West Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mordret, Aurelien; Mikesell, Dylan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "POLENET", "south": -83.5, "title": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods", "uid": "p0010155", "west": -134.5}, {"awards": "0838783 Conway, Howard; 0838256 Todd, Claire; 0838784 Balco, Gregory", "bounds_geometry": "POLYGON((-66.27517 -83.23921,-65.341961 -83.23921,-64.408752 -83.23921,-63.475543 -83.23921,-62.542334 -83.23921,-61.609125 -83.23921,-60.675916 -83.23921,-59.742707 -83.23921,-58.809498 -83.23921,-57.876289 -83.23921,-56.94308 -83.23921,-56.94308 -83.359865,-56.94308 -83.48052,-56.94308 -83.601175,-56.94308 -83.72183,-56.94308 -83.842485,-56.94308 -83.96314,-56.94308 -84.083795,-56.94308 -84.20445,-56.94308 -84.325105,-56.94308 -84.44576,-57.876289 -84.44576,-58.809498 -84.44576,-59.742707 -84.44576,-60.675916 -84.44576,-61.609125 -84.44576,-62.542334 -84.44576,-63.475543 -84.44576,-64.408752 -84.44576,-65.341961 -84.44576,-66.27517 -84.44576,-66.27517 -84.325105,-66.27517 -84.20445,-66.27517 -84.083795,-66.27517 -83.96314,-66.27517 -83.842485,-66.27517 -83.72183,-66.27517 -83.601175,-66.27517 -83.48052,-66.27517 -83.359865,-66.27517 -83.23921))", "dataset_titles": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.; Web page linking to documents containing data collected in this project. Static content", "datasets": [{"dataset_uid": "200195", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Web page linking to documents containing data collected in this project. Static content", "url": "http://noblegas.berkeley.edu/~balcs/pensacola/"}, {"dataset_uid": "200194", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data collected in this project and geologic age information derived therefrom. Dynamic content, continuously updated.", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Sat, 19 Dec 2020 00:00:00 GMT", "description": "This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica.", "east": -56.94308, "geometry": "POINT(-61.609125 -83.842485)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; GLACIER THICKNESS/ICE SHEET THICKNESS; NOT APPLICABLE; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica", "locations": "Antarctica", "north": -83.23921, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Todd, Claire; Conway, Howard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PI website", "repositories": "ICE-D; PI website", "science_programs": null, "south": -84.44576, "title": "Collaborative Research: Last Glacial Maximum and Deglaciation Chronology for the Foundation Ice Stream and Southeastern Weddell Sea Embayment", "uid": "p0010151", "west": -66.27517}, {"awards": "1643345 Popp, Brian; 1643466 Hollibaugh, James", "bounds_geometry": "POLYGON((-78.20206667 -64.03195833,-76.785055836 -64.03195833,-75.368045002 -64.03195833,-73.951034168 -64.03195833,-72.534023334 -64.03195833,-71.1170125 -64.03195833,-69.700001666 -64.03195833,-68.282990832 -64.03195833,-66.865979998 -64.03195833,-65.448969164 -64.03195833,-64.03195833 -64.03195833,-64.03195833 -64.554377497,-64.03195833 -65.076796664,-64.03195833 -65.599215831,-64.03195833 -66.121634998,-64.03195833 -66.644054165,-64.03195833 -67.166473332,-64.03195833 -67.688892499,-64.03195833 -68.211311666,-64.03195833 -68.733730833,-64.03195833 -69.25615,-65.448969164 -69.25615,-66.865979998 -69.25615,-68.282990832 -69.25615,-69.700001666 -69.25615,-71.1170125 -69.25615,-72.534023334 -69.25615,-73.951034168 -69.25615,-75.368045002 -69.25615,-76.785055836 -69.25615,-78.20206667 -69.25615,-78.20206667 -68.733730833,-78.20206667 -68.211311666,-78.20206667 -67.688892499,-78.20206667 -67.166473332,-78.20206667 -66.644054165,-78.20206667 -66.121634998,-78.20206667 -65.599215831,-78.20206667 -65.076796664,-78.20206667 -64.554377497,-78.20206667 -64.03195833))", "dataset_titles": "\"Collaborative research: Chemoautotrophy in Antarctic bacterioplankton communities supported by the oxidation of urea-derived nitrogen\"; Expedition data of LMG1801", "datasets": [{"dataset_uid": "200193", "doi": "Not yet assigned", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "\"Collaborative research: Chemoautotrophy in Antarctic bacterioplankton communities supported by the oxidation of urea-derived nitrogen\"", "url": "https://www.bco-dmo.org/project/775717"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}], "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "Part 1: Nitrification is the conversion of ammonium to nitrate by a two-step process involving two different guilds of microorganisms: ammonia- and nitrite-oxidizers. The process is central to the global nitrogen cycle, affecting everything from retention of fertilizer on croplands to removal of excess nitrogen from coastal waters before it can cause blooms of harmful algae. It also produces nitrous oxide, an ozone-destroying, greenhouse gas. The energy derived from both steps of nitrification is used to convert inorganic carbon into microbial biomass. The biomass produced contributes to the overall food web production of the Southern Ocean and may be a particularly important subsidy during winter when low light levels restrict the other major source of biomass, primary production by single-celled plants. This project addresses three fundamental questions about the biology and geochemistry of polar oceans, with a focus on the process of nitrification. The first question the project will address concerns the contribution of chemoautotrophy (based on nitrification) to the overall supply of organic carbon to the food web of the Southern Ocean. Previous measurements indicate that it contributes about 9% to the Antarctic food web on an annual basis, but those measurements did not include the additional production associated with nitrite oxidation. The second question to be addressed is related to the first and concerns the coupling between the steps of the process. The third seeks to determine the significance of the contribution of other sources of nitrogen, (specifically organic nitrogen and urea released by other organisms) to nitrification because these contributions may not be assessed by standard protocols. Measurements made by others suggest that urea in particular might be as important as ammonium to nitrification in polar regions. This project will result in training a postdoctoral researcher and provide undergraduate students opportunities to gain hand-on experience with research on microbial geochemistry. The Palmer LTER (PAL) activities have focused largely on the interaction between ocean climate and the marine food web affecting top predators. Relatively little effort has been devoted to studying processes related to the microbial geochemistry of nitrogen cycling as part of the Palmer Long Term Ecological Research (LTER) program, yet these are a major themes at other sites. This work will contribute substantially to understanding an important aspect of nitrogen cycling and bacterioplankton production in the PAL-LTER study area. The team will be working synergistically and be participating fully in the education and outreach efforts of the Palmer LTER, including making highlights of the findings available for posting to their project web site and participating in any special efforts they have in the area of outreach. Part 2: The proposed work will quantify oxidation rates of 15N supplied as ammonium, urea and nitrite, allowing us to estimate the contribution of urea-derived N and complete nitrification (ammonia to nitrate) to chemoautotrophy and bacterioplankton production in Antarctic coastal waters. The project will compare these estimates to direct measurements of the incorporation of 14C into organic matter the dark for an independent estimate of chemoautotrophy. The team aims to collect samples spanning the water column: from surface water (~10 m), winter water (50-100 m) and circumpolar deep water (\u003e150 m); on a cruise surveying the continental shelf and slope west of the Antarctic Peninsula in the austral summer of 2018. Other samples will be taken to measure the concentrations of nitrate, nitrite, ammonia and urea, for qPCR analysis of the abundance of relevant microorganisms, and for studies of related processes. The project will rely on collaboration with the existing Palmer LTER to ensure that ancillary data (bacterioplankton abundance and production, chlorophyll, physical and chemical variables) will be available. The synergistic activities of this project along with the LTER activities will provide a unique opportunity to assess chemoautotrophy in context of the overall ecosystem?s dynamics- including both primary and secondary production processes.", "east": -64.03195833, "geometry": "POINT(-71.1170125 -66.644054165)", "instruments": null, "is_usap_dc": true, "keywords": "Pal-Lter; NITROGEN; SHIPS; USAP-DC; MARINE ECOSYSTEMS; BACTERIA/ARCHAEA; BIOGEOCHEMICAL CYCLES; Amd/Us; West Antarctic Shelf; USA/NSF; AMD", "locations": "West Antarctic Shelf; Pal-Lter", "north": -64.03195833, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.; Popp, Brian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -69.25615, "title": "Collaborative Research: Chemoautotrophy in Antarctic Bacterioplankton Communities Supported by the Oxidation of Urea-derived Nitrogen", "uid": "p0010150", "west": -78.20206667}, {"awards": "1842059 Huber, Matthew; 1842049 Kim, Sora; 1842115 Jahn, Alexandra; 1842176 Bizimis, Michael", "bounds_geometry": "POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061))", "dataset_titles": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "datasets": [{"dataset_uid": "200183", "doi": "https://doi.org/10.6071/M34T1Z", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "url": "https://datadryad.org/stash/dataset/doi:10.6071/M34T1Z"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "The Earth\u0027s climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from \u0027greenhouse\u0027 to \u0027icehouse\u0027 conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.581808, "geometry": "POINT(-56.637662 -64.235428)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; USA/NSF; OXYGEN ISOTOPE ANALYSIS; WATER MASSES; Amd/Us; AMD; USAP-DC; OXYGEN ISOTOPES; LABORATORY; Seymour Island; Sharks; Striatolamia Macrota", "locations": "Seymour Island", "north": -64.209061, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -64.261795, "title": "Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation", "uid": "p0010146", "west": -56.693516}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Gardner, Christopher B.; Lyons, W. Berry; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Lyons, W. Berry; Gardner, Christopher B.; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}, {"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "EDI", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": "POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))", "dataset_titles": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches; Granulometry of Joinville and Livingston Island beaches; Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula; Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula; Joinville and Livingston Islands - rock and sediment OSL ages; OSL data - Joinville and Livingston Islands - Raw data; Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "datasets": [{"dataset_uid": "601400", "doi": "10.15784/601400", "keywords": "Antarctica; Grain Size; Granulometry; Joinville Island; Livingston Island; LMG0412; Raised Beaches", "people": "Theilen, Brittany; Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Granulometry of Joinville and Livingston Island beaches", "url": "https://www.usap-dc.org/view/dataset/601400"}, {"dataset_uid": "601632", "doi": "10.15784/601632", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601632"}, {"dataset_uid": "601534", "doi": "10.15784/601534", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Joinville and Livingston Islands - rock and sediment OSL ages", "url": "https://www.usap-dc.org/view/dataset/601534"}, {"dataset_uid": "601633", "doi": "10.15784/601633", "keywords": "Antarctica; Joinville Island", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601633"}, {"dataset_uid": "601531", "doi": "10.15784/601531", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches", "url": "https://www.usap-dc.org/view/dataset/601531"}, {"dataset_uid": "601532", "doi": "10.15784/601532", "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "people": "DeWitt, Regina", "repository": "USAP-DC", "science_program": null, "title": "OSL data - Joinville and Livingston Islands - Raw data", "url": "https://www.usap-dc.org/view/dataset/601532"}, {"dataset_uid": "601634", "doi": "10.15784/601634", "keywords": "Antarctica; Joinville Island; Raised Beaches; Sea Level", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601634"}], "date_created": "Thu, 08 Oct 2020 00:00:00 GMT", "description": "Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth\u0027s interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula.", "east": -55.0, "geometry": "POINT(-60 -63)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctic Peninsula; COASTAL LANDFORMS/PROCESSES; USAP-DC; SEA LEVEL RECONSTRUCTION; South Shetland Islands; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "South Shetland Islands; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Simms, Alexander; DeWitt, Regina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "uid": "p0010132", "west": -65.0}, {"awards": "1542962 Anderson, Robert", "bounds_geometry": "POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57))", "dataset_titles": "Expedition Data of NBP1702; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "datasets": [{"dataset_uid": "200165", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "url": "https://www.bco-dmo.org/dataset/813379/data"}, {"dataset_uid": "200166", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ", "url": "https://www.ncdc.noaa.gov/paleo/study/31312"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}], "date_created": "Fri, 25 Sep 2020 00:00:00 GMT", "description": "Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth\u0027s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. Work proposed here will test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement will be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work will contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. The proposed work will add a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that will collect sediment cores at three to five locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170\u00b0W. The goal is to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. In the proposed work the radiocarbon age of foraminifera that inhabited the surface ocean will be compared with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms will be used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it is expected that surface and deep-dwelling foraminifera will exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters return to the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work is to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean?s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarcitca.", "east": -169.0, "geometry": "POINT(-170 -60.6)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; SEDIMENT CHEMISTRY; South Pacific Ocean; SHIPS", "locations": "South Pacific Ocean", "north": -57.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Fleisher, Martin; Pavia, Frank", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; NCEI; R2R", "science_programs": null, "south": -64.2, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean", "uid": "p0010130", "west": -171.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": "POLYGON((-70 -60,-65 -60,-60 -60,-55 -60,-50 -60,-45 -60,-40 -60,-35 -60,-30 -60,-25 -60,-20 -60,-20 -62.5,-20 -65,-20 -67.5,-20 -70,-20 -72.5,-20 -75,-20 -77.5,-20 -80,-20 -82.5,-20 -85,-25 -85,-30 -85,-35 -85,-40 -85,-45 -85,-50 -85,-55 -85,-60 -85,-65 -85,-70 -85,-70 -82.5,-70 -80,-70 -77.5,-70 -75,-70 -72.5,-70 -70,-70 -67.5,-70 -65,-70 -62.5,-70 -60))", "dataset_titles": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "datasets": [{"dataset_uid": "601378", "doi": "10.15784/601378", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601378"}, {"dataset_uid": "601377", "doi": "10.15784/601377", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601377"}, {"dataset_uid": "601379", "doi": "10.15784/601379", "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "people": "Williams, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "url": "https://www.usap-dc.org/view/dataset/601379"}], "date_created": "Thu, 10 Sep 2020 00:00:00 GMT", "description": "Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this \u0027iceberg-rafted debris\u0027 falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.", "east": -20.0, "geometry": "POINT(-45 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "TERRIGENOUS SEDIMENTS; Subglacial Till; USAP-DC; ICEBERGS; AMD; USA/NSF; ISOTOPES; AGE DETERMINATIONS; Argon; Provenance; Till; Amd/Us; R/V POLARSTERN; FIELD INVESTIGATION; SEDIMENT CHEMISTRY; Weddell Sea; Antarctica; LABORATORY", "locations": "Weddell Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V POLARSTERN", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "uid": "p0010128", "west": -70.0}, {"awards": "1738913 Scambos, Ted", "bounds_geometry": "POLYGON((-118 -70,-116 -70,-114 -70,-112 -70,-110 -70,-108 -70,-106 -70,-104 -70,-102 -70,-100 -70,-98 -70,-98 -71,-98 -72,-98 -73,-98 -74,-98 -75,-98 -76,-98 -77,-98 -78,-98 -79,-98 -80,-100 -80,-102 -80,-104 -80,-106 -80,-108 -80,-110 -80,-112 -80,-114 -80,-116 -80,-118 -80,-118 -79,-118 -78,-118 -77,-118 -76,-118 -75,-118 -74,-118 -73,-118 -72,-118 -71,-118 -70))", "dataset_titles": "Profile CTD Data During Installation of AMIGOS-III Cavity and Channel On-Ice Moorings", "datasets": [{"dataset_uid": "601623", "doi": "10.15784/601623", "keywords": "Amundsen Sea; Antarctica; CTD; Ice Shelf", "people": "SCAMBOS, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Profile CTD Data During Installation of AMIGOS-III Cavity and Channel On-Ice Moorings", "url": "https://www.usap-dc.org/view/dataset/601623"}], "date_created": "Wed, 09 Sep 2020 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Science Coordination Office will facilitate planning and coordination of the science and broader impacts of several international research projects studying Thwaites Glacier--one of the largest glaciers in Antarctica. The glacier is located on the Pacific coast of the Antarctic continent. It is flowing almost twice as fast now as in the 1970s, and is one of the largest likely contributors to sea-level rise over the coming decades to centuries. Many of the factors that will affect the speed and retreat of Thwaites Glacier will be addressed by the set of projects funded by the Thwaites initiative. The Science Coordination Office comprises a US-UK science and communications team that will work with each project\u0027s scientists and students, logistics planners, and NSF and NERC to ensure the overall success of the project. The Office will maintain an informative website, and will produce content to explain the activities of the scientists and highlight the results of the work. The role of the Science Coordination Office will be to enhance integration and coordination among the science projects selected for the joint NSF-NERC Thwaites initiative to achieve maximum collective scientific and societal impact. The Office will facilitate scientific and logistical planning; facilitate data management, sharing, and discovery; and facilitate and support web content, outreach, and education for this high-profile research endeavor. The Office\u0027s role will be key to enabling the program to achieve its scientific goals and for the program to be broadly recognized and valued by scientists, the public, and policymakers. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -98.0, "geometry": "POINT(-108 -75)", "instruments": null, "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; GLACIER MOTION/ICE SHEET MOTION; BATHYMETRY; FIELD INVESTIGATION; FIELD SURVEYS; SNOW; SEDIMENTS; Antarctic Ice Sheet; WATER MASSES; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; GLACIERS/ICE SHEETS; MARINE GEOPHYSICS", "locations": "Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Scambos, Ted; Vaughan, David G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "NSF-NERC The Future of Thwaites Glacier and its Contribution to Sea-level Rise Science Coordination Office", "uid": "p0010127", "west": -118.0}, {"awards": "1745116 Scambos, Ted", "bounds_geometry": "POLYGON((-75 -69,-74 -69,-73 -69,-72 -69,-71 -69,-70 -69,-69 -69,-68 -69,-67 -69,-66 -69,-65 -69,-65 -69.5,-65 -70,-65 -70.5,-65 -71,-65 -71.5,-65 -72,-65 -72.5,-65 -73,-65 -73.5,-65 -74,-66 -74,-67 -74,-68 -74,-69 -74,-70 -74,-71 -74,-72 -74,-73 -74,-74 -74,-75 -74,-75 -73.5,-75 -73,-75 -72.5,-75 -72,-75 -71.5,-75 -71,-75 -70.5,-75 -70,-75 -69.5,-75 -69))", "dataset_titles": "Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer; Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019", "datasets": [{"dataset_uid": "601390", "doi": "10.15784/601390", "keywords": "Airborne Radar; Antarctica; Antarctic Peninsula; Firn; Firn Aquifer; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hydrology; Snow/ice; Snow/Ice; Wilkins Ice Shelf", "people": "Wallin, Bruce; Miller, Olivia; Mi\u00e8ge, Cl\u00e9ment; Solomon, Kip; Miller, Julie; Scambos, Ted; Forster, Richard; Koenig, Lora; Montgomery, Lynn", "repository": "USAP-DC", "science_program": null, "title": "Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer", "url": "https://www.usap-dc.org/view/dataset/601390"}, {"dataset_uid": "601905", "doi": "10.15784/601905", "keywords": "AMIGOS; Antarctica; Cryosphere; George VI Ice Shelf; Glaciology; Ground Penetrating Radar; Ice Core Data; Ice Shelf; Wilkins Ice Shelf", "people": "Miege, Clement; Wallin, Bruce; Montgomery, Lynn; Miller, Julie; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601905"}], "date_created": "Tue, 08 Sep 2020 00:00:00 GMT", "description": "Snow or firn aquifers are areas of subsurface meltwater storage that form in glaciated regions experiencing intense summer surface melting and high snowfall. Aquifers can induce hydrofracturing, and thereby accelerate flow or trigger ice-shelf instability leading to increased ice-sheet mass loss. Widespread aquifers have recently been discovered in Greenland. These have been modelled and mapped using new satellite and airborne remote-sensing techniques. In Antarctica, a series of catastrophic break-ups at the Wilkins Ice Shelf on the Antarctic Peninsula that was previously attributed to effects of surface melting and brine infiltration is now recognized as being consistent with a firn aquifer--possibly stimulated by long-period ocean swell--that enhanced ice-shelf hydrofracture. This project will verify inferences (from the same mapping approach used in Greenland) that such aquifers are indeed present in Antarctica. The team will survey two high-probability sites: the Wilkins Ice Shelf, and the southern George VI Ice Shelf. This two-year study will characterize the firn at the two field sites, drill shallow (~60 m maximum) ice cores, examine snow pits (~2 m), and install two AMIGOS (Automated Met-Ice-Geophysics Observing System) stations that include weather, GPS, and firn temperature sensors that will collect and transmit measurements for at least a year before retrieval. Ground-penetrating radar survey in areas surrounding the field sites will track aquifer extent and depth variations. Ice and microwave model studies will be combined with the field-observed properties to further explore the range of firn aquifers and related upper-snow-layer conditions. This study will provide valuable experience for three early-career scientists. An outreach effort through field blogging, social media posts, K-12 presentations, and public lectures is planned to engage the public in the team?s Antarctic scientific exploration and discovery. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -65.0, "geometry": "POINT(-70 -71.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "USAP-DC; Firn Aquifer; USA/NSF; FIELD INVESTIGATION; AMD; GLACIERS/ICE SHEETS; Wilkens Ice Shelf; Antarctic Peninsula; Amd/Us", "locations": "Antarctic Peninsula; Wilkens Ice Shelf", "north": -69.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences", "uid": "p0010126", "west": -75.0}, {"awards": "1543450 Countway, Peter", "bounds_geometry": "POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))", "dataset_titles": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ; Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments; Western Antarctic Peninsula plankton raw sequence reads", "datasets": [{"dataset_uid": "200337", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Western Antarctic Peninsula plankton raw sequence reads", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA870587?reviewer=bmud2tbbrqbus79i2n2hb83uio"}, {"dataset_uid": "601645", "doi": "10.15784/601645", "keywords": "Antarctica; Nitrate; Nitrite; Palmer Station; Phosphate", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Inorganic Nutrient Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments ", "url": "https://www.usap-dc.org/view/dataset/601645"}, {"dataset_uid": "601647", "doi": "10.15784/601647", "keywords": "Antarctica; Palmer Station; Phytoplankton", "people": "Countway, Peter; Matrai, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Flow Cytometry Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601647"}, {"dataset_uid": "601646", "doi": "10.15784/601646", "keywords": "Antarctica; Carbon; Dissolved Organic Carbon; Nitrogen; Palmer Station; TDN; Total Dissolved Nitrogen", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Dissolved Organic Carbon (DOC) and Total Dissolved Nitrogen (TDN) Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601646"}, {"dataset_uid": "601648", "doi": "10.15784/601648", "keywords": "Antarctica; Biota; Dimethyl Sulfide; Dimethylsulfoniopropionate; Dimethylsulfoxide; DMSP; DMSP Lyase; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Biogenic Sulfur Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601648"}, {"dataset_uid": "601644", "doi": "10.15784/601644", "keywords": "3H-Leu; Antarctica; Bacteria; Biota; DMSP; Heterotrophic Bacterial Production; Palmer Station", "people": "Matrai, Patricia; Countway, Peter", "repository": "USAP-DC", "science_program": null, "title": "Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "url": "https://www.usap-dc.org/view/dataset/601644"}], "date_created": "Sat, 01 Aug 2020 00:00:00 GMT", "description": "The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\\DMS production. The proposal aims to examine the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project will leverage the Antarctic research to introduce concepts and data linking microbial diversity and biogeochemistry to a range of audiences (including high school and undergraduate students in Maine). The project will also engage teacher and students in rural K-8 schools and will allow a collaboration with a science writer and illustrator who will join the team in the field. The writer will use the southern ocean experience as the setting for a poster and a book about the proposed research and the scientists studying extreme environments. The project will examine (1) the extent to which the cycling of DMSP in southern ocean waters influences the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influence the magnitude and rates of DMSP cycling; (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to additions of DMSP; and, to synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work will be accomplished by conducting continuous growth experiments with DMSP-amended natural samples during field sampling of different microbial communities present in summer and fall. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis.", "east": -63.0, "geometry": "POINT(-64.5 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; COMMUNITY DYNAMICS; FIELD INVESTIGATION; AMD; PLANKTON; Amd/Us; BIOGEOCHEMICAL CYCLES; Palmer Station; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Countway, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "GenBank", "repositories": "GenBank; USAP-DC", "science_programs": null, "south": -66.0, "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "uid": "p0010120", "west": -66.0}, {"awards": "1543396 Christner, Brent; 1543453 Lyons, W. Berry; 1543537 Priscu, John; 1543441 Fricker, Helen; 1543347 Rosenheim, Brad; 1543405 Leventer, Amy", "bounds_geometry": "POLYGON((-163.611 -84.33543,-162.200034 -84.33543,-160.789068 -84.33543,-159.378102 -84.33543,-157.967136 -84.33543,-156.55617 -84.33543,-155.145204 -84.33543,-153.734238 -84.33543,-152.323272 -84.33543,-150.912306 -84.33543,-149.50134 -84.33543,-149.50134 -84.3659157,-149.50134 -84.3964014,-149.50134 -84.4268871,-149.50134 -84.4573728,-149.50134 -84.4878585,-149.50134 -84.5183442,-149.50134 -84.5488299,-149.50134 -84.5793156,-149.50134 -84.6098013,-149.50134 -84.640287,-150.912306 -84.640287,-152.323272 -84.640287,-153.734238 -84.640287,-155.145204 -84.640287,-156.55617 -84.640287,-157.967136 -84.640287,-159.378102 -84.640287,-160.789068 -84.640287,-162.200034 -84.640287,-163.611 -84.640287,-163.611 -84.6098013,-163.611 -84.5793156,-163.611 -84.5488299,-163.611 -84.5183442,-163.611 -84.4878585,-163.611 -84.4573728,-163.611 -84.4268871,-163.611 -84.3964014,-163.611 -84.3659157,-163.611 -84.33543))", "dataset_titles": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset; Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset; Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland; CTD data from Mercer Subglacial Lake and access borehole; Discrete bulk sediment properties data from Mercer Subglacial Lake; Isotopic data from Whillans Ice Stream grounding zone, West Antarctica; Mercer Subglacial Lake radiocarbon and stable isotope data ; Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995); Mercer Subglacial Lake (SLM) noble gas and isotopic data; Mercer Subglacial Lake water column viral metagenomic sequencing; Salsa sediment cores; Sediment porewater properties data from Mercer Subglacial Lake; Water column biogeochemical data from Mercer Subglacial Lake", "datasets": [{"dataset_uid": "200215", "doi": "10.7283/C503-KS23", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA06-WIS_LAKES_06 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/C503-KS23"}, {"dataset_uid": "200212", "doi": "10.7283/PT0Q-JB95", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ01-WIS_GroundingZone_01 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/PT0Q-JB95"}, {"dataset_uid": "200213", "doi": "10.7283/F7BB-JH05", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - GZ13-WIS_GroundingZone_13 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F7BB-JH05"}, {"dataset_uid": "200214", "doi": "10.7283/YW8Z-TK03", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA02-WIS_LAKES_02 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/YW8Z-TK03"}, {"dataset_uid": "200216", "doi": "10.7283/F8NH-CV04", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA07-WIS_LAKES_07 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/F8NH-CV04"}, {"dataset_uid": "601498", "doi": "10.15784/601498", "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "url": "https://www.usap-dc.org/view/dataset/601498"}, {"dataset_uid": "200282", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Mercer Subglacial Lake (SLM) microbial composition: 16S rRNA genes (Sequence Read Archive; BioProject: PRJNA790995)", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA790995"}, {"dataset_uid": "601657", "doi": "10.15784/601657", "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "people": "Priscu, John; Rosenheim, Brad; Leventer, Amy; Dore, John", "repository": "USAP-DC", "science_program": null, "title": "CTD data from Mercer Subglacial Lake and access borehole", "url": "https://www.usap-dc.org/view/dataset/601657"}, {"dataset_uid": "200246", "doi": "", "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "Salsa sediment cores", "url": "https://osu-mgr.org"}, {"dataset_uid": "601360", "doi": "10.15784/601360", "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "people": "Venturelli, Ryan A", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601360"}, {"dataset_uid": "601672", "doi": "10.15784/601672", "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "people": "Venturelli, Ryan; Rosenheim, Brad", "repository": "USAP-DC", "science_program": null, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "url": "https://www.usap-dc.org/view/dataset/601672"}, {"dataset_uid": "200342", "doi": null, "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "Mercer Subglacial Lake water column viral metagenomic sequencing", "url": "https://www.ncbi.nlm.nih.gov/biosample/32811410"}, {"dataset_uid": "200217", "doi": "10.7283/3JMY-Y504", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica - PI Continuous - LA09-WIS_LAKES_09 P.S. - GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/3JMY-Y504"}, {"dataset_uid": "601664", "doi": "10.15784/601664", "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "people": "Michaud, Alexander; Dore, John; Science Team, SALSA; Steigmeyer, August; Tranter, Martyn; Skidmore, Mark", "repository": "USAP-DC", "science_program": null, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601664"}, {"dataset_uid": "601663", "doi": "10.15784/601663", "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "people": "Steigmeyer, August; Hawkings, Jon; Skidmore, Mark; Dore, John; Science Team, SALSA; Priscu, John; Tranter, Martyn; Barker, Joel; Li, Wei", "repository": "USAP-DC", "science_program": null, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601663"}, {"dataset_uid": "601661", "doi": "10.15784/601661", "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "people": "Campbell, Timothy; Dore, John; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Science Team, SALSA", "repository": "USAP-DC", "science_program": null, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "url": "https://www.usap-dc.org/view/dataset/601661"}, {"dataset_uid": "601472", "doi": "10.15784/601472", "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "people": "Christoffersen, Poul; Peters, Sean; Bienert, Nicole; Siegfried, Matthew; Schroeder, Dustin; Dawson, Eliza; MacKie, Emma", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "url": "https://www.usap-dc.org/view/dataset/601472"}], "date_created": "Thu, 16 Jul 2020 00:00:00 GMT", "description": "The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis \"Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments\". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.", "east": -149.50134, "geometry": "POINT(-156.55617 -84.4878585)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; Antarctica; ISOTOPES; Subglacial Lake; USAP-DC; VIRUSES; PALEOCLIMATE RECONSTRUCTIONS; BACTERIA/ARCHAEA; LABORATORY; Radiocarbon; Whillans Ice Stream; AMD; SALSA; ECOSYSTEM FUNCTIONS; RADIOCARBON; FIELD INVESTIGATION; ICE MOTION; Mercer Ice Stream; Amd/Us; USA/NSF; GLACIERS/ICE SHEETS", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Rosenheim, Brad; Fricker, Helen; Priscu, John; Leventer, Amy; Dore, John; Lyons, W. Berry; Christner, Brent", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "UNAVCO", "repositories": "GenBank; NCBI GenBank; OSU-MGR; UNAVCO; USAP-DC", "science_programs": null, "south": -84.640287, "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "uid": "p0010119", "west": -163.611}, {"awards": "1443482 Mak, John", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "datasets": [{"dataset_uid": "601356", "doi": "10.15784/601356", "keywords": "Antarctica; CO; Delta 13C; Delta 18O; South Pole; SPICEcore", "people": "Mak, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "url": "https://www.usap-dc.org/view/dataset/601356"}], "date_created": "Thu, 09 Jul 2020 00:00:00 GMT", "description": "Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth\u0027s atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "LABORATORY; TRACE GASES/TRACE SPECIES; FIELD INVESTIGATION; South Pole", "locations": "South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Mak, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years", "uid": "p0010117", "west": -180.0}, {"awards": "1443690 Young, Duncan", "bounds_geometry": "POLYGON((95 -68,100.5 -68,106 -68,111.5 -68,117 -68,122.5 -68,128 -68,133.5 -68,139 -68,144.5 -68,150 -68,150 -70.2,150 -72.4,150 -74.6,150 -76.8,150 -79,150 -81.2,150 -83.4,150 -85.6,150 -87.8,150 -90,144.5 -90,139 -90,133.5 -90,128 -90,122.5 -90,117 -90,111.5 -90,106 -90,100.5 -90,95 -90,95 -87.8,95 -85.6,95 -83.4,95 -81.2,95 -79,95 -76.8,95 -74.6,95 -72.4,95 -70.2,95 -68))", "dataset_titles": "Airborne potential fields data from Titan Dome, Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations; ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal; ICECAP radargrams in support of the international old ice search at Dome C - 2016; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING); Titan Dome, East Antarctica, Aerogeophysical Survey", "datasets": [{"dataset_uid": "200235", "doi": "10.26179/jydx-yz69", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "SPICECAP/ICECAP II Instrument Measurements (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_Level1B_AEROGEOPHYSICS"}, {"dataset_uid": "200233", "doi": "http://dx.doi.org/doi:10.26179/5wkf-7361", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "ICECAP radargrams in support of the international old ice search at Dome C - 2016", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_ICECAP_OIA_RADARGRAMS"}, {"dataset_uid": "601355", "doi": "10.15784/601355", "keywords": "Aerogeophysics; Antarctica; Bed Elevation; Bed Reflectivity; Epica Dome C; Ice Thickness", "people": "Blankenship, Donald D.; Young, Duncan A.; van Ommen, Tas; Richter, Thomas; Greenbaum, Jamin; Cavitte, Marie G. P; Beem, Lucas H.; Quartini, Enrica; Tozer, Carly; Ng, Gregory; Habbal, Feras; Roberts, Jason; Kempf, Scott D.; Ritz, Catherine", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: High resolution survey of the Little Dome C region in support of the IPICS Old Ice goal", "url": "https://www.usap-dc.org/view/dataset/601355"}, {"dataset_uid": "601437", "doi": "10.15784/601437", "keywords": "Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bedrock Elevation; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar Echo Sounder; Surface Elevation; Titan Dome", "people": "Beem, Lucas H.; Young, Duncan A.; Greenbaum, Jamin; Ng, Gregory; Young, Duncan; Blankenship, Donald D.; Cavitte, Marie G. P; Jingxue, Guo; Bo, Sun", "repository": "USAP-DC", "science_program": null, "title": "Titan Dome, East Antarctica, Aerogeophysical Survey", "url": "https://www.usap-dc.org/view/dataset/601437"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Blankenship, Donald D.; Mulvaney, Robert; Cavitte, Marie G. P; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Young, Duncan A.; Schroeder, Dustin", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "601463", "doi": "10.15784/601463", "keywords": "Antarctica; Epica Dome C; ICECAP; Ice Penetrating Radar; Subglacial Lake", "people": "Ritz, Catherine; Roberts, Jason; Young, Duncan A.; Blankenship, Donald D.; Van Ommen, Tas; Corr, Hugh F. J.; Urbini, Stefano; Steinhage, Daniel; Tozer, Carly; Cavitte, Marie G. P; Quartini, Enrica; Frezzotti, Massimo", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "ICECAP: Gridded boundary conditions for Little Dome C, Antarctica, and extracted subglacial lake locations", "url": "https://www.usap-dc.org/view/dataset/601463"}, {"dataset_uid": "601461", "doi": "10.15784/601461", "keywords": "Antarctica; ICECAP; Titan Dome", "people": "Young, Duncan A.; Jingxue, Guo; Bo, Sun; Greenbaum, Jamin; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Airborne potential fields data from Titan Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601461"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today\u0027s continents formed, while the ice itself contains records of Earth\u0027s atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica\u0027s geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica\u0027s hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics.\u00a0 The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the\u00a0hydraulic context of the bed by processing and interpreting the radar data,\u00a0ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole,\u00a0and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.", "east": 150.0, "geometry": "POINT(122.5 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER", "is_usap_dc": true, "keywords": "BT-67; MAGNETIC ANOMALIES; Epica Dome C; GRAVITY ANOMALIES; GLACIER ELEVATION/ICE SHEET ELEVATION; GLACIER THICKNESS/ICE SHEET THICKNESS", "locations": "Epica Dome C", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Blankenship, Donald D.; Roberts, Jason; Bo, Sun", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "AADC", "repositories": "AADC; USAP-DC", "science_programs": "Dome C Ice Core", "south": -90.0, "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)", "uid": "p0010115", "west": 95.0}, {"awards": "1235094 Thurnherr, Andreas", "bounds_geometry": "POLYGON((-19 -19,-18.2 -19,-17.4 -19,-16.6 -19,-15.8 -19,-15 -19,-14.2 -19,-13.4 -19,-12.6 -19,-11.8 -19,-11 -19,-11 -19.4,-11 -19.8,-11 -20.2,-11 -20.6,-11 -21,-11 -21.4,-11 -21.8,-11 -22.2,-11 -22.6,-11 -23,-11.8 -23,-12.6 -23,-13.4 -23,-14.2 -23,-15 -23,-15.8 -23,-16.6 -23,-17.4 -23,-18.2 -23,-19 -23,-19 -22.6,-19 -22.2,-19 -21.8,-19 -21.4,-19 -21,-19 -20.6,-19 -20.2,-19 -19.8,-19 -19.4,-19 -19))", "dataset_titles": "Expedition Data; NBP1406 Expedition data; NBP1508 Expedition data; Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508; Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015); Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "datasets": [{"dataset_uid": "200154", "doi": "10.7284/906708", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1508 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1508"}, {"dataset_uid": "601353", "doi": null, "keywords": "CTD; CTD Data; Current Measurements; Current Meter; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508 (2015)", "url": "https://www.usap-dc.org/view/dataset/601353"}, {"dataset_uid": "601354", "doi": "10.15784/601354", "keywords": "Current Measurements; LADCP; Mid-Ocean Ridge; NBP1508; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; South Atlantic Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601354"}, {"dataset_uid": "001408", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "200153", "doi": "10.7284/903009", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1406 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1406"}, {"dataset_uid": "601352", "doi": null, "keywords": "CTD; Mid-Ocean Ridge; Mooring; NBP1508; Oceans; Physical Oceanography; Pressure; R/v Nathaniel B. Palmer; Salinity; South Atlantic Ocean; Temperature", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Processed Current Measurement, Pressure, Salinity and Temperature Data from the Southern Mid-Atlantic Ridge Spreading acquired during R/V Nathaniel B. Palmer expedition NBP1508", "url": "https://www.usap-dc.org/view/dataset/601352"}], "date_created": "Thu, 02 Jul 2020 00:00:00 GMT", "description": "Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced \"fracture zone canyons\" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.", "east": -11.0, "geometry": "POINT(-15 -21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; South Atlantic Ocean; R/V NBP; WATER MASSES", "locations": "South Atlantic Ocean", "north": -19.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurnherr, Andreas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -23.0, "title": "Collaborative Research: Flow, Turbulence and Mixing in Mid-Ocean Ridge Fracture Zone Canyons", "uid": "p0010114", "west": -19.0}, {"awards": "1543328 Van Mooy, Benjamin", "bounds_geometry": null, "dataset_titles": "Lipidomics of Antarctic waters. (TBD)", "datasets": [{"dataset_uid": "200149", "doi": "TBD", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Lipidomics of Antarctic waters. (TBD)", "url": "https://www.bco-dmo.org/data"}], "date_created": "Fri, 19 Jun 2020 00:00:00 GMT", "description": "The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem\u0027s food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. Lipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Oxylipins; Palmer Station; UV Radiation; USAP-DC; West Antarctic Shelf; NOT APPLICABLE; AQUATIC SCIENCES; Phytoplankton", "locations": "West Antarctic Shelf; Palmer Station", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Van Mooy, Benjamin", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": null, "title": "Production and Fate of Oxylipins in Waters of the Western Antarctic Peninsula: Linkages Between UV Radiation, Lipid Peroxidation, and Carbon Cycling", "uid": "p0010109", "west": null}, {"awards": "1551195 Burdige, David", "bounds_geometry": "POLYGON((-71 -64,-70.1 -64,-69.2 -64,-68.3 -64,-67.4 -64,-66.5 -64,-65.6 -64,-64.7 -64,-63.8 -64,-62.9 -64,-62 -64,-62 -64.4,-62 -64.8,-62 -65.2,-62 -65.6,-62 -66,-62 -66.4,-62 -66.8,-62 -67.2,-62 -67.6,-62 -68,-62.9 -68,-63.8 -68,-64.7 -68,-65.6 -68,-66.5 -68,-67.4 -68,-68.3 -68,-69.2 -68,-70.1 -68,-71 -68,-71 -67.6,-71 -67.2,-71 -66.8,-71 -66.4,-71 -66,-71 -65.6,-71 -65.2,-71 -64.8,-71 -64.4,-71 -64))", "dataset_titles": "Expedition data of NBP1601; Project: Organic Carbon Oxidation and Iron Remobilization by West Antarctic Shelf Sediments", "datasets": [{"dataset_uid": "200148", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project: Organic Carbon Oxidation and Iron Remobilization by West Antarctic Shelf Sediments", "url": "https://www.bco-dmo.org/project/806864"}, {"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}], "date_created": "Tue, 16 Jun 2020 00:00:00 GMT", "description": "General Statement: The continental shelf region west of the Antarctic Peninsula has recently undergone dramatic changes and ecosystem shifts, and the community of organisms that live in, or feed off, the sea floor sediments is being impacted by species invasions from the north. Previous studies of these sediments indicate that this community may consume much more of the regional productivity than previously estimated, suggesting that sediments are a rich and important component of this ecosystem and one that may be ripe for dramatic change. Furthermore, under richer sediment conditions, iron is mobilized and released back to the water column. Since productivity in this ecosystem is thought to be limited by the availability of iron, increased rates of iron release from these sediments could stimulate productivity and promote greater overall ecosystem change. In this research, a variety of sites across the shelf region will be sampled to accurately evaluate the role of sediments in consuming ecosystem productivity and to estimate the current level of iron release from the sediments. This project will provide a baseline set of sediment results that will present a more complete picture of the west Antarctic shelf ecosystem, will allow for comparison with water column measurements and for evaluation of the fundamental workings of this important ecosystem. This is particularly important since high latitude systems may be vulnerable to the effects of climate fluctuations. Both graduate and undergraduate students will be trained. Presentations will be made at scientific meetings, at other universities, and at outreach events. A project web site will present key results to the public and explain how this new information improves understanding of Antarctic ecosystems. Technical Description of Project: In order to determine the role of sediments within the west Antarctic shelf ecosystem, this project will determine the rates of sediment organic matter oxidation at a variety of sites across the Palmer Long Term Ecosystem Research (LTER) study region. To estimate the rates of release of iron and manganese from the sediments, these same sites will be sampled for detailed vertical distributions of the concentrations of these metals both in the porewaters and in important mineral phases. Since sediment sampling will be done at LTER sites, the sediment data can be correlated with the rich productivity data set from the LTER. In detail, the project: a) will determine the rates of oxygen consumption, organic carbon oxidation, nutrient release, and iron mobilization by shelf sediments west of the Antarctic Peninsula; b) will investigate the vertical distribution of diagenetic reactions within the sediments; and c) will assess the regional importance of these sediment rates. Sediment cores will be used to determine sediment-water fluxes of dissolved oxygen, total carbon dioxide, nutrients, and the vertical distributions of these dissolved compounds, as well as iron and manganese in the pore waters. Bulk sediment properties of porosity, organic carbon and nitrogen content, carbonate content, biogenic silica content, and multiple species of solid-phase iron, manganese, and sulfur species will also be determined. These measurements will allow determination of total organic carbon oxidation and denitrification rates, and the proportion of aerobic versus anaerobic respiration at each site. Sediment diagenetic modeling will link the processes of organic matter oxidation to metal mobilization. Pore water and solid phase iron and manganese distributions will be used to model iron diagenesis in these sediments and to estimate the iron flux from the sediments to the overlying waters. Finally, the overall regional average and distribution of the sediment processes will be compared with the distributions of seasonally averaged chlorophyll biomass and productivity.", "east": -62.0, "geometry": "POINT(-66.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; Iron Remobilization; R/V NBP; NBP1601; SEDIMENT CHEMISTRY; USAP-DC; West Antarctic Shelf", "locations": "West Antarctic Shelf", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Burdige, David; Christensen, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "BCO-DMO", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -68.0, "title": "Organic carbon oxidation and iron remobilization by West Antarctic shelf sediments ", "uid": "p0010108", "west": -71.0}, {"awards": "1744883 Wiens, Douglas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "ANT-20: A 3D seismic model of the upper mantle and transition zone structure beneath Antarctica and the surrounding southern oceans; CWANT-PSP: A 3-D shear velocity model from a joint inversion of receiver functions and surface wave dispersion derived from ambient noise and teleseismic earthquakes.", "datasets": [{"dataset_uid": "200179", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ANT-20: A 3D seismic model of the upper mantle and transition zone structure beneath Antarctica and the surrounding southern oceans", "url": "http://ds.iris.edu/ds/products/emc-ant-20/"}, {"dataset_uid": "200178", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "CWANT-PSP: A 3-D shear velocity model from a joint inversion of receiver functions and surface wave dispersion derived from ambient noise and teleseismic earthquakes.", "url": "http://ds.iris.edu/ds/products/emc-cwant-psp/"}], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "The geological structure and history of Antarctica remains poorly understood because much of the continental crust is covered by ice. Here, the PIs will analyze over 15 years of seismic data recorded by numerous projects in Antarctica to develop seismic structural models of the continent. The seismic velocity models will reveal features including crustal thinning due to rifting in West Antarctica, the structures associated with mountain building, and the boundaries between different tectonic blocks. The models will be compared to continents that are better understood geologically to constrain the tectonic evolution of Antarctica. In addition, the work will provide better insight into how the solid earth interacts with and influences the development of the ice sheet. Surface heat flow will be mapped and used to identify regions in Antarctica with potential melting at the base of the ice sheet. This melt can lead to reduced friction and lower resistance to ice sheet movement. The models will help to determine whether the earth response to ice mass changes occurs over decades, hundreds, or thousands of years. Estimates of mantle viscosity calculated from the seismic data will be used to better understand the pattern and timescales of the response of the solid earth to changes in ice mass in various parts of Antarctica. The study will advance our knowledge of the structure of Antarctica by constructing two new seismic models and a thermal model using different but complementary methodologies. Because of the limitations of different seismic analysis methods, efforts will be divided between a model seeking the highest possible resolution within the upper 200 km depth in the well instrumented region (Bayesian Monte-Carlo joint inversion), and another model determining the structure of the entire continent and surrounding oceans extending through the mantle transition zone (adjoint full waveform inversion). The Monte-Carlo inversion will jointly invert Rayleigh wave group and phase velocities from earthquakes and ambient noise correlation along with P-wave receiver functions and Rayleigh H/V ratios. The inversion will be done in a Bayesian framework that provides uncertainty estimates for the structural model. Azimuthal anisotropy will be determined from Rayleigh wave velocities, providing constraints on mantle fabric and flow patterns. The seismic data will also be inverted for temperature structure, providing estimates of lithospheric thickness and surface heat flow. The larger-scale model will cover the entire continent as well as the surrounding oceans, and will be constructed using an adjoint inversion of phase differences between three component seismograms and synthetic seismograms calculated in a 3D earth model using the spectral element method. This model will fit the entire waveforms, including body waves and both fundamental and higher mode surface waves. Higher resolution results will be obtained by using double-difference methods and by incorporating Green\u0027s functions from ambient noise cross-correlation, and solving for both radial and azimuthal anisotropy. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; Carbon Cycle; SEISMIC PROFILE; Seismology; Southern Ocean; Amd/Us; Antarctica; West Antarctica; MODELS; SEISMIC SURFACE WAVES; AMD; TECTONICS; USAP-DC", "locations": "Antarctica; West Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Shen, Weisen", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "Comprehensive Seismic and Thermal Models for Antarctica and the Southern Oceans: A Synthesis of 15-years of Seismic Exploration", "uid": "p0010103", "west": -180.0}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": null, "dataset_titles": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "datasets": [{"dataset_uid": "601582", "doi": "10.15784/601582", "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "people": "Passchier, Sandra; Lepp, Allison; States, Abbey; Li, Xiaona; Hojnacki, Victoria", "repository": "USAP-DC", "science_program": null, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601582"}, {"dataset_uid": "601581", "doi": "10.15784/601581", "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "people": "Horowitz Castaldo, Josie; Passchier, Sandra; Lepp, Allison; Light, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "url": "https://www.usap-dc.org/view/dataset/601581"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world\u0027s largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator\u0027s findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; SEDIMENTS; LABORATORY; USA/NSF; USAP-DC; Weddell Sea", "locations": "Weddell Sea", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "uid": "p0010101", "west": null}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "datasets": [{"dataset_uid": "601326", "doi": "10.15784/601326", "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "people": "Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601326"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}, {"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Vaughn, Bruce; White, James; Price, Michael; Garland, Joshua; Bradley, Elizabeth; Morris, Valerie", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Ice cores contain detailed accounts of Earth\u0027s climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "AMD; West Antarctic Ice Sheet; ISOTOPES; Amd/Us; USAP-DC; USA/NSF; Water Isotopes; WAIS Divide Ice Core; Deuterium; LABORATORY", "locations": "West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Garland, Joshua; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "uid": "p0010100", "west": -112.085}, {"awards": "9615281 Luyendyk, Bruce; 9615282 Siddoway, Christine", "bounds_geometry": "POLYGON((-170 -76,-166.5 -76,-163 -76,-159.5 -76,-156 -76,-152.5 -76,-149 -76,-145.5 -76,-142 -76,-138.5 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-138.5 -84,-142 -84,-145.5 -84,-149 -84,-152.5 -84,-156 -84,-159.5 -84,-163 -84,-166.5 -84,-170 -84,-170 -83.2,-170 -82.4,-170 -81.6,-170 -80.8,-170 -80,-170 -79.2,-170 -78.4,-170 -77.6,-170 -76.8,-170 -76))", "dataset_titles": "Bedrock sample data, Ford Ranges region (Marie Byrd Land); SOAR-WMB Airborne gravity data", "datasets": [{"dataset_uid": "601829", "doi": "10.15784/601829", "keywords": "Antarctica; Cryosphere; Gondwana; Marie Byrd Land; Migmatite", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "url": "https://www.usap-dc.org/view/dataset/601829"}, {"dataset_uid": "601294", "doi": "10.15784/601294", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Ross Sea; Solid Earth", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WMB Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601294"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "OPP 9615281 Luyendyk OPP 9615282 Siddoway Abstract This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.", "east": -135.0, "geometry": "POINT(-152.5 -80)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e LGS", "is_usap_dc": true, "keywords": "GRAVITY; USAP-DC; Ross Sea; TECTONICS; Marie Byrd Land", "locations": "Ross Sea; Marie Byrd Land", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Luyendyk, Bruce P.; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure", "uid": "p0010096", "west": -170.0}, {"awards": "9319854 Bell, Robin; 9319877 Finn, Carol; 9319369 Blankenship, Donald", "bounds_geometry": "POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))", "dataset_titles": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project; SOAR-IRE airborne gravity data for the CASERTZ/WAIS project; SOAR-TKD airborne gravity data for the CASERTZ/WAIS project; SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "datasets": [{"dataset_uid": "601289", "doi": "10.15784/601289", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601289"}, {"dataset_uid": "601290", "doi": "10.15784/601290", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601290"}, {"dataset_uid": "601291", "doi": "10.15784/601291", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601291"}, {"dataset_uid": "601288", "doi": "10.15784/601288", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601288"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Blankenship: 9319369 Bell: 9319854 Behrendt: 9319877 This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.", "east": -105.0, "geometry": "POINT(-130 -81)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; MAGNETIC FIELD; GRAVITY FIELD; Antarctica; GLACIERS/ICE SHEETS; Marie Byrd Land; Airborne Gravity", "locations": "Marie Byrd Land; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Blankenship, Donald D.; Finn, C. A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "uid": "p0010094", "west": -155.0}, {"awards": "1643733 Trusel, Luke; 1643715 Moussavi, Mahsa Sadat", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Supraglacial Lakes in Antarctica", "datasets": [{"dataset_uid": "601401", "doi": "10.15784/601401", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Landsat-8; Satellite Imagery; Supraglacial Lake", "people": "Halberstadt, Anna Ruth; Pope, Allen; Moussavi, Mahsa; Trusel, Luke; Abdalati, Waleed", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lakes in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601401"}], "date_created": "Mon, 16 Mar 2020 00:00:00 GMT", "description": "Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Supraglacial Lake; ICE SHEETS; Satellite Imagery; LANDSAT; Antarctica; USAP-DC; AMD; USA/NSF; SENTINEL-2A", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Moussavi, Mahsa; Pope, Allen; Trusel, Luke", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SENTINEL-2 \u003e SENTINEL-2A", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes", "uid": "p0010088", "west": -180.0}, {"awards": "1743035 Saba, Grace", "bounds_geometry": "POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2))", "dataset_titles": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; NBP1801 Expedition data; ru32-20180109T0531; Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "datasets": [{"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "200140", "doi": "", "keywords": null, "people": null, "repository": "ERDDAP", "science_program": null, "title": "ru32-20180109T0531", "url": "http://slocum-data.marine.rutgers.edu/erddap/tabledap/ru32-20180109T0531-profile-sci-delayed.html"}, {"dataset_uid": "200139", "doi": "10.1575/1912/bco-dmo.792478.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792478"}, {"dataset_uid": "200138", "doi": "10.1575/1912/bco-dmo.792385.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792385"}, {"dataset_uid": "200137", "doi": "10.1575/1912/bco-dmo.789299.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "url": "https://www.bco-dmo.org/dataset/789299"}], "date_created": "Thu, 27 Feb 2020 00:00:00 GMT", "description": "The Ross Sea is the one of the most productive regions in Antarctica and supports large populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), and Antarctic silverfish (Pleuragramma antarcticum). Copepods and crystal krill dominate the diets of Antarctic silverfish, the dominant fish species in the high Antarctic zone, and silverfish are a major link between lower (copepods, krill) and higher (fishes, marine mammals, flighted birds, Ad\u00e9lie and Emperor penguins) trophic levels. Despite the significance of these key species, there is limited understanding of copepod, krill, and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers within the Ross Sea. Autonomous underwater profiling gliders are a developing technology that offers the potential for providing high spatial, temporal, and depth resolution data on regional scales. The project will test the capability of a multi-frequency echo sounder integrated into a Slocum Webb glider with the aim of providing the first glider-based acoustic assessment of simultaneous distributions of three trophic levels in the Ross Sea. Complementary glider sensors measuring physical, chemical, and biological parameters will provide mesoscale and sub-mesoscale hydrographic information from which phytoplankton-zooplankton-fish interactions and the relationships between these organisms and physics drivers (sea ice, circulation features) will be investigated. The approach proposed here, glider acoustics, is relatively new and has the potential to be transformational for investigating food webs and the Ross Sea ecosystem. Researchers will modify and integrate an Acoustic Zooplankton and Fish Profiler (AZFP) multi-frequency echo sounder into a Slocum Webb G2 glider with the capability to differentiate between krill and other types of zooplankton, including copepods, and different sizes of krill and silverfish. The AZFP will be complemented with the existing glider sensors including a CTD, a WET Labs BB2FL ECO puck configured for simultaneous chlorophyll fluorescence (phytoplankton biomass) and optical backscatter measurements, and an Aanderaa Optode for measuring dissolved oxygen. The new sensor suite will be tested during a four-week glider deployment, where it will conduct acoustic surveys to map distribution and abundance of multiple zooplankton taxa and silverfish during the austral summer along the Terra Nova Bay polynya ice shelf and in adjacent continental shelf waters. The relationships between phytoplankton-zooplankton-fish distributions and the physical drivers of zooplankton and silverfish species and size distributions will be investigated. Coordinated ship-based acoustic sampling and net tows/trawls will be conducted multiple times during the glider deployment to validate glider acoustic-based species, size, and abundance measurements. Open accessible, automated data produced during this project will be made available through RUCOOL (Rutgers University Center for Ocean Observing Leadership) and THREDDS (Thematic Real-time Environmental Data Distribution System). The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will define a successful outcome of this project that should help in identifying the challenges in their use as a potentially cost-effective, automated examination of food webs in the Antarctic.", "east": 174.0, "geometry": "POINT(169 -74.9)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; FISH; Terra Nova Bay; AQUATIC SCIENCES; PELAGIC; PLANKTON; USAP-DC; ANIMALS/VERTEBRATES", "locations": "Terra Nova Bay", "north": -72.2, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "R2R", "repositories": "BCO-DMO; ERDDAP; R2R", "science_programs": null, "south": -77.6, "title": "Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea", "uid": "p0010086", "west": 164.0}, {"awards": "1341432 Brzezinski, Mark; 1341464 Robinson, Rebecca", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Robinson, Rebecca; Jones, Colin; Brzezinski, Mark; Riesselman, Christina; Kelly, Roger; Closset, Ivia; Robinson, Rebecca ", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Robinson, Rebecca; Riesselman, Christina; Robinson, Rebecca ; Jones, Colin", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Jones, Janice L.; Brzezinski, Mark; Closset, Ivia", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Robinson, Rebecca; Jones, Janice L.; Closset, Ivia; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1644020 Sims, Kenneth W.; 1644027 Wallace, Paul; 1644013 Gaetani, Glenn", "bounds_geometry": "POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))", "dataset_titles": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines; G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles; G170 Sample Locations Ross Island \u0026 Discovery Province; G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles; G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes; Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "datasets": [{"dataset_uid": "601505", "doi": "10.15784/601505", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Electron Microprobe Analyses; Olivine; Petrography; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines", "url": "https://www.usap-dc.org/view/dataset/601505"}, {"dataset_uid": "601507", "doi": "10.15784/601507", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "url": "https://www.usap-dc.org/view/dataset/601507"}, {"dataset_uid": "601506", "doi": "10.15784/601506", "keywords": "Antarctica; Ion Mass Spectrometry; Ross Island; Volatiles", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles", "url": "https://www.usap-dc.org/view/dataset/601506"}, {"dataset_uid": "601250", "doi": "10.15784/601250", "keywords": "Antarctica; Hut Point Peninsula; Mt. Bird; Mt. Morning; Mt. Terror; Ross Island; Turks Head; Turtle Rock", "people": "Gaetani, Glenn; Pamukcu, Ayla", "repository": "USAP-DC", "science_program": null, "title": "Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "url": "https://www.usap-dc.org/view/dataset/601250"}, {"dataset_uid": "601504", "doi": "10.15784/601504", "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "url": "https://www.usap-dc.org/view/dataset/601504"}, {"dataset_uid": "601508", "doi": "10.15784/601508", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "url": "https://www.usap-dc.org/view/dataset/601508"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth\u0027s largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth\u0027s surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers\u0027 involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.", "east": 169.6, "geometry": "POINT(166.85 -77.775)", "instruments": null, "is_usap_dc": true, "keywords": "Tephra; Turtle Rock; USA/NSF; Amd/Us; LABORATORY; AMD; Ross Island; Turks Head; Hut Point Peninsula; LAVA SPEED/FLOW; USAP-DC; Mt. Morning; Mt. Terror; ROCKS/MINERALS/CRYSTALS; Mt. Bird; FIELD INVESTIGATION", "locations": "Ross Island; Mt. Morning; Mt. Bird; Mt. Terror; Hut Point Peninsula; Turtle Rock; Turks Head", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "uid": "p0010081", "west": 164.1}, {"awards": "1341496 Girton, James", "bounds_geometry": "POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66))", "dataset_titles": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703; Expedition Data; Expedition data of NBP1701", "datasets": [{"dataset_uid": "601302", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Benthos; Biota; LMG1708; Oceans; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Ship; Yoyo Camera", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703", "url": "https://www.usap-dc.org/view/dataset/601302"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Tue, 10 Dec 2019 00:00:00 GMT", "description": "Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.", "east": -75.0, "geometry": "POINT(-108.5 -70)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; R/V NBP; USAP-DC; ICE DEPTH/THICKNESS; HEAT FLUX; OCEAN CURRENTS; SALINITY/DENSITY; LMG1703; Bellingshausen Sea; Yoyo Camera; WATER MASSES; R/V LMG; NBP1701", "locations": "Bellingshausen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Rynearson, Tatiana", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -74.0, "title": "Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements", "uid": "p0010074", "west": -142.0}, {"awards": "1443105 Steig, Eric", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core; South Pole high resolution ice core water stable isotope record for dD, d18O; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}, {"dataset_uid": "601239", "doi": "10.15784/601239", "keywords": "Antarctica; Cavity Ring Down Spectrometers; Delta 18O; Delta Deuterium; Deuterium Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Oxygen Isotope; Snow/ice; Snow/Ice; Stable Isotopes", "people": "Jones, Tyler R.; Vaughn, Bruce; Kahle, Emma; Steig, Eric J.; Schauer, Andrew; Morris, Valerie; White, James", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole high resolution ice core water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601239"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Jones, Tyler R.; Kahle, Emma; Steig, Eric J.; White, James; Epifanio, Jenna; Buizert, Christo; Waddington, Edwin D.; Conway, Howard; Stevens, Max; Schauer, Andrew; Vaughn, Bruce; Morris, Valerie; Koutnik, Michelle; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601429", "doi": "10.15784/601429", "keywords": "Antarctica; Climate; Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrogen; Ice; Ice Core; Ice Core Chemistry; Oxygen; Paleoclimate; Snow/ice; Snow/Ice; South Pole; Stable Isotopes", "people": "Vaughn, Bruce; Jones, Tyler R.; White, James; Morris, Valerie; Schauer, Andrew; Steig, Eric J.; Kahle, Emma", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core", "url": "https://www.usap-dc.org/view/dataset/601429"}], "date_created": "Sun, 17 Nov 2019 00:00:00 GMT", "description": "This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "SPICEcore; D18O; LABORATORY; OXYGEN ISOTOPE ANALYSIS; Oxygen Isotope; South Pole; USAP-DC; GLACIERS/ICE SHEETS; Antarctica; AMD; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Steig, Eric J.; White, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "uid": "p0010065", "west": 0.0}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic topographic and subglacial lake geostatistical simulations; Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "datasets": [{"dataset_uid": "601436", "doi": "10.15784/601436", "keywords": "Amundsen Sea; Antarctica; Bed Reflectivity; Ice Penetrating Radar; Radar Echo Sounder", "people": "Chu, Winnie; Schroeder, Dustin; Culberg, Riley; Hilger, Andrew M.; Young, Duncan A.; Vaughan, David G.; Seroussi, Helene; Jordan, Thomas M.", "repository": "USAP-DC", "science_program": null, "title": "Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "url": "https://www.usap-dc.org/view/dataset/601436"}, {"dataset_uid": "601213", "doi": "10.15784/601213", "keywords": "Active Lakes; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/ice; Snow/Ice; Subglacial Lakes; Topography", "people": "Caers, Jef; Scheidt, Celine; Siegfried, Matthew; MacKie, Emma; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "url": "https://www.usap-dc.org/view/dataset/601213"}], "date_created": "Sat, 12 Oct 2019 00:00:00 GMT", "description": "Earth\u0027s geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad. The radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS", "is_usap_dc": true, "keywords": "GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; Amd/Us; Airborne Radar; USA/NSF; ICE DEPTH/THICKNESS; Antarctica; Radar; AMD; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Schroeder, Dustin; MacKie, Emma", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "uid": "p0010058", "west": -180.0}, {"awards": "1341728 Stone, John", "bounds_geometry": "POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81))", "dataset_titles": "Cosmogenic nuclide data, Harter Nunatak; Cosmogenic nuclide data, John Nunatak; Cosmogenic nuclide data, Mt Axtell; Cosmogenic nuclide data, Mt Goodwin; Cosmogenic nuclide data, Mt Tidd; Cosmogenic nuclide data, Mt Turcotte; Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "datasets": [{"dataset_uid": "200078", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Goodwin", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200077", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Turcotte", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601214", "doi": "10.15784/601214", "keywords": "Aluminum-26; Antarctica; Be-10; Bedrock Core; Beryllium-10; Chemistry:rock; Chemistry:Rock; Cosmogenic; Cosmogenic Dating; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Data; Pirrit Hills; Rocks; Solid Earth; Subglacial Bedrock", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "url": "https://www.usap-dc.org/view/dataset/601214"}, {"dataset_uid": "200080", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, John Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200079", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Harter Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200076", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Tidd", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200075", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Axtell", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Tue, 08 Oct 2019 00:00:00 GMT", "description": "Stone/1341728 This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past and if so, when did this occur. This topic is of interest to geologists who have long been studying the history and behavior of ice sheets (including the WAIS) in order to determine what climatic conditions allow an ice sheet to survive and what conditions have caused them to collapse in the past. The bulk of this research has focused on the last ice age, when climate conditions were far colder than the present; this project will focus on the response of ice sheets to warmer climates in the past. A new and potentially transformative approach that uses the analysis of atoms transformed by cosmic-rays in bedrock beneath the WAIS will allow a definitive test for ice free conditions in the past. This is because the cosmic rays capable of producing the necessary reactions can penetrate only a few meters through glacier ice. Therefore, if they are detected in samples from hundreds of meters below the current ice sheet surface this would provide definitive proof of mostly ice-free conditions in the past. The concentrations of different cosmic ray products in cores from different depths will help answer the question of how frequently bedrock has been exposed, how much the ice sheet has thinned, and which time periods in the past produced climatic conditions capable of making the ice sheet unstable. Short bedrock cores beneath the ice sheet near the Pirrit Hills in West Antarctica will be collected using a new agile sub-ice geological drill (capable of drilling up to 200 meters beneath the ice surface) that is being developed by the Ice Drilling Program Office (IDPO) to support this and other projects. Favorable drilling sites have already been identified based on prior reconnaissance mapping, sample analysis and radar surveys of the ice-sheet bed. The cores collected in this study will be analyzed for cosmic-ray-produced isotopes of different elements with a range of half-lives from 5700 yr (C-14) to 1.4 Myr (Be-10), as well as stable Ne-21. The presence or absence of these isotopes will provide a definitive test of whether bedrock surfaces were ice-free in the past and due to their different half-lives, ratios of the isotopes will place constraints on the age, frequency and duration of past exposure episodes. Results from bedrock surfaces at different depths will indicate the degree of past ice-sheet thinning. The aim is to tie evidence of deglaciation in the past to specific periods of warmer climate and thus to gauge the ice sheet\u0027s response to known climate conditions. This project addresses the broad question of ice-sheet sensitivity to climate warming, which previously has been largely determined indirectly from sea-level records. In contrast, this project will provide direct measurements that provide evidence of ice-sheet thinning in West Antarctica. Results from this work will help to identify the climatic factors and thresholds capable of endangering the WAIS in future. The project will make a significant contribution to the ongoing study of climate change, ice-sheet melting and associated sea-level rise. This project has field work in Antarctica.", "east": -85.0, "geometry": "POINT(-85.65 -81.15)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "DEPTH AT SPECIFIC AGES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -81.3, "title": "EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse", "uid": "p0010057", "west": -86.3}, {"awards": "1443190 Parizek, Byron", "bounds_geometry": "POLYGON((-130 -73,-125.5 -73,-121 -73,-116.5 -73,-112 -73,-107.5 -73,-103 -73,-98.5 -73,-94 -73,-89.5 -73,-85 -73,-85 -73.9,-85 -74.8,-85 -75.7,-85 -76.6,-85 -77.5,-85 -78.4,-85 -79.3,-85 -80.2,-85 -81.1,-85 -82,-89.5 -82,-94 -82,-98.5 -82,-103 -82,-107.5 -82,-112 -82,-116.5 -82,-121 -82,-125.5 -82,-130 -82,-130 -81.1,-130 -80.2,-130 -79.3,-130 -78.4,-130 -77.5,-130 -76.6,-130 -75.7,-130 -74.8,-130 -73.9,-130 -73))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 16 Sep 2019 00:00:00 GMT", "description": "Accurate reconstructions and predictions of glacier movement on timescales of human interest require a better understanding of available observations and the ability to model the key processes that govern ice flow. The fact that many of these processes are interconnected, are loosely constrained by data, and involve not only the ice, but also the atmosphere, ocean, and solid Earth, makes this a challenging endeavor, but one that is essential for Earth-system modeling and the resulting climate and sea-level forecasts that are provided to policymakers worldwide. Based on the amount of ice present in the West Antarctic Ice Sheet and its ability to flow and/or melt into the ocean, its complete collapse would result in a global sea-level rise of 3.3 to 5 meters, making its stability and rate of change scientific questions of global societal significance. Whether or not a collapse eventually occurs, a better understanding of the potential West Antarctic contribution to sea level over the coming decades and centuries is necessary when considering the fate of coastal population centers. Recent observations of the Amundsen Sea Embayment of West Antarctica indicate that it is experiencing faster mass loss than any other region of the continent. At present, the long-term stability of this embayment is unknown, with both theory and observations suggesting that collapse is possible. This study is focused on this critical region. We will test an ice-sheet model against existing observations, improve treatment of key processes in the model, and make projections with uncertainty assessments. This is a three-year modeling study using the open-source Ice Sheet System Model in coordination with other models to improve projections of future sea-level change. Project goals are to: 1. hindcast the past two-to-three decades of evolution of the Amundsen Sea Embayment sector to determine controlling processes, incorporate and test parameterizations, and assess and improve model initialization, spinup, and performance; 2. improve the model by utilizing sensitivity studies with regional process-oriented models to create numerically efficient parameterizations for key sub-grid-scale processes; 3. project a range of likely evolutions of the Amundsen Sea Embayment sector and their respective contributions to sea level in the next several centuries; 4. attribute sources of errors in the hindcast and provide an assessment of the uncertainties in the projections, including a range of likely outcomes given various forcings and inclusion or omission of physical processes in the model. At present, the long-term stability of the Amundsen Sea Embayment is unknown, with both theory (the \"marine ice sheet instability hypothesis\") and observations (rapid thinning and grounding-line retreat approaching regions where the bed deepens inland) suggesting that collapse is possible. But incompletely understood physical processes (e.g., basal hydrology, rheology, and sliding; tidal effects; ice-ocean interaction along the shelf and within the grounding zone) and lack of resolution in basal topography datasets making the ultimate outcome uncertain. Thus, there is a pressing need for high-resolution simulations of this region that include numerical representations of controlling physical processes (many of which are applicable elsewhere) within a higher-order ice-sheet model capable of assimilating recent observations and providing uncertainty analyses associated with model and data limitations. By focusing on the Amundsen Sea Embayment as a connected region across the 10-10,000-meter scales using a hierarchy of one, two, and three-dimensional models along with the sensitivity analysis tools built into the Ice Sheet System Model, this project aims to produce (1) the most reliable results to date when compared with studies that consider only one ice stream or the entire ice sheet and (2) estimates of differing dynamic responses arising from errors in data, model parameterizations, and forcings. Given the uncertainties, the project will produce a range of predictions with characteristic trends that can be recognized within future observational data sets. As new data become available, some predicted rates of change could be culled from the predictive paths generated by this study.", "east": -85.0, "geometry": "POINT(-107.5 -77.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; GLACIER MOTION/ICE SHEET MOTION; NOT APPLICABLE", "locations": "Antarctica", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Parizek, Byron R.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -82.0, "title": "Collaborative Research: Evaluating Retreat in the Amundsen Sea Embayment: Assessing Controlling Processes, Uncertainties, and Projections", "uid": "p0010054", "west": -130.0}, {"awards": "1443248 Hall, Brenda; 1443346 Stone, John", "bounds_geometry": "POLYGON((-174 -84.2,-172.4 -84.2,-170.8 -84.2,-169.2 -84.2,-167.6 -84.2,-166 -84.2,-164.4 -84.2,-162.8 -84.2,-161.2 -84.2,-159.6 -84.2,-158 -84.2,-158 -84.36,-158 -84.52,-158 -84.68,-158 -84.84,-158 -85,-158 -85.16,-158 -85.32,-158 -85.48,-158 -85.64,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.64,-174 -85.48,-174 -85.32,-174 -85.16,-174 -85,-174 -84.84,-174 -84.68,-174 -84.52,-174 -84.36,-174 -84.2))", "dataset_titles": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast; Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN; Ice-D Antarctic Cosmogenic Nuclide database - site MAASON; Liv and Amundsen Glacier Radiocarbon Data", "datasets": [{"dataset_uid": "601226", "doi": "10.15784/601226", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "url": "https://www.usap-dc.org/view/dataset/601226"}, {"dataset_uid": "200087", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site MAASON", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200088", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Ice-D Antarctic Cosmogenic Nuclide database - site DUNCAN", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601208", "doi": "10.15784/601208", "keywords": "Antarctica; Carbon; Glaciology; Holocene; Radiocarbon; Ross Embayment; Ross Sea; Transantarctic Mountains", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Liv and Amundsen Glacier Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601208"}], "date_created": "Thu, 05 Sep 2019 00:00:00 GMT", "description": "The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories. Previous research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates.", "east": -158.0, "geometry": "POINT(-166 -85)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; NOT APPLICABLE; Antarctica; ICE SHEETS; USAP-DC", "locations": "Antarctica", "north": -84.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -85.8, "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "uid": "p0010053", "west": -174.0}, {"awards": "1443663 Cole-Dai, Jihong; 1443397 Kreutz, Karl; 1443336 Osterberg, Erich", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements; SPICEcore 400-480 m Major Ions SDSU; The South Pole Ice Core (SPICEcore) chronology and supporting data", "datasets": [{"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Winski, Dominic A.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.; Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601675", "doi": "10.15784/601675", "keywords": "Antarctica; South Pole; SPICEcore", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.", "url": "https://www.usap-dc.org/view/dataset/601675"}, {"dataset_uid": "601553", "doi": "10.15784/601553", "keywords": "Antarctica; Dust; Ice Core; South Pole", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "url": "https://www.usap-dc.org/view/dataset/601553"}, {"dataset_uid": "601430", "doi": "10.15784/601430", "keywords": "Antarctica; Ions; South Pole; SPICEcore", "people": "Cole-Dai, Jihong; Larrick, Carleigh", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore 400-480 m Major Ions SDSU", "url": "https://www.usap-dc.org/view/dataset/601430"}, {"dataset_uid": "601206", "doi": "10.15784/601206", "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Buizert, Christo; Severinghaus, Jeffrey P.; Osterberg, Erich; Waddington, Edwin D.; Alley, Richard; Casey, Kimberly A.; Nicewonger, Melinda R.; Aydin, Murat; Ferris, David G.; Kahle, Emma; Morris, Valerie; Steig, Eric J.; Sowers, Todd A.; Beaudette, Ross; Brook, Edward J.; Ortman, Nikolas; Epifanio, Jenna; Kreutz, Karl; Cox, Thomas S.; Thundercloud, Zayta; Cole-Dai, Jihong; Fegyveresi, John; McConnell, Joseph; Sigl, Michael; Souney, Joseph Jr.; Bay, Ryan; Dunbar, Nelia; Fudge, T. J.; Winski, Dominic A.; Iverson, Nels; Jones, Tyler R.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "url": "https://www.usap-dc.org/view/dataset/601206"}, {"dataset_uid": "601851", "doi": "10.15784/601851", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601851"}, {"dataset_uid": "601850", "doi": "10.15784/601850", "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601850"}], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators\u0027 efforts to disseminate outcomes of climate change science to the broader community.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; USAP-DC; Amd/Us; USA/NSF; LABORATORY; AMD", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Osterberg, Erich", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "uid": "p0010051", "west": -180.0}, {"awards": "1443585 Polito, Michael; 1443424 McMahon, Kelton; 1826712 McMahon, Kelton; 1443386 Emslie, Steven", "bounds_geometry": "POLYGON((-180 -60,-166 -60,-152 -60,-138 -60,-124 -60,-110 -60,-96 -60,-82 -60,-68 -60,-54 -60,-40 -60,-40 -61.8,-40 -63.6,-40 -65.4,-40 -67.2,-40 -69,-40 -70.8,-40 -72.6,-40 -74.4,-40 -76.2,-40 -78,-54 -78,-68 -78,-82 -78,-96 -78,-110 -78,-124 -78,-138 -78,-152 -78,-166 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -76.2,160 -74.4,160 -72.6,160 -70.8,160 -69,160 -67.2,160 -65.4,160 -63.6,160 -61.8,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions; Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s; Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica; Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009; Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula; Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.; Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica; Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.; Receding ice drove parallel expansions in Southern Ocean penguin; SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".; Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica; Stable isotopes of Adelie Penguin chick bone collagen; The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "datasets": [{"dataset_uid": "601232", "doi": "10.15784/601232", "keywords": "Amino Acids; Antarctica; Antarctic Peninsula; Biota; Isotope Data; Nitrogen Isotopes; Oceans; Penguin; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael; McMahon, Kelton", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of penguins from the Antarctic Peninsula region 1930s to 2010s", "url": "https://www.usap-dc.org/view/dataset/601232"}, {"dataset_uid": "601327", "doi": "10.15784/601327", "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "people": "Patterson, William; McKenzie, Ashley; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601327"}, {"dataset_uid": "601509", "doi": "10.15784/601509", "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "people": "Polito, Michael; Kristan, Allyson; McMahon, Kelton; Maiti, Kanchan", "repository": "USAP-DC", "science_program": null, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "url": "https://www.usap-dc.org/view/dataset/601509"}, {"dataset_uid": "601374", "doi": "10.15784/601374", "keywords": "Adelie Penguin; Antarctica; Cape Irizar; Drygalski Ice Tongue; Ross Sea; Stable Isotopes", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Ancient Adelie penguin colony revealed by snowmelt at Cape Irizar, Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601374"}, {"dataset_uid": "601210", "doi": "10.15784/601210", "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "people": "Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "url": "https://www.usap-dc.org/view/dataset/601210"}, {"dataset_uid": "601760", "doi": "10.15784/601760", "keywords": "Adelie Penguin; Amino Acids; Antarctica; Antarctic Peninsula; Ross Sea; Stable Isotope Analysis; Trophic Position", "people": "Emslie, Steven D.; Wonder, Michael; McCarthy, Matthew; Patterson, William; McMahon, Kelton; Michelson, Chantel; Polito, Michael", "repository": "USAP-DC", "science_program": null, "title": "Amino acid nitrogen isotope values of modern and ancient Ad\u00e9lie penguin eggshells from the Ross Sea and Antarctic Peninsula regions", "url": "https://www.usap-dc.org/view/dataset/601760"}, {"dataset_uid": "601212", "doi": "10.15784/601212", "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "people": "Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601212"}, {"dataset_uid": "601382", "doi": "10.15784/601382", "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "people": "Ciriani, Yanina; Emslie, Steven D.", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601382"}, {"dataset_uid": "601263", "doi": "10.15784/601263", "keywords": "Abandoned Colonies; Antarctica; Holocene; Penguin; Ross Sea; Stable Isotope Analysis", "people": "Emslie, Steven D.; Patterson, William; Kristan, Allyson", "repository": "USAP-DC", "science_program": null, "title": "Radioisotope dates and carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values from modern and mummified Ad\u00e9lie Penguin chick carcasses and tissue from the Ross Sea, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601263"}, {"dataset_uid": "601364", "doi": "10.15784/601364", "keywords": "Antarctica; Antarctic Peninsula; Arctocephalus Gazella; Carbon; Holocene; Nitrogen; Paleoecology; Penguin; Pygoscelis Spp.; Stable Isotope Analysis; Weddell Sea", "people": "Clucas, Gemma; Kalvakaalva, Rohit; Polito, Michael; Herman, Rachael", "repository": "USAP-DC", "science_program": null, "title": "Radiocarbon dating and stable isotope values of penguin and seal tissues recovered from ornithogenic soils on Platter Island, Danger Islands Archipelago, Antarctic Peninsula in December 2015.", "url": "https://www.usap-dc.org/view/dataset/601364"}, {"dataset_uid": "200181", "doi": "10.6084/m9.figshare.c.4475300.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "SNP data from \"Receding ice drove parallel expansions in Southern Ocean penguins\".", "url": "https://doi.org/10.6084/m9.figshare.c.4475300.v1"}, {"dataset_uid": "200180", "doi": "", "keywords": null, "people": null, "repository": "NCBI BioProject", "science_program": null, "title": "Receding ice drove parallel expansions in Southern Ocean penguin", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA589336"}, {"dataset_uid": "601913", "doi": "10.15784/601913", "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "people": "Reaves, Megan; Emslie, Steven D.; Powers, Shannon", "repository": "USAP-DC", "science_program": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "url": "https://www.usap-dc.org/view/dataset/601913"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (\u003c20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.", "east": -40.0, "geometry": "POINT(-120 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; South Shetland Islands; Penguin; Stable Isotopes; Polar; Ross Sea; USA/NSF; Weddell Sea; AMD; MARINE ECOSYSTEMS; USAP-DC; Antarctica; PENGUINS; Southern Hemisphere; FIELD INVESTIGATION; Amd/Us; Krill; MACROFOSSILS", "locations": "Southern Hemisphere; Ross Sea; South Shetland Islands; Weddell Sea; Polar; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Polito, Michael; Kelton, McMahon; Patterson, William; McCarthy, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "Figshare; NCBI BioProject; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "uid": "p0010047", "west": 160.0}, {"awards": "1644073 DiTullio, Giacomo; 1643684 Saito, Mak", "bounds_geometry": "POLYGON((-180 -72,-173.6 -72,-167.2 -72,-160.8 -72,-154.4 -72,-148 -72,-141.6 -72,-135.2 -72,-128.8 -72,-122.4 -72,-116 -72,-116 -72.7,-116 -73.4,-116 -74.1,-116 -74.8,-116 -75.5,-116 -76.2,-116 -76.9,-116 -77.6,-116 -78.3,-116 -79,-122.4 -79,-128.8 -79,-135.2 -79,-141.6 -79,-148 -79,-154.4 -79,-160.8 -79,-167.2 -79,-173.6 -79,180 -79,178 -79,176 -79,174 -79,172 -79,170 -79,168 -79,166 -79,164 -79,162 -79,160 -79,160 -78.3,160 -77.6,160 -76.9,160 -76.2,160 -75.5,160 -74.8,160 -74.1,160 -73.4,160 -72.7,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,172 -72,174 -72,176 -72,178 -72,-180 -72))", "dataset_titles": "Algal pigment concentrations from the Ross Sea; Biogenic silica concentrations from the Ross Sea; NBP1801 Expedition data; Nutrients from NBP18-01 CICLOPS", "datasets": [{"dataset_uid": "601205", "doi": "10.15784/601205", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chlorophyll; Chromatography; Liquid Chromatograph; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Seawater Measurements; Southern Ocean; Water Measurements; Water Samples", "people": "Ditullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Algal pigment concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601205"}, {"dataset_uid": "601225", "doi": "10.15784/601225", "keywords": "Antarctica; Biogenic Silica; Biogenic Silica Concentrations; Chemistry:Water; Geochemistry; NBP1801; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Southern Ocean; Spectroscopy; Water Measurements; Water Samples", "people": "Ditullio, Giacomo; Schanke, Nicole", "repository": "USAP-DC", "science_program": null, "title": "Biogenic silica concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601225"}, {"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "601428", "doi": "10.15784/601428", "keywords": "Amundsen Sea; Antarctica; NBP1801; Nitrate; Nitrite; Nutrients; Phosphate; Ross Sea; R/v Nathaniel B. Palmer; Silicic Acid; Terra Nova Bay", "people": "Saito, Mak", "repository": "USAP-DC", "science_program": null, "title": "Nutrients from NBP18-01 CICLOPS", "url": "https://www.usap-dc.org/view/dataset/601428"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. The study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.", "east": 160.0, "geometry": "POINT(-158 -75.5)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; NBP1801; Amd/Us; USA/NSF; USAP-DC; NUTRIENTS; PIGMENTS; CHLOROPHYLL; R/V NBP; Ross Sea; AMD", "locations": "Ross Sea", "north": -72.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DiTullio, Giacomo; Lee, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "uid": "p0010045", "west": -116.0}, {"awards": "1643735 Li, Yun; 1643901 Zhang, Weifeng; 2021245 Li, Yun", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica; Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "datasets": [{"dataset_uid": "601209", "doi": "10.15784/601209", "keywords": "Animal Behavior Observation; Antarctica; Biota; East Antarctica; GPS; Oceans; Penguin; Southern Ocean", "people": "Pinaud, David; Wienecke, Barbara; Kirkwood, Roger; Ropert-Coudert, Yan; Resinger, Ryan; Jonsen, Ian; Porter-Smith, Rick; Barbraud, Christophe; Ji, Rubao; Jenouvrier, Stephanie; Sumner, Michael; Bost, Charles-Andr\u00e9; Labrousse, Sara; Fraser, Alexander; Tamura, Takeshi", "repository": "USAP-DC", "science_program": null, "title": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601209"}, {"dataset_uid": "601628", "doi": "10.15784/601628", "keywords": "Antarctic; Antarctica; Antarctic Coastal Polynyas; Polynya", "people": "Zhang, Weifeng; Shunk, Nathan; Li, Yun", "repository": "USAP-DC", "science_program": null, "title": "Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "url": "https://www.usap-dc.org/view/dataset/601628"}], "date_created": "Wed, 07 Aug 2019 00:00:00 GMT", "description": "During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; Animal Behavior; Penguin; FIELD INVESTIGATION; USAP-DC; COASTAL; PENGUINS; SEA ICE; Antarctica; OCEAN MIXED LAYER", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Zhang, Weifeng; Ji, Rubao; Jenouvrier, Stephanie; Maksym, Edward; Li, Yun", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "uid": "p0010044", "west": -180.0}, {"awards": "1443420 Dodd, Justin", "bounds_geometry": "POLYGON((167.07 -77.87,167.073 -77.87,167.076 -77.87,167.079 -77.87,167.082 -77.87,167.085 -77.87,167.088 -77.87,167.091 -77.87,167.094 -77.87,167.097 -77.87,167.1 -77.87,167.1 -77.873,167.1 -77.876,167.1 -77.879,167.1 -77.882,167.1 -77.885,167.1 -77.888,167.1 -77.891,167.1 -77.894,167.1 -77.897,167.1 -77.9,167.097 -77.9,167.094 -77.9,167.091 -77.9,167.088 -77.9,167.085 -77.9,167.082 -77.9,167.079 -77.9,167.076 -77.9,167.073 -77.9,167.07 -77.9,167.07 -77.897,167.07 -77.894,167.07 -77.891,167.07 -77.888,167.07 -77.885,167.07 -77.882,167.07 -77.879,167.07 -77.876,167.07 -77.873,167.07 -77.87))", "dataset_titles": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "datasets": [{"dataset_uid": "601220", "doi": "10.15784/601220", "keywords": "And-1B; Andrill; Antarctica; Chemistry:sediment; Chemistry:Sediment; Delta 18O; Diatom; Mass Spectrometer; Oxygen Isotope; Paleoclimate; Pliocene; Sediment; Wais Project; West Antarctic Ice Sheet", "people": "Dodd, Justin; Abbott, Tirzah", "repository": "USAP-DC", "science_program": "ANDRILL", "title": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "url": "https://www.usap-dc.org/view/dataset/601220"}], "date_created": "Tue, 06 Aug 2019 00:00:00 GMT", "description": "Abstract During the Early Pliocene, 4.8 to 3.4 million years ago, warmer-than-present global temperatures resulted in a retreat of the Ross Ice Shelf and West Antarctic Ice Sheet. Understanding changes in ocean dynamics during times of reduced ice volume and increased temperatures in the geologic past will improve the predictive models for these conditions. The primary goal of the proposed research is to develop a new oxygen isotope record of Pliocene oceanographic conditions near the Antarctic continent. Oxygen isotope values from the carbonate tests of benthic foraminifera have become the global standard for paleo-oceanographic studies, but foraminifera are sparse in high-latitude sediment cores. This research will instead make use of oxygen isotope measurements from diatom silica preserved in a marine sediment core from the Ross Sea. The project is the first attempt at using this method and will advance understanding of global ocean dynamics and ice sheet-ocean interactions during the Pliocene. The project will foster the professional development of two early-career scientists and serve as training for graduate and undergraduate student researchers. The PIs will use this project to introduce High School students to polar/oceanographic research, as well as stable isotope geochemistry. Collaboration with teachers via NSTA and Polar Educators International will ensure the implementation of excellent STEM learning activities and curricula for younger students. Technical Description This project will produce a high-resolution oxygen isotope record from well-dated diatom rich sediments that have been cross-correlated with global benthic foraminifera oxygen isotope records. Diatom silica frustules deposited during the Early Pliocene and recovered by the ANDRILL Project (AND-1B) provide ideal material for this objective. Diatomite unites in the AND-1B core are nearly pure, with little evidence of opal formation. A diatom oxygen isotope record from this core offers the potential to constrain lingering uncertainties about Ross Sea and Southern Ocean paleoceanography and Antarctic Ice Sheet history during a time of high atmospheric carbon dioxide concentrations. Specifically, oxygen isotope variations will be used to constrain changes in the water temperature and/or freshwater flux in the Pliocene Ross Sea. Diatom species data from the AND-1B core have been used to infer variations in the extent and duration of seasonal sea ice coverage, sea surface temperatures, and mid-water advection onto the continental shelf. However, the diatom oxygen isotope record will provide the first direct measure of water/oxygen isotope values at the Antarctic continental margin during the Pliocene.", "east": 167.1, "geometry": "POINT(167.085 -77.885)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "OXYGEN ISOTOPES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -77.87, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dodd, Justin; Scherer, Reed Paul; Warnock, Jonathan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.9, "title": "Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "uid": "p0010042", "west": 167.07}, {"awards": "1745053 Salvatore, Mark; 1744849 Sokol, Eric; 1744785 Barrett, John", "bounds_geometry": "POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "datasets": [{"dataset_uid": "200344", "doi": "10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "url": "https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.263.1"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.43, "geometry": "POINT(163.175 -77.615)", "instruments": null, "is_usap_dc": true, "keywords": "RIVERS/STREAM; CYANOBACTERIA (BLUE-GREEN ALGAE); USAP-DC; Taylor Valley; INFRARED IMAGERY; WORLDVIEW-2; WORLDVIEW-3; Antarctica; FIELD INVESTIGATION; Amd/Us; ACTIVE LAYER", "locations": "Antarctica; Taylor Valley", "north": -77.56, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Barrett, John; Sokol, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-2; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-3", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.67, "title": "COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation", "uid": "p0010036", "west": 162.92}, {"awards": "1443677 Padman, Laurence; 1443534 Bell, Robin; 1443497 Siddoway, Christine; 1443498 Fricker, Helen", "bounds_geometry": "POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))", "dataset_titles": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice); ROSETTA-Ice data page; Ross Sea ocean model simulation used to support ROSETTA-Ice ; Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Erofeeva, Svetlana; Padman, Laurence; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601788", "doi": null, "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "people": "Dhakal, Tejendra; Bertinato, Christopher; Boghosian, Alexandra; Locke, Caitlin; Becker, Maya K; Starke, Sarah", "repository": "USAP-DC", "science_program": null, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601788"}, {"dataset_uid": "601255", "doi": "10.15784/601255", "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "people": "Howard, Susan L.; Springer, Scott; Padman, Laurence", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "url": "https://www.usap-dc.org/view/dataset/601255"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200100", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "ROSETTA-Ice data page", "url": "http://wonder.ldeo.columbia.edu/data/ROSETTA-Ice/"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Dong, LingLing; Packard, Sarah; Spergel, Julian; Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Wearing, Martin; Keeshin, Skye; Bell, Robin; Das, Indrani", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}, {"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin; Cordero, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "601242", "doi": "10.15784/601242", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "people": "Cordero, Isabel; Tinto, Kirsty; Siegfried, Matthew; Frearson, Nicholas; Mosbeux, Cyrille; Siddoway, Christine; Hulbe, Christina; Fricker, Helen; Bell, Robin; Padman, Laurence; Das, Indrani; Dhakal, Tejendra", "repository": "USAP-DC", "science_program": null, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601242"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.", "east": 161.0, "geometry": "POINT(-174.5 -81.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Airborne Radar; LIDAR; Ross Ice Shelf; SALINITY; SALINITY/DENSITY; CONDUCTIVITY; ICE DEPTH/THICKNESS; Tidal Models; GRAVITY ANOMALIES; Ross Sea; Antarctica; BATHYMETRY; C-130; MAGNETIC ANOMALIES; USAP-DC; Airborne Gravity", "locations": "Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "uid": "p0010035", "west": -150.0}, {"awards": "1341717 Ackley, Stephen; 1341513 Maksym, Edward; 1341606 Stammerjohn, Sharon; 1543483 Sedwick, Peter; 1341725 Guest, Peter", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Dhakal, Tejendra; Bertinato, Christopher; Xie, Hongjie; Bell, Robin; Locke, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Mei, M. Jeffrey; Maksym, Edward; Jeffrey Mei, M.", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": null, "dataset_titles": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ; Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ; Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "datasets": [{"dataset_uid": "601174", "doi": "10.15784/601174", "keywords": "Antarctica; Biota; Bivalves; Cucullaea; Eocene; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Oxygen Isotope; Paleotemperature; Retrotapes; Seasonality; Seymour Island", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601174"}, {"dataset_uid": "601175", "doi": "10.15784/601175 ", "keywords": "Antarctica; Atmosphere; Climate Model; Computer Model; Eocene; Genesis; Global Circulation Model; Modeling; Model Output; Seasonality; Temperature", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ", "url": "https://www.usap-dc.org/view/dataset/601175"}, {"dataset_uid": "601173", "doi": "10.15784/601173 ", "keywords": "Antarctica; Carbon Isotopes; Driftwood; Eocene; Geochemistry; Geochronology; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Organic Carbon Isotopes; Seasonality; Seymour Island; Wood", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ", "url": "https://www.usap-dc.org/view/dataset/601173"}], "date_created": "Tue, 23 Apr 2019 00:00:00 GMT", "description": "In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth\u0027s past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth\u0027s ancient climate and what we can learn from it. Antarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic.", "east": -56.0, "geometry": "POINT(-56.5 -64.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "PALEOCLIMATE RECONSTRUCTIONS; USAP-DC; ISOTOPES; NOT APPLICABLE; MACROFOSSILS; Antarctica", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ivany, Linda; Lu, Zunli; Junium, Christopher; Samson, Scott", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.5, "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "uid": "p0010025", "west": -57.0}, {"awards": "1543412 Reinfelder, John", "bounds_geometry": null, "dataset_titles": "16S rRNA gene libraries of krill gut microbial communities; Microbial gene libraries of krill gut microbial communities", "datasets": [{"dataset_uid": "200024", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial gene libraries of krill gut microbial communities", "url": "https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbioproject%2F531145\u0026amp;data=02%7C01%7Creinfeld%40envsci.rutgers.edu%7C7e30a0192dc748ab271408d6b9d57d08%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C636900723909188941\u0026amp;sdata=G6cNg4bBHzeikrWSCYITcT6XS3NLWwjQ1yNdwtrALPc%3D\u0026amp;reserved=0"}, {"dataset_uid": "601171", "doi": "10.15784/601171", "keywords": "Antarctica; Biota; Krill; LTER Palmer Station; Microbiome; Oceans; Southern Ocean", "people": "Reinfelder, John", "repository": "USAP-DC", "science_program": "LTER", "title": "16S rRNA gene libraries of krill gut microbial communities", "url": "https://www.usap-dc.org/view/dataset/601171"}], "date_created": "Sun, 31 Mar 2019 00:00:00 GMT", "description": "Marine food webs can concentrate monomethylmercury (MMHg), a neurotoxin in mammals, in upper trophic level consumers. Despite their remoteness, coastal Antarctic marine ecosystems accumulate and biomagnify MMHg to levels observed at lower latitudes and in the Arctic. Marine sediments and other anoxic habitats in the oceans are typical areas where methylation of mercury occurs and these are likely places where MMHg is being produced. Krill, and more specifically their digestive tracts, may be a previously unaccounted for site where the production of MMHg may be occurring in the Antarctic. If monomethylmercury production is occurring in krill, current views regarding bioaccumulation in the food web and processes leading to the production and accumulation of mercury in the Antarctic Ocean could be better informed, if not transformed. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiome\u0027s genomic content and potential for production of monomethyl mercury by detecting the genes involved in mercury transformations. By analyzing the krill gut microbiome, the project will provide insights regarding animal-microbe interactions and their potential role in globally important biogeochemical cycles. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiomes genomic content and potential for production of monomethylmercury. The diversity and metabolic profiles of microorganisms in krill digestive tracts will be evaluated using massively parallel Illumina DNA sequencing technology to produce 16S rRNA gene libraries and assembled whole metagenomes. The project will also quantify the abundance and expression of Hg methylation genes, hgcAB, and identify their taxonomic affiliations in the microbiome communities. Environmental metagenomes, 16S rRNA gene inventories produced from this project will provide the polar science community with valuable databases and experimental tools with which to examine coastal Antarctic microbial ecology and biogeochemistry. The project will seek to provide a wider window into the diversity of extremophile microbial communities and the identification of potentially unique and useful bioactive compounds. In addition to public education and outreach. This project will train graduate students and provide educational and outreach opportunities at the participating institutions", "east": -68.2816, "geometry": "POINT(-69.09295 -66.8017)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; NOT APPLICABLE; BACTERIA/ARCHAEA", "locations": "Antarctica", "north": -65.8708, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Schaefer, Jeffra; Reinfelder, John; Barkar, T.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "NCBI GenBank; USAP-DC", "science_programs": "LTER", "south": -67.7326, "title": "Methylmercury in Antarctic Krill Microbiomes", "uid": "p0010023", "west": -69.9043}, {"awards": "1743326 Kingslake, Jonathan", "bounds_geometry": null, "dataset_titles": "Report on Antarctic surface hydrology workshop, LDEO, 2018 ", "datasets": [{"dataset_uid": "601170", "doi": "10.15784/601170", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Sheet Stability; Ice Shelf; Report; Workshop", "people": "Schoof, Christian; DeConto, Robert; Das, Indrani; Bell, Robin; Banwell, Alison; Lenaerts, Jan; Trusel, Luke; Kingslake, Jonathan; Tedesco, Marco", "repository": "USAP-DC", "science_program": null, "title": "Report on Antarctic surface hydrology workshop, LDEO, 2018 ", "url": "https://www.usap-dc.org/view/dataset/601170"}], "date_created": "Tue, 26 Mar 2019 00:00:00 GMT", "description": "Ice shelves are the floating portions of glaciers that terminate in the ocean. They are common around the periphery of Antarctica. The accumulation of surface meltwater on or near the surface of ice shelves can play a role in ice-shelf collapse, which leads to accelerated loss of grounded ice and sea-level rise. Recent studies have showed that present-day meltwater generation and movement across the surface of Antarctica is more widespread than previously thought and is expected to increase. Consequently, there is a growing need to address the role of surface water in forecasts of ice-shelf behavior. While much progress has been made, understanding of the role of water in ice-shelf collapse is still in its infancy. This award supports a workshop that will bring together experts from multiple disciplines that, together, can advance understanding of Antarctic surface hydrology and its role in the future stability of ice shelves. This workshop will bring together U.S. and international scientists with expertise in ice-sheet dynamics, glacial hydrology, climatology, and other disciplines to identify critical knowledge gaps and move the community towards answering fundamental questions such as: What climate dynamics are responsible for surface meltwater generation in Antarctica? What controls the spatiotemporal distribution of meltwater ponds on Antarctic ice shelves? Where is meltwater generated, where does it pond today, and how will this change this century? How will meltwater impact ice shelves? How will surface hydrology impact sea-level this century? The deliberations will be captured in a workshop report and review paper that will be broadly distributed.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; ICE SHEETS; North America; USAP-DC", "locations": "North America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kingslake, Jonathan; Tedesco, Marco; Trusel, Luke", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability", "uid": "p0010021", "west": null}, {"awards": "9725024 Jacobs, Stanley", "bounds_geometry": "POLYGON((140 -65,141 -65,142 -65,143 -65,144 -65,145 -65,146 -65,147 -65,148 -65,149 -65,150 -65,150 -65.3,150 -65.6,150 -65.9,150 -66.2,150 -66.5,150 -66.8,150 -67.1,150 -67.4,150 -67.7,150 -68,149 -68,148 -68,147 -68,146 -68,145 -68,144 -68,143 -68,142 -68,141 -68,140 -68,140 -67.7,140 -67.4,140 -67.1,140 -66.8,140 -66.5,140 -66.2,140 -65.9,140 -65.6,140 -65.3,140 -65))", "dataset_titles": "Expedition Data; R/V Nathaniel B. Palmer NBP0008 - Expedition Data; \r\nSummer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "200023", "doi": "10.7284/905461", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "R/V Nathaniel B. Palmer NBP0008 - Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "200022", "doi": "10.15784/601161 ", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "\r\nSummer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}, {"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}], "date_created": "Mon, 11 Mar 2019 00:00:00 GMT", "description": "This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999.", "east": 150.0, "geometry": "POINT(145 -66.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC; Southern Ocean; WATER MASSES; Antarctica", "locations": "Southern Ocean; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Visbeck, Martin", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.0, "title": "Circumpolar Deep Water and the West Antarctic Ice Sheet", "uid": "p0010019", "west": 140.0}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": "POINT(-63.0796667 -61.5157)", "dataset_titles": "Expedition Data; Log Sheets of coral samples for LMG1509", "datasets": [{"dataset_uid": "601160", "doi": "10.15784/601160", "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "people": "Waller, Rhian", "repository": "USAP-DC", "science_program": null, "title": "Log Sheets of coral samples for LMG1509", "url": "https://www.usap-dc.org/view/dataset/601160"}, {"dataset_uid": "001378", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1509"}], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. Cold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.", "east": -63.0796667, "geometry": "POINT(-63.0796667 -61.5157)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e TRAWLS/NETS \u003e OTTER TRAWL", "is_usap_dc": true, "keywords": "AQUATIC SCIENCES; ANIMALS/INVERTEBRATES; R/V LMG; Southern Ocean; USAP-DC; WATER TEMPERATURE", "locations": "Southern Ocean", "north": -61.5157, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Waller, Rhian; Jay, Lunden", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -61.5157, "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "uid": "p0010017", "west": -63.0796667}, {"awards": "1246776 Nyblade, Andrew; 1247518 Smalley, Robert; 1419268 Aster, Richard; 1246666 Huerta, Audrey; 1246712 Wiens, Douglas; 1249513 Dalziel, Ian; 1249631 Wilson, Terry", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Network/Campaign: Antarctica POLENET - ANET; POLENET - Network YT", "datasets": [{"dataset_uid": "200012", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "POLENET - Network YT", "url": "http://ds.iris.edu/mda/YT/?timewindow=2007-2018"}, {"dataset_uid": "200011", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Network/Campaign: Antarctica POLENET - ANET", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#grouping=Antarctica%20POLENET%20-%20ANET;scope=Station;sampleRate=normal;groupingMod=contains"}], "date_created": "Sun, 17 Feb 2019 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community \"backbone network\" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Geodesy; USAP-DC; SEISMIC SURFACE WAVES; CRUSTAL MOTION; TECTONICS; Broadband Seismic; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Dalziel, Ian W.; Bevis, Michael; Aster, Richard; Huerta, Audrey D.; Winberry, Paul; Anandakrishnan, Sridhar; Nyblade, Andrew; Wiens, Douglas; Smalley, Robert", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": "POLENET", "south": -90.0, "title": "Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2", "uid": "p0010013", "west": -180.0}, {"awards": "1443733 Winsor, Peter; 1443680 Smith, Craig; 1443705 Vernet, Maria", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Nittrouer, Charles; Eidam, Emily; Smith, Craig; Homolka, Khadijah", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}, {"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Truffer, Martin; Winsor, Peter", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}, {"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}, {"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Manck, Lauren; Vernet, Maria; Pan, B. Jack; Forsch, Kiefer", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}, {"awards": "1443394 Pollard, David; 1443347 Condron, Alan", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios; Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming; Simulated changes in Southern Ocean salinity", "datasets": [{"dataset_uid": "601442", "doi": "10.15784/601442", "keywords": "Antarctica; Computer Model; Freshwater; Glaciers/ice Sheet; Glaciers/Ice Sheet; Model Data; Ocean Model; Oceans; Salinity", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Simulated changes in Southern Ocean salinity", "url": "https://www.usap-dc.org/view/dataset/601442"}, {"dataset_uid": "601449", "doi": "10.15784/601449", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meltwater", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming", "url": "https://www.usap-dc.org/view/dataset/601449"}, {"dataset_uid": "601154", "doi": "10.15784/601154 ", "keywords": "Antarctic; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Model; Meltwater; Model Data; Modeling; Model Output", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios", "url": "https://www.usap-dc.org/view/dataset/601154"}], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; AMD; MODELS; Amd/Us; Antarctica; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pollard, David; Condron, Alan; DeConto, Robert", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "uid": "p0010007", "west": -180.0}, {"awards": "1656344 Bowman, Jeff", "bounds_geometry": "POLYGON((-64.1 -64.75,-64.08 -64.75,-64.06 -64.75,-64.04 -64.75,-64.02 -64.75,-64 -64.75,-63.98 -64.75,-63.96 -64.75,-63.94 -64.75,-63.92 -64.75,-63.9 -64.75,-63.9 -64.775,-63.9 -64.8,-63.9 -64.825,-63.9 -64.85,-63.9 -64.875,-63.9 -64.9,-63.9 -64.925,-63.9 -64.95,-63.9 -64.975,-63.9 -65,-63.92 -65,-63.94 -65,-63.96 -65,-63.98 -65,-64 -65,-64.02 -65,-64.04 -65,-64.06 -65,-64.08 -65,-64.1 -65,-64.1 -64.975,-64.1 -64.95,-64.1 -64.925,-64.1 -64.9,-64.1 -64.875,-64.1 -64.85,-64.1 -64.825,-64.1 -64.8,-64.1 -64.775,-64.1 -64.75))", "dataset_titles": "\r\nMetadata accompanying BioProject SUB4579142 ; Western Antarctic Peninsula Marine Metatranscriptomes Sep 29 2018", "datasets": [{"dataset_uid": "200010", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Western Antarctic Peninsula Marine Metatranscriptomes Sep 29 2018", "url": "https://submit.ncbi.nlm.nih.gov/subs/sra/SUB4579142/overview"}, {"dataset_uid": "601153", "doi": "", "keywords": "Antarctic; Antarctica; Bacteria; Bacteria Production; Biota; Chlorophyll; LTER Palmer Station; Primary Production; Sea Ice; Southern Ocean", "people": "Bowman, Jeff", "repository": "USAP-DC", "science_program": null, "title": "\r\nMetadata accompanying BioProject SUB4579142 ", "url": "https://www.usap-dc.org/view/dataset/601153"}], "date_created": "Thu, 31 Jan 2019 00:00:00 GMT", "description": "This EAGER project will compare gene expression patterns in the planktonic communities under ice covers that form in coastal embayment\u0027s in the Antarctic Peninsula. Previous efforts taking advantage of unique ice conditions in November and December of 2015 allowed researchers to conduct an experiment to examine the role of sea ice cover on microbial carbon and energy transfer during the winter-spring transition. The EAGER effort will enable the researchers to conduct the \"omics\" analyses of the phytoplankton to determine predominant means by which energy is acquired and used in these settings. This EAGER effort will apply new expertise to fill an existing gap in ecological observations along the West Antarctic Peninsula. The principle product of the proposed work will be a novel dataset to be analyzed and by an early career researcher from an underserved community (veteran). The critical baseline data contained in this dataset enable a comparison of eukaryotic and prokaryotic gene expression patterns to establish the relative importance of chemoautotrophy, heterotrophy, mixotrophy, and phototrophy during the experiments. this information and data will be made immediately available to the broader scientific community, and will enable the development of further hypotheses on ecosystem change as sea ice cover changes in the region. Very little gene expression data is currently available for the Antarctic marine environment, and no gene expression data is available during the ecologically critical winter to spring transition. Moreover, ice cover in bays is common along the West Antarctic Peninsula yet the opportunity to study cryptophyte phytoplankton physiology beneath such ice conditions in coastal embayments is rare.", "east": -63.9, "geometry": "POINT(-64 -64.875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; Antarctica; COASTAL", "locations": "Antarctica", "north": -64.75, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowman, Jeff", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI SRA", "repositories": "NCBI SRA; USAP-DC", "science_programs": null, "south": -65.0, "title": "A Preliminary Assessment of the Influence of Ice Cover on Microbial Carbon and Energy Acquisition during the Antarctic Winter-spring Seasonal Transition", "uid": "p0010003", "west": -64.1}, {"awards": "1341476 Moran, Amy", "bounds_geometry": "POINT(166.666 -77.84999)", "dataset_titles": "Cuticle morphology and oxygen gradients of Antarctic sea spiders; Physiological and biochemical measurements on Pycnogonida from McMurdo Sound; Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts; Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "datasets": [{"dataset_uid": "601150", "doi": "10.15784/601150", "keywords": "Antarctica; Biota; Body Size; Cuticle; Metabolic Rate; Oxygen; Polar Gigantism; Respiration; Size Limits; Southern Ocean; Temperature", "people": "Shishido, Caitlin; Woods, H. Arthur; Lane, Steven J.; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601150"}, {"dataset_uid": "601142", "doi": "10.15784/601142", "keywords": "Antarctica; Biomechanics; Biota; Cold Adaptation; McMurdo Sound; Metabolism; Oceans; Oxygen; Pycnogonida; Southern Ocean", "people": "Tobalske, Bret; Woods, H. Arthur; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on Pycnogonida from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601142"}, {"dataset_uid": "601145", "doi": "10.15784/601145", "keywords": "Antarctica; Benthos; Biota; Body Size; Cuticle; McMurdo Sound; Microelectrodes; Microscope; Microscopy; Oxygen; Pore; Respiration; Sea Spider; Southern Ocean", "people": "Arthur Woods, H.; Woods, H. Arthur", "repository": "USAP-DC", "science_program": null, "title": "Cuticle morphology and oxygen gradients of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601145"}, {"dataset_uid": "601149", "doi": "10.15784/601149", "keywords": "Antarctica; Barnacles; Biota; Cuticle; Epibionts; Fouling; Grooming; Locomotion; Oxygen; Respiration", "people": "Tobalske, Bret; Lane, Steven J.; Moran, Amy; Shishido, Caitlin; Woods, H. Arthur", "repository": "USAP-DC", "science_program": null, "title": "Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts", "url": "https://www.usap-dc.org/view/dataset/601149"}], "date_created": "Mon, 10 Dec 2018 00:00:00 GMT", "description": "Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as \u0027polar gigantism.\u0027 Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.\u003cbr/\u003e\u003cbr/\u003eThe prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.", "east": 166.666, "geometry": "POINT(166.666 -77.84999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": -77.84999, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy; Woods, H. Arthur", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.84999, "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "uid": "p0000007", "west": 166.666}, {"awards": "1644245 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project); Ice core ethane measurements, Greenland and Antarctica, 1000-1900 CE.", "datasets": [{"dataset_uid": "601367", "doi": "10.15784/601367", "keywords": "Antarctica; Ethane", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project)", "url": "https://www.usap-dc.org/view/dataset/601367"}, {"dataset_uid": "002574", "doi": "", "keywords": null, "people": null, "repository": "Arctic Data Center", "science_program": null, "title": "Ice core ethane measurements, Greenland and Antarctica, 1000-1900 CE.", "url": "https://arcticdata.io/catalog/view/doi:10.18739/A2CR5NC1B"}], "date_created": "Tue, 13 Nov 2018 00:00:00 GMT", "description": "Aydin/1644245 This award supports a project to measure ethane in ice core air extracted from the recently drilled intermediate depth South Pole ice core (SPICECORE). Ethane is an abundant hydrocarbon in the atmosphere. The ice core samples that will be used in this analysis will span about 150 years before present to about 55,000 years before present and therefore, ethane emissions linked to human activities are not a subject of this study. The study will focus on quantifying the variability in the natural sources of ethane and the processes that govern its removal from the atmosphere. A long-term ice core ethane record will provide new knowledge on the chemistry of Earth?s atmosphere during time periods when human influence was either much smaller than present day or non-existent. The broader impacts of this work include education and training of students and a contribution to a better understanding of the chemistry of the atmosphere in the past and how it has been impacted by past changes in climate. Natural sources that emit ethane are both geologic (e.g. seeps, vents, mud volcanoes etc.) and pyrogenic (wild fires) which is commonly called biomass burning. Ethane is removed from the atmosphere via oxidation reactions. The ice core ethane measurements have great potential as a proxy for gaseous emissions from biomass burning. This is especially true for time periods preceding the industrial revolution when atmospheric variability of trace gases was largely controlled by natural processes. Another objective of this study is to improve understanding of the causes of atmospheric methane variability apparent which are in the existing ice core records. Methane is a simpler hydrocarbon than ethane and more abundant in the atmosphere. Even though the project does not include any methane measurements; the commonalities between the sources and removal of atmospheric ethane and methane mean that ethane measurements can be used to gain insight into the causes of changes in atmospheric methane levels. The broader impacts of the project include partial support for one Ph.D. student and support for undergraduate researchers at UC Irvine. The PIs group currently has 4 undergraduate researchers. The PI and the graduate students in the UCI ice core laboratory regularly participate in on- and off-campus activities such as laboratory tours and lectures directed towards educating high-school students and science teachers, and the local community at large about the scientific value of polar ice cores as an environmental record of our planet\u0027s past. The results of this research will be disseminated via peer-review publications and will contribute to policy-relevant activities such as the IPCC Climate Assessment. Data resulting from this project will be archived in a national data repository. This award does not have field work in Antarctica.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "Arctic Data Center; USAP-DC", "science_programs": "SPICEcore", "south": null, "title": "Ethane Measurements in the Intermediate Depth South Pole Ice Core (SPICECORE)", "uid": "p0000762", "west": null}, {"awards": "1543313 VanTongeren, Jill", "bounds_geometry": null, "dataset_titles": "U-Pb ages and mineral compositions from Dufek Intrusion", "datasets": [{"dataset_uid": "601132", "doi": "10.15784/601132", "keywords": "Antarctica; Chemical Composition; Chemistry:rock; Chemistry:Rock; Crystallization; Dufek Complex; Geochemistry; Magma Chamber Procesess; Mass Spectrometry; Rocks; Snow/ice; Snow/Ice; Solid Earth; TIMS; Volcanic Deposits", "people": "VanTongeren, Jill", "repository": "USAP-DC", "science_program": null, "title": "U-Pb ages and mineral compositions from Dufek Intrusion", "url": "https://www.usap-dc.org/view/dataset/601132"}], "date_created": "Mon, 29 Oct 2018 00:00:00 GMT", "description": "The solidified remnants of large magma bodies within the continental crust hold the key to understanding the chemical and physical evolution of volcanic provinces through time. These deposits also commonly contain some of the world\u0027s most important ore deposits. Exposed deposits in South Africa, Greenland, USA, Canada, and Antarctica have led researchers to propose that the bigger the magma body, the faster it will crystallize. While this might seem counter-intuitive (typically it is thought that more magma = hotter = harder to cool), the comparison of these exposures show that bigger magma chambers maintain a molten top that is always in contact with the colder crust; whereas smaller magma chambers insulate themselves by crystallizing at the margins. The process is similar to the difference between a large cup of coffee with no lid, and a smaller cup of coffee held in a thermos. The large unprotected cup of coffee will cool down much faster than that held in the thermos. This research project of VanTongeren and Schoene will use previously collected rocks from the large (~8-9 km thick) Dufek Intrusion in Antarctica to precisely quantify how fast the magma chamber crystallized, and compare that rate to the much smaller magma chamber exposed in the Skaergaard Intrusion of E. Greenland. The work is an important step towards improving our understanding of time-scales associated with the thermal and chemical evolution of nearly all magma chambers on Earth, which will ultimately lead to better predictions of volcanic hazards globally. The work will also yield important insights into the timescales and conditions necessary for developing vast magmatic ore deposits, which is essential to the platinum and steel industries in the USA and abroad. Based on observations of solidification fronts in six of the world\u0027s most completely exposed layered mafic intrusions, it was recently proposed that bigger magma chambers must crystallize faster than small magma chambers. While this is initially counter-intuitive, the hypothesis falls out of simple heat balance equations and the observation that the thickness of cumulates at the roofs of such intrusions is negatively proportional to the size of the intrusion. In this study, VanTongeren and Schoene will directly test the hypothesis that bigger magma chambers crystallize faster by applying high precision U-Pb zircon geochronology on 5-10 samples throughout the large Dufek Intrusion of Antarctica. Due to uncertainties in even the highest-precision ID-TIMS analyses, the Dufek Intrusion of Antarctica is the only large layered mafic intrusion on Earth where this research can be accomplished. VanTongeren and Schoene will place the geochronological measurements of the Dufek Intrusion into a comprehensive petrologic framework by linking zircon crystallization to other liquidus phases using mineral geochemistry, zircon saturation models, and petrologic models for intrusion crystallization. The research has the potential to radically change the way that we understand the formation and differentiation of large magma bodies within the shallow crust. Layered intrusions are typically thought to cool and crystallize over very long timescales allowing for significant differentiation of the magmas and reorganization of the cumulate rocks. If the \u0027bigger magma chambers crystallize faster hypothesis\u0027 holds this could reduce the calculated solidification time scales of the early earth and lunar magma oceans and have important implications for magma chamber dynamics of active intraplate volcanism and long-lived continental arcs. Furthermore, while the Dufek Intrusion is one of only two large layered intrusions exposed on Earth, very little is known about its petrologic evolution. The detailed geochemical and petrologic work of VanTongeren and Schoene based on analyses of previously collected samples will provide important observations with which to compare the Dufek and other large magma chambers.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "VanTongeren, Jill", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Testing the Hypothesis that Bigger Magma Chambers Crystallize Faster", "uid": "p0000135", "west": null}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": null, "dataset_titles": "Allan Hills ice water stable isotope record for dD, d18O; Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Higgins, John; Yan, Yuzhen; Bender, Michael; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Yan, Yuzhen; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Ng, Jessica; Severinghaus, Jeffrey P.; Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Yan, Yuzhen; Introne, Douglas; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.; Higgins, John; Brook, Edward", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Introne, Douglas; Mayewski, Paul A.; Kurbatov, Andrei V.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}, {"dataset_uid": "601863", "doi": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "people": "Higgins, John; Introne, Douglas; Brook, Edward; Mayewski, Paul A.; Severinghaus, Jeffrey P.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills ice water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601863"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Introne, Douglas; Kurbatov, Andrei V.; Yan, Yuzhen; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Bender, Michael; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "0839142 Tulaczyk, Slawek; 0839059 Powell, Ross; 0838764 Anandakrishnan, Sridhar; 0838947 Tulaczyk, Slawek; 0838855 Jacobel, Robert; 0838763 Anandakrishnan, Sridhar; 0839107 Powell, Ross", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Scherer, Reed Paul; Baudoin, Patrick; Warny, Sophie; Coenen, Jason; Askin, Rosemary; Casta\u00f1eda, Isla", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Baudoin, Patrick; Coenen, Jason; Warny, Sophie; Askin, Rosemary; Scherer, Reed Paul; Casta\u00f1eda, Isla", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1141889 Winberry, J. Paul; 1141866 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Beardmore Glacier High-Frequency Impulse Radar Data; Geophysical measurements Beardmore Glacier, Antarctica; Project code ZF for passive seismic and 17-030 for active source", "datasets": [{"dataset_uid": "601713", "doi": "10.15784/601713", "keywords": "Antarctica; Beardmore Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Christianson, Knut; Conway, Howard; Hoffman, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Beardmore Glacier High-Frequency Impulse Radar Data", "url": "https://www.usap-dc.org/view/dataset/601713"}, {"dataset_uid": "000210", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Project code ZF for passive seismic and 17-030 for active source", "url": "https://ds.iris.edu/mda/17-030"}, {"dataset_uid": "601121", "doi": "10.15784/601121", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Geophysical measurements Beardmore Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601121"}], "date_created": "Sun, 09 Sep 2018 00:00:00 GMT", "description": "Conway/1141866 This award supports a project to conduct a suite of experiments to study spatial and temporal variations of basal conditions beneath Beardmore Glacier, an East Antarctic outlet glacier that discharges into the Ross Sea Embayment. The intellectual merit of the project is that it should help verify whether or not global warming will play a much larger role in the future mass balance of ice sheets than previously considered. Recent observations of rapid changes in discharge of fast-flowing outlet glaciers and ice streams suggest that dynamical responses to warming could affect that ice sheets of Greenland and Antarctica. Assessment of possible consequences of these responses is hampered by the lack of information about the basal boundary conditions. The leading hypothesis is that variations in basal conditions exert strong control on the discharge of outlet glaciers. Airborne and surface-based radar measurements of Beardmore Glacier will be made to map the ice thickness and geometry of the sub-glacial trough and active and passive seismic experiments, together with ground-based radar and GPS measurements will be made to map spatial and temporal variations of conditions at the ice-bed interface. The observational data will be used to constrain dynamic models of glacier flow. The models will be used to address the primary controls on the dynamics of Antarctic outlet glaciers, the conditions at the bed, their spatial and temporal variation, and how such variability might affect the sliding and flow of these glaciers. The work will also explore whether or not these outlet glaciers could draw down the interior of East Antarctica, and if so, how fast. The study will take three years including two field seasons to complete and results from the work will be disseminated through public and professional meetings and journal publications. All data and metadata will be made available through the NSIDC web portal. The broader impacts of the work are that it will help elucidate the fundamental physics of outlet glacier dynamics which is needed to improve predictions of the response of ice sheets to changing environmental conditions. The project will also provide support for early career investigators and will provide training and support for one graduate and two undergraduate students. All collaborators are currently involved in scientific outreach and graduate student education and they are committed to fostering diversity.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Winberry, Paul", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Outlet Glacier Dynamics", "uid": "p0000437", "west": null}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": "POLYGON((166.1631 -77.9007,166.19736 -77.9007,166.23162 -77.9007,166.26588 -77.9007,166.30014 -77.9007,166.3344 -77.9007,166.36866 -77.9007,166.40292 -77.9007,166.43718 -77.9007,166.47144 -77.9007,166.5057 -77.9007,166.5057 -77.90423,166.5057 -77.90776,166.5057 -77.91129,166.5057 -77.91482,166.5057 -77.91835,166.5057 -77.92188,166.5057 -77.92541,166.5057 -77.92894,166.5057 -77.93247,166.5057 -77.936,166.47144 -77.936,166.43718 -77.936,166.40292 -77.936,166.36866 -77.936,166.3344 -77.936,166.30014 -77.936,166.26588 -77.936,166.23162 -77.936,166.19736 -77.936,166.1631 -77.936,166.1631 -77.93247,166.1631 -77.92894,166.1631 -77.92541,166.1631 -77.92188,166.1631 -77.91835,166.1631 -77.91482,166.1631 -77.91129,166.1631 -77.90776,166.1631 -77.90423,166.1631 -77.9007))", "dataset_titles": "McMurdo Ice Shelf AWS data; McMurdo Ice Shelf GPS survey of vertical motion; Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica; Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "datasets": [{"dataset_uid": "601113", "doi": "10.15784/601113", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Photo/video; Photo/Video; Supraglacial Meltwater", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "url": "https://www.usap-dc.org/view/dataset/601113"}, {"dataset_uid": "601107", "doi": "10.15784/601107", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ice Shelf; Ice-Shelf Flexure; Snow/ice; Snow/Ice; Surface Melt", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf GPS survey of vertical motion", "url": "https://www.usap-dc.org/view/dataset/601107"}, {"dataset_uid": "601106", "doi": "10.15784/601106", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf AWS data", "url": "https://www.usap-dc.org/view/dataset/601106"}, {"dataset_uid": "601116", "doi": "10.15784/601116", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Snow/ice; Snow/Ice; Subglacial And Supraglacial Water Depth; Supraglacial Lake; Supraglacial Meltwater; Water Depth", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601116"}], "date_created": "Tue, 24 Jul 2018 00:00:00 GMT", "description": "Meltwater lakes that sit on top of Antarctica\u0027s floating ice shelves have likely contributed to the dramatic changes seen in Antarctica\u0027s glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that \u003e2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.", "east": 166.5057, "geometry": "POINT(166.3344 -77.91835)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "USAP-DC; AWOS", "locations": null, "north": -77.9007, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e AWOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "uid": "p0000138", "west": 166.1631}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))", "dataset_titles": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica; Expedition data of NBP1601", "datasets": [{"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}, {"dataset_uid": "601094", "doi": "10.15784/601094", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "people": "Skinner, Steven; Kirschvink, Joseph", "repository": "USAP-DC", "science_program": null, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601094"}], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Ant\u00e1rtico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.", "east": -56.2, "geometry": "POINT(-57.55 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; R/V NBP; USAP-DC", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph; Christensen, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.7, "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "uid": "p0000276", "west": -58.9}, {"awards": "1143834 Huber, Bruce; 1430550 Domack, Eugene; 1143836 Leventer, Amy; 1143833 Orsi, Alejandro", "bounds_geometry": "POLYGON((116 -65.2,116.5 -65.2,117 -65.2,117.5 -65.2,118 -65.2,118.5 -65.2,119 -65.2,119.5 -65.2,120 -65.2,120.5 -65.2,121 -65.2,121 -65.38,121 -65.56,121 -65.74,121 -65.92,121 -66.1,121 -66.28,121 -66.46,121 -66.64,121 -66.82,121 -67,120.5 -67,120 -67,119.5 -67,119 -67,118.5 -67,118 -67,117.5 -67,117 -67,116.5 -67,116 -67,116 -66.82,116 -66.64,116 -66.46,116 -66.28,116 -66.1,116 -65.92,116 -65.74,116 -65.56,116 -65.38,116 -65.2))", "dataset_titles": "AU1402 Final UCTD data; AU1402 mooring data; Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ; NBP1402 diatom data; NBP1402 Final CTD data; NBP1402 Final UCTD data; NBP1402 JPC43 Diatom Data; NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data; NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data; NBP14-02 JPC-55 foraminifer assemblage data; NBP1402 Lowered ADCP data; Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402; Sabrina Coast mooring data - sediment trap mooring 2014", "datasets": [{"dataset_uid": "601044", "doi": "10.15784/601044", "keywords": "Antarctica; Carbon; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Marine Sediments; NBP1402; Nitrogen; Oceans; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Domack, Eugene Walter; Smith, Catherine; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data", "url": "https://www.usap-dc.org/view/dataset/601044"}, {"dataset_uid": "601312", "doi": null, "keywords": "Antarctica; Benthic Images; Camera; East Antarctica; Marine Geoscience; NBP1402; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Sabrina Coast; Totten Glacier; Video Data; Yoyo Camera", "people": "Leventer, Amy; Domack, Eugene Walter; Orsi, Alejandro; Post, Alexandra; Shevenell, Amelia; Blankenship, Donald D.; Huber, Bruce; Gulick, Sean", "repository": "USAP-DC", "science_program": null, "title": "Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402", "url": "https://www.usap-dc.org/view/dataset/601312"}, {"dataset_uid": "601310", "doi": null, "keywords": "Antarctica; Benthic Images; Benthos; East Antarctica; Marine Geoscience; NBP1402; Photo; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Totten Glacier; Yoyo Camera", "people": "Gulick, Sean; Domack, Eugene Walter; Shevenell, Amelia; Orsi, Alejandro; Huber, Bruce; Leventer, Amy; Post, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ", "url": "https://www.usap-dc.org/view/dataset/601310"}, {"dataset_uid": "601067", "doi": "10.15784/601067", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final CTD data", "url": "https://www.usap-dc.org/view/dataset/601067"}, {"dataset_uid": "601046", "doi": "10.15784/601046", "keywords": "Antarctica; Biota; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Smith, Catherine; Domack, Eugene Walter; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "url": "https://www.usap-dc.org/view/dataset/601046"}, {"dataset_uid": "601148", "doi": "10.15784/601148", "keywords": "Antarctica; Au1402; Mooring; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Aurora Australis; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 mooring data", "url": "https://www.usap-dc.org/view/dataset/601148"}, {"dataset_uid": "601147", "doi": "10.15784/601147", "keywords": "Antarctica; CTD Data; NBP1402; Ocean Temperature; Physical Oceanography; Sabrina Coast; Salinity; Southern Ocean; Temperature; Underway CTD", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601147"}, {"dataset_uid": "601146", "doi": "10.15784/601146", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601146"}, {"dataset_uid": "601042", "doi": "10.15784/601042", "keywords": "Antarctica; Biota; Continental Margin; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean; Totten Glacier", "people": "Leventer, Amy; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "url": "https://www.usap-dc.org/view/dataset/601042"}, {"dataset_uid": "601845", "doi": "10.15784/601845", "keywords": "Antarctica; Cryosphere; Diatom; NBP1402; Totten Glacier", "people": "Leventer, Amy; NBP1402 science party, ", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 diatom data", "url": "https://www.usap-dc.org/view/dataset/601845"}, {"dataset_uid": "601440", "doi": "10.15784/601440", "keywords": "Antarctica; Diatom; Holocene; Jumbo Piston Corer; NBP1402; R/v Nathaniel B. Palmer; Sabrina Coast; Sediment Core Data; Species Abundance; Totten Glacier", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 JPC43 Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601440"}, {"dataset_uid": "601068", "doi": "10.15784/601068", "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Lowered ADCP data", "url": "https://www.usap-dc.org/view/dataset/601068"}, {"dataset_uid": "601069", "doi": "10.15784/601069", "keywords": "Antarctica; Mooring; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Sabrina Coast mooring data - sediment trap mooring 2014", "url": "https://www.usap-dc.org/view/dataset/601069"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change. Independent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models.", "east": 121.0, "geometry": "POINT(118.5 -66.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "Totten Glacier; NBP1402; Sabrina Coast; LABORATORY; Diatom; R/V NBP; Amd/Us; Bottom Photos; R/V AA; Not provided; USAP-DC; AMD; USA/NSF", "locations": "Sabrina Coast; Totten Glacier", "north": -65.2, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Orsi, Alejandro; Huber, Bruce; Leventer, Amy; Domack, Eugene Walter", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V AA; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "uid": "p0000008", "west": 116.0}, {"awards": "1143981 Domack, Eugene", "bounds_geometry": "POLYGON((-69.9517 -52.7581,-69.02971 -52.7581,-68.10772 -52.7581,-67.18573 -52.7581,-66.26374 -52.7581,-65.34175 -52.7581,-64.41976 -52.7581,-63.49777 -52.7581,-62.57578 -52.7581,-61.65379 -52.7581,-60.7318 -52.7581,-60.7318 -54.31551,-60.7318 -55.87292,-60.7318 -57.43033,-60.7318 -58.98774,-60.7318 -60.54515,-60.7318 -62.10256,-60.7318 -63.65997,-60.7318 -65.21738,-60.7318 -66.77479,-60.7318 -68.3322,-61.65379 -68.3322,-62.57578 -68.3322,-63.49777 -68.3322,-64.41976 -68.3322,-65.34175 -68.3322,-66.26374 -68.3322,-67.18573 -68.3322,-68.10772 -68.3322,-69.02971 -68.3322,-69.9517 -68.3322,-69.9517 -66.77479,-69.9517 -65.21738,-69.9517 -63.65997,-69.9517 -62.10256,-69.9517 -60.54515,-69.9517 -58.98774,-69.9517 -57.43033,-69.9517 -55.87292,-69.9517 -54.31551,-69.9517 -52.7581))", "dataset_titles": "Expedition Data; Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "datasets": [{"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601311", "doi": "10.15784/601311", "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Camera; LARISSA; LMG1311; Marine Geoscience; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould", "people": "Domack, Eugene Walter", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "url": "https://www.usap-dc.org/view/dataset/601311"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth\u0027s crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth\u0027s bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the \"bull\u0027s eye\" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.", "east": -60.7318, "geometry": "POINT(-65.34175 -60.54515)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "LMG1702; R/V LMG", "locations": null, "north": -52.7581, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Kohut, Josh; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.3322, "title": "Continuation of the LARISSA Continuous GPS Network in View of Observed Dynamic Response to Antarctic Peninsula Ice Mass Balance and Required Geologic Constraints", "uid": "p0000233", "west": -69.9517}, {"awards": "1543256 Shuster, David", "bounds_geometry": null, "dataset_titles": "Detrital low-temperature thermochronometry from Bourgeois Fjord, AP; Expedition Data; Expedition data of LMG1702", "datasets": [{"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601259", "doi": "10.15784/601259", "keywords": "Antarctica; Antarctic Peninsula", "people": "Clinger, Anna", "repository": "USAP-DC", "science_program": null, "title": "Detrital low-temperature thermochronometry from Bourgeois Fjord, AP", "url": "https://www.usap-dc.org/view/dataset/601259"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The extreme mountain topographies of alpine landscapes at mid latitudes (e.g., European Alps, Patagonia, Alaska) are thought to have formed by the erosive action of glaciers, yet our understanding of exactly when and how those topographies developed is limited. If glacial ice was responsible for forming them, then those landscapes must have developed primarily over the last 2-3 million years when ice was present at those latitudes; this timing has only recently been confirmed by observations. In contrast, the Antarctic Peninsula, which contains similarly spectacular topographic relief, is known to have hosted alpine glaciers as early as 37 million years ago, and is currently covered by ice. Thus, if caused by glacial erosion, the high relief of the peninsula should have formed much earlier than what has been observed at mid latitude sites, yet we know nearly nothing about the timing of its development. The primary benefit of this research will be to study the timing of topography development along the Antarctic Peninsula by applying state of the art chemical analyses to sediments collected offshore. This research is important because studying a high latitude site will enable comparison with sites at mid latitudes and test current hypotheses on the development of glacial landscapes in general. This project aims to apply low-temperature thermochronometry based on the (U-Th)/He system in apatite to investigate the exhumation history, the development of the present topography, and the pattern of glacial erosion in the central Antarctic Peninsula. A number of recent studies have used this approach to study the dramatic, high-relief landscapes formed by Pleistocene alpine glacial erosion in temperate latitudes: New Zealand, the Alps, British Columbia, Alaska, and Patagonia. These studies have not only revealed when these landscapes formed, but have also provided new insights into the physical mechanisms of glacial erosion. The Antarctic Peninsula is broadly akin to temperate alpine landscapes in that the dominant landforms are massive glacial troughs. However, what we know about Antarctic glacial history suggests that the timing and history of glacial erosion was most likely very different from the temperate alpine setting: The Antarctic Peninsula has been glaciated since the Eocene, and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. Our goal is to evaluate these hypotheses by developing a direct thermochronometric record of when and how the present glacial valley relief formed. We propose to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. In effect, since we cannot sample bedrock directly that is currently covered by ice, we will rely on these glaciers to do it for us.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V LMG; LMG1702; Antarctic Peninsula; ICE SHEETS", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kohut, Josh; Shuster, David; Balco, Gregory; Jenkins, Bethany", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Antarctic Peninsula Exhumation and Landscape Development Investigated by Low-Temperature Detrital Thermochronometry", "uid": "p0000876", "west": null}, {"awards": "1246342 Fountain, Andrew; 1245749 Levy, Joseph; 1246203 Gooseff, Michael", "bounds_geometry": "POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119))", "dataset_titles": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica; Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "datasets": [{"dataset_uid": "000209", "doi": "", "keywords": null, "people": null, "repository": "OpenTopo", "science_program": null, "title": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica", "url": "http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.112016.3294.1"}, {"dataset_uid": "601075", "doi": "10.15784/601075", "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "url": "https://www.usap-dc.org/view/dataset/601075"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.", "east": 166.95825, "geometry": "POINT(163.5318575 -77.747214)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; Not provided; LANDFORMS; NOT APPLICABLE", "locations": "Antarctica", "north": -77.2119, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "OpenTopo", "repositories": "OpenTopo; USAP-DC", "science_programs": null, "south": -78.282528, "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "uid": "p0000076", "west": 160.105465}, {"awards": "1543452 Blankenship, Donald", "bounds_geometry": "POLYGON((90 -64,97 -64,104 -64,111 -64,118 -64,125 -64,132 -64,139 -64,146 -64,153 -64,160 -64,160 -64.6,160 -65.2,160 -65.8,160 -66.4,160 -67,160 -67.6,160 -68.2,160 -68.8,160 -69.4,160 -70,153 -70,146 -70,139 -70,132 -70,125 -70,118 -70,111 -70,104 -70,97 -70,90 -70,90 -69.4,90 -68.8,90 -68.2,90 -67.6,90 -67,90 -66.4,90 -65.8,90 -65.2,90 -64.6,90 -64))", "dataset_titles": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES); EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING); EAGLE/ICECAP II RADARGRAMS; EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images); ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "datasets": [{"dataset_uid": "200043", "doi": "http://dx.doi.org/doi:10.26179/5bcff4afc287d", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II RADARGRAMS", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_RADAR_DATA"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200044", "doi": "https://dx.doi.org/10.26179/5bbedd001756b", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL0_RAW_DATA"}, {"dataset_uid": "200041", "doi": "https://doi.org/10.26179/5bcfffdabcf92", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_AEROGEOPHYSICS"}, {"dataset_uid": "200042", "doi": "http://dx.doi.org/doi:10.26179/5bcfef4e3a297", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_Level1B_AEROGEOPHYSICS"}], "date_created": "Tue, 05 Dec 2017 00:00:00 GMT", "description": "Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica\u0027s continental margins.", "east": 160.0, "geometry": "POINT(125 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e GEOMET 823A; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; USAP-DC; SEAFLOOR TOPOGRAPHY; GRAVITY ANOMALIES; MAGNETIC ANOMALIES; Polar; Sea Floor", "locations": "Antarctica; Sea Floor; Polar", "north": -64.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Young, Duncan A.; Grima, Cyril; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "AADC", "repositories": "AADC; USAP-DC", "science_programs": null, "south": -70.0, "title": "East Antarctic Grounding Line Experiment (EAGLE)", "uid": "p0000254", "west": 90.0}, {"awards": "1043784 Schwartz, Susan", "bounds_geometry": "POLYGON((-160 -79,-158 -79,-156 -79,-154 -79,-152 -79,-150 -79,-148 -79,-146 -79,-144 -79,-142 -79,-140 -79,-140 -79.3,-140 -79.6,-140 -79.9,-140 -80.2,-140 -80.5,-140 -80.8,-140 -81.1,-140 -81.4,-140 -81.7,-140 -82,-142 -82,-144 -82,-146 -82,-148 -82,-150 -82,-152 -82,-154 -82,-156 -82,-158 -82,-160 -82,-160 -81.7,-160 -81.4,-160 -81.1,-160 -80.8,-160 -80.5,-160 -80.2,-160 -79.9,-160 -79.6,-160 -79.3,-160 -79))", "dataset_titles": "PASSCAL experiment 201205 (full data link not provided)", "datasets": [{"dataset_uid": "000194", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "PASSCAL experiment 201205 (full data link not provided)", "url": "http://ds.iris.edu/ds/nodes/dmc/"}], "date_created": "Tue, 07 Nov 2017 00:00:00 GMT", "description": "This award provides support for \"Investigating (Un)Stable Sliding of Whillans Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A proposed Component of the Whillans Ice Stream Subglacial Access and Research Drilling\" from the Antarctic Integrated Systems Science (AISS) program in the Office of Polar Programs at NSF. The project will use the sounds naturally produced by the ice and subglacial water to understand the glacial dynamics of the Whillans Ice Stream located adjacent to the Ross Ice Shelf in Antarctica. Intellectual Merit: The transformative component of the project is that in addition to passive surface seismometers, the team will deploy a series of borehole seismometers. Englacial placement of the seismometers has not been done before, but is predicted to provide much better resolution (detection of smaller scale events as well as detection of a much wider range of frequencies) of the subglacial dynamics. In conjunction with the concurrent WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling) project the team will be able to tie subglacial processes to temporal variations in ice stream dynamics and mass balance of the ice stream. The Whillans Ice Stream experiences large changes in ice velocity in response to tidally triggered stick-slip cycles as well as periodic filling and draining of subglacial Lake Whillans. The overall science goals include: improved understanding of basal sliding processes and role of sticky spots, subglacial lake hydrology, and dynamics of small earthquakes and seismic properties of ice and firn. Broader Impact: Taken together, the research proposed here will provide information on basal controls of fast ice motion which has been recognized by the IPCC as necessary to make reliable predictions of future global sea-level rise. The information collected will therefore have broader implications for global society. The collected information will also be relevant to a better understanding of earthquakes. For outreach the project will work with the overall WISSARD outreach coordinator to deliver information to three audiences: the general public, middle school teachers, and middle school students. The project also provides funding for training of graduate students, and includes a female principal investigator.", "east": -140.0, "geometry": "POINT(-150 -80.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Schwartz, Susan; Tulaczyk, Slawek", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -82.0, "title": "Investigating (Un)Stable Sliding of Whillians Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A Proposed Component of WISSARD", "uid": "p0000393", "west": -160.0}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((70 -68,70.5 -68,71 -68,71.5 -68,72 -68,72.5 -68,73 -68,73.5 -68,74 -68,74.5 -68,75 -68,75 -68.2,75 -68.4,75 -68.6,75 -68.8,75 -69,75 -69.2,75 -69.4,75 -69.6,75 -69.8,75 -70,74.5 -70,74 -70,73.5 -70,73 -70,72.5 -70,72 -70,71.5 -70,71 -70,70.5 -70,70 -70,70 -69.8,70 -69.6,70 -69.4,70 -69.2,70 -69,70 -68.8,70 -68.6,70 -68.4,70 -68.2,70 -68))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": 75.0, "geometry": "POINT(72.5 -69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": 70.0}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": "POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))", "dataset_titles": "Anvers Trough Foraminifer Stable Isotope data; Geochemical and sedimentologic data from NBP01-01 JPC-34", "datasets": [{"dataset_uid": "601064", "doi": "10.15784/601064", "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Anvers Trough Foraminifer Stable Isotope data", "url": "https://www.usap-dc.org/view/dataset/601064"}, {"dataset_uid": "601180", "doi": "10.15784/601180", "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "url": "https://www.usap-dc.org/view/dataset/601180"}], "date_created": "Fri, 27 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.", "east": -65.21, "geometry": "POINT(-65.265 -64.33)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Amd/Us; R/V NBP; USAP-DC", "locations": null, "north": -64.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shevenell, Amelia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "uid": "p0000381", "west": -65.32}, {"awards": "1341712 Hallet, Bernard", "bounds_geometry": "POLYGON((160.9 -76.7,161.08 -76.7,161.26 -76.7,161.44 -76.7,161.62 -76.7,161.8 -76.7,161.98 -76.7,162.16 -76.7,162.34 -76.7,162.52 -76.7,162.7 -76.7,162.7 -76.79,162.7 -76.88,162.7 -76.97,162.7 -77.06,162.7 -77.15,162.7 -77.24,162.7 -77.33,162.7 -77.42,162.7 -77.51,162.7 -77.6,162.52 -77.6,162.34 -77.6,162.16 -77.6,161.98 -77.6,161.8 -77.6,161.62 -77.6,161.44 -77.6,161.26 -77.6,161.08 -77.6,160.9 -77.6,160.9 -77.51,160.9 -77.42,160.9 -77.33,160.9 -77.24,160.9 -77.15,160.9 -77.06,160.9 -76.97,160.9 -76.88,160.9 -76.79,160.9 -76.7))", "dataset_titles": "Long-term rock abrasion study in the Dry Valleys", "datasets": [{"dataset_uid": "601060", "doi": "10.15784/601060", "keywords": "Antarctica; Dry Valleys; Geology/Geophysics - Other; Rocks", "people": "Hallet, Bernard; Sletten, Ronald S.; Malin, Michael", "repository": "USAP-DC", "science_program": null, "title": "Long-term rock abrasion study in the Dry Valleys", "url": "https://www.usap-dc.org/view/dataset/601060"}], "date_created": "Fri, 13 Oct 2017 00:00:00 GMT", "description": "Paragraph for Public Audiences: Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980\u0027s and early 1990\u0027s some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results. Technical Description of Project: The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that \"average\" should not be interpreted as meaning \"uniform.\" The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.", "east": 162.7, "geometry": "POINT(161.8 -77.15)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.7, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hallet, Bernard; Sletten, Ronald S.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Proposal: Decades-long Experiment on Wind-Driven Rock Abrasion in the Ice-Free Valleys, Antarctica", "uid": "p0000074", "west": 160.9}, {"awards": "1103428 Thurber, Andrew", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "McMurdo Spiophanes beds 16s V4 region community composition from sediment cores at McMurdo Station, Antarctia on Sept 9th, 2012 (McMurdo Benthos project); Stable isotopic composition of McMurdo Benthos", "datasets": [{"dataset_uid": "000201", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Stable isotopic composition of McMurdo Benthos", "url": "https://www.bco-dmo.org/dataset/716462"}, {"dataset_uid": "000202", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "McMurdo Spiophanes beds 16s V4 region community composition from sediment cores at McMurdo Station, Antarctia on Sept 9th, 2012 (McMurdo Benthos project)", "url": "https://www.bco-dmo.org/dataset/716443"}], "date_created": "Tue, 10 Oct 2017 00:00:00 GMT", "description": "The biota of the world\u0027s seafloor is fueled by bursts of seasonal primary production. For food-limited sediment communities to persist, a balance must exist between metazoan consumption of and competition with bacteria, a balance which likely changes through the seasons. Polar marine ecosystems are ideal places to study such complex interactions due to stark seasonal shifts between heterotrophic and autotrophic communities, and temperatures that may limit microbial processing of organic matter. The research will test the following hypotheses: 1) heterotrophic bacteria compete with macrofauna for food; 2) as phytoplankton populations decline macrofauna increasingly consume microbial biomass to sustain their populations; and 3) in the absence of seasonal photosynthetic inputs, macrofaunal biodiversity will decrease unless supplied with microbially derived nutrition. Observational and empirical studies will test these hypotheses at McMurdo Station, Antarctica, where a high-abundance macro-infaunal community is adapted to this boom-and-bust cycle of productivity. The investigator will mentor undergraduates from a predominantly minority-serving institution, in the fields of invertebrate taxonomy and biogeochemistry. The general public and young scientists will be engaged through lectures at local K-12 venues and launch of an interactive website. The results will better inform scientists and managers about the effects of climate change on polar ecosystems and the mechanisms of changing productivity patterns on global biodiversity.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -78.0, "title": "PostDoctoral Research Fellowship", "uid": "p0000416", "west": 165.0}, {"awards": "1246317 Mittal, Rajat; 1246296 Yen, Jeannette", "bounds_geometry": null, "dataset_titles": "Hydrodynamics of Spongiobranchaea australis; Tomographic PIV measurements of swimming shelled Antarctic pteropod", "datasets": [{"dataset_uid": "601058", "doi": "10.15784/601058", "keywords": "Biota; Fish; Southern Ocean", "people": "Mittal, Rajat", "repository": "USAP-DC", "science_program": null, "title": "Hydrodynamics of Spongiobranchaea australis", "url": "https://www.usap-dc.org/view/dataset/601058"}, {"dataset_uid": "601108", "doi": "10.15784/601108", "keywords": "Antarctica; Biota; Glaciology", "people": "Yen, Jeannette; Adhikari, Deepak; Webster, Donald R", "repository": "USAP-DC", "science_program": null, "title": "Tomographic PIV measurements of swimming shelled Antarctic pteropod", "url": "https://www.usap-dc.org/view/dataset/601108"}], "date_created": "Fri, 29 Sep 2017 00:00:00 GMT", "description": "Ocean acidification (OA) poses a serious threat, particularly to organisms that precipitate calcium carbonate from seawater. One organism with an aragonite shell that is a key to high latitude ecosystems is the pteropod. With OA, the pteropod shell will thin because the aragonite is highly soluble. As the shell thins, it changes the mass distribution and buoyancy of the animal, which will affect locomotion and through it, all locomotion dependent behavior such as foraging, mating, predator avoidance and migratory patterns. A lower shell weight will be counterbalanced by a smaller mucus web potentially decreasing ingestion rates and carbon flux rates. This interdisciplinary research relies on biological studies of swimming behavior of the pteropod mollusk Limacina helicina in their natural environments with fluid mechanics analyses of swimming hydrodynamics via 3D tomographic particle-image velocimetry and computational fluid dynamics (CFD). This work will: (a) determine how the L. helicina uses its \u0027wings\u0027 (parapodia) to propel itself; (b) examine whether its locomotory kinematics provide efficient propulsion; (c) identify the factors that influence swimming trajectory and \u0027wobble\u0027; and (d) synthesize all data and insights into guidelines for the potential use of pteropod swimming behavior as a bioassay for OA. The loss of these sentinels of anthropogenic increases in CO2 may result in an ecological shift since thecosome pteropods are responsible for ingesting nearly half the primary production in the Southern Ocean and also serve as a primary food resource to upper trophic levels like fish. Since locomotory data can be gathered immediately, the bioassay being developed in this proposal may serve as an early warning of the impending onset of OA effects on this important member of the plankton. Students and researchers will collaborate in a rich interdisciplinary research environment by working with a biological oceanographer, a fluid mechanics expert and a CFD expert coupled with the teamsmanship needed for work in the Antarctic. By setting up a one-of-a-kind 3D tomography system for visualizing flow around planktonic organisms in Norway and at Palmer Station, we increase international exchange of state-of-the-art techniques. The educational impact of the current research will be multiplied by including in the research team, undergraduate students, high-school students and underrepresented minorities in addition to graduate students.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Mittal, Rajat; Webster, Donald R", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification", "uid": "p0000139", "west": null}, {"awards": "1142129 Lamanna, Matthew", "bounds_geometry": "POLYGON((-60 -63.5,-59.6 -63.5,-59.2 -63.5,-58.8 -63.5,-58.4 -63.5,-58 -63.5,-57.6 -63.5,-57.2 -63.5,-56.8 -63.5,-56.4 -63.5,-56 -63.5,-56 -63.7,-56 -63.9,-56 -64.1,-56 -64.3,-56 -64.5,-56 -64.7,-56 -64.9,-56 -65.1,-56 -65.3,-56 -65.5,-56.4 -65.5,-56.8 -65.5,-57.2 -65.5,-57.6 -65.5,-58 -65.5,-58.4 -65.5,-58.8 -65.5,-59.2 -65.5,-59.6 -65.5,-60 -65.5,-60 -65.3,-60 -65.1,-60 -64.9,-60 -64.7,-60 -64.5,-60 -64.3,-60 -64.1,-60 -63.9,-60 -63.7,-60 -63.5))", "dataset_titles": "2008-2016 AMNH accessioned vertebrate fossils from Seymour Island; 3D digital reconstructions of vocal organs of Antarctic Cretaceous bird Vegavis and Paleogene bird Presbyornis", "datasets": [{"dataset_uid": "601112", "doi": "10.15784/601112", "keywords": "Antarctica; Biota; Penguin; Seymour Island; Vertebrates", "people": "MacPhee, Ross", "repository": "USAP-DC", "science_program": null, "title": "2008-2016 AMNH accessioned vertebrate fossils from Seymour Island", "url": "https://www.usap-dc.org/view/dataset/601112"}, {"dataset_uid": "601035", "doi": "10.15784/601035", "keywords": "Antarctica; Biota; Birds", "people": "Clarke, Julia; Salisbury, Steven; Lamanna, Matthew", "repository": "USAP-DC", "science_program": null, "title": "3D digital reconstructions of vocal organs of Antarctic Cretaceous bird Vegavis and Paleogene bird Presbyornis", "url": "https://www.usap-dc.org/view/dataset/601035"}], "date_created": "Wed, 12 Jul 2017 00:00:00 GMT", "description": "Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the \"Scotia Portal\" permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.", "east": -56.0, "geometry": "POINT(-58 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Not provided", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lamanna, Matthew", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.5, "title": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana", "uid": "p0000380", "west": -60.0}, {"awards": "1341360 Steig, Eric", "bounds_geometry": "POINT(106 -77.5)", "dataset_titles": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "datasets": [{"dataset_uid": "601031", "doi": "10.15784/601031", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Snow Pit; WAIS Divide Ice Core", "people": "Steig, Eric J.; Schoenemann, Spruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "url": "https://www.usap-dc.org/view/dataset/601031"}], "date_created": "Tue, 06 Jun 2017 00:00:00 GMT", "description": "Steig/1341360 This award supports a two-year project to develop a method for rapid and precise measurements of the difference in 18O/16O and 17O/16O isotope ratios in water, referred to as the 17O-excess. Measurement of 17O-excess is a recent innovation in geochemistry, complementing traditional measurements of the ratios of hydrogen (D/H) and oxygen (18O/16O). Conventional measurements of 17O/16O are limited in number because of the time-consuming and laborious nature of the analyses, which involves the conversion of water to oxygen via fluorination, followed by high-precision mass spectrometry. This project will use a novel cavity ring-down spectroscopy (CRDS) system developed by a joint effort of the University of Washington and Picarro, Inc. (Santa Clara, CA), along with the Centre for Ice and Climate (Neils Bohr Institute, Copenhagen). The primary intellectual merit of the research is the improvement of the CRDS method for measurements of 17Oexcess of discrete samples of water, to obtain precision and accuracy competitive with conventional methods using mass spectrometry. This will be achieved by quantification of the effects of water vapor concentration variability and instrument memory, precise calibration of the instrument against standard waters, and improvements to the spectroscopic analyses. The CRDS system will also be coupled to continuous-flow systems for ice core analysis, in collaboration with the University of Colorado, Boulder. The goal is to have an operational system available for ice core processing associated with the next major U.S.-led ice core project at South Pole, in 2015-2017. The broader impacts of the research include the ability to measure 17O-excess in ambient atmospheric water vapor, which can be used to improve understanding of convection, moisture transport, and condensation. The instrument development work proposed here is relevant to research supported by several NSF-GEO programs, including Hydrology, Climate and Large Scale Dynamics, Paleoclimate, Atmosphere Chemistry, and both the Arctic and Antarctic Programs. This proposal will support a postdoctoral researcher.", "east": 106.0, "geometry": "POINT(106 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.5, "title": "Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores", "uid": "p0000316", "west": 106.0}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": "POINT(149 -80)", "dataset_titles": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound; Cortisol levels in Weddell seal fur; Seasonal Dive Data ; Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017; Weddell Seal Heat Flux Dataset; Weddell seal iron dynamics and oxygen stores across lactation; Weddell seal metabolic hormone data; Weddell Seal Molt Phenology Dataset; Weddell Seal Molt Survey Data; Weddell seal summer diving behavior", "datasets": [{"dataset_uid": "601560", "doi": "10.15784/601560", "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "people": "Tsai, EmmaLi", "repository": "USAP-DC", "science_program": null, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601560"}, {"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}, {"dataset_uid": "601840", "doi": "10.15784/601840", "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "people": "Kirkham, Amy", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal metabolic hormone data", "url": "https://www.usap-dc.org/view/dataset/601840"}, {"dataset_uid": "601338", "doi": "10.15784/601338", "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Dive Data ", "url": "https://www.usap-dc.org/view/dataset/601338"}, {"dataset_uid": "601027", "doi": "10.15784/601027", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "url": "https://www.usap-dc.org/view/dataset/601027"}, {"dataset_uid": "601271", "doi": "10.15784/601271", "keywords": "Antarctica; Heat Flux; Infrared Thermography; Physiological Conditions; Surface Temperatures; Thermoregulation; Weddell Seal", "people": "Walcott, Skyla", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Heat Flux Dataset", "url": "https://www.usap-dc.org/view/dataset/601271"}, {"dataset_uid": "601131", "doi": "10.15784/601131", "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Phenology Dataset", "url": "https://www.usap-dc.org/view/dataset/601131"}, {"dataset_uid": "601137", "doi": "10.15784/601137", "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Beltran, Roxanne; Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal summer diving behavior", "url": "https://www.usap-dc.org/view/dataset/601137"}, {"dataset_uid": "601134", "doi": "10.15784/601134", "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Cortisol levels in Weddell seal fur", "url": "https://www.usap-dc.org/view/dataset/601134"}, {"dataset_uid": "601133", "doi": "10.15784/601133", "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Survey Data", "url": "https://www.usap-dc.org/view/dataset/601133"}], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay\u0027s Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.", "east": 165.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; USAP-DC; Seal Dive Data; Weddell Seal", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "uid": "p0000229", "west": 165.0}, {"awards": "1246223 Hastings, Meredith", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide WDC06A Nitrate Isotope Record", "datasets": [{"dataset_uid": "601022", "doi": "10.15784/601022", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; WAIS Divide; WAIS Divide Ice Core", "people": "Hastings, Meredith; Buffen, Aron", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Nitrate Isotope Record", "url": "https://www.usap-dc.org/view/dataset/601022"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Hastings/1246223 This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women\u0027s Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hastings, Meredith", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice", "uid": "p0000399", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Gas measurement from Higgins et al., 2015 - PNAS; WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "datasets": [{"dataset_uid": "601010", "doi": "10.15784/601010", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601010"}, {"dataset_uid": "601011", "doi": "10.15784/601011", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601011"}, {"dataset_uid": "601012", "doi": "10.15784/601012", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601012"}, {"dataset_uid": "601009", "doi": "10.15784/601009", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m", "url": "https://www.usap-dc.org/view/dataset/601009"}, {"dataset_uid": "601013", "doi": "10.15784/601013", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601013"}, {"dataset_uid": "601014", "doi": "10.15784/601014", "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "people": "Higgins, John", "repository": "USAP-DC", "science_program": null, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "url": "https://www.usap-dc.org/view/dataset/601014"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538427\u003cbr/\u003eMcConnell \u003cbr/\u003eThis award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF\u0027s Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "uid": "p0000148", "west": -112.1115}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "datasets": [{"dataset_uid": "601008", "doi": "10.15784/601008", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "url": "https://www.usap-dc.org/view/dataset/601008"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "McConnell/1142166 This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "uid": "p0000287", "west": -112.1115}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": "POLYGON((160 -76,160.1 -76,160.2 -76,160.3 -76,160.4 -76,160.5 -76,160.6 -76,160.7 -76,160.8 -76,160.9 -76,161 -76,161 -76.1,161 -76.2,161 -76.3,161 -76.4,161 -76.5,161 -76.6,161 -76.7,161 -76.8,161 -76.9,161 -77,160.9 -77,160.8 -77,160.7 -77,160.6 -77,160.5 -77,160.4 -77,160.3 -77,160.2 -77,160.1 -77,160 -77,160 -76.9,160 -76.8,160 -76.7,160 -76.6,160 -76.5,160 -76.4,160 -76.3,160 -76.2,160 -76.1,160 -76))", "dataset_titles": "FT-ICR MS Metadata; Respiration Metadata; UPLC-Q-TOF data of Cotton Glacier exometabolites", "datasets": [{"dataset_uid": "601089", "doi": "10.15784/601089", "keywords": "Antarctica; Biota; Exometabolites; Mass Spectrometry; Microbes; Microbiology", "people": "Foreman, Christine; Tigges, Michelle; Bothner, Brian", "repository": "USAP-DC", "science_program": null, "title": "UPLC-Q-TOF data of Cotton Glacier exometabolites", "url": "https://www.usap-dc.org/view/dataset/601089"}, {"dataset_uid": "601077", "doi": "10.15784/601077", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "people": "Foreman, Christine; D\u0027Andrilli, Juliana", "repository": "USAP-DC", "science_program": null, "title": "FT-ICR MS Metadata", "url": "https://www.usap-dc.org/view/dataset/601077"}, {"dataset_uid": "601076", "doi": "10.15784/601076", "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "people": "Foreman, Christine; Smith, Heidi", "repository": "USAP-DC", "science_program": null, "title": "Respiration Metadata", "url": "https://www.usap-dc.org/view/dataset/601076"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "Uncovering the dynamics of dissolved organic matter (DOM) is central to an understanding of the global carbon cycle, as organic material from lakes, streams, oceans and soils passes through this pool. DOM acts as a key energy source for microbes in many ecosystems and therefore can affect regional nutrient cycling patterns. For example, preliminary results suggest that organisms isolated from a supraglacial stream on Cotton Glacier, Antarctica, may be important in DOM cycling in this relatively simple, low temperature system. However, little is known about the functional attributes of the microbes that interact with DOM in the environment. This project will use state-of-the-art genomics, proteomics and metabolomics approaches to understand the mechanisms by which two microbial isolates, CG3 and CG9_1, affect DOM cycling. Liquid chromatography-mass spectrometry will also be used to better characterize the microbially-derived DOM from this ecosystem. This project will support the research and training of one undergraduate and two graduate students. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Understanding the relationship between cold-adapted microbial metabolisms and DOM pools is important as more than 90% of the Earth?s oceans are below 5 degrees Celsius.", "east": 161.0, "geometry": "POINT(160.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine; Bothner, Brian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "uid": "p0000408", "west": 160.0}, {"awards": "1347911 Loeb, Valerie", "bounds_geometry": "POLYGON((-66 -54,-65.2 -54,-64.4 -54,-63.6 -54,-62.8 -54,-62 -54,-61.2 -54,-60.4 -54,-59.6 -54,-58.8 -54,-58 -54,-58 -54.8,-58 -55.6,-58 -56.4,-58 -57.2,-58 -58,-58 -58.8,-58 -59.6,-58 -60.4,-58 -61.2,-58 -62,-58.8 -62,-59.6 -62,-60.4 -62,-61.2 -62,-62 -62,-62.8 -62,-63.6 -62,-64.4 -62,-65.2 -62,-66 -62,-66 -61.2,-66 -60.4,-66 -59.6,-66 -58.8,-66 -58,-66 -57.2,-66 -56.4,-66 -55.6,-66 -54.8,-66 -54))", "dataset_titles": "Zooplankton samples, analyses, and underwater video.", "datasets": [{"dataset_uid": "000198", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton samples, analyses, and underwater video.", "url": "http://www.bco-dmo.org/project/683961"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "A 50+ year warming trend in the Southern Ocean has been most dramatic in Drake Passage and likely impacts ecosystem structure here. Acoustic Doppler Current Profiler (ADCP) records from multiple ?L.M. Gould? supply transits of Drake Passage from 1999 to present demonstrate spatial and temporal variability in acoustics backscattering. Acoustics backscattering strength in the upper water column corresponds to zooplankton and nekton biomass that supports predator populations. However, for much of Drake Passage the identity of taxa contributing to this acoustically detected biomass is not known. This project would introduce a biological component to ?L.M. Gould? transits of Drake Passage with the goal of determining the identity of taxa responsible for the backscattering records obtained by ADCP and relating these to higher trophic levels (seabird/marine mammal). Net sampling during spring, summer and fall transits will permit assessment of diel and seasonal changes in the abundance and taxonomic composition of zooplankton and top predators represented between Patagonia and the Antarctic Peninsula. Net samples and depth-referenced video records taken in conjunction with ADCP profiles will permit the identification of the dominant acoustic backscatters in the 3 biogeographic regions represented here, the Subantarctic, Polar Frontal, and Antarctic Zones. The validity of dominant backscattering taxa in the Antarctic Zone will be tested by comparing the ADCP records with abundant zooplankton data collected off the Antarctic Peninsula during January-March 1999-2009 as well with long-term top predator surveys. The broader impacts also include a cruise blog, the production of an article for an online outreach publication based at Moss Landing Marine Labs and a YouTube video featuring shipboard research in the Southern Ocean.", "east": -58.0, "geometry": "POINT(-62 -58)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -54.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Loeb, Valerie; Santora, Jarrod", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -62.0, "title": "Pilot Study: Addition of Biological Sampling to Drake Passage Transits of the \"L.M. Gould\"", "uid": "p0000314", "west": -66.0}, {"awards": "0538520 Thiemens, Mark; 0538049 Steig, Eric", "bounds_geometry": "POINT(-112.085 -79.5)", "dataset_titles": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core; WAIS Divide sulfate and nitrate isotopes; WAIS ice core isotope data #387, 385 (full data link not provided)", "datasets": [{"dataset_uid": "002512", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #387, 385 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "609479", "doi": "10.7265/N5BG2KXH", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609479"}, {"dataset_uid": "601007", "doi": "10.15784/601007", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "people": "Alexander, Becky; Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide sulfate and nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601007"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538520\u003cbr/\u003eThiemens\u003cbr/\u003eThis award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.", "east": -112.085, "geometry": "POINT(-112.085 -79.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope Ratios; Temperature; Sulfate; West Antarctic; Paleoatmosphere; LABORATORY; Ice Core; Ice Core Data; Mass Independent Fractionation; FIELD SURVEYS; Not provided; Accumulation Rate; Oxygen Isotope; FIELD INVESTIGATION; Ice Core Chemistry; Isotope", "locations": "West Antarctic", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky; Steig, Eric J.; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000020", "west": -112.085}, {"awards": "0944794 Winberry, J. Paul; 0944671 Wiens, Douglas", "bounds_geometry": "POLYGON((-163 -83.7,-161.9 -83.7,-160.8 -83.7,-159.7 -83.7,-158.6 -83.7,-157.5 -83.7,-156.4 -83.7,-155.3 -83.7,-154.2 -83.7,-153.1 -83.7,-152 -83.7,-152 -83.8,-152 -83.9,-152 -84,-152 -84.1,-152 -84.2,-152 -84.3,-152 -84.4,-152 -84.5,-152 -84.6,-152 -84.7,-153.1 -84.7,-154.2 -84.7,-155.3 -84.7,-156.4 -84.7,-157.5 -84.7,-158.6 -84.7,-159.7 -84.7,-160.8 -84.7,-161.9 -84.7,-163 -84.7,-163 -84.6,-163 -84.5,-163 -84.4,-163 -84.3,-163 -84.2,-163 -84.1,-163 -84,-163 -83.9,-163 -83.8,-163 -83.7))", "dataset_titles": "Geophysical Study of Ice Stream Stick Slip; Whillans Ice Stream Stick-slip", "datasets": [{"dataset_uid": "000169", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Geophysical Study of Ice Stream Stick Slip", "url": "http://ds.iris.edu/mda/2C/?timewindow=2010-2011"}, {"dataset_uid": "609632", "doi": "10.7265/N5PC309V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Whillans Ice Stream", "people": "Wiens, Douglas; Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard", "repository": "USAP-DC", "science_program": null, "title": "Whillans Ice Stream Stick-slip", "url": "https://www.usap-dc.org/view/dataset/609632"}], "date_created": "Wed, 16 Nov 2016 00:00:00 GMT", "description": "This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth\u0027s response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.", "east": -152.0, "geometry": "POINT(-157.5 -84.2)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet; Geodesy; GROUND-BASED OBSERVATIONS; Not provided; Seismic; Geodetic Gps Data", "locations": "West Antarctic Ice Sheet", "north": -83.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Winberry, Paul; Anandakrishnan, Sridhar; Alley, Richard; Wiens, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -84.7, "title": "Collaborative Research: Geophysical Study of Ice Stream Stick-slip Dynamics", "uid": "p0000053", "west": -163.0}, {"awards": "1043018 Pollard, David; 1043517 Clark, Peter; 1043485 Curtice, Josh", "bounds_geometry": "POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57))", "dataset_titles": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea; Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "datasets": [{"dataset_uid": "609639", "doi": "10.7265/N5NC5Z53", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "url": "https://www.usap-dc.org/view/dataset/609639"}, {"dataset_uid": "600123", "doi": "10.15784/600123", "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "people": "Kurz, Mark D.; Curtice, Josh", "repository": "USAP-DC", "science_program": null, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600123"}], "date_created": "Sat, 15 Oct 2016 00:00:00 GMT", "description": "1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", "east": 165.35, "geometry": "POINT(164.425 -77.945)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "Ocean Depth; Not provided; Bed Elevation; Model Output; Sea Level Rise; Surface Accumulation Rate; Surface Melt Rate; Ocean Melt Rate; Total Ice Volume; Modeling; Calving Rate; Total Ice Area; LABORATORY", "locations": null, "north": -77.57, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.32, "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "p0000194", "west": 163.5}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Resampling of Deep Polar Ice Cores using Information Theory; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; WAIS Divide Ice Core Discrete CH4 (80-3403m)", "datasets": [{"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}, {"dataset_uid": "601365", "doi": "10.15784/601365", "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Resampling of Deep Polar Ice Cores using Information Theory", "url": "https://www.usap-dc.org/view/dataset/601365"}, {"dataset_uid": "600169", "doi": "10.15784/600169", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "Morris, Valerie; White, James; Jones, Tyler R.; Vaughn, Bruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/600169"}, {"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Jones, Tyler R.; Vaughn, Bruce; White, James; Price, Michael; Garland, Joshua; Bradley, Elizabeth; Morris, Valerie", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}], "date_created": "Thu, 15 Sep 2016 00:00:00 GMT", "description": "Steig/1043092 This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "White, James; Vaughn, Bruce; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000078", "west": -112.08}, {"awards": "1043580 Reusch, David", "bounds_geometry": "POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))", "dataset_titles": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "datasets": [{"dataset_uid": "600386", "doi": "10.15784/600386", "keywords": "Antarctica; Atmosphere; Atmospheric Model; Climate Model; Meteorology; Paleoclimate", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600386"}, {"dataset_uid": "600166", "doi": "10.15784/600166", "keywords": "Antarctica; Atmosphere; Climate Model; Meteorology; Surface Melt", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600166"}], "date_created": "Thu, 28 Jul 2016 00:00:00 GMT", "description": "The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. Using contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. The previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Reusch, David; Lampkin, Derrick", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "p0000447", "west": -180.0}, {"awards": "1043481 Creyts, Timothy", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Jun 2016 00:00:00 GMT", "description": "1043481/Creyts This award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Creyts, Timothy; Bell, Robin", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Subglacial drainage and slip modeling in Antarctica: relating lakes to ice discharge", "uid": "p0000345", "west": -180.0}, {"awards": "1355533 Dayton, Paul", "bounds_geometry": "POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))", "dataset_titles": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "datasets": [{"dataset_uid": "600164", "doi": "10.15784/600164", "keywords": "Antarctica; Bentic Fauna; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Dayton, Paul", "repository": "USAP-DC", "science_program": null, "title": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "url": "https://www.usap-dc.org/view/dataset/600164"}], "date_created": "Tue, 31 May 2016 00:00:00 GMT", "description": "Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.", "east": 167.0, "geometry": "POINT(165 -78.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Dayton, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "uid": "p0000401", "west": 163.0}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "datasets": [{"dataset_uid": "600159", "doi": "10.15784/600159", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "people": "Chen, Jianli", "repository": "USAP-DC", "science_program": null, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "url": "https://www.usap-dc.org/view/dataset/600159"}], "date_created": "Fri, 13 May 2016 00:00:00 GMT", "description": "1043750/Chen This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e GRACE LRR", "is_usap_dc": true, "keywords": "SATELLITES; GRACE; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Chen, Jianli; Wilson, Clark; Blankenship, Donald D.; Tapley, Byron", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e NASA EARTH SYSTEM SCIENCE PATHFINDER \u003e GRACE; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "p0000415", "west": -180.0}, {"awards": "1142052 MacPhee, Ross", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1602", "datasets": [{"dataset_uid": "002666", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1602", "url": "https://www.rvdata.us/search/cruise/NBP1602"}], "date_created": "Tue, 26 Apr 2016 00:00:00 GMT", "description": "Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the ?Scotia Portal? permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lamanna, Matthew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana", "uid": "p0000854", "west": null}, {"awards": "0839031 Severinghaus, Jeffrey; 0838936 Brook, Edward J.", "bounds_geometry": "POINT(161.75 -77.75)", "dataset_titles": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica; Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica; Taylor Glacier chemistry data and Taylor Dome TD2015 time scale; Taylor Glacier CO2 record; Taylor Glacier Gas Isotope Data", "datasets": [{"dataset_uid": "601033", "doi": "10.15784/601033", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Isotope; Solid Earth; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier Gas Isotope Data", "url": "https://www.usap-dc.org/view/dataset/601033"}, {"dataset_uid": "000158", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Taylor Glacier CO2 record", "url": "ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/taylor/taylor2016d13co2.txt"}, {"dataset_uid": "600165", "doi": "10.15784/600165", "keywords": "Antarctica; Cosmogenic; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600165"}, {"dataset_uid": "601029", "doi": "10.15784/601029", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "people": "Severinghaus, Jeffrey P.; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601029"}, {"dataset_uid": "601103", "doi": "10.15784/601103", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Horizontal Ice Core; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier chemistry data and Taylor Dome TD2015 time scale", "url": "https://www.usap-dc.org/view/dataset/601103"}], "date_created": "Tue, 29 Mar 2016 00:00:00 GMT", "description": "Severinghaus/0839031 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \"clathrate hypothesis\" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \"horizontal ice core\" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.75, "geometry": "POINT(161.75 -77.75)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Not provided; USAP-DC", "locations": null, "north": -77.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Brook, Edward J.; Severinghaus, Jeffrey P.", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -77.75, "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "uid": "p0000099", "west": 161.75}, {"awards": "1043649 Hock, Regine", "bounds_geometry": null, "dataset_titles": "King George and Livingston Islands: Velocities and Digital Elevation Model", "datasets": [{"dataset_uid": "609667", "doi": "10.7265/N5R49NR1", "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "people": "Hock, Regine; Osmanoglu, Batuhan", "repository": "USAP-DC", "science_program": null, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "url": "https://www.usap-dc.org/view/dataset/609667"}], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "1043649/Braun This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e PALSAR", "is_usap_dc": true, "keywords": "ALOS; Digital Elevation Model", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Hock, Regine; Osmanoglu, Batuhan", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ADVANCED LAND OBSERVING SATELLITE (ALOS) \u003e ALOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "uid": "p0000054", "west": null}, {"awards": "1141326 Rotella, Jay", "bounds_geometry": "POLYGON((163.1 -70.3,163.59 -70.3,164.08 -70.3,164.57 -70.3,165.06 -70.3,165.55 -70.3,166.04 -70.3,166.53 -70.3,167.02 -70.3,167.51 -70.3,168 -70.3,168 -70.98,168 -71.66,168 -72.34,168 -73.02,168 -73.7,168 -74.38,168 -75.06,168 -75.74,168 -76.42,168 -77.1,167.51 -77.1,167.02 -77.1,166.53 -77.1,166.04 -77.1,165.55 -77.1,165.06 -77.1,164.57 -77.1,164.08 -77.1,163.59 -77.1,163.1 -77.1,163.1 -76.42,163.1 -75.74,163.1 -75.06,163.1 -74.38,163.1 -73.7,163.1 -73.02,163.1 -72.34,163.1 -71.66,163.1 -70.98,163.1 -70.3))", "dataset_titles": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season", "datasets": [{"dataset_uid": "601125", "doi": "10.15784/601125", "keywords": "Antarctica; Biota; Sea Ice", "people": "Rotella, Jay", "repository": "USAP-DC", "science_program": null, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season", "url": "https://www.usap-dc.org/view/dataset/601125"}], "date_created": "Mon, 08 Feb 2016 00:00:00 GMT", "description": "Abstract The Erebus Bay population of Weddell seals in Antarctica?s Ross Sea is the most southerly breeding population of mammal in the world, closely associated with persistent shore-fast ice, and one that has been intensively studied since 1968. The resulting long-term database, which includes data for 20,586 marked individuals, contains detailed population information that provides an excellent opportunity to study linkages between environmental conditions and demographic processes in the Antarctic. The population?s location is of special interest as the Ross Sea is one of the most productive areas of the Southern Ocean, one of the few pristine marine environments remaining on the planet, and, in contrast to the Antarctic Peninsula and Arctic, is undergoing a gradual lengthening of the sea-ice season. The work to be continued here capitalizes on (1) long-term data for individual seals and their polar environment; (2) experience collecting and analyzing data from the extensive study population; and (3) recent statistical advances in hierarchical modeling that allow for rigorous treatment of individual heterogeneity (in mark-recapture and body mass data) and inclusion of diverse covariates hypothesized to explain variation in fitness components. Covariates to be considered include traits of individuals and their mothers and environmental conditions throughout life. The study will continue to (1) provide detailed data on known-age individuals to other science projects and (2) educate and mentor the next generation of ecologists through academic and professional training and research experiences.", "east": 168.0, "geometry": "POINT(165.55 -73.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rotella, Jay; Garrott, Robert", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.1, "title": "The Demographic Consequences of Environmental Variability and Individual Heterogeneity in Life-history Tactics of a Long-lived Antarctic Marine Predator", "uid": "p0000299", "west": 163.1}, {"awards": "1043724 Swanger, Kate", "bounds_geometry": "POLYGON((160.3 -77.4,160.52 -77.4,160.74 -77.4,160.96 -77.4,161.18 -77.4,161.4 -77.4,161.62 -77.4,161.84 -77.4,162.06 -77.4,162.28 -77.4,162.5 -77.4,162.5 -77.44,162.5 -77.48,162.5 -77.52,162.5 -77.56,162.5 -77.6,162.5 -77.64,162.5 -77.68,162.5 -77.72,162.5 -77.76,162.5 -77.8,162.28 -77.8,162.06 -77.8,161.84 -77.8,161.62 -77.8,161.4 -77.8,161.18 -77.8,160.96 -77.8,160.74 -77.8,160.52 -77.8,160.3 -77.8,160.3 -77.76,160.3 -77.72,160.3 -77.68,160.3 -77.64,160.3 -77.6,160.3 -77.56,160.3 -77.52,160.3 -77.48,160.3 -77.44,160.3 -77.4))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 05 Dec 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.", "east": 162.5, "geometry": "POINT(161.4 -77.6)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.4, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies", "uid": "p0000406", "west": 160.3}, {"awards": "1043761 Young, Duncan", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015; Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2); Ice thickness and related data over central Marie Byrd Land, West Antarctica (GIMBLE.GR2HI2); Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)", "datasets": [{"dataset_uid": "200407", "doi": "10.18738/T8/BMXUHX", "keywords": null, "people": null, "repository": "Texas Data Repository", "science_program": null, "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE) Airborne VHF Radar Transects: 2012/2013 and 2014/2015", "url": "https://doi.org/10.18738/T8/BMXUHX"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.; Jackson, Charles", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "601003", "doi": "10.15784/601003", "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravity; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "people": "Holt, John W.; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Gravity disturbance data over central Marie Byrd Land, West Antarctica (GIMBLE.GGCMG2)", "url": "https://www.usap-dc.org/view/dataset/601003"}, {"dataset_uid": "601002", "doi": "10.15784/601002", "keywords": "Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Magnetic; Marie Byrd Land; Navigation; Potential Field; Solid Earth", "people": "Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Magnetic anomaly data over central Marie Byrd Land, West Antarctica (GIMBLE.GMGEO2)", "url": "https://www.usap-dc.org/view/dataset/601002"}, {"dataset_uid": "601001", "doi": "10.15784/601001", "keywords": "Airborne Radar; Antarctica; Gimble; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Marie Byrd Land; Navigation; Radar", "people": "Young, Duncan A.; Blankenship, Donald D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Ice thickness and related data over central Marie Byrd Land, West Antarctica (GIMBLE.GR2HI2)", "url": "https://www.usap-dc.org/view/dataset/601001"}], "date_created": "Tue, 01 Dec 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to use airborne geophysics to provide detailed geophysical mapping over the Marie Byrd Land dome of West Antarctica. They will use a Basler equipped with advanced ice penetrating radar, a magnetometer, an airborne gravimeter and laser altimeter. They will test models of Marie Byrd Land lithospheric evolution in three ways: 1) constrain bedrock topography and crustal structure of central Marie Byrd Land for the first time; 2) map subglacial geomorphology of Marie Byrd Land to constrain landscape evolution; and 3) map the distribution of subglacial volcanic centers and identify active sources. Marie Byrd Land is one of the few parts of West Antarctica whose bedrock lies above sea level; as such, it has a key role to play in the formation and decay of the West Antarctic Ice Sheet (WAIS), and thus on eustatic sea level change during the Neogene. Several lines of evidence suggest that the topography of Marie Byrd Land has changed over the course of the Cenozoic, with significant implications for the origin and evolution of the ice sheet. Broader impacts: This work will have important implications for both the cryospheric and geodynamic communities. These data will also leverage results from the POLENET project. The PIs will train both graduate and undergraduate students in the interpretation of large geophysical datasets providing them with the opportunity to co-author peer-reviewed papers and present their work to the broader science community. This research will also support a young female researcher. The PIs will conduct informal education using their Polar Studies website and contribute formally to K-12 curriculum development. The research will incorporate microblogging and data access to allow the project?s first-order hypothesis to be confirmed or denied in public.", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e HICARS1; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e NUCLEAR PRECESSION MAGNETOMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e CMG-GT-1A", "is_usap_dc": false, "keywords": "BT-67; Marie Byrd Land; ICE SHEETS", "locations": "Marie Byrd Land", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Young, Duncan A.; Holt, John W.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "Texas Data Repository", "repositories": "Texas Data Repository; USAP-DC", "science_programs": null, "south": -80.0, "title": "Geophysical Investigations of Marie Byrd Land Lithospheric Evolution (GIMBLE)", "uid": "p0000435", "west": -145.0}, {"awards": "1039982 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Seismological Data at IRIS (full data link not provided)", "datasets": [{"dataset_uid": "000170", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismological Data at IRIS (full data link not provided)", "url": "http://ds.iris.edu/"}], "date_created": "Mon, 23 Nov 2015 00:00:00 GMT", "description": "Intellectual Merit: Knowledge of englacial and subglacial conditions are critical for ice sheet models and predictions of sea-level change. Some of the critical variables that are poorly known but essential for improving flow models and predictions of sea-level change are: basal roughness, subglacial sedimentary and hydrologic conditions, and the temporal and spatial variability of the ice sheet flow field. Seismic reflection and refraction imaging and dense arrays of continuously operating GPS receivers can determine these parameters. The PIs propose to develop a network of wirelessly interconnected geophysical sensors (geoPebble) that will allow glaciologists to carry out these experiments simultaneously. This sensor web will provide a new way of imaging the ice sheet that is not possible with current instruments. With this sensor web, the PIs will extend the range of existing instruments from 2D to 3D, from low resolution to high resolution, but more importantly, all the geophysical measurements will be conducted synchronously. By the end of the proposal period the PIs will produce a network of 150-200 geoPebbles that will be available for NSF-sponsored glaciology research projects. Broader impacts: Improved knowledge of the flow law of ice, the sliding of glaciers and ice streams, and paleoclimate history will contribute to assessments of the potential for abrupt ice-sheet mass change, with consequent sea-level effects and significant societal impacts. This improved modeling ability will be a direct consequence of better knowledge of the physical properties of ice sheets, which this project will facilitate. The development effort will be integrated with the undergraduate education program via the capstone design classes in EE and the senior thesis requirement in Geoscience. The PIs will also form a cohort of first-year and sophomore students who will work in their labs from the beginning of the project to develop specifications through the commissioning of the network.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Bilen, Sven; Urbina, Julio", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -90.0, "title": "MRI: Development of a Wirelessly-Connected Network of Seismometers and GPS Instruments for Polar and Geophysical Research", "uid": "p0000405", "west": -180.0}, {"awards": "0944653 Forster, Richard", "bounds_geometry": "POLYGON((-119.4 -78.1,-118.46000000000001 -78.1,-117.52000000000001 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82000000000001 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.28999999999999,-110 -78.47999999999999,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.42999999999999,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82000000000001 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52000000000001 -80,-118.46000000000001 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.42999999999999,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.47999999999999,-119.4 -78.28999999999999,-119.4 -78.1))", "dataset_titles": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "datasets": [{"dataset_uid": "600146", "doi": "10.15784/600146", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "people": "Forster, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "url": "https://www.usap-dc.org/view/dataset/600146"}], "date_created": "Fri, 20 Nov 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.", "east": -110.0, "geometry": "POINT(-114.7 -79.05)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Forster, Richard", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "uid": "p0000079", "west": -119.4}, {"awards": "1141936 Foreman, Christine", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "datasets": [{"dataset_uid": "600133", "doi": "10.15784/600133", "keywords": "Antarctica; Biota; Genetic Sequences; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "url": "https://www.usap-dc.org/view/dataset/600133"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ADS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Dissolved Organic Carbon; Microbes; Ice Core; Not provided; Pyrosequencing; Microbial Diversity; Molecular; WAIS Divide; LABORATORY; FIELD SURVEYS; Antarctic; FIELD INVESTIGATION; DNA", "locations": "Antarctic; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "uid": "p0000342", "west": 112.085}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": "POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))", "dataset_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "datasets": [{"dataset_uid": "600144", "doi": "10.15784/600144", "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "people": "Sidor, Christian", "repository": "USAP-DC", "science_program": null, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "url": "https://www.usap-dc.org/view/dataset/600144"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. Broader impacts: The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \"Explore Your World\" website with images and findings from their field season.", "east": 172.4, "geometry": "POINT(167.405 -84.685)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -84.27, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "p0000418", "west": 162.41}, {"awards": "1043780 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "datasets": [{"dataset_uid": "609659", "doi": "10.7265/N5CV4FPK", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609659"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Aydin/1043780 This award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ethane; LABORATORY; N-Butane; Carbonyl Sulfide; Propane; Methyl Bromide; Methyl Chloride; Carbon Disulfide", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000055", "west": null}, {"awards": "1042883 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives; Roosevelt Island Climate Evolution Ice Core ICP-MS data", "datasets": [{"dataset_uid": "609636", "doi": "10.7265/N5WS8R6H", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Kurbatov, Andrei V.; Haines, Skylar; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives", "url": "https://www.usap-dc.org/view/dataset/609636"}, {"dataset_uid": "609621", "doi": "10.7265/N52J68SQ", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Roosevelt Island; Ross Ice Shelf", "people": "Mayewski, Paul A.; Beers, Thomas M.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Climate Evolution Ice Core ICP-MS data", "url": "https://www.usap-dc.org/view/dataset/609621"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "1042883/Mayewski This award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Haines, Skylar; Kurbatov, Andrei V.; Mayewski, Paul A.; Beers, Thomas M.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)", "uid": "p0000193", "west": null}, {"awards": "1142156 Marschall, Horst", "bounds_geometry": "POLYGON((-6.44 -71.93,-5.378 -71.93,-4.316 -71.93,-3.254 -71.93,-2.192 -71.93,-1.13 -71.93,-0.068 -71.93,0.994 -71.93,2.056 -71.93,3.118 -71.93,4.18 -71.93,4.18 -71.998,4.18 -72.066,4.18 -72.134,4.18 -72.202,4.18 -72.27,4.18 -72.338,4.18 -72.406,4.18 -72.474,4.18 -72.542,4.18 -72.61,3.118 -72.61,2.056 -72.61,0.994 -72.61,-0.068 -72.61,-1.13 -72.61,-2.192 -72.61,-3.254 -72.61,-4.316 -72.61,-5.378 -72.61,-6.44 -72.61,-6.44 -72.542,-6.44 -72.474,-6.44 -72.406,-6.44 -72.338,-6.44 -72.27,-6.44 -72.202,-6.44 -72.134,-6.44 -72.066,-6.44 -71.998,-6.44 -71.93))", "dataset_titles": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "datasets": [{"dataset_uid": "600135", "doi": "10.15784/600135", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Dronning Maud Land; Geochemistry; Geochronology; Solid Earth", "people": "Marschall, Horst", "repository": "USAP-DC", "science_program": null, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/600135"}], "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.", "east": 4.18, "geometry": "POINT(-1.13 -72.27)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -71.93, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marschall, Horst", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.61, "title": "Zircon Hf Isotopes and the Continental Evolution of Dronning Maud Land, East Antacrtica", "uid": "p0000448", "west": -6.44}, {"awards": "1043706 Marchant, David", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": false, "keywords": "McMurdo Dry Valleys; Rock Weathering; Not provided", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.5, "title": "Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies", "uid": "p0000269", "west": 160.0}, {"awards": "1043657 Cassano, John", "bounds_geometry": "POLYGON((163 -74.5,163.9 -74.5,164.8 -74.5,165.7 -74.5,166.6 -74.5,167.5 -74.5,168.4 -74.5,169.3 -74.5,170.2 -74.5,171.1 -74.5,172 -74.5,172 -74.9,172 -75.3,172 -75.7,172 -76.1,172 -76.5,172 -76.9,172 -77.3,172 -77.7,172 -78.1,172 -78.5,171.1 -78.5,170.2 -78.5,169.3 -78.5,168.4 -78.5,167.5 -78.5,166.6 -78.5,165.7 -78.5,164.8 -78.5,163.9 -78.5,163 -78.5,163 -78.1,163 -77.7,163 -77.3,163 -76.9,163 -76.5,163 -76.1,163 -75.7,163 -75.3,163 -74.9,163 -74.5))", "dataset_titles": "Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "datasets": [{"dataset_uid": "600125", "doi": "10.15784/600125", "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; Oceans; Southern Ocean; Unmanned Aircraft", "people": "Palo, Scott; Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600125"}], "date_created": "Thu, 22 Oct 2015 00:00:00 GMT", "description": "Antarctic coastal polynas are, at the same time, sea-ice free sites and \u0027sea-ice factories\u0027. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters A key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames.", "east": 172.0, "geometry": "POINT(167.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -74.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Palo, Scott", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "uid": "p0000417", "west": 163.0}, {"awards": "1043522 Brook, Edward J.; 1043421 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": "WAIS Divide Replicate Core Methane Isotopic Data Set", "datasets": [{"dataset_uid": "601059", "doi": "10.15784/601059", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Replicate Core Methane Isotopic Data Set", "url": "https://www.usap-dc.org/view/dataset/601059"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1043421/Severinghaus This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed \"replicate coring\". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs\u0027 activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Core Gas Records; Firn Air Isotopes; LABORATORY; FIELD SURVEYS; Mass Spectrometry; Not provided; FIELD INVESTIGATION; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest", "uid": "p0000751", "west": -112.09}, {"awards": "1143619 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": null, "datasets": null, "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called \"fugitive gases\"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "WAIS Divide; Not provided; Tracers; FIELD INVESTIGATION; Past Biospheric Carbon Storage; LABORATORY; Fugitive Gases; Basal Processes; Neon; Helium; FIELD SURVEYS; Antarctica", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.47, "title": "Fugitive Gases (Helium, Neon, and Oxygen) in the WAIS Divide Ice Core as Tracers of Basal Processes and Past Biospheric Carbon Storage", "uid": "p0000441", "west": -112.09}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Dyonisius, Michael; Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Severinghaus, Jeffrey P.; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Schilt, Adrian; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Bauska, Thomas; Buffen, Aron; Brook, Edward J.; Shackleton, Sarah; Menking, James; Menking, Andy; Petrenko, Vasilii; Dyonisius, Michael; Severinghaus, Jeffrey P.; Barker, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "1246484 Balco, Gregory", "bounds_geometry": "POLYGON((-62 -63.5,-61.8 -63.5,-61.6 -63.5,-61.4 -63.5,-61.2 -63.5,-61 -63.5,-60.8 -63.5,-60.6 -63.5,-60.4 -63.5,-60.2 -63.5,-60 -63.5,-60 -63.6,-60 -63.7,-60 -63.8,-60 -63.9,-60 -64,-60 -64.1,-60 -64.2,-60 -64.3,-60 -64.4,-60 -64.5,-60.2 -64.5,-60.4 -64.5,-60.6 -64.5,-60.8 -64.5,-61 -64.5,-61.2 -64.5,-61.4 -64.5,-61.6 -64.5,-61.8 -64.5,-62 -64.5,-62 -64.4,-62 -64.3,-62 -64.2,-62 -64.1,-62 -64,-62 -63.9,-62 -63.8,-62 -63.7,-62 -63.6,-62 -63.5))", "dataset_titles": "Data repositories for UC-Berkeley/BGC thermochronometry and thermochronology research", "datasets": [{"dataset_uid": "001232", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data repositories for UC-Berkeley/BGC thermochronometry and thermochronology research", "url": "http://noblegas.berkeley.edu/~noblegas/datarepository.html"}], "date_created": "Mon, 02 Mar 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to use the (U-Th)/He system in apatite to investigate the exhumation history, development of the present topography, and pattern of glacial erosion in the central Antarctic Peninsula. The Antarctic Peninsula has been glaciated since the Eocene and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. To achieve these goals, the PIs will use a thermochronometric record of when and how the present glacial valley relief formed. A challenge to the proposed research is that, unlike Pleistocene glacial landscapes in temperate areas, the Peninsula is ice-covered and it is not possible to directly sample the bedrock surface. The PIs hope to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. Learning how the Antarctic Peninsula landscape formed is important to discern how the mechanics of glacial erosion operate on long time scales, and to understand how glaciers mediate the interaction between climate change and orogenic mass balance. This work addresses a fundamental question in Antarctic earth science of how to infer geologic and geomorphic processes active on an ice-covered and inaccessible landscape. Broader impacts: This proposal will bring new researchers into the Antarctic research community. A proposed collaboration with British Antarctic Survey researchers will build an international collaboration. The outcomes of this project have ancillary importance to other fields and addresses fundamental challenges in Antarctic Earth Science.", "east": -60.0, "geometry": "POINT(-61 -64)", "instruments": null, "is_usap_dc": false, "keywords": "Antarctica; Not provided; ICE SHEETS; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Shuster, David; Balco, Gregory", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -64.5, "title": "Antarctic Peninsula Exhumation and Landscape Development Investigated by Low-temperature Detrital Thermochronometry", "uid": "p0000067", "west": -62.0}, {"awards": "0944087 Hamilton, Gordon", "bounds_geometry": "POLYGON((145 -80,147 -80,149 -80,151 -80,153 -80,155 -80,157 -80,159 -80,161 -80,163 -80,165 -80,165 -80.035,165 -80.07,165 -80.105,165 -80.14,165 -80.175,165 -80.21,165 -80.245,165 -80.28,165 -80.315,165 -80.35,163 -80.35,161 -80.35,159 -80.35,157 -80.35,155 -80.35,153 -80.35,151 -80.35,149 -80.35,147 -80.35,145 -80.35,145 -80.315,145 -80.28,145 -80.245,145 -80.21,145 -80.175,145 -80.14,145 -80.105,145 -80.07,145 -80.035,145 -80))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Jan 2015 00:00:00 GMT", "description": "This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier\u0027s flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society\u0027s need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.", "east": 165.0, "geometry": "POINT(155 -80.175)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "Sea Level Rise; FIELD INVESTIGATION; Glacier; LABORATORY; Outlet Glaciers; Boundary Conditions; Model; Numerical Model; FIELD SURVEYS; Antarctica; COMPUTERS; Not provided; Flow Dynamics", "locations": "Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stearns, Leigh; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -80.35, "title": "Collaborative Research: Byrd Glacier Flow Dynamics", "uid": "p0000319", "west": 145.0}, {"awards": "0632136 Nyblade, Andrew; 0632322 Wilson, Terry", "bounds_geometry": "POLYGON((-20 -70,-1 -70,18 -70,37 -70,56 -70,75 -70,94 -70,113 -70,132 -70,151 -70,170 -70,170 -72,170 -74,170 -76,170 -78,170 -80,170 -82,170 -84,170 -86,170 -88,170 -90,151 -90,132 -90,113 -90,94 -90,75 -90,56 -90,37 -90,18 -90,-1 -90,-20 -90,-20 -88,-20 -86,-20 -84,-20 -82,-20 -80,-20 -78,-20 -76,-20 -74,-20 -72,-20 -70))", "dataset_titles": "Incorporated Research Institutions for Seismology (IRIS); University NAVSTAR Consortium (UNAVCO)", "datasets": [{"dataset_uid": "000132", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology (IRIS)", "url": "http://www.iris.edu/mda/YT?timewindow=2007-2018"}, {"dataset_uid": "000131", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "University NAVSTAR Consortium (UNAVCO)", "url": "http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#groupingMod=contains;grouping=POLENET%20-%20ANET;scope=Station;sampleRate=normal"}], "date_created": "Thu, 22 Jan 2015 00:00:00 GMT", "description": "This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet\u0027s current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth\u0027s deep interior and core through its location in the Earth\u0027s poorly instrumented southern hemisphere. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eBroader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.", "east": 170.0, "geometry": "POINT(75 -80)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Antarctica; Bedrock; Ice/Rock Interface; Climate Change; Seismic; West Antarctic Ice Sheet; FIELD SURVEYS; LABORATORY; Not provided; FIELD INVESTIGATION; Mass Balance; COMPUTERS; Sub-Ice Sheet Geology; Sea Level; Terrestrial Heat Flux", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Bevis, Michael; Anandakrishnan, Sridhar; Wiens, Douglas; Aster, Richard; Smalley, Robert; Nyblade, Andrew; Winberry, Paul; Hothem, Larry; Dalziel, Ian W.; Huerta, Audrey D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets", "uid": "p0000315", "west": -20.0}, {"awards": "0838843 Kurbatov, Andrei; 0838849 Bender, Michael", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "1043092 Steig, Eric; 1043167 White, James", "bounds_geometry": null, "dataset_titles": "17O excess from WAIS Divide, 0 to 25 ka BP; WAIS Divide Ice Core Discrete CH4 (80-3403m); WAIS Divide WDC06A Oxygen Isotope Record", "datasets": [{"dataset_uid": "609629", "doi": "10.7265/N5GT5K41", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Oxygen Isotope Record", "url": "https://www.usap-dc.org/view/dataset/609629"}, {"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Brook, Edward J.; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}, {"dataset_uid": "601413", "doi": "10.15784/601413", "keywords": "Antarctica; Ice Core; Oxygen Isotope; WAIS Divide", "people": "Steig, Eric J.; Schoenemann, Spruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "17O excess from WAIS Divide, 0 to 25 ka BP", "url": "https://www.usap-dc.org/view/dataset/601413"}], "date_created": "Sat, 06 Dec 2014 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "AMD; ANALYTICAL LAB; USAP-DC; Amd/Us; LABORATORY; ICE CORE RECORDS; Antarctica; Wais Divide-project; FIELD SURVEYS; USA/NSF", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000010", "west": null}, {"awards": "1241460 Barbeau, David; 1241574 Hemming, Sidney", "bounds_geometry": "POLYGON((-67 -63.2,-65.97 -63.2,-64.94 -63.2,-63.91 -63.2,-62.88 -63.2,-61.85 -63.2,-60.82 -63.2,-59.79 -63.2,-58.76 -63.2,-57.73 -63.2,-56.7 -63.2,-56.7 -63.54,-56.7 -63.88,-56.7 -64.22,-56.7 -64.56,-56.7 -64.9,-56.7 -65.24,-56.7 -65.58,-56.7 -65.92,-56.7 -66.26,-56.7 -66.6,-57.73 -66.6,-58.76 -66.6,-59.79 -66.6,-60.82 -66.6,-61.85 -66.6,-62.88 -66.6,-63.91 -66.6,-64.94 -66.6,-65.97 -66.6,-67 -66.6,-67 -66.26,-67 -65.92,-67 -65.58,-67 -65.24,-67 -64.9,-67 -64.56,-67 -64.22,-67 -63.88,-67 -63.54,-67 -63.2))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 03 Dec 2014 00:00:00 GMT", "description": "Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research.", "east": -56.7, "geometry": "POINT(-61.85 -64.9)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e IRMS", "is_usap_dc": true, "keywords": "Not provided; Noble-Gas Mass Spectrometer; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -63.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PROTEROZOIC; PHANEROZOIC \u003e PALEOZOIC; PHANEROZOIC \u003e MESOZOIC; PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS; PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE", "persons": "Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -66.6, "title": "Collaborative Research: EAGER: Evaluating the Larsen basin\u0027s suitability for testing the Cretaceous Glaciation Hypothesis", "uid": "p0000369", "west": -67.0}, {"awards": "0943934 Taylor, Edith; 0943935 Isbell, John", "bounds_geometry": null, "dataset_titles": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University; Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "datasets": [{"dataset_uid": "001402", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "002567", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Portal to search paleobotanical collections, Biodiversity Institute, University of Kansas", "url": "http://biodiversity.ku.edu/paleobotany/collections/collections-search"}, {"dataset_uid": "001377", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Portal to search geologic sample collections, Polar Rock Repository, Byrd Polar Research Center, The Ohio State University", "url": "http://research.bpcrc.osu.edu/rr/"}], "date_created": "Tue, 23 Sep 2014 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThe focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThe broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "FIELD SURVEYS; LABORATORY; Transanatarctic Basin; Paleobotany; Fossil Plants; FIELD INVESTIGATION; Sedimentology; Late Paleozoic Ice Age; Not provided; Central Transantarctic Mountains; Beardmore Glacier", "locations": "Transanatarctic Basin; Central Transantarctic Mountains; Beardmore Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Isbell, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; PRR", "science_programs": null, "south": null, "title": "Collaborative Research: Antarctic Ecosystems across the Permian-Triassic Boundary: Integrating Paleobotany, Sedimentology, and Paleoecology", "uid": "p0000372", "west": null}, {"awards": "0538672 Palo, Scott", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Jul 2014 00:00:00 GMT", "description": "The mesosphere and lower thermosphere (MLT), at an altitude between 80 and 120 km above the Earth\u0027s surface, is a highly dynamic region that couples the lower terrestrial atmosphere (troposphere and stratosphere) with the upper atmosphere near-Earth space environment (thermosphere and ionosphere). Of particular importance in this region are both the upward propagating thermally forced atmospheric tides and global scale planetary waves. Both of these phenomena transport heat and momentum from the lower atmosphere into the upper atmosphere. Studies in recent years have indicated that the Arctic and Antarctic MLT possess a rich spectrum waves and may be more sensitive to global change than the lower atmosphere. The primary goal of this research is to observe, quantify, model, and further understand the spatial-temporal structure and variability of the MLT circulation above Antarctica and its commonalities with the Arctic. A secondary goal is to quantify and understand the deposition of mass into the upper atmosphere through the ablation of meteors and the resulting effect on local and regional aeronomic processes. This includes the effect of meteor flux, temperature and dynamics on the seasonal distribution of sodium over the South Pole. Meteor radar was installed at the South Pole Amundsen-Scott station and has been running continuously since January 2002. A new sodium nightglow imager will be installed at the South Pole to infer the sodium abundance in the MLT. Observations from this instrument will be combined with the South Pole Fabry-Perot interferometer temperature measurements and the meteor radar wind and meteor flux measurements to improve our understanding of the sodium chemistry and dynamics. These observations will be interpreted using sophisticated numerical models and interpreted in conjunction with Arctic measurements along with current linear and nonlinear atmospheric models to advance the current understanding of processes important to the MLT region. This research also contributes to the training and education of the graduate and undergraduate students, a postdoc and early career tenure track faculty.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Palo, Scott; Avery, James; Avery, Susan", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Studies of the Antarctic Mesosphere and Lower Thermosphere", "uid": "p0000491", "west": -180.0}, {"awards": "0839122 Saltzman, Eric; 0839093 McConnell, Joseph; 0839075 Priscu, John", "bounds_geometry": "POINT(112.05 -79.28)", "dataset_titles": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A; Holocene Black Carbon in Antarctica; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Prokaryotic cell concentration record from the WAIS Divide ice core", "datasets": [{"dataset_uid": "601006", "doi": "10.15784/601006", "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Priscu, John; D\u0027Andrilli, Juliana", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "url": "https://www.usap-dc.org/view/dataset/601006"}, {"dataset_uid": "601072", "doi": "10.15784/601072", "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "people": "Santibanez, Pamela; Priscu, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601072"}, {"dataset_uid": "601034", "doi": "10.15784/601034", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Arienzo, Monica; McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Holocene Black Carbon in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601034"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Fri, 30 May 2014 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": 112.05, "geometry": "POINT(112.05 -79.28)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e WAS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Bacteria Ice Core; LABORATORY; Ice Core; FIELD INVESTIGATION; West Antarctica; Not provided; Dissolved Organic Carbon", "locations": "West Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "uid": "p0000273", "west": 112.05}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": "POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))", "dataset_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula; Expedition data of LMG1006", "datasets": [{"dataset_uid": "002722", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1006", "url": "https://www.rvdata.us/search/cruise/LMG1006"}, {"dataset_uid": "600105", "doi": "10.15784/600105", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "people": "Hollibaugh, James T.", "repository": "USAP-DC", "science_program": null, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/600105"}], "date_created": "Thu, 13 Mar 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \"winter water\" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \"circumpolar deep water\" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \"grows in\" during spring and summer after this water mass forms. \u003cbr/\u003e\u003cbr/\u003eThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.", "east": -64.0, "geometry": "POINT(-71.5 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "p0000359", "west": -79.0}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": "POLYGON((-63.72 -63.73,-62.893 -63.73,-62.066 -63.73,-61.239 -63.73,-60.412 -63.73,-59.585 -63.73,-58.758 -63.73,-57.931 -63.73,-57.104 -63.73,-56.277 -63.73,-55.45 -63.73,-55.45 -64.0876,-55.45 -64.4452,-55.45 -64.8028,-55.45 -65.1604,-55.45 -65.518,-55.45 -65.8756,-55.45 -66.2332,-55.45 -66.5908,-55.45 -66.9484,-55.45 -67.306,-56.277 -67.306,-57.104 -67.306,-57.931 -67.306,-58.758 -67.306,-59.585 -67.306,-60.412 -67.306,-61.239 -67.306,-62.066 -67.306,-62.893 -67.306,-63.72 -67.306,-63.72 -66.9484,-63.72 -66.5908,-63.72 -66.2332,-63.72 -65.8756,-63.72 -65.518,-63.72 -65.1604,-63.72 -64.8028,-63.72 -64.4452,-63.72 -64.0876,-63.72 -63.73))", "dataset_titles": "Go to the NSIDC and search for the data.; Standing Water Depth on Larsen B Ice Shelf", "datasets": [{"dataset_uid": "609584", "doi": "10.7265/N500002K", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "people": "MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Standing Water Depth on Larsen B Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609584"}, {"dataset_uid": "001996", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Go to the NSIDC and search for the data.", "url": "http://nsidc.org"}], "date_created": "Sat, 21 Dec 2013 00:00:00 GMT", "description": "MacAyeal/0944248\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a better understanding of the processes and conditions that trigger ice shelf instability and explosive disintegration. A significant product of the proposed research will be the establishment of parameterizations of micro- and meso-scale ice-shelf surface processes needed in large scale ice-sheet models designed to predict future sea level rise. The proposed research represents a 3-year effort to conduct numerical model studies of 6 aspects of surface-water evolution on Antarctic ice shelves. These 6 model-study areas include energy balance models of melting ice-shelf surfaces, with treatment of surface ponds and water-filled crevasses, distributed, Darcian water flow modeling to simulate initial firn melting, brine infiltration, pond drainage and crevasse filling, ice-shelf surface topography evolution modeling by phase change (surface melting and freezing), surface-runoff driven erosion and seepage flows, mass loading and flexure effects of ice-shelf and iceberg surfaces; feedbacks between surface-water loads and flexure stresses; possible seiche phenomena of the surface water, ice and underlying ocean that constitute a mechanism for, inducing surface crevassing., surface pond and crevasse convection, and basal crevasse thermohaline convection (as a phenomena related to area 5 above). The broader impacts of the proposed work bears on the socio-environmental concerns of climate change and sea-level rise, and will contribute to the important goal of advising public policy. The project will form the basis of a dissertation project of a graduate student whose training will contribute to the scientific workforce of the nation and the PI and graduate student will additionally participate in a summer science-enrichment program for high-school teachers organized by colleagues at the University of Chicago.", "east": -55.45, "geometry": "POINT(-59.585 -65.518)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e ETM+; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "Supraglacial Lake; LANDSAT-7; Melt Ponds; Standing Water Depth; Ice Shelf Stability", "locations": null, "north": -63.73, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-7", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -67.306, "title": "Model Studies of Surface Water Behavior on Ice Shelves", "uid": "p0000052", "west": -63.72}, {"awards": "0944042 Warren, Joseph", "bounds_geometry": "POLYGON((-70 -59,-68 -59,-66 -59,-64 -59,-62 -59,-60 -59,-58 -59,-56 -59,-54 -59,-52 -59,-50 -59,-50 -59.7,-50 -60.4,-50 -61.1,-50 -61.8,-50 -62.5,-50 -63.2,-50 -63.9,-50 -64.6,-50 -65.3,-50 -66,-52 -66,-54 -66,-56 -66,-58 -66,-60 -66,-62 -66,-64 -66,-66 -66,-68 -66,-70 -66,-70 -65.3,-70 -64.6,-70 -63.9,-70 -63.2,-70 -62.5,-70 -61.8,-70 -61.1,-70 -60.4,-70 -59.7,-70 -59))", "dataset_titles": "Data from expdition LMG1010; Expedition Data; Expedition data of LMG1010; Expedition data of LMG1110", "datasets": [{"dataset_uid": "002671", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1110", "url": "https://www.rvdata.us/search/cruise/LMG1110"}, {"dataset_uid": "002723", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "000153", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Data from expdition LMG1010", "url": "https://www.rvdata.us/search/cruise/LMG1010"}, {"dataset_uid": "001445", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1110"}], "date_created": "Tue, 03 Dec 2013 00:00:00 GMT", "description": "The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp\u0027s environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.", "east": -50.0, "geometry": "POINT(-60 -62.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Warren, Joseph", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.0, "title": "Acoustic Assessment of Southern Ocean Salps and Their Ecosystem Impact", "uid": "p0000481", "west": -70.0}, {"awards": "0948357 Measures, Christopher; 0948338 Mitchell, B. Gregory", "bounds_geometry": "POLYGON((-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-53 -60,-53 -60.45,-53 -60.9,-53 -61.35,-53 -61.8,-53 -62.25,-53 -62.7,-53 -63.15,-53 -63.6,-53 -64.05,-53 -64.5,-54 -64.5,-55 -64.5,-56 -64.5,-57 -64.5,-58 -64.5,-59 -64.5,-60 -64.5,-61 -64.5,-62 -64.5,-63 -64.5,-63 -64.05,-63 -63.6,-63 -63.15,-63 -62.7,-63 -62.25,-63 -61.8,-63 -61.35,-63 -60.9,-63 -60.45,-63 -60))", "dataset_titles": "Project: Blue Water Zone; Trace Metal data 2006 (ID3801); Trace Metals - 2004", "datasets": [{"dataset_uid": "000174", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Trace Metal data 2006 (ID3801)", "url": "https://www.bco-dmo.org/dataset/3801"}, {"dataset_uid": "000218", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Trace Metals - 2004", "url": "https://www.bco-dmo.org/dataset/3800"}, {"dataset_uid": "000173", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Project: Blue Water Zone", "url": "http://www.bco-dmo.org/project/2145"}], "date_created": "Fri, 22 Nov 2013 00:00:00 GMT", "description": "The ocean plays a critical role in sequestering CO2 by exporting fixed carbon to the deep ocean through the biological pump. There is a pressing need to understand the systematics of carbon export in the Southern Ocean in the context of global warming because of the sensitivity of this region to climate change, already manifested as significant temperature increases. Numerous studies have indicated that Fe supply is a primary control on phytoplankton biomass and productivity in the Southern Ocean. The results from previous cruises in Feb-Mar 2004 and Jul-Aug 2006 have revealed the major natural Fe fertilization from Fe-rich shelf waters to the Fe-limited high nutrient low chlorophyll (HNLC) Antarctic Circumpolar Current Surface Water (ASW) in the southern Drake Passage, producing a series of phytoplankton blooms. Remaining questions include: How is natural Fe transported to the euphotic zone through small-meso-large scale horizontal-vertical transport and mixing in different HNLC ACC areas? How does plankton community structure evolve in response to a natural Fe addition, how does Fe speciation respond to biogeochemical processes, and how is Fe recycled to determine the longevity of phytoplankton blooms? How does the export of POC evolve as a function of upwelling-mixing, Fe addition-recycling and bacteria-plankton structure? This synthesis proposal will address these fundamental questions using a unique dataset combining multiyear physical, Fe and biogeochemical data collected between 2004 and 2006 from 2 NSF-funded Fe fertilization experiment cruises and 3 Antarctic Marine Living Resource (AMLR) cruises in the southern Drake Passage and southwestern Scotia Sea through collaboration with scientists in the AMLR program and US Southern Ocean GLOBEC projects. All investigators involved in this study are engaged in graduate and undergraduate instruction, and mentoring of postdoctoral researchers. Each P.I. will incorporate key elements of the proposed syntheses in our lectures, problem sets and group projects. The project includes support to convene a 4-5 day international workshop on natural Fe fertilization at Woods Hole Oceanographic Institution. The workshop will include scientists from United Kingdom, France and Germany who have conducted natural Fe fertilization experiments, and Korea and China who are planning to conduct natural Fe fertilization experiments. The participation of graduate students and postdoctoral scholars will be especially encouraged. The results will be published in a Deep-Sea Research II special issue.", "east": -53.0, "geometry": "POINT(-58 -62.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mitchell, B.; Azam, Farooq; Barbeau, Katherine; Gille, Sarah; Holm-Hansen, Osmund; Measures, Christopher; Selph, Karen", "platforms": "Not provided", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -64.5, "title": "Collaborative Research: Modeling and synthesis study of a natural iron fertilization site in the Southern Drake Passage", "uid": "p0000071", "west": -63.0}, {"awards": "1043779 Mellish, Jo-Ann", "bounds_geometry": "POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))", "dataset_titles": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "datasets": [{"dataset_uid": "600130", "doi": "10.15784/600130", "keywords": "Antarctica; Biota; Oceans; Ross Sea; Sea Ice; Seals; Sea Surface; Southern Ocean", "people": "Mellish, Jo-Ann", "repository": "USAP-DC", "science_program": null, "title": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "url": "https://www.usap-dc.org/view/dataset/600130"}], "date_created": "Sun, 22 Sep 2013 00:00:00 GMT", "description": "Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk.", "east": 166.73334, "geometry": "POINT(166.283335 -77.69653)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.51528, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mellish, Jo-Ann", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87778, "title": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING", "uid": "p0000343", "west": 165.83333}, {"awards": "0838811 Sergienko, Olga", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -87,180 -84,180 -81,180 -78,180 -75,180 -72,180 -69,180 -66,180 -63,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,180 -60,-180 -60))", "dataset_titles": "Interaction of Ice Stream Flow with Heterogeneous Beds", "datasets": [{"dataset_uid": "609583", "doi": "10.7265/N53R0QS6", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Ice Thickness; Ice Velocity", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Interaction of Ice Stream Flow with Heterogeneous Beds", "url": "https://www.usap-dc.org/view/dataset/609583"}], "date_created": "Tue, 27 Aug 2013 00:00:00 GMT", "description": "Sergienko/0838811 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Subglacial And Supraglacial Water Depth; Not provided; Basal Stress; Ice Stream; Direct Numerical Simulation", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Sergienko, Olga; Hulbe, Christina", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model Investigation of Ice Stream/Subglacial Lake Systems", "uid": "p0000045", "west": 180.0}, {"awards": "0739779 Warren, Stephen; 1142963 Warren, Stephen", "bounds_geometry": "POLYGON((157 -76,158.1 -76,159.2 -76,160.3 -76,161.4 -76,162.5 -76,163.6 -76,164.7 -76,165.8 -76,166.9 -76,168 -76,168 -76.2,168 -76.4,168 -76.6,168 -76.8,168 -77,168 -77.2,168 -77.4,168 -77.6,168 -77.8,168 -78,166.9 -78,165.8 -78,164.7 -78,163.6 -78,162.5 -78,161.4 -78,160.3 -78,159.2 -78,158.1 -78,157 -78,157 -77.8,157 -77.6,157 -77.4,157 -77.2,157 -77,157 -76.8,157 -76.6,157 -76.4,157 -76.2,157 -76))", "dataset_titles": "Ice on the Oceans of Snowball Earth Project Data", "datasets": [{"dataset_uid": "000183", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Ice on the Oceans of Snowball Earth Project Data", "url": "https://digital.lib.washington.edu/researchworks/handle/1773/37320"}], "date_created": "Wed, 10 Jul 2013 00:00:00 GMT", "description": "The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and \"blue ice\" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.", "east": 168.0, "geometry": "POINT(162.5 -77)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Warren, Stephen; Light, Bonnie; Campbell, Adam; Carns, Regina; Dadic, Ruzica; Mullen, Peter; Brandt, Richard; Waddington, Edwin D.", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -78.0, "title": "Ocean Surfaces on Snowball Earth", "uid": "p0000402", "west": 157.0}, {"awards": "0838810 Hulbe, Christina", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 01 Jul 2013 00:00:00 GMT", "description": "Hulbe/0838810 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Kamb Ice Stream; Grounding Line; FIELD INVESTIGATION; SATELLITES; Transition Zone; Ice Shelf Flow; Outlet Flow; Ice Sheet; Modeling; COMPUTERS; Antarctica", "locations": "Antarctica; Kamb Ice Stream", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Mass Transit: Controls on Grounding and Ungrounding at Marine Ice Sheet Outlets", "uid": "p0000371", "west": null}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}, {"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}, {"awards": "0732946 Steffen, Konrad", "bounds_geometry": null, "dataset_titles": "Larsen C automatic weather station data 2008\u20132011; Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "datasets": [{"dataset_uid": "601445", "doi": "10.15784/601445", "keywords": "Antarctica; Atmosphere; AWS; Foehn Winds; Ice Shelf; Larsen C Ice Shelf; Larsen Ice Shelf; Meteorology; Weather Station Data", "people": "Bayou, Nicolas; McGrath, Daniel; Steffen, Konrad", "repository": "USAP-DC", "science_program": null, "title": "Larsen C automatic weather station data 2008\u20132011", "url": "https://www.usap-dc.org/view/dataset/601445"}, {"dataset_uid": "601056", "doi": "10.15784/601056", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Larsen C Ice Shelf; Radar", "people": "Kuipers Munneke, Peter; Steffen, Konrad; McGrath, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "url": "https://www.usap-dc.org/view/dataset/601056"}], "date_created": "Wed, 03 Oct 2012 00:00:00 GMT", "description": "This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS", "is_usap_dc": false, "keywords": "Climate Warming; Firn; COMPUTERS; Ice Dynamic; USAP-DC; Glaciological; Thinning; Sea Level Rise; FIELD SURVEYS; FIELD INVESTIGATION; USA/NSF; AMD; Ice Edge Retreat; LABORATORY; Climate Change; Antarctic Peninsula; Amd/Us; Melting", "locations": "Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steffen, Konrad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate", "uid": "p0000087", "west": null}, {"awards": "0739684 Hatcher, Patrick", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 26 Sep 2012 00:00:00 GMT", "description": "This award supports a project to fully develop the analytical protocols needed to exploit a relatively new technique for the analysis of soluble organic matter in ice core samples. The technique couples Electrospray ionization to high resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). Sample volume will be reduced and pre-concentration steps will be eliminated. Following method optimization a suite of ice core samples will be studied from several Antarctic and Greenland locations to address several hypothesis driven research questions. Preliminary results show that a vast record of relatively high molecular weight organic material exists in ice core samples and intriguing results from a few samples warrant further investigation. Several important questions related to developing a better understanding of the nature and paleo record of organic matter in ice cores will be addressed. These include developing a better understanding of the origin of nitrogen and sulfur isotopes in pre-industrial vs. modern samples, developing the methods to apply molecular biomarker techniques, routinely used by organic geochemists for sediment analyses, to the analysis of organic matter in ice cores, tracking the level of oxidation of homologous series of compounds and using them as a proxy for atmospheric oxidant levels in the past and determining whether or not high resolution FTICR mass spectral analysis can provide the ice core community with a robust method to analyze organic materials at the molecular level. The intellectual merit of this work is that this analytical method will provide a new understanding of the nature of organic matter in ice, possibly leading to the discovery of multitudes of molecular species indicative of global change processes whose abundances can be compared with other change proxies. The proposed studies are of an exploratory nature and potentially transformative for the field of ice core research and cryobiology. The broader impacts of these studies are that they should provide compelling evidence regarding organic matter sources, atmospheric processing and anthropogenic inputs to polar ice and how these have varied over time. The collaborative work proposed here will partner atmospheric chemistry/polar ice chemistry expertise with organic geochemistry expertise, resulting in significant contributions to both fields of study and significant advances in ice core analysis. Training of both graduate and undergraduate students will be a key component of the project and students will be involved in collaborative research using advanced analytical instrumentation, presentation of research results at national meetings, and will participate in manuscript preparation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Ice Core; Isotope; Organic Matter; Nitrogen; Sulfur; Not provided; LABORATORY; Mass Spectrometry; COMPUTERS; Molecular", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hatcher, Patrick; Grannas, Amanda", "platforms": "Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Molecular Level Characterization of Organic Matter in Ice Cores using High-resolution FTICR mass spectrometry", "uid": "p0000707", "west": null}, {"awards": "0733025 Blankenship, Donald", "bounds_geometry": "POLYGON((95 -65,103.5 -65,112 -65,120.5 -65,129 -65,137.5 -65,146 -65,154.5 -65,163 -65,171.5 -65,180 -65,180 -66.7,180 -68.4,180 -70.1,180 -71.8,180 -73.5,180 -75.2,180 -76.9,180 -78.6,180 -80.3,180 -82,171.5 -82,163 -82,154.5 -82,146 -82,137.5 -82,129 -82,120.5 -82,112 -82,103.5 -82,95 -82,95 -80.3,95 -78.6,95 -76.9,95 -75.2,95 -73.5,95 -71.8,95 -70.1,95 -68.4,95 -66.7,95 -65))", "dataset_titles": "Gravity anomaly data; Gravity raw data; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; ICECAP flight reports; ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica; ICECAP radargrams (HiCARS 1); ICECAP radargrams (HiCARS 2); Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ice thickness and bed reflectivity data (HiCARS 1); Ice thickness and bed reflectivity data (HiCARS 2); Laser altimetry raw data; Laser surface elevation data; Magnetic anomaly data; Magnetic raw data", "datasets": [{"dataset_uid": "200111", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI1B/versions/1"}, {"dataset_uid": "200115", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic raw data", "url": "https://nsidc.org/data/imgeo1b"}, {"dataset_uid": "200116", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Magnetic anomaly data", "url": "https://nsidc.org/data/imgeo2"}, {"dataset_uid": "200117", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity raw data", "url": "https://nsidc.org/data/igbgm1b/"}, {"dataset_uid": "200118", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Gravity anomaly data", "url": "https://nsidc.org/data/igbgm2/"}, {"dataset_uid": "200119", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser altimetry raw data", "url": "https://nsidc.org/data/ilutp1b"}, {"dataset_uid": "200120", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Laser surface elevation data", "url": "https://nsidc.org/data/ilutp2"}, {"dataset_uid": "200121", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP flight reports", "url": "https://nsidc.org/data/ifltrpt"}, {"dataset_uid": "601605", "doi": "10.15784/601605", "keywords": "Airborne Radar; Antarctica; Basler; Darwin Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hatherton Glacier; Hicars; ICECAP; Ice Penetrating Radar; Ice Thickness; Transantarctic Mountains", "people": "Schroeder, Dustin; Greenbaum, Jamin; Holt, John W.; Siegert, Martin; Young, Duncan A.; Blankenship, Donald D.; Gillespie, Mette", "repository": "USAP-DC", "science_program": null, "title": "ICECAP ice thickness data over the Darwin and Hatherton Glaciers, Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601605"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Blankenship, Donald D.; Mulvaney, Robert; Cavitte, Marie G. P; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Young, Duncan A.; Schroeder, Dustin", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}, {"dataset_uid": "200113", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 1)", "url": "https://nsidc.org/data/IR1HI2/versions/1"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200112", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "ICECAP radargrams (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI1B/versions/1"}, {"dataset_uid": "200114", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Ice thickness and bed reflectivity data (HiCARS 2)", "url": "https://nsidc.org/data/IR2HI2/versions/1"}], "date_created": "Tue, 04 Sep 2012 00:00:00 GMT", "description": "This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.", "east": 180.0, "geometry": "POINT(137.5 -73.5)", "instruments": null, "is_usap_dc": false, "keywords": "DOME C; Aurora Subglacial Basin; BT-67; East Antarctica; Wilkes Land; Totten Glacier; ICE SHEETS; Byrd Glacier; Wilkes Subglacial Basin", "locations": "East Antarctica; DOME C; Byrd Glacier; Totten Glacier; Aurora Subglacial Basin; Wilkes Subglacial Basin; Wilkes Land", "north": -65.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "Siegert, Martin; Roberts, Jason; Van Ommen, Tas; Warner, Roland; Richter, Thomas; Greenbaum, Jamin; Holt, John W.; Young, Duncan A.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -82.0, "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "uid": "p0000719", "west": 95.0}, {"awards": "0631973 Joughin, Ian; 0632031 Das, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2012 00:00:00 GMT", "description": "Joughin 0631973\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on \"ice sheet history and dynamics.\" The project is also international in scope.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Not provided; FIELD INVESTIGATION; Flow Speed; Antarctic; LABORATORY; Ice Sheet Accumulation Rate; Mass Balance; Accumulation; Insar; SATELLITES; FIELD SURVEYS; Ice Core; Radar Altimetry; Ice Velocity", "locations": "Antarctic", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Joughin, Ian; Medley, Brooke; Das, Sarah", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repositories": null, "science_programs": null, "south": null, "title": "IPY: Collaborative Proposal: Constraining the Mass-Balance Deficit of the Amundsen Coast\u0027s Glaciers", "uid": "p0000542", "west": null}, {"awards": "0636740 Kreutz, Karl; 0636767 Dunbar, Nelia", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Breton, Daniel; Hamilton, Gordon S.; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0739726 Bowring, Samuel; 0739732 Fleming, Thomas", "bounds_geometry": "POLYGON((-180 -70,-174.3 -70,-168.6 -70,-162.9 -70,-157.2 -70,-151.5 -70,-145.8 -70,-140.1 -70,-134.4 -70,-128.7 -70,-123 -70,-123 -71.8,-123 -73.6,-123 -75.4,-123 -77.2,-123 -79,-123 -80.8,-123 -82.6,-123 -84.4,-123 -86.2,-123 -88,-128.7 -88,-134.4 -88,-140.1 -88,-145.8 -88,-151.5 -88,-157.2 -88,-162.9 -88,-168.6 -88,-174.3 -88,180 -88,176.5 -88,173 -88,169.5 -88,166 -88,162.5 -88,159 -88,155.5 -88,152 -88,148.5 -88,145 -88,145 -86.2,145 -84.4,145 -82.6,145 -80.8,145 -79,145 -77.2,145 -75.4,145 -73.6,145 -71.8,145 -70,148.5 -70,152 -70,155.5 -70,159 -70,162.5 -70,166 -70,169.5 -70,173 -70,176.5 -70,-180 -70))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 May 2012 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThis project uses high-precision, U-Pb dating of zircons from the Ferrar igneous intrusion of Antarctica to determine when it formed and whether it caused a major extinction event. Amongst the world?s largest intrusions, the Ferrar is also associated with breakup of Gondwana, the last supercontinent. Data from this project will show how the Ferrar and similar intrusions form and their potential to cause mass extinctions. Intrusion of the Ferrar has been tentatively linked to the Toarcian extinction event of 183 million years ago, thought to have been caused by methane released when the Ferrar intersected subterranean coal beds. The broader impacts are undergraduate, graduate and postdoctoral involvement in research, new collaborations between a research and primarily undergraduate institution, and K12 outreach.", "east": -123.0, "geometry": "POINT(-169 -79)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e IRMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": false, "keywords": "Ferrar Supergroup; LABORATORY", "locations": "Ferrar Supergroup", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC", "persons": "Burgess, Seth; Fleming, Thomas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research: High Precision U-Pb Geochronology of the Jurassic Ferrar Large Igneous Province, Antarctica", "uid": "p0000502", "west": 145.0}, {"awards": "0758274 Parizek, Byron; 0636724 Blankenship, Donald", "bounds_geometry": "POLYGON((-110.058 -74.0548,-109.57993 -74.0548,-109.10186 -74.0548,-108.62379 -74.0548,-108.14572 -74.0548,-107.66765 -74.0548,-107.18958 -74.0548,-106.71151 -74.0548,-106.23344 -74.0548,-105.75537 -74.0548,-105.2773 -74.0548,-105.2773 -74.31383,-105.2773 -74.57286,-105.2773 -74.83189,-105.2773 -75.09092,-105.2773 -75.34995,-105.2773 -75.60898,-105.2773 -75.86801,-105.2773 -76.12704,-105.2773 -76.38607,-105.2773 -76.6451,-105.75537 -76.6451,-106.23344 -76.6451,-106.71151 -76.6451,-107.18958 -76.6451,-107.66765 -76.6451,-108.14572 -76.6451,-108.62379 -76.6451,-109.10186 -76.6451,-109.57993 -76.6451,-110.058 -76.6451,-110.058 -76.38607,-110.058 -76.12704,-110.058 -75.86801,-110.058 -75.60898,-110.058 -75.34995,-110.058 -75.09092,-110.058 -74.83189,-110.058 -74.57286,-110.058 -74.31383,-110.058 -74.0548))", "dataset_titles": "Access to data; AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment; AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica; Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica; ICECAP Basal Interface Specularity Content Profiles: IPY and OIB; Subglacial water flow paths under Thwaites Glacier, West Antarctica; Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "datasets": [{"dataset_uid": "609518", "doi": "10.7265/N5RJ4GC8", "keywords": "AGASEA; Airborne Radar; Antarctica; Elevation; Flow Paths; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Carter, Sasha P.; Blankenship, Donald D.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Subglacial water flow paths under Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609518"}, {"dataset_uid": "601673", "doi": "10.15784/601673", "keywords": "Antarchitecture; Antarctica; Ice Penetrating Radar; Isochron; Layers; Radar; Radioglaciology; Thwaites Glacier", "people": "Blankenship, Donald D.; Muldoon, Gail R.; Young, Duncan A.; Jackson, Charles", "repository": "USAP-DC", "science_program": null, "title": "AGASEA 4.7 ka Englacial Isochron over the Thwaites Glacier Catchment", "url": "https://www.usap-dc.org/view/dataset/601673"}, {"dataset_uid": "002536", "doi": "", "keywords": null, "people": null, "repository": "NASA", "science_program": null, "title": "Access to data", "url": "http://www.giss.nasa.gov/tools/panoply/"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "609517", "doi": "10.7265/N5W95730", "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "people": "Blankenship, Donald D.; Young, Duncan A.; Kempf, Scott D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609517"}, {"dataset_uid": "000248", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/netcdf/tools.html"}, {"dataset_uid": "609334", "doi": "10.7265/N5HD7SK8", "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "people": "Holt, John W.; Blankenship, Donald D.; Kempf, Scott D.; Morse, David L.; Young, Duncan A.", "repository": "USAP-DC", "science_program": null, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609334"}, {"dataset_uid": "609619", "doi": "10.7265/N58913TN", "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "people": "Blankenship, Donald D.; Dupont, Todd K.; Holt, John W.; Parizek, Byron R.", "repository": "USAP-DC", "science_program": null, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "url": "https://www.usap-dc.org/view/dataset/609619"}], "date_created": "Tue, 15 May 2012 00:00:00 GMT", "description": "This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program\u0027s emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: \"investigation of the physics of fast glacier flow with emphasis on processes at glacier beds\"; \"investigation of ice-shelf stability\"; and \"identification and quantification of the feedback between ice dynamics and climate change\". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.", "east": -105.2773, "geometry": "POINT(-107.66765 -75.34995)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e INS", "is_usap_dc": true, "keywords": "Ice Sheet Thickness; Ice Sheet Elevation; Glacier Dynamics; Ice Stream; Numerical Model; West Antarctic; Surface Elevation; Basal Rheology; Ice Surface Velocity; Embayment Geometry; Amundsen Sea; Hydrology; FIELD SURVEYS; Antarctic Ice Sheet; Glacier; Subglacial; DHC-6; West Antarctic Ice Sheet; Model Output; Surface Climate; Glaciers; Basal Topography; Grounding Zone; Model Input Data; Airborne Laser Altimeters; FIELD INVESTIGATION; Thwaites Glacier; Airborne Laser Altimetry; Diagnostic; Ice-Shelf Buttressing; Ice Sheet; Prognostic; Glacier Surface; Airborne Radar Sounding; Digital Elevation Model; Ice Dynamic; Antarctica; Altimetry; Antarctica (agasea); Bed Elevation; Basal Stress; LABORATORY", "locations": "Antarctica; Thwaites Glacier; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctic; Amundsen Sea", "north": -74.0548, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Carter, Sasha P.; Dupont, Todd K.; Holt, John W.; Morse, David L.; Parizek, Byron R.; Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NASA; NSIDC; USAP-DC", "science_programs": null, "south": -76.6451, "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "p0000174", "west": -110.058}, {"awards": "0537661 Cuffey, Kurt; 0537593 White, James; 0537930 Steig, Eric", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Stable Isotope Lab at INSTAAR, University of Colorado; WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "datasets": [{"dataset_uid": "000140", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #342, 347, 348, 349, 350, 351 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}, {"dataset_uid": "002561", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Stable Isotope Lab at INSTAAR, University of Colorado", "url": "http://instaar.colorado.edu/sil/about/index.php"}], "date_created": "Mon, 09 Apr 2012 00:00:00 GMT", "description": "This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "West Antarctic Ice Sheet Divide; Not provided; Ice Core; WAIS Divide; LABORATORY; FIELD SURVEYS; Isotope; FIELD INVESTIGATION; Antarctica; West Antarctica; Stable Isotope Ratios; Antarctic; Ice Sheet; Deuterium", "locations": "WAIS Divide; West Antarctica; Antarctic; Antarctica; West Antarctic Ice Sheet Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "White, James; Steig, Eric J.; Cuffey, Kurt M.; Souney, Joseph Jr.; Vaughn, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the WAIS Divide Deep Ice Core", "uid": "p0000294", "west": -112.08}, {"awards": "0125172 Gordon, Arnold", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0302; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0402; Expedition data of NBP0408; Expedition data of NBP0501", "datasets": [{"dataset_uid": "002624", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002620", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0408", "url": "https://www.rvdata.us/search/cruise/NBP0408"}, {"dataset_uid": "002588", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0302", "url": "https://www.rvdata.us/search/cruise/NBP0302"}, {"dataset_uid": "002638", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0402", "url": "https://www.rvdata.us/search/cruise/NBP0402"}, {"dataset_uid": "002629", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002625", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation \u003cbr/\u003eWhile the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gordon, Arnold; Cande, Steven; Visbeck, Martin; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Anslope, Cross-slope Exchanges at the Antarctic Slope Front", "uid": "p0000807", "west": null}, {"awards": "0839039 Kustka, Adam", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP1101; Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "datasets": [{"dataset_uid": "002653", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1101", "url": "https://www.rvdata.us/search/cruise/NBP1101"}, {"dataset_uid": "601343", "doi": null, "keywords": "Antarctica; Mooring; NBP1101; Ross Sea; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "url": "https://www.usap-dc.org/view/dataset/601343"}], "date_created": "Tue, 17 Jan 2012 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eAn interdisciplinary team of researchers will focus on describing the high productivity patchiness observed in phytoplankton blooms in the mid to late summer in the Ross Sea, Antarctica. Key hypotheses to be tested and extended are that intrusions of nutrient and micro nutrient (e.g. Fe) rich water masses of the Antarctic modified circumpolar deep water (CDW) up onto continental shelves act to control the biogeochemical response of a large area of the productive Ross Sea coastal region. It is believed that this enhanced productivity may be a significant contributing factor to the global carbon cycle. \u003cbr/\u003e\u003cbr/\u003eA novel sampling strategy to be used to test the above hypotheses will employ a remotely controlled deep (1000m) glider (AUV) to locate and map CDW in near real time measuring C (conductivity), T (temperature), D (pressure) and apparent optical properties, and which will serve to direct further ship-based sampling. \u003cbr/\u003e\u003cbr/\u003eThe adaptive coordination of a polar research vessel with an AUV additionally provides an opportunity to engage in formal and informal education and public outreach on issues in polar research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Kohut, Josh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Collaborate Research:Modified Circumpolar Deep Water Intrusions as an Iron Source to the Summer Ross Sea Ecosystem", "uid": "p0000843", "west": null}, {"awards": "0636898 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Nov 2011 00:00:00 GMT", "description": "Winckler/0636898\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth\u0027s climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Deposition; LABORATORY; Dust; Climate; Not provided; Climate Change; Helium Isotopes; FIELD INVESTIGATION; Biogeochemical Cycles", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Tracing Glacial-interglacial Changes in the Dust Source to Antarctica using Helium Isotopes", "uid": "p0000265", "west": null}, {"awards": "0739491 Sowers, Todd; 0739598 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Alkanes in Firn Air Samples, Antarctica and Greenland; Methane Isotopes in South Pole Firn Air, 2008", "datasets": [{"dataset_uid": "609504", "doi": "10.7265/N5X9287C", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Snow/ice; Snow/Ice; South Pole; WAIS Divide", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Alkanes in Firn Air Samples, Antarctica and Greenland", "url": "https://www.usap-dc.org/view/dataset/609504"}, {"dataset_uid": "609502", "doi": "10.7265/N55T3HFP", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": null, "title": "Methane Isotopes in South Pole Firn Air, 2008", "url": "https://www.usap-dc.org/view/dataset/609502"}], "date_created": "Thu, 18 Aug 2011 00:00:00 GMT", "description": "This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man\u0027s input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Isotope; Firn Air Chemistry; Firn Air Isotope Measurements; Not provided; LABORATORY; South Pole; Firn; Delta 13C; Carbon-13; Mass Spectrometer; Deuterium; Mass Spectrometry; Firn Air Samples; Carbon; Gas Chromatography; Polar Firn Air; GROUND-BASED OBSERVATIONS; Methane; Antarctica; Firn Air Isotopes; Delta Deuterium; FIELD SURVEYS; Firn Air; Chromatography; Methane Isotopes; Carbon Isotopes; Stable Isotopes", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "uid": "p0000162", "west": null}, {"awards": "0636818 Stone, John", "bounds_geometry": "POLYGON((-157 -85,-156 -85,-155 -85,-154 -85,-153 -85,-152 -85,-151 -85,-150 -85,-149 -85,-148 -85,-147 -85,-147 -85.3,-147 -85.6,-147 -85.9,-147 -86.2,-147 -86.5,-147 -86.8,-147 -87.1,-147 -87.4,-147 -87.7,-147 -88,-148 -88,-149 -88,-150 -88,-151 -88,-152 -88,-153 -88,-154 -88,-155 -88,-156 -88,-157 -88,-157 -87.7,-157 -87.4,-157 -87.1,-157 -86.8,-157 -86.5,-157 -86.2,-157 -85.9,-157 -85.6,-157 -85.3,-157 -85))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Aug 2011 00:00:00 GMT", "description": "Hall/0636687\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based \u0027expedition\u0027 journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.", "east": -147.0, "geometry": "POINT(-152 -86.5)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John; Conway, Howard", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -88.0, "title": "Collaborative Research:Grounding-line Retreat in the Southern Ross Sea - Constraints from Scott Glacier", "uid": "p0000149", "west": -157.0}, {"awards": "0636970 Tulaczyk, Slawek; 0636719 Joughin, Ian", "bounds_geometry": null, "dataset_titles": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "datasets": [{"dataset_uid": "601439", "doi": "10.15784/601439", "keywords": "Altimetry; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Icesat; Laser Altimetry; Subglacial Lake", "people": "Tulaczyk, Slawek; Fricker, Helen; Smith, Ben; Joughin, Ian", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "url": "https://www.usap-dc.org/view/dataset/601439"}], "date_created": "Wed, 27 Jul 2011 00:00:00 GMT", "description": "Tulaczyk/0636970\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA\u0027s represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS", "is_usap_dc": false, "keywords": "ICESAT; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries", "uid": "p0000115", "west": null}, {"awards": "0538120 Catania, Ginny; 0538015 Hulbe, Christina", "bounds_geometry": "POLYGON((154.71 -82.78,154.79000000000002 -82.78,154.87 -82.78,154.95 -82.78,155.03 -82.78,155.11 -82.78,155.19 -82.78,155.26999999999998 -82.78,155.35 -82.78,155.43 -82.78,155.51 -82.78,155.51 -82.788,155.51 -82.796,155.51 -82.804,155.51 -82.812,155.51 -82.82,155.51 -82.828,155.51 -82.836,155.51 -82.844,155.51 -82.852,155.51 -82.86,155.43 -82.86,155.35 -82.86,155.26999999999998 -82.86,155.19 -82.86,155.11 -82.86,155.03 -82.86,154.95 -82.86,154.87 -82.86,154.79000000000002 -82.86,154.71 -82.86,154.71 -82.852,154.71 -82.844,154.71 -82.836,154.71 -82.828,154.71 -82.82,154.71 -82.812,154.71 -82.804,154.71 -82.796,154.71 -82.788,154.71 -82.78))", "dataset_titles": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica; Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "datasets": [{"dataset_uid": "609494", "doi": "10.7265/N5Z899C6", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Grounding Line; Kamb Ice Stream; Strain", "people": "Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Grounding Line Strain Grid Surveys, Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609494"}, {"dataset_uid": "609474", "doi": "10.7265/N5M043BH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; GPR; Grounding Line; Radar; Siple Coast", "people": "Hulbe, Christina; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Ice-Penetrating Radar Data Across Siple Coast Grounding Lines", "url": "https://www.usap-dc.org/view/dataset/609474"}], "date_created": "Sat, 02 Jul 2011 00:00:00 GMT", "description": "0538120\u003cbr/\u003eCatania\u003cbr/\u003eThis award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.", "east": 155.51, "geometry": "POINT(155.11 -82.82)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Not provided; Ice Sheet Elevation; West Antarctic Ice Stream; MODELS; Ice Sheet Thickness; West Antarctic Ice Sheet; Kamb Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Stream Motion; Antarctica; Siple Dome; Grounding Line; FIELD INVESTIGATION; GPS; FIELD SURVEYS; West Antarctica; Ice Stream; Radar", "locations": "Antarctica; Kamb Ice Stream; West Antarctic Ice Stream; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; Siple Dome", "north": -82.78, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e MODELS \u003e MODELS; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.86, "title": "Collaborative Research: Grounding Line Forensics: The History of Grounding Line Retreat in the Kamb Ice Stream Outlet Region", "uid": "p0000019", "west": 154.71}, {"awards": "0424589 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74))", "dataset_titles": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams; Archive of data; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ku-band Radar Echograms; Radar Depth Sounder Echograms and Ice Thickness; Snow Radar Echograms", "datasets": [{"dataset_uid": "601049", "doi": "10.15784/601049", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Snow", "people": "Gogineni, Prasad; Allen, Chris; Paden, John; Li, Jilu; Rodriguez, Fernando; Leuschen, Carl", "repository": "USAP-DC", "science_program": null, "title": "Snow Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601049"}, {"dataset_uid": "600384", "doi": "10.15784/600384", "keywords": "Airborne Radar; Antarctica; Basler; Glaciers/ice Sheet; Glaciers/Ice Sheet; Kamb Ice Stream; Radar; Siple Coast; Whillans Ice Stream", "people": "Paden, John; Hale, Richard", "repository": "USAP-DC", "science_program": null, "title": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600384"}, {"dataset_uid": "002497", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Archive of data", "url": "https://www.cresis.ku.edu/data/accumulation"}, {"dataset_uid": "601047", "doi": "10.15784/601047", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MCoRDS; Navigation; Radar", "people": "Gogineni, Prasad; Li, Jilu; Allen, Chris; Leuschen, Carl; Paden, John; Rodriguez, Fernando", "repository": "USAP-DC", "science_program": null, "title": "Radar Depth Sounder Echograms and Ice Thickness", "url": "https://www.usap-dc.org/view/dataset/601047"}, {"dataset_uid": "601048", "doi": "10.15784/601048", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ku-Band; Navigation; Radar", "people": "Paden, John; Allen, Chris; Li, Jilu; Leuschen, Carl; Gogineni, Prasad; Rodriguez, Fernando", "repository": "USAP-DC", "science_program": null, "title": "Ku-band Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601048"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Blankenship, Donald D.; Mulvaney, Robert; Cavitte, Marie G. P; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Young, Duncan A.; Schroeder, Dustin", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}], "date_created": "Wed, 01 Jun 2011 00:00:00 GMT", "description": "This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbr\u00e6. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.\u003cbr/\u003e\u003cbr/\u003eThe intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. \u003cbr/\u003e\u003cbr/\u003eAs lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.", "east": -88.0, "geometry": "POINT(-112.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Remote Sensing; Not provided; Pine Island; Ice Sheet; DHC-6; Antarctic; Thwaites Region; Antarctica; Mass Balance; Accumulation; Velocity; Insar", "locations": "Antarctica; Antarctic; Pine Island; Thwaites Region", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": null, "south": -80.5, "title": "Center for Remote Sensing of Ice Sheets (CReSIS)", "uid": "p0000102", "west": -137.0}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": "POINT(-112.117 -79.666)", "dataset_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "datasets": [{"dataset_uid": "600142", "doi": "10.15784/600142", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "url": "https://www.usap-dc.org/view/dataset/600142"}], "date_created": "Thu, 28 Apr 2011 00:00:00 GMT", "description": "Edwards/0739780\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.", "east": -112.117, "geometry": "POINT(-112.117 -79.666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Not provided; Gas Record; Ice Core; Gas Measurement; Ice Core Gas Composition; Antarctica; LABORATORY; Bedrock Ice Core; Ice Core Gas Records; Wais Project; Greenhouse Gas; Atmospheric Chemistry; FIELD INVESTIGATION; Black Carbon; Biomass Burning; WAIS Divide; FIELD SURVEYS; West Antarctica; Methane", "locations": "Antarctica; West Antarctica; WAIS Divide", "north": -79.666, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "p0000022", "west": -112.117}, {"awards": "0836144 Yager, Patricia; 0836061 Dennett, Mark; 0836112 Smith, Walker", "bounds_geometry": "POLYGON((100 -69,107 -69,114 -69,121 -69,128 -69,135 -69,142 -69,149 -69,156 -69,163 -69,170 -69,170 -70,170 -71,170 -72,170 -73,170 -74,170 -75,170 -76,170 -77,170 -78,170 -79,163 -79,156 -79,149 -79,142 -79,135 -79,128 -79,121 -79,114 -79,107 -79,100 -79,100 -78,100 -77,100 -76,100 -75,100 -74,100 -73,100 -72,100 -71,100 -70,100 -69))", "dataset_titles": "Amundsen Sea Polynya International Research Expedition (ASPIRE) data; Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "datasets": [{"dataset_uid": "600092", "doi": "10.15784/600092", "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "url": "https://www.usap-dc.org/view/dataset/600092"}, {"dataset_uid": "000146", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Amundsen Sea Polynya International Research Expedition (ASPIRE) data", "url": "https://www.bco-dmo.org/project/2132"}, {"dataset_uid": "600091", "doi": "10.15784/600091", "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "people": "Dennett, Mark", "repository": "USAP-DC", "science_program": null, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "url": "https://www.usap-dc.org/view/dataset/600091"}], "date_created": "Sun, 24 Apr 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": 170.0, "geometry": "POINT(135 -74)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Yager, Patricia; Dennett, Mark", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "BCO-DMO; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "uid": "p0000137", "west": 100.0}, {"awards": "0529087 Ross, Robin; 0529666 Fritsen, Christian; 0528728 Vernet, Maria", "bounds_geometry": "POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))", "dataset_titles": "Expedition data of NBP0103; The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "datasets": [{"dataset_uid": "600048", "doi": "10.15784/600048", "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600048"}, {"dataset_uid": "600049", "doi": "10.15784/600049", "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "people": "Ross, Robin Macurda; Quetin, Langdon B.", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600049"}, {"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "600050", "doi": "10.15784/600050", "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "people": "Fritsen, Christian", "repository": "USAP-DC", "science_program": null, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "url": "https://www.usap-dc.org/view/dataset/600050"}], "date_created": "Sat, 02 Apr 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat.\u003cbr/\u003e\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": -64.6, "geometry": "POINT(-66.84 -66.405)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -64.8, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fritsen, Christian; Vernet, Maria; Ross, Robin Macurda; Quetin, Langdon B.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.01, "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "p0000522", "west": -69.08}, {"awards": "9726186 Pilskaln, Cynthia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0101", "datasets": [{"dataset_uid": "002641", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}, {"dataset_uid": "002580", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "*** 9726186 Pilskaln This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People\u0027s Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program", "uid": "p0000800", "west": null}, {"awards": "9909734 Anderson, John", "bounds_geometry": "POLYGON((-73.80311 -52.35021,-71.817373 -52.35021,-69.831636 -52.35021,-67.845899 -52.35021,-65.860162 -52.35021,-63.874425 -52.35021,-61.888688 -52.35021,-59.902951 -52.35021,-57.917214 -52.35021,-55.931477 -52.35021,-53.94574 -52.35021,-53.94574 -53.954842,-53.94574 -55.559474,-53.94574 -57.164106,-53.94574 -58.768738,-53.94574 -60.37337,-53.94574 -61.978002,-53.94574 -63.582634,-53.94574 -65.187266,-53.94574 -66.791898,-53.94574 -68.39653,-55.931477 -68.39653,-57.917214 -68.39653,-59.902951 -68.39653,-61.888688 -68.39653,-63.874425 -68.39653,-65.860162 -68.39653,-67.845899 -68.39653,-69.831636 -68.39653,-71.817373 -68.39653,-73.80311 -68.39653,-73.80311 -66.791898,-73.80311 -65.187266,-73.80311 -63.582634,-73.80311 -61.978002,-73.80311 -60.37337,-73.80311 -58.768738,-73.80311 -57.164106,-73.80311 -55.559474,-73.80311 -53.954842,-73.80311 -52.35021))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001803", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0201"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "9909734 Anderson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research on the glaciomarine geology of the continental shelves of West Antarctica and the Antarctic Peninsula. It is hypothesized that the different glacial systems of the Antarctic Peninsula region have been more responsive to climate change and sea-level rise than either the West Antarctic or East Antarctic ice sheets. This is due mainly to the smaller size of these ice masses and the higher latitude location of the peninsula. Indeed, ice shelves of the Antarctic Peninsula are currently retreating at rates of up to a kilometer per year. But are these changes due to recent atmospheric warming in the region or are they simply the final phase of retreat since the last glacial maximum? This project hypothesizes that the deglacial history of the Antarctic Peninsula region has been quite complex, with different glacial systems retreating at different rates and at different times. This complex recessional history reflects the different sizes as well as different climatic and physiographic settings of glacial systems in the region. An understanding of the Late Pleistocene to Holocene glacial history of the Antarctic Peninsula glacial systems is needed to address how these systems responded to sea-level and climate change during that time interval. This investigation acquire new marine geological and geophysical data from the continental shelf to determine if and when different glacial systems were grounded on the shelf, to establish the extent of grounded ice, and to examine the history of glacial retreat. The project will build on an extensive seismic data set and hundreds of sediment cores collected along the Peninsula during earlier (1980\u0027s) cruises. Key to this investigation is the acquisition of swath bathymetry, side-scan sonar and very high-resolution sub-bottom (chirp) profiles from key drainage outlets. These new data will provide the necessary geomorphologic and stratigraphic framework for reconstructing the Antarctic Peninsula glacial record. Anticipated results will help constrain models for future glacier and ice sheet activity.", "east": -53.94574, "geometry": "POINT(-63.874425 -60.37337)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35021, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Anderson, Jason", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -68.39653, "title": "LGM Late Pleistocene to Holocene Glacial History of West Antarctica", "uid": "p0000600", "west": -73.80311}, {"awards": "0537532 Liston, Glen; 0538422 Hamilton, Gordon; 0538103 Scambos, Ted; 0538416 McConnell, Joseph; 0963924 Steig, Eric; 0538495 Albert, Mary", "bounds_geometry": "POLYGON((-180 -72.01667,-161.74667 -72.01667,-143.49334 -72.01667,-125.24001 -72.01667,-106.98668 -72.01667,-88.73335 -72.01667,-70.48002 -72.01667,-52.22669 -72.01667,-33.97336 -72.01667,-15.72003 -72.01667,2.5333 -72.01667,2.5333 -73.815003,2.5333 -75.613336,2.5333 -77.411669,2.5333 -79.210002,2.5333 -81.008335,2.5333 -82.806668,2.5333 -84.605001,2.5333 -86.403334,2.5333 -88.201667,2.5333 -90,-15.72003 -90,-33.97336 -90,-52.22669 -90,-70.48002 -90,-88.73335 -90,-106.98668 -90,-125.24001 -90,-143.49334 -90,-161.74667 -90,180 -90,162.25333 -90,144.50666 -90,126.75999 -90,109.01332 -90,91.26665 -90,73.51998 -90,55.77331 -90,38.02664 -90,20.27997 -90,2.5333 -90,2.5333 -88.201667,2.5333 -86.403334,2.5333 -84.605001,2.5333 -82.806668,2.5333 -81.008335,2.5333 -79.210002,2.5333 -77.411669,2.5333 -75.613336,2.5333 -73.815003,2.5333 -72.01667,20.27997 -72.01667,38.02664 -72.01667,55.77331 -72.01667,73.51998 -72.01667,91.26665 -72.01667,109.01332 -72.01667,126.75999 -72.01667,144.50666 -72.01667,162.25333 -72.01667,-180 -72.01667))", "dataset_titles": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009; Norwegian-U.S. Scientific Traverse of East Antarctica; This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "datasets": [{"dataset_uid": "001305", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "url": "http://nsidc.org/data/nsidc-0536.html"}, {"dataset_uid": "609520", "doi": "10.7265/N5H41PC9", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "url": "https://www.usap-dc.org/view/dataset/609520"}, {"dataset_uid": "000112", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Norwegian-U.S. Scientific Traverse of East Antarctica", "url": "http://traverse.npolar.no/"}], "date_created": "Wed, 23 Feb 2011 00:00:00 GMT", "description": "This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960\u0027s, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI\u0027s at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children\u0027s literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.", "east": 2.5333, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; East Antarctic Plateau; FIXED OBSERVATION STATIONS; Glaciology; LABORATORY; FIELD SURVEYS; Permeability; Ice Core; Climate Variability; Firn; Accumulation Rate; Mass Balance; Snow; Gravity; Ice Sheet; GROUND-BASED OBSERVATIONS; Traverse; Not provided; Antarctic; Ice Core Chemistry; Antarctica; Density", "locations": "Antarctica; Antarctic; East Antarctic Plateau", "north": -72.01667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Bell, Eric; Liston, Glen; Scambos, Ted; Hamilton, Gordon S.; McConnell, Joseph; Albert, Mary R.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC; Project website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "uid": "p0000095", "west": 2.5333}, {"awards": "0636731 Bender, Michael; 0636705 Marchant, David", "bounds_geometry": "POLYGON((160.48705 -77.84513,160.501913 -77.84513,160.516776 -77.84513,160.531639 -77.84513,160.546502 -77.84513,160.561365 -77.84513,160.576228 -77.84513,160.591091 -77.84513,160.605954 -77.84513,160.620817 -77.84513,160.63568 -77.84513,160.63568 -77.8515624,160.63568 -77.8579948,160.63568 -77.8644272,160.63568 -77.8708596,160.63568 -77.877292,160.63568 -77.8837244,160.63568 -77.8901568,160.63568 -77.8965892,160.63568 -77.9030216,160.63568 -77.909454,160.620817 -77.909454,160.605954 -77.909454,160.591091 -77.909454,160.576228 -77.909454,160.561365 -77.909454,160.546502 -77.909454,160.531639 -77.909454,160.516776 -77.909454,160.501913 -77.909454,160.48705 -77.909454,160.48705 -77.9030216,160.48705 -77.8965892,160.48705 -77.8901568,160.48705 -77.8837244,160.48705 -77.877292,160.48705 -77.8708596,160.48705 -77.8644272,160.48705 -77.8579948,160.48705 -77.8515624,160.48705 -77.84513))", "dataset_titles": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica; Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "600069", "doi": "10.15784/600069", "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600069"}, {"dataset_uid": "609597", "doi": "10.7265/N50R9MBM", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "people": "Yau, Audrey M.; Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609597"}], "date_created": "Thu, 03 Feb 2011 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.", "east": 160.63568, "geometry": "POINT(160.561365 -77.877292)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Elemental Ratios; Oxygen Isotope; Not provided; Nitrogen Isotopes; LABORATORY; Argon Isotopes; FIELD INVESTIGATION", "locations": null, "north": -77.84513, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; Yau, Audrey M.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.909454, "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "p0000039", "west": 160.48705}, {"awards": "0820779 Mosley-Thompson, Ellen", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Oct 2010 00:00:00 GMT", "description": "Mosley-Thompson\u003cbr/\u003e0820779\u003cbr/\u003e\u003cbr/\u003eThis MRI award supports the acquisition of an inductively coupled-sector field mass spectrometer (ICP-SFMS) to extract atmospheric trace element histories from ice cores and to assess contemporary water quality. The intellectual merit and the scientific motivation for acquiring this instrument arises from the urgency to document and understand both contemporary and past Earth system changes. Trace elements are exceptional tools for reconstructing past processes in the Earth?s system and as some toxic species are produced by human activities, for monitoring the global anthropogenic footprint. The ICP-SFMS allows simultaneous analysis of numerous trace and ultra-trace elements from small mass samples and will allow new proxy information to be extracted from both new and archived ice cores. The analyses will make it possible to identify sources of impurities in ice cores and other water samples from which knowledge about past atmospheric circulation patterns, anthropogenic emissions, extraterrestrial contributions and volcanic circulation patterns can be derived. The broader impacts of the work relate to the societal relevance of the science and the strong education and outreach activities of the principal investigators. Students will receive training on state-of-the-art instrumentation which will support their graduate research training.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gabrielli, Paolo", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "MRI: Acquisition of an Inductively Coupled-sector Field Mass Spectrometer to Extract Atmospheric Trace Element Histories from Ice Cores and Assess Contemporary Water Quality", "uid": "p0000737", "west": null}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": "POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))", "dataset_titles": "Ion Concentrations from SPRESSO Ice Core, Antarctica; Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "datasets": [{"dataset_uid": "609472", "doi": "10.7265/N5VH5KSV", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mt Moulton; Paleoclimate", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609472"}, {"dataset_uid": "609471", "doi": "10.7265/N508638J", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; South Pole; SPRESSO Ice Core", "people": "Korotkikh, Elena; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Ion Concentrations from SPRESSO Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609471"}], "date_created": "Thu, 29 Jul 2010 00:00:00 GMT", "description": "This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.", "east": -134.7, "geometry": "POINT(-136.2 -76.065)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Interpretation; Ions; US ITASE; Explorations; LABORATORY; Ice Core Data; Ice Core; Ice Analysis; Ice; Not provided; Antarctic Ice Sheet; Laboratory Investigation; Field Investigations; Ice Core Chemistry; Horizontal Ice Core; Ice Chemistry; Ice Sheet", "locations": "Antarctic Ice Sheet", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.43, "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "uid": "p0000209", "west": -137.7}, {"awards": "0839119 Wu, Qian", "bounds_geometry": "POLYGON((-68.1 -63.8,-67.29 -63.8,-66.48 -63.8,-65.67 -63.8,-64.86 -63.8,-64.05 -63.8,-63.24 -63.8,-62.43 -63.8,-61.62 -63.8,-60.81 -63.8,-60 -63.8,-60 -64.1,-60 -64.4,-60 -64.7,-60 -65,-60 -65.3,-60 -65.6,-60 -65.9,-60 -66.2,-60 -66.5,-60 -66.8,-60.81 -66.8,-61.62 -66.8,-62.43 -66.8,-63.24 -66.8,-64.05 -66.8,-64.86 -66.8,-65.67 -66.8,-66.48 -66.8,-67.29 -66.8,-68.1 -66.8,-68.1 -66.5,-68.1 -66.2,-68.1 -65.9,-68.1 -65.6,-68.1 -65.3,-68.1 -65,-68.1 -64.7,-68.1 -64.4,-68.1 -64.1,-68.1 -63.8))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Jul 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project will deploy a new Fabry-Perot interferometer (FPI) at the U.S. Palmer Station located in the Antarctic Peninsula. The FPI will observe mesospheric and thermospheric neutral winds and temperatures using multiple nightglow emissions (OH, 892 nm, 87 km; O 557.7 nm, 97 km; O 630 nm, 250 km; and O2 (0-1) 865 nm, 94 km). The project\u0027s team will collaborate with Australian scientists who operate similar FPI instruments at their Antarctic stations Mawson and Davis to jointly analyze the neutral wind and temperature data distributions over the continent and address the following scientific problems: (1) Thermospheric neutral winds effects on the Weddell Sea Anomaly, (2) Non-migrating tides in the mesosphere and lower thermosphere, (3) Lower thermospheric meridional wind circulation and mesosphere wind shear, (4) High-latitude geomagnetic field effects on the mid-latitude thermosphere, and (4) Conjugacy studies of the mesosphere and thermosphere with the incoherent scatter radar and FPI observations from Millstone Hill, Massachusetts. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate students.", "east": -60.0, "geometry": "POINT(-64.05 -65.3)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e INTERFEROMETERS \u003e FPI", "is_usap_dc": false, "keywords": "GROUND STATIONS; Thermospheric Winds; Fpi", "locations": null, "north": -63.8, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Wu, Qian", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repositories": null, "science_programs": null, "south": -66.8, "title": "Collaborative Research: Thermospheric Neutral Wind Observation from the Antarctic Peninsula", "uid": "p0000472", "west": -68.1}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009; d15N and d18O of air in the WAIS Divide ice core; Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core; Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event; WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "datasets": [{"dataset_uid": "601041", "doi": "10.15784/601041", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "people": "Seltzer, Alan; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "url": "https://www.usap-dc.org/view/dataset/601041"}, {"dataset_uid": "609660", "doi": "10.7265/N5S46PWD", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "url": "https://www.usap-dc.org/view/dataset/609660"}, {"dataset_uid": "609637", "doi": "10.7265/N5B27S7S", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "url": "https://www.usap-dc.org/view/dataset/609637"}, {"dataset_uid": "609635", "doi": "10.7265/N51J97PS", "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Mayewski, Paul A.; Kurbatov, Andrei V.; Haines, Skylar", "repository": "USAP-DC", "science_program": null, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "url": "https://www.usap-dc.org/view/dataset/609635"}, {"dataset_uid": "601747", "doi": "10.15784/601747", "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "d15N and d18O of air in the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601747"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "0538657\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation\u0027s human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Borehole Temperature; LABORATORY; Depth; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "uid": "p0000036", "west": null}, {"awards": "0839042 Caffee, Marc", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Cosmogenic 10Be in WAIS Divide Ice core, 1190-2453 m; Cosmogenic Radionuclides in the WAIS Divide Ice Core", "datasets": [{"dataset_uid": "600383", "doi": "10.15784/600383", "keywords": "Antarctica; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrothermal Vent; WAIS Divide; WAIS Divide Ice Core", "people": "Welten, Kees", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Cosmogenic Radionuclides in the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/600383"}, {"dataset_uid": "601466", "doi": "10.15784/601466", "keywords": "Antarctica; West Antarctic Ice Sheet", "people": "Caffee, M. W.; Welten, Kees; Nishiizumi, Kunihiko; Woodruff, T. E.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Cosmogenic 10Be in WAIS Divide Ice core, 1190-2453 m", "url": "https://www.usap-dc.org/view/dataset/601466"}], "date_created": "Thu, 01 Jul 2010 00:00:00 GMT", "description": "Caffee/0839042 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure the concentration of the cosmogenic radionuclide, Beryllium-10 in the deep WAIS divide ice core. Since cosmogenic radionuclides are one of the key parameters used for absolute dating of the ice core and deriving paleoaccumulation rates, it is essential that these measurements be made quickly and efficiently, and that the information is disseminated as soon as the results are available. The intellectual merit of the project is that it will allow a comparison to be made between the core from WAIS Divide and previously measured cosmogenic radionuclide records from Arctic ice cores, particularly GISP2 and GRIP This project will enable scientists to delineate those processes acting at a local level from those that produce global effects and will provide independent chronological markers to aid in the reconstruction of the WAIS Divide ice core chronology. The cosmogenic 10Be profile can also be used to investigate the possible role of solar activity on climate. The direct comparison of radionuclide concentrations with paleoclimate records in ice cores from different sites will provide more insight in the timing and magnitude of solar forcing of climate. The broader impacts of this project include: (i) the formation of a multi-disciplinary team of collaborators for the interpretation of future analyses of cosmogenic radionuclide data from the WAIS divide and other ice cores. (ii) the involvement and training of graduate and undergraduate students in the large scale project of climate research through detailed studies of ice samples. (iii) the opportunity to highlight to a wide range of lab visitors and students from local K-12 schools the importance of ice core and climate change studies.\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS", "is_usap_dc": false, "keywords": "Ice Core; WAIS Divide; Antarctica; Not provided; Radionulides; Accelerator Mass Spectrometry; Cosmogenic", "locations": "WAIS Divide; Antarctica", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Welten, Kees; Nishiizumi, Kunihiko; Caffee, Marc; Woodruff, Thomas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core", "uid": "p0000103", "west": -112.085}, {"awards": "9317872 Cande, Steven", "bounds_geometry": "POLYGON((-179.9994 -55.16418,-143.99949 -55.16418,-107.99958 -55.16418,-71.99967 -55.16418,-35.99976 -55.16418,0.000149999999991 -55.16418,36.00006 -55.16418,71.99997 -55.16418,107.99988 -55.16418,143.99979 -55.16418,179.9997 -55.16418,179.9997 -57.429208,179.9997 -59.694236,179.9997 -61.959264,179.9997 -64.224292,179.9997 -66.48932,179.9997 -68.754348,179.9997 -71.019376,179.9997 -73.284404,179.9997 -75.549432,179.9997 -77.81446,143.99979 -77.81446,107.99988 -77.81446,71.99997 -77.81446,36.00006 -77.81446,0.000149999999991 -77.81446,-35.99976 -77.81446,-71.99967 -77.81446,-107.99958 -77.81446,-143.99949 -77.81446,-179.9994 -77.81446,-179.9994 -75.549432,-179.9994 -73.284404,-179.9994 -71.019376,-179.9994 -68.754348,-179.9994 -66.48932,-179.9994 -64.224292,-179.9994 -61.959264,-179.9994 -59.694236,-179.9994 -57.429208,-179.9994 -55.16418))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002167", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9602"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9317872 Cande This award supports a marine geophysical study of the southwest Pacific between 170 degrees E and 80 degrees W longitude. Recent marine geophysical cruises in the southwest Pacific and a high-resolution altimetric gravity field declassified Geosat data have allowed significant progress to be made towards deciphering the complex history of the rifting between the Campbell Plateau/Chatham Rise landmass and the Marie Byrd Land margin. A revised history of plate interactions explains many enigmatic features seen in the magnetic and gravity fields yet several questions remain that require new data for resolution. The marine geophysical survey proposed will: (1) elucidate plate interactions at the evolving triple junction between the Antarctic and Australian plates and the mosaic of SW Pacific plates; (2) define the boundaries and interactions of the mosaic of plates that accommodated the rapidly changing plate geometry associated with subduction of the Pacific-Phoenix ridge outboard of New Zealand, the rifting of continental and oceanic lithosphere, and hotspot activity; and (3) map the development of Pacific-Antarctic Ridge and the assembly of the several small plates into the modern day Pacific plate. This survey will help to elucidate the dynamics of plate interactions and the plate tectonic evolution of Antarctica and New Zealand. ***", "east": 179.9997, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -55.16418, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.81446, "title": "Collaborative Research: Late Cretaceous - Early Tertiary Plate Interactions in the Southwest Pacific", "uid": "p0000638", "west": -179.9994}, {"awards": "9816049 DeMaster, David", "bounds_geometry": "POLYGON((-70.90654 -52.35368,-70.220384 -52.35368,-69.534228 -52.35368,-68.848072 -52.35368,-68.161916 -52.35368,-67.47576 -52.35368,-66.789604 -52.35368,-66.103448 -52.35368,-65.417292 -52.35368,-64.731136 -52.35368,-64.04498 -52.35368,-64.04498 -53.639401,-64.04498 -54.925122,-64.04498 -56.210843,-64.04498 -57.496564,-64.04498 -58.782285,-64.04498 -60.068006,-64.04498 -61.353727,-64.04498 -62.639448,-64.04498 -63.925169,-64.04498 -65.21089,-64.731136 -65.21089,-65.417292 -65.21089,-66.103448 -65.21089,-66.789604 -65.21089,-67.47576 -65.21089,-68.161916 -65.21089,-68.848072 -65.21089,-69.534228 -65.21089,-70.220384 -65.21089,-70.90654 -65.21089,-70.90654 -63.925169,-70.90654 -62.639448,-70.90654 -61.353727,-70.90654 -60.068006,-70.90654 -58.782285,-70.90654 -57.496564,-70.90654 -56.210843,-70.90654 -54.925122,-70.90654 -53.639401,-70.90654 -52.35368))", "dataset_titles": "Expedition Data; Expedition data of LMG0003", "datasets": [{"dataset_uid": "002690", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003", "url": "https://www.rvdata.us/search/cruise/LMG0003"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith\u003cbr/\u003eOPP98-16049 P.I. David DeMaster\u003cbr/\u003e\u003cbr/\u003ePrimary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -64.04498, "geometry": "POINT(-67.47576 -58.782285)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35368, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.21089, "title": "Collaborative Research: Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000618", "west": -70.90654}, {"awards": "9528807 Gordon, Arnold", "bounds_geometry": "POLYGON((-69.58631 -52.35405,-66.572039 -52.35405,-63.557768 -52.35405,-60.543497 -52.35405,-57.529226 -52.35405,-54.514955 -52.35405,-51.500684 -52.35405,-48.486413 -52.35405,-45.472142 -52.35405,-42.457871 -52.35405,-39.4436 -52.35405,-39.4436 -53.54563,-39.4436 -54.73721,-39.4436 -55.92879,-39.4436 -57.12037,-39.4436 -58.31195,-39.4436 -59.50353,-39.4436 -60.69511,-39.4436 -61.88669,-39.4436 -63.07827,-39.4436 -64.26985,-42.457871 -64.26985,-45.472142 -64.26985,-48.486413 -64.26985,-51.500684 -64.26985,-54.514955 -64.26985,-57.529226 -64.26985,-60.543497 -64.26985,-63.557768 -64.26985,-66.572039 -64.26985,-69.58631 -64.26985,-69.58631 -63.07827,-69.58631 -61.88669,-69.58631 -60.69511,-69.58631 -59.50353,-69.58631 -58.31195,-69.58631 -57.12037,-69.58631 -55.92879,-69.58631 -54.73721,-69.58631 -53.54563,-69.58631 -52.35405))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9705"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9528807 Gordon The proposed project is part of a multi-institutional integrated study of the outflow of newly formed bottom water from the Weddell Sea and its dispersion into the South Atlantic Ocean. It builds upon earlier successful studies of the inflow of intermediate water masses into the Eastern Weddell Sea, their modification within the Weddell Gyre, and their interaction with bottom water formation processes in the western Weddell Sea. The study is called Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL) and includes six components involving hydrographic measurements, natural tracer experiments, and modeling studies. The study will be centered east of the Drake Passage where water masses from the Weddell Sea and the Scotia Sea come together in the Weddell-Scotia Confluence, and will be carried out in cooperation with the national antarctic programs of Germany and Spain. This particular component concerns observations of the temperature and salinity structure, as well as the chemical nature of the water column in the confluence region. The study has four related objectives. The first is to assess the quantity and the physical and chemical characteristics of Weddell Sea source waters for the confluence. The second is to describe the dominant processes associated with spreading and sinking of dense antarctic waters within the Weddell-Scotia Confluence. The third is to estimate the ventilation rate of the world ocean, and the fourth is to estimate seasonal fluctuations in the regional ocean transport and hydrographic structure and to assess the likely influence of seasonal to interannual variability on rates of ventilation by Weddell Sea waters. Ventilation of the deep ocean -- the rising of sub-surface water masses to the surface to be recharged with atmospheric gases and to give up heat to the atmosphere -- is a uniquely antarctic phenomenon that has significant consequences for global change by affecting the g lobal reservoir of carbon dioxide, and by modulating the amount and extent of seasonal sea ice in the southern hemisphere. This component will make systematic observations of the temperature salinity structure of the water and undertake an extensive sampling program for other chemical studies. The purpose is to identify the individual water masses and to relate their temperature and salinity characteristics to the modification processes within the Weddell Sea. ***", "east": -39.4436, "geometry": "POINT(-54.514955 -58.31195)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35405, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Gordon, Arnold", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.26985, "title": "Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL)", "uid": "p0000630", "west": -69.58631}, {"awards": "9725024 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0001; Expedition data of NBP0008; Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "002599", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0008", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}, {"dataset_uid": "601161", "doi": "10.15784/601161 ", "keywords": "Antarctica; CTD; CTD Data; Mertz Polynya; NBP0008; Oceans; Oxygen; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Jacobs, Stanley; Mele, Phil; Mortlock, R. A.; Smethie, William M", "repository": "USAP-DC", "science_program": null, "title": "Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}, {"dataset_uid": "002598", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0001", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "*** 9725024 Jacobs This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Circumpolar Deep Water and the West Antarctic Ice Sheet", "uid": "p0000815", "west": null}, {"awards": "9910093 Powell, Thomas", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104", "datasets": [{"dataset_uid": "002584", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. The objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice. The water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Powell, Thomas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: WinDSSOcK: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000804", "west": null}, {"awards": "0444134 Mitchell, B. Gregory", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0606", "datasets": [{"dataset_uid": "002646", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0606", "url": "https://www.rvdata.us/search/cruise/NBP0606"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Mitchell, B.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage and Scotia Sea", "uid": "p0000837", "west": null}, {"awards": "9615053 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9802", "datasets": [{"dataset_uid": "002718", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9802", "url": "https://www.rvdata.us/search/cruise/LMG9802"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Domack: OPP 9615053 Manley: OPP 9615670 Banerjee: OPP 9615695 Dunbar: OPP 9615668 Ishman: OPP 9615669 Leventer: OPP 9714371 Abstract This award supports a multi-disciplinary, multi-institutional effort to elucidate the detailed climate history of the Antarctic Peninsula during the Holocene epoch (the last 10,000 years). The Holocene is an important, but often overlooked, portion of the Antarctic paleoclimatic record because natural variability in Holocene climate on time scales of decades to millennia can be evaluated as a model for our present \"interglacial\" world. This project builds on over ten years of prior investigation into the depositional processes, productivity patterns and climate regime of the Antarctic Peninsula. This previous work identified key locations that contain ultra-high resolution records of past climatic variation. These data indicate that solar cycles operating on multi-century and millennial time scales are important regulators of meltwater production and paleoproductivity. These marine records can be correlated with ice core records in Greenland and Antarctica. This project will focus on sediment dispersal patterns across the Palmer Deep region. The objective is to understand the present links between the modern climatic and oceanographic systems and sediment distribution. In particular, additional information is needed regarding the influence of sea ice on the distribution of both biogenic and terrigenous sediment distribution. Sediment samples will be collected with a variety of grab sampling and coring devices. Analytical work will include carbon-14 dating of surface sediments using accellerator mass spectrometry and standard sedimentologic, micropaleontologic and magnetic granulometric analyses. This multiparameter approach is the most effective way to extract the paleoclimatic signals contained in the marine sediment cores. Two additional objectives are the deployment of sediment traps in front of the Muller Ice Shelf in Lallemand Fjord and seismic reflection work in conjunction with site augmentation funded through the Joint Oceanographic Institute. The goal of sediment trap work is to address whether sand transport and deposition adjacent to the ice shelf calving line results from meltwater or aeolian processes. In addition, the relationship between sea ice conditions and primary productivity will be investigated. The collection of a short series of seismic lines across the Palmer Deep basins will fully resolve the question of depth to acoustic basement. The combination of investigators on this project, all with many years of experience working in high latitude settings, provides an effective team to complete the project in a timely fashion. A combination of undergraduate, graduate and post-graduate students will be involved in all stages of the project so that educational objectives will be met in-tandem with research goals of the project.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Holocene Paleoenvironmental Change Along the Antarctic Peninsula: A Test of the Solar/Bi-Polar Signal", "uid": "p0000869", "west": null}, {"awards": "0132032 Detrich, H. William", "bounds_geometry": "POLYGON((-68.84315 -42.87167,-61.576321 -42.87167,-54.309492 -42.87167,-47.042663 -42.87167,-39.775834 -42.87167,-32.509005 -42.87167,-25.242176 -42.87167,-17.975347 -42.87167,-10.708518 -42.87167,-3.441689 -42.87167,3.82514 -42.87167,3.82514 -44.482708,3.82514 -46.093746,3.82514 -47.704784,3.82514 -49.315822,3.82514 -50.92686,3.82514 -52.537898,3.82514 -54.148936,3.82514 -55.759974,3.82514 -57.371012,3.82514 -58.98205,-3.441689 -58.98205,-10.708518 -58.98205,-17.975347 -58.98205,-25.242176 -58.98205,-32.509005 -58.98205,-39.775834 -58.98205,-47.042663 -58.98205,-54.309492 -58.98205,-61.576321 -58.98205,-68.84315 -58.98205,-68.84315 -57.371012,-68.84315 -55.759974,-68.84315 -54.148936,-68.84315 -52.537898,-68.84315 -50.92686,-68.84315 -49.315822,-68.84315 -47.704784,-68.84315 -46.093746,-68.84315 -44.482708,-68.84315 -42.87167))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001655", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0404"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously.", "east": 3.82514, "geometry": "POINT(-32.509005 -50.92686)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -42.87167, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Detrich, H. William", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -58.98205, "title": "International Collaborative Expedition to Collect and Study Fish Indigenous to Sub-Antarctic Habitats", "uid": "p0000584", "west": -68.84315}, {"awards": "0338090 Madin, Laurence; 0338290 Kremer, Patricia", "bounds_geometry": "POLYGON((-69.9083 -52.7624,-68.96368 -52.7624,-68.01906 -52.7624,-67.07444 -52.7624,-66.12982 -52.7624,-65.1852 -52.7624,-64.24058 -52.7624,-63.29596 -52.7624,-62.35134 -52.7624,-61.40672 -52.7624,-60.4621 -52.7624,-60.4621 -54.01423,-60.4621 -55.26606,-60.4621 -56.51789,-60.4621 -57.76972,-60.4621 -59.02155,-60.4621 -60.27338,-60.4621 -61.52521,-60.4621 -62.77704,-60.4621 -64.02887,-60.4621 -65.2807,-61.40672 -65.2807,-62.35134 -65.2807,-63.29596 -65.2807,-64.24058 -65.2807,-65.1852 -65.2807,-66.12982 -65.2807,-67.07444 -65.2807,-68.01906 -65.2807,-68.96368 -65.2807,-69.9083 -65.2807,-69.9083 -64.02887,-69.9083 -62.77704,-69.9083 -61.52521,-69.9083 -60.27338,-69.9083 -59.02155,-69.9083 -57.76972,-69.9083 -56.51789,-69.9083 -55.26606,-69.9083 -54.01423,-69.9083 -52.7624))", "dataset_titles": "Data at U.S. JGOFS Data System; Expedition Data", "datasets": [{"dataset_uid": "000118", "doi": "", "keywords": null, "people": null, "repository": "JGOF", "science_program": null, "title": "Data at U.S. JGOFS Data System", "url": "http://usjgofs.whoi.edu/jg/dir/jgofs/"}, {"dataset_uid": "001573", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0602"}, {"dataset_uid": "001565", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0414"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students\u0027 quantitative skills. Both PI\u0027s will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.", "east": -60.4621, "geometry": "POINT(-65.1852 -59.02155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7624, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kremer, Patricia; Madin, Larry; Halanych, Kenneth", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "JGOF", "repositories": "JGOF; R2R", "science_programs": null, "south": -65.2807, "title": "Collaborative Research: Salpa Thompsoni in the Southern Ocean: Bioenergetics, Population Dynamics and Biogeochemical Impact", "uid": "p0000227", "west": -69.9083}, {"awards": "9317598 Asper, Vernon", "bounds_geometry": "POLYGON((-180 -43.56582,-144.00001 -43.56582,-108.00002 -43.56582,-72.00003 -43.56582,-36.00004 -43.56582,-0.000049999999987 -43.56582,35.99994 -43.56582,71.99993 -43.56582,107.99992 -43.56582,143.99991 -43.56582,179.9999 -43.56582,179.9999 -46.943299,179.9999 -50.320778,179.9999 -53.698257,179.9999 -57.075736,179.9999 -60.453215,179.9999 -63.830694,179.9999 -67.208173,179.9999 -70.585652,179.9999 -73.963131,179.9999 -77.34061,143.99991 -77.34061,107.99992 -77.34061,71.99993 -77.34061,35.99994 -77.34061,-0.000050000000016 -77.34061,-36.00004 -77.34061,-72.00003 -77.34061,-108.00002 -77.34061,-144.00001 -77.34061,-180 -77.34061,-180 -73.963131,-180 -70.585652,-180 -67.208173,-180 -63.830694,-180 -60.453215,-180 -57.075736,-180 -53.698257,-180 -50.320778,-180 -46.943299,-180 -43.56582))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9317598 Asper The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will focus on the collection of vertical flux samples which will be analyzed for carbon, nitrogen and total mass flux and also provided to the other investigators for their specific analyses. Profiles of the abundance of large aggregates in the water column using a non- contact photographic method will be made. These data will be used to complement other particle determinations, to investigate the role of these aggregates in particle flux and to determine the mechanisms of particle export as a function of season and phytoplankton species. The end result will be a better understanding of the bloom processes and significant contributions to the data base on aggregates and export mechanisms in this environment.", "east": 179.9999, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56582, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Asper, Vernon; Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.34061, "title": "Collaborative Research on Bloom Dynamics and Food Web Structure in the Ross Sea: Vertical Flux of Carbon and Nitrogen", "uid": "p0000646", "west": -180.0}, {"awards": "0003619 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG9810", "datasets": [{"dataset_uid": "002678", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9810", "url": "https://www.rvdata.us/search/cruise/LMG9810"}, {"dataset_uid": "002092", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG9810"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program to initiate a Global Positioning System (GPS) network to measure crustal motions in the bedrock surrounding and underlying the West Antarctic Ice Sheet (WAIS). Evaluation of the role of both tectonic and ice-induced crustal motions of the WAIS bedrock is a critical goal for understanding past, present, and future dynamics of WAIS and its potential role in future global change scenarios, as well as improving our understanding of the role of Antarctica in global plate motions. The extent of active tectonism in West Antarctica is largely speculative, as few data exist that constrain its geographic distribution, directions, or rates of deformation. Active tectonism and the influence of bedrock on the WAIS have been highlighted recently by geophysical data indicating active subglacial volcanism and control of ice streaming by the presence of sedimentary basins. The influence of bedrock crustal motion on the WAIS and its future dynamics is a fundamental issue. Existing GPS projects are located only on the fringe of the ice sheet and do not address the regional picture. It is important that baseline GPS measurements on the bedrock around and within the WAIS be started so that a basis is established for detecting change.\u003cbr/\u003e\u003cbr/\u003eTo measure crustal motions, this project will build a West Antarctica GPS Network (WAGN) of at least 15 GPS sites across the interior of West Antarctica (approximately the size of the contiguous United States from the Rocky Mountains to the Pacific coast) over a two-year period beginning in the Antarctic field season 2001-2002. The planned network is designed using the Multi-modal Occupation Strategy (MOST), in which a small number of independent GPS \"roving\" receivers make differential measurements against a network of continuous GPS stations for comparatively short periods at each site. This experimental strategy, successfully implemented by a number of projects in California, S America, the SW Pacific and Central Asia, minimizes logistical requirements, an essential element of application of GPS geodesy in the scattered and remote outcrops of the WAIS bedrock.\u003cbr/\u003e\u003cbr/\u003eThe WAGN program will be integrated with the GPS network that has been established linking the Antarctic Peninsula with South America through the Scotia arc (Scotia Arc GPS Project (SCARP)). It will also interface with stations currently measuring motion across the Ross Embayment, and with the continent-wide GIANT program of the Working Group on Geodesy and Geographic Information Systems of the Scientific Committee on Antarctic Research (SCAR). The GPS network will be based on permanent monuments set in solid rock outcrops that will have near-zero set-up error for roving GPS occupations, and that can be directly converted to a continuous GPS site when future technology makes autonomous operation and satellite data linkage throughout West Antarctica both reliable and economical. The planned network both depends on and complements the existing and planned continuous networks. It is presently not practical, for reasons of cost and logistics, to accomplish the measurements proposed herein with either a network of continuous stations or traditional campaigns.\u003cbr/\u003e\u003cbr/\u003eThe proposed WAGN will complement existing GPS projects by filling a major gap in coverage among several discrete crustal blocks that make up West Antarctica, a critical area of potential bedrock movements. If crustal motions are relatively slow, meaningful results will only begin to emerge within the five-year maximum period of time for an individual funded project. Hence this proposal is only to initiate the network and test precision and velocities at the most critical sites. Once built, however, the network will yield increasingly meaningful results with the passage of time. Indeed, the slower the rates turn out to be, the more important an early start to measuring. It is anticipated that the results of this project will initiate an iterative process that will gradually resolve into an understanding of the contributions from plate rotations and viscoelastic and elastic motions resulting from deglaciation and ice mass changes. Velocities obtained from initial reoccupation of the most critical sites will dictate the timing of a follow-up proposal for reoccupation of the entire network when detectable motions have occurred.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: A GPS Network to Determine Crustal Motions in the Bedrock of the West Antarctic Ice Sheet: Phase I - Installation", "uid": "p0000859", "west": null}, {"awards": "9814692 Kellogg, Thomas", "bounds_geometry": "POLYGON((-179.99342 -58.74225,-143.994734 -58.74225,-107.996048 -58.74225,-71.997362 -58.74225,-35.998676 -58.74225,0.000010000000003 -58.74225,35.998696 -58.74225,71.997382 -58.74225,107.996068 -58.74225,143.994754 -58.74225,179.99344 -58.74225,179.99344 -60.716231,179.99344 -62.690212,179.99344 -64.664193,179.99344 -66.638174,179.99344 -68.612155,179.99344 -70.586136,179.99344 -72.560117,179.99344 -74.534098,179.99344 -76.508079,179.99344 -78.48206,143.994754 -78.48206,107.996068 -78.48206,71.997382 -78.48206,35.998696 -78.48206,0.000010000000003 -78.48206,-35.998676 -78.48206,-71.997362 -78.48206,-107.996048 -78.48206,-143.994734 -78.48206,-179.99342 -78.48206,-179.99342 -76.508079,-179.99342 -74.534098,-179.99342 -72.560117,-179.99342 -70.586136,-179.99342 -68.612155,-179.99342 -66.638174,-179.99342 -64.664193,-179.99342 -62.690212,-179.99342 -60.716231,-179.99342 -58.74225))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001992", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0001"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: \"What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?\" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.", "east": 179.99344, "geometry": "POINT(0.000010000000003 -68.612155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -58.74225, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kellogg, Thomas; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.48206, "title": "Glacial History of the Amundsen Sea Shelf", "uid": "p0000620", "west": -179.99342}, {"awards": "8915730 Foster, Theodore", "bounds_geometry": "POLYGON((-70.9 -52.3533,-67.79577 -52.3533,-64.69154 -52.3533,-61.58731 -52.3533,-58.48308 -52.3533,-55.37885 -52.3533,-52.27462 -52.3533,-49.17039 -52.3533,-46.06616 -52.3533,-42.96193 -52.3533,-39.8577 -52.3533,-39.8577 -53.78259,-39.8577 -55.21188,-39.8577 -56.64117,-39.8577 -58.07046,-39.8577 -59.49975,-39.8577 -60.92904,-39.8577 -62.35833,-39.8577 -63.78762,-39.8577 -65.21691,-39.8577 -66.6462,-42.96193 -66.6462,-46.06616 -66.6462,-49.17039 -66.6462,-52.27462 -66.6462,-55.37885 -66.6462,-58.48308 -66.6462,-61.58731 -66.6462,-64.69154 -66.6462,-67.79577 -66.6462,-70.9 -66.6462,-70.9 -65.21691,-70.9 -63.78762,-70.9 -62.35833,-70.9 -60.92904,-70.9 -59.49975,-70.9 -58.07046,-70.9 -56.64117,-70.9 -55.21188,-70.9 -53.78259,-70.9 -52.3533))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002310", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9207"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a two-year investigation into the dynamics and processes of deep water mass formation in the western Weddell Sea, combining physical and chemical oceanographic techniques to produce a coherent picture of the importance of this unique region to the structure of the world ocean. In the global context, this area is a major water mass modification site, involving open ocean convective events, the continental margin, and the ice cover. At this time the various water types that combine to form Weddell Sea Deep Water and Antarctic Bottom Water, and the conditions under which these water masses form, are not known well enough to establish direct physical links and volumetric budgets. It is suspected that the outflow from the Weddell Sea is restricted to quite narrow boundary currents flowing near the base of the continental shelf, and consequently may be observed with conventional current meter moorings from the shelf into the deep ocean. Two oceanographic expeditions to the western Weddell Sea are planned as part of this study: the first in the 1990/91, and the second in 1991/92. The objectives will be to measure the flow of newly-formed bottom water and to explore the sinking process of near-surface waters in the open ocean to see how these affect the deep water flows. In the first year the primary objective will be to set out an array of eight current meters in the bottom water core, while a secondary objective will be to grapple for an existing array that was set out in early 1988 but could not be recovered in 1989 because Antarctic Program ship resources had to be diverted to deal with the oil spill at Palmer Station. In the second year the array will be retrieved. Hydrographic cruises in order to define the upper ocean temperatures and salinity structure in the outflow region where unusually large step structures have been found in the past. A chemistry program consistent with the objectives of the World Ocean Circulation Experiment (WOCE) and presently planned experiments in the South Atlantic Ocean, will be integrated into the cruises carried out under this project.", "east": -39.8577, "geometry": "POINT(-55.37885 -59.49975)", "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3533, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Foster, Theodore; Foster, Ted", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -66.6462, "title": "Antarctic Bottom Water Formation", "uid": "p0000654", "west": -70.9}, {"awards": "9815823 Smith, Craig", "bounds_geometry": "POLYGON((-70.90683 -52.35533,-69.8661302 -52.35533,-68.8254304 -52.35533,-67.7847306 -52.35533,-66.7440308 -52.35533,-65.703331 -52.35533,-64.6626312 -52.35533,-63.6219314 -52.35533,-62.5812316 -52.35533,-61.5405318 -52.35533,-60.499832 -52.35533,-60.499832 -53.818664,-60.499832 -55.281998,-60.499832 -56.745332,-60.499832 -58.208666,-60.499832 -59.672,-60.499832 -61.135334,-60.499832 -62.598668,-60.499832 -64.062002,-60.499832 -65.525336,-60.499832 -66.98867,-61.5405318 -66.98867,-62.5812316 -66.98867,-63.6219314 -66.98867,-64.6626312 -66.98867,-65.703331 -66.98867,-66.7440308 -66.98867,-67.7847306 -66.98867,-68.8254304 -66.98867,-69.8661302 -66.98867,-70.90683 -66.98867,-70.90683 -65.525336,-70.90683 -64.062002,-70.90683 -62.598668,-70.90683 -61.135334,-70.90683 -59.672,-70.90683 -58.208666,-70.90683 -56.745332,-70.90683 -55.281998,-70.90683 -53.818664,-70.90683 -52.35533))", "dataset_titles": "Expedition Data; Expedition data of LMG0009", "datasets": [{"dataset_uid": "001811", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}, {"dataset_uid": "001880", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0102"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -60.499832, "geometry": "POINT(-65.703331 -59.672)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35533, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -66.98867, "title": "Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000610", "west": -70.90683}, {"awards": "9909055 Sidell, Bruce", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0105", "datasets": [{"dataset_uid": "002693", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0105", "url": "https://www.rvdata.us/search/cruise/LMG0105"}, {"dataset_uid": "001869", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0105"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The suborder Notothenoidei is the dominant fish group of the Southern Ocean surrounding Antarctica, both in terms of number of species and biomass. For about fourteen million years, these highly successful fish evolved under stable thermal conditions that result in body temperatures of about zero degrees centigrade throughout their life histories. Evolution this cold environment has led to unusual physiological and biochemical characteristics. In some cases, the characteristics contribute to overcoming constraints of cold temperature on biological processes. In other instances, mutations that probably would have been lethal in warmer, less oxygen-rich environments than the Southern Ocean have been retained in Antarctic fishes. This research project focuses on three major objectives that exploit these unusual conditions to identify mechanisms compatible with normal cellular function at cold temperature and to gain unique insights into the physiological roles of key intracellular proteins. The three lines of study proposed are the molecular basis for the failure of the myoglobin encoding gene to be expressed in certain Antarctic notothenioid fishes, the basis of the substrate specificity of the enzyme fatty acyl-CoA synthetase that is involved in the catabolism of fatty acids, and the functional roles played by different isoforms of creatine phosphokinase in locomotory muscle of Antarctic fish. Results from this study will not only provide insight into the evolutionary biology of the Antarctic notothenioid fishes, but will elucidate important general principles that are applicable to widely different taxa beyond the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Proteins of Oxygen-Binding and Energy Metabolism in Muscles of Antarctic Fishes: Evolutionary Adjustments to Life at Cold Temperature", "uid": "p0000863", "west": null}, {"awards": "0538516 Ackley, Stephen", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0709", "datasets": [{"dataset_uid": "002648", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0709", "url": "https://www.rvdata.us/search/cruise/NBP0709"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. \u003cbr/\u003e The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.\u003cbr/\u003e This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Sea Ice Mass Balance in the Antarctic-SIMBA Drift Station", "uid": "p0000839", "west": null}, {"awards": "9316767 Jeffries, Martin", "bounds_geometry": "POLYGON((-180 -43.56571,-144 -43.56571,-108 -43.56571,-72 -43.56571,-36 -43.56571,0 -43.56571,36 -43.56571,72 -43.56571,108 -43.56571,144 -43.56571,180 -43.56571,180 -46.304308,180 -49.042906,180 -51.781504,180 -54.520102,180 -57.2587,180 -59.997298,180 -62.735896,180 -65.474494,180 -68.213092,180 -70.95169,144 -70.95169,108 -70.95169,72 -70.95169,36 -70.95169,0 -70.95169,-36 -70.95169,-72 -70.95169,-108 -70.95169,-144 -70.95169,-180 -70.95169,-180 -68.213092,-180 -65.474494,-180 -62.735896,-180 -59.997298,-180 -57.2587,-180 -54.520102,-180 -51.781504,-180 -49.042906,-180 -46.304308,-180 -43.56571))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002231", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9505"}, {"dataset_uid": "002234", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9503"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The goal of this investigation is to understand the role of snow in sea ice development processes and air-ice-ocean heat exchange interactions in the seasonal and perennial sea ice zones of the Ross Sea, the Amundsen Sea, and the Bellingshausen Sea. Observations and measurements of the characteristics of sea ice and snow will be combined with numerical models of sea-ice flooding and the entrainment of snow into the ice cover in order to gain an understanding of the sea-ice heat and mass balance, and to quantify the energy exchange within the antarctic sea-ice cover. The snow measurement program, using the RVIB Nathaniel B. Palmer, will include depth, grain size and morphology, density, temperature, thermal conductivity, water content, and stable isotope ratio. The ice measurement program will include thickness, salinity, temperature, density, brine content, and included gas volume, as well as such structural properties as the fraction of frazil, platelet, and congelation ice in the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The numerical models will involve the thermodynamics of phase changes from liquid water to ice, along with the resulting energy transfer, brine expulsion, and the modulating effect of a snow cover. The results are expected to have broad relevance and application to understanding the effects of sea-ice processes in global change, and atmospheric, oceanographic, and remote sensing investigations of the Southern Ocean.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56571, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.95169, "title": "The Role of Snow in Antarctic Sea Ice Development and Ocean-Atmosphere Energy Exchange", "uid": "p0000642", "west": -180.0}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Jacobs, Stanley; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}, {"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Jacobs, Stanley; Giulivi, Claudia F.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}, {"awards": "0542456 Caron, David; 0542111 Lonsdale, Darcy", "bounds_geometry": "POLYGON((-179.9999 -43.5663,-143.99993 -43.5663,-107.99996 -43.5663,-71.99999 -43.5663,-36.00002 -43.5663,-0.000050000000016 -43.5663,35.99992 -43.5663,71.99989 -43.5663,107.99986 -43.5663,143.99983 -43.5663,179.9998 -43.5663,179.9998 -46.99537,179.9998 -50.42444,179.9998 -53.85351,179.9998 -57.28258,179.9998 -60.71165,179.9998 -64.14072,179.9998 -67.56979,179.9998 -70.99886,179.9998 -74.42793,179.9998 -77.857,143.99983 -77.857,107.99986 -77.857,71.99989 -77.857,35.99992 -77.857,-0.000049999999987 -77.857,-36.00002 -77.857,-71.99999 -77.857,-107.99996 -77.857,-143.99993 -77.857,-179.9999 -77.857,-179.9999 -74.42793,-179.9999 -70.99886,-179.9999 -67.56979,-179.9999 -64.14072,-179.9999 -60.71165,-179.9999 -57.28258,-179.9999 -53.85351,-179.9999 -50.42444,-179.9999 -46.99537,-179.9999 -43.5663))", "dataset_titles": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?; Expedition Data; NBP0802 data; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "000122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0802 data", "url": "https://www.rvdata.us/search/cruise/NBP0802"}, {"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}, {"dataset_uid": "600059", "doi": "10.15784/600059", "keywords": "Antarctica; Biota; Crustacea; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Lonsdale, Darcy", "repository": "USAP-DC", "science_program": null, "title": "Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "url": "https://www.usap-dc.org/view/dataset/600059"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -43.5663, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Lonsdale, Darcy; Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.857, "title": "Collaborative Research: Do Crustacean Zooplankton Play a Pivotal Role in Structuring Heterotrophic Plankton Communities in the Ross Sea?", "uid": "p0000520", "west": -179.9999}, {"awards": "9317538 Nelson, David", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9406", "datasets": [{"dataset_uid": "002591", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9406", "url": "https://www.rvdata.us/search/cruise/NBP9406"}, {"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9317538 Nelson The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will test the closely related hypotheses that: (1) phytoplankton growth is controlled primarily by the relationship between solar irradiance and mixed-layer depth throughout the spring (2) diatom growth rates are much higher in spring than at any other time of year, in response to the more favorable irradiance/mixing relationships, and (3) persistence of diatom blooms in summer results from the diatoms\u0027 ability to outcompete other groups under the light-limited conditions that develop in turbid, high-biomass waters. These hypotheses will be tested by (1) obtaining the first reliable estimates of the Sverdrup \"critical depth\" in the Antarctic so that the changing relationship between the critical depth and the mixed- layer depth in spring can be defined, and (2) estimating diatom growth rates and the gross and net production attributable to diatoms throughout the spring. The results will provide information critical to an understanding of phytoplankton bloom dynamics in the Ross Sea.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Bloom Dynamics and Food-Web Structure in the Ross Sea: The Irradiance/Mixing Regime and Diatom Growith in Spring", "uid": "p0000810", "west": null}, {"awards": "0126472 Taylor, Frederick", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0209", "datasets": [{"dataset_uid": "002672", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0209", "url": "https://www.rvdata.us/search/cruise/LMG0209"}, {"dataset_uid": "001743", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds and field support to continue a study of plate motions in the Antarctic Peninsula and Scotia Sea region. The principal aim of the original \"Scotia Arc GPS Project (SCARP)\" was to determine motions of the Scotia Plate relative to adjacent plates and to measure crustal deformation along its margins with special attention to the South Sandwich microplate and Bransfield Strait extension. The focus of the present proposal is confined to the part of the SCARP project that includes GPS sites at Elephant Island, the South Shetland Islands and on the Antarctic Peninsula. The British Antarctic Survey provides data from two sites on the Scotia arc for this project. The northern margin of the Scotia Plate is not included herein because that region is not covered under Polar Programs. A separate proposal will request support for re-measuring SCARP GPS stations in South America. With regard to the Antarctic Peninsula area, continuously operating GPS stations were established at Frei Base, King George Island (in 1996) and at the Argentine Base, South Orkney Islands (in 1998). A number of monumented sites were established in the Antarctic Peninsula region in 1997 to support campaign-style GPS work in December 1997 and December 1998. Because of the expected slow crustal motion in the Bransfield Strait and expiration of the initial grant, no further data collection will be done until enough time has passed so that new measurements can be expected to yield precise results.\u003cbr/\u003e\u003cbr/\u003eThe primary aim of this work is to complete the measurements required to quantify crustal deformation related to opening of the Bransfield Strait, the South Shetland microplate, and to identify any other independent tectonic blocks that the GPS data may reveal. The measurements to be completed under this award will be done using ship support during the 2002-2003 season. This would be five years after the first measurements and would provide quite precise horizontal velocities. This project will complete the acquisition, processing, and interpretation of a single data set to continue this initial phase of the NSF-funded project to measure crustal motions along the southern margin of the Scotia plate. A principal investigator and one graduate student from the University of Texas will perform fieldwork. A graduate student from the University of Hawaii will process the new data consistent with previous data, and all of the SCARP investigators (Bevis, Dalziel, Smalley, Taylor: from U. Texas, U. Hawaii, and U. Memphis) will participate in interpreting the data. The British Antarctic Survey (BAS) and Alfred Wegener Institute (AWI) also recognized the importance of the Scotia plate and the Bransfield system in both global and local plate tectonic frameworks. They, too, have used GPS to measure crustal motions in this region and duplicate a number of our sites. They began earlier than we, have taken data more recently, presumably will continue taking data, and they have published some results. The collaboration between SCARP, BAS, and AWI begun earlier, will continue into this new work. Joint and separate publications are anticipated. The existing SCARP network has several advantages that justify collection and analysis of another set of data. One is that SCARP has established and measured GPS sites on Smith, Low, and Livingston Islands, where other groups have not. These sites significantly extend the dimensions of the South Shetland microplate so that we can determine a more precise pole of rotation and recognize any sub-blocks within the South Shetland arc. Smith and Low Islands are near the end of the Bransfield Basin where relative motion between the South Shetland Microplate must somehow terminate, perhaps by faulting along an extension of the Hero fracture zone. Another advantage is that measurements under SCARP were made using fixed-height masts that eliminate all but a fraction of a millimeter of vertical error in exactly re-occupying each site. Vertical motion associated with postglacial rebound should be on the order of several mm/yr, which will eventually be measurable. Mid-Holocene shorelines that emerged to more than 20m on some South Shetland arc islands suggest that vertical motion is significant. Thus, this work will contribute to understanding both plate motions and post-glacial rebound from ice mass loss in the region.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Frederick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "The Scotia Arc GPS Project: Focus on the Antarctic Peninsula and South Shetland Islands", "uid": "p0000855", "west": null}, {"awards": "9316035 Gowing, Marcia", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9406", "datasets": [{"dataset_uid": "002592", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9406", "url": "https://www.rvdata.us/search/cruise/NBP9406"}, {"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. The focus of this proposal is the role of microzooplankton in controlling the production and fate of carbon during the two types of blooms. Objectives are: 1) to determine biomass, abundance, size and selected species composition of primary producer assemblages, 2) to determine similar features of nano- and microplanktonic heterotrophic assemblages, 3) to measure total community grazing on heterotrophic bacteria and phytoplankton, 4) to examine which grazers are the major herbivores and bacterivores, and 5) to measure the contribution of microzooplankton and mesozooplankton egesta, sinking of algal cells and colonies, and sinking of protozoan assemblages associated with detritus to the total carbon flux from the euphotic zone through 250 m depth. Water samples for abundance and biomass determinations will be taken and samples will be examined with epifluorescence microscopy. Grazing rates will be measured using the dilution grazing technique and the dual-isotope radiolabeling single cell method. Carbon fluxes will be determined on sinking material collected with particle interceptor traps at the base of the euphotic zone and two deeper depths, using microscopical analysis . An understanding of these processes and other fundamental processes studied by collaborating investigators will contribute to the understanding of the role of the Southern Ocean in present, past and predicted future sequestration of carbon, as well as in other global elemental cycles.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Bloom Dynamics and Food Web Structure in the Ross Sea: Role of Microzooplankton in Controlling Production", "uid": "p0000811", "west": null}, {"awards": "9815961 Bengtson, John", "bounds_geometry": "POLYGON((-179.99905 -43.56728,-143.99915 -43.56728,-107.99925 -43.56728,-71.99935 -43.56728,-35.99945 -43.56728,0.000450000000001 -43.56728,36.00035 -43.56728,72.00025 -43.56728,108.00015 -43.56728,144.00005 -43.56728,179.99995 -43.56728,179.99995 -47.058498,179.99995 -50.549716,179.99995 -54.040934,179.99995 -57.532152,179.99995 -61.02337,179.99995 -64.514588,179.99995 -68.005806,179.99995 -71.497024,179.99995 -74.988242,179.99995 -78.47946,144.00005 -78.47946,108.00015 -78.47946,72.00025 -78.47946,36.00035 -78.47946,0.000450000000001 -78.47946,-35.99945 -78.47946,-71.99935 -78.47946,-107.99925 -78.47946,-143.99915 -78.47946,-179.99905 -78.47946,-179.99905 -74.988242,-179.99905 -71.497024,-179.99905 -68.005806,-179.99905 -64.514588,-179.99905 -61.02337,-179.99905 -57.532152,-179.99905 -54.040934,-179.99905 -50.549716,-179.99905 -47.058498,-179.99905 -43.56728))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001997", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9909"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9815961 BENGTSON The pack ice region surrounding Antarctica contains at least fifty percent of the world\u0027s population of seals, comprising about eighty percent of the world\u0027s total pinniped biomass. As a group, these seals are among the dominant top predators in Southern Ocean ecosystems, and the fluctuation in their abundance, growth patterns, life histories, and behavior provide a potential source of information about environmental variability integrated over a wide range of spatial and temporal scales. This proposal was developed as part of the international Antarctic Pack Ice Seals (APIS) program, which is aimed to better understand the ecological relationships between the distribution of pack ice seals and their environment. During January-February, 2000, a research cruise through the pack ice zone of the eastern Ross Sea and western Amundsen Sea will be conducted to survey and sample along six transects perpendicular to the continental shelf. Each of these transects will pass through five environmental sampling strata: continental shelf zone, Antarctic slope front, pelagic zone, the ice edge front, and the open water outside the pack ice zone. All zones but open water will be ice-covered to some degree. Surveys along each transect will gather data on bathymetry, hydrography, sea ice dynamics and characteristics, phytoplankton and ice algae stocks, prey species (e.g., fish, cephalopods and euphausiids), and seal distribution, abundance and diet. This physical and trophic approach to investigating ecological interactions among pack ice seals, prey and the physical environment will allow the interdisciplinary research team to test the hypothesis that there are measurable physical and biological features in the Southern Ocean that result in area of high biological activity by upper trophic level predators. Better insight into the interplay among pack ice seals and biological and physical features of Antarctic marine ecosystems will allow for a better prediction of fluctuation in seal population in the context of environmental change.", "east": 179.99995, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56728, "nsf_funding_programs": null, "paleo_time": null, "persons": "Bengtson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.47946, "title": "Antarctic Pack Ice Seals: Ecological Interactions with Prey and the Environment", "uid": "p0000614", "west": -179.99905}, {"awards": "0636975 Sweeney, Colm", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG0909", "datasets": [{"dataset_uid": "002721", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0909", "url": "https://www.rvdata.us/search/cruise/LMG0909"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sweeney, Colm; Sweeney, Colm", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Surface pCO2 and the effects of Winter Time Overturning in the Drake Passage", "uid": "p0000872", "west": null}, {"awards": "9317587 Smith, Walker", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9406", "datasets": [{"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}, {"dataset_uid": "002582", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9406", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will conduct a set of process-oriented experiments designed to elucidate the controls of phytoplankton productivity, growth and accumulation as well as the mechanisms which control bacterial abundance and productivity in Antarctic waters. Specifically, the relative photosynthetic and nutrient (nitrate, ammonium) characteristics of diatom- vs. Phaeocystis- dominated assemblages will be examined to test if Phaeocystis simply grows faster under spring conditions in the Ross Sea. Phytoplankton and bacterial biomass, productivity and their interactions will be measured to elucidate the complex physical-chemical-biological interactions which occur. Substantial understanding of the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions will result from this research. Finally, because the Antarctic is the ocean\u0027s largest high-nutrient, low biomass system, and hence has the greatest potential for sequestering carbon dioxide, knowledge of the dynamics of the Ross Sea phytoplankton will also increase our understanding of the carbo n cycle of the Southern Ocean.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Bloom Dynamics and Food Web Structure in the Ross Sea: Primary Productivity, New Production and Bacterial Growth", "uid": "p0000802", "west": null}, {"awards": "0739483 Nowacek, Douglas", "bounds_geometry": "POLYGON((-68.0013 -52.7592,-67.34925 -52.7592,-66.6972 -52.7592,-66.04515 -52.7592,-65.3931 -52.7592,-64.74105 -52.7592,-64.089 -52.7592,-63.43695 -52.7592,-62.7849 -52.7592,-62.13285 -52.7592,-61.4808 -52.7592,-61.4808 -53.99669,-61.4808 -55.23418,-61.4808 -56.47167,-61.4808 -57.70916,-61.4808 -58.94665,-61.4808 -60.18414,-61.4808 -61.42163,-61.4808 -62.65912,-61.4808 -63.89661,-61.4808 -65.1341,-62.13285 -65.1341,-62.7849 -65.1341,-63.43695 -65.1341,-64.089 -65.1341,-64.74105 -65.1341,-65.3931 -65.1341,-66.04515 -65.1341,-66.6972 -65.1341,-67.34925 -65.1341,-68.0013 -65.1341,-68.0013 -63.89661,-68.0013 -62.65912,-68.0013 -61.42163,-68.0013 -60.18414,-68.0013 -58.94665,-68.0013 -57.70916,-68.0013 -56.47167,-68.0013 -55.23418,-68.0013 -53.99669,-68.0013 -52.7592))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001467", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1003"}, {"dataset_uid": "001483", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0905"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities.", "east": -61.4808, "geometry": "POINT(-64.74105 -58.94665)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.7592, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Nowacek, Douglas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.1341, "title": "Collaborative Research: The Ecological Role of a Poorly Studied Antarctic Krill Predator: The Humpback Whale, Megaptera Novaeangliae", "uid": "p0000529", "west": -68.0013}, {"awards": "0538148 Huber, Bruce", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0801; Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ; Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "datasets": [{"dataset_uid": "601344", "doi": null, "keywords": "Antarctica; Cape Adare; Mooring; NBP0801; Physical Oceanography; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Ross Sea near Antarctica acquired during the Nathaniel B. Palmer expedition NBP0801", "url": "https://www.usap-dc.org/view/dataset/601344"}, {"dataset_uid": "601343", "doi": null, "keywords": "Antarctica; Mooring; NBP1101; Ross Sea; Salinity; Southern Ocean; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "url": "https://www.usap-dc.org/view/dataset/601343"}, {"dataset_uid": "001517", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0801"}, {"dataset_uid": "002647", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0801", "url": "https://www.rvdata.us/search/cruise/NBP0801"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "An array of moorings will be deployed and maintained east of Cape Adare, Antarctica, at the northwestern corner of the Ross Sea to observe the properties of Antarctic Bottom Water (AABW) exiting the Ross Sea. This location has been identified from recent studies as an ideal place to make such measurements. Antarctic Bottom Water has the highest density of the major global water masses, and fills the deepest parts of the world\u0027s oceans. Because it obtains many of its characteristics during its contact with the atmosphere and with glacial ice along the continental margins of Antarctica, it is expected that changes in newly-formed AABW may represent an effective indicator for abrupt climate change. The heterogeneous nature of the source regions around Antarctica complicates the observation of newly-formed AABW properties. The two most important source regions for AABW are within the Weddell and the Ross Seas, with additional sources drawn from the east Antarctic margins. In the northwestern Weddell Sea, several programs have been undertaken in the last decade to monitor the long term variability of Weddell Sea Deep and Bottom Water, precursors of AABW originating from the Weddell Sea, however no such systematic efforts have yet been undertaken to make longterm measurements of outflow from the Ross Sea. The proposed study will significantly improve our knowledge of the long term variability in the outflow of deep and bottom water from the Ross Sea, and will provide the beginnings of a long-term monitoring effort which ultimately will allow detection of changes in the ocean in the context of global climate change. When joined with similar efforts ongoing in the Weddell Sea, long-term behavior and possible coupling of these two important sources of the ocean\u0027s deepest water mass can be examined in detail.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Caron, Bruce", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Cape Adare Long-term Mooring (CALM)", "uid": "p0000838", "west": null}, {"awards": "9909374 Fairbanks, Richard", "bounds_geometry": "POLYGON((140.21983 -45.80239,141.197867 -45.80239,142.175904 -45.80239,143.153941 -45.80239,144.131978 -45.80239,145.110015 -45.80239,146.088052 -45.80239,147.066089 -45.80239,148.044126 -45.80239,149.022163 -45.80239,150.0002 -45.80239,150.0002 -47.983436,150.0002 -50.164482,150.0002 -52.345528,150.0002 -54.526574,150.0002 -56.70762,150.0002 -58.888666,150.0002 -61.069712,150.0002 -63.250758,150.0002 -65.431804,150.0002 -67.61285,149.022163 -67.61285,148.044126 -67.61285,147.066089 -67.61285,146.088052 -67.61285,145.110015 -67.61285,144.131978 -67.61285,143.153941 -67.61285,142.175904 -67.61285,141.197867 -67.61285,140.21983 -67.61285,140.21983 -65.431804,140.21983 -63.250758,140.21983 -61.069712,140.21983 -58.888666,140.21983 -56.70762,140.21983 -54.526574,140.21983 -52.345528,140.21983 -50.164482,140.21983 -47.983436,140.21983 -45.80239))", "dataset_titles": "Expedition Data; Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "datasets": [{"dataset_uid": "601161", "doi": "10.15784/601161 ", "keywords": "Antarctica; CTD; CTD Data; Mertz Polynya; NBP0008; Oceans; Oxygen; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Jacobs, Stanley; Mele, Phil; Mortlock, R. A.; Smethie, William M", "repository": "USAP-DC", "science_program": null, "title": "Summer Oceanographic Measurements near the Mertz Polynya NBP0008", "url": "https://www.usap-dc.org/view/dataset/601161"}, {"dataset_uid": "001885", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0008"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9909374 Fairbanks This study will investigate how the formation of dense water masses on the antarctic continental shelves is affected by the periodic flushing by relatively warm circumpolar deep water, and whether the intrusion of warm water cna enhance the rate of formation of dense antarctic water. The study involves the observation of water mass modification processes on the continental shelf off the Adelie Coast in East Antarctica, near a quasi-permanent area of open water in the vicinity of the Mertz and Ninnis Glacier tongues - the so-called Mertz polynya. Antarctic coastal polynyas, formed by strong offshore winds, are often referred to as major sea ice and salt \"factories\" because the newly formed ice is blown seaward, allowing more ice to be formed along the coast, and because the freezing process increases the salinity of the continental shelf water. The thin ice, or even open water, implies significant heat losses from the ocean to the atmosphere, which also increases the density of the shelf water. The shelf water sinks, fills any depressions in the bottom, and is gravitationally driven down the continental slope. An additional process is identified for this study and is expected to be at work in this area: the intrusion of relatively warm water onto the continental shelf, overriding the shelf water and essentially shutting down the densification processes. The study will make use of the RVIB Nathaniel B. Palmer to obtain a closely spaced array of hydrographic stations over the continental shelf and slope along the George V Coast in the austral summer. The dat obtained here will complement a similar winter study by the Australian National Antarctic Program. ***", "east": 150.0002, "geometry": "POINT(145.110015 -56.70762)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -45.80239, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fairbanks, Richard; Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.61285, "title": "Shelf and Bottom Water Formation Near East Antarctic Polynyas and Glaciers", "uid": "p0000612", "west": 140.21983}, {"awards": "9727077 Smith, Kenneth", "bounds_geometry": "POLYGON((-70.907166 -52.348,-69.6496994 -52.348,-68.3922328 -52.348,-67.1347662 -52.348,-65.8772996 -52.348,-64.619833 -52.348,-63.3623664 -52.348,-62.1048998 -52.348,-60.8474332 -52.348,-59.5899666 -52.348,-58.3325 -52.348,-58.3325 -53.600917,-58.3325 -54.853834,-58.3325 -56.106751,-58.3325 -57.359668,-58.3325 -58.612585,-58.3325 -59.865502,-58.3325 -61.118419,-58.3325 -62.371336,-58.3325 -63.624253,-58.3325 -64.87717,-59.5899666 -64.87717,-60.8474332 -64.87717,-62.1048998 -64.87717,-63.3623664 -64.87717,-64.619833 -64.87717,-65.8772996 -64.87717,-67.1347662 -64.87717,-68.3922328 -64.87717,-69.6496994 -64.87717,-70.907166 -64.87717,-70.907166 -63.624253,-70.907166 -62.371336,-70.907166 -61.118419,-70.907166 -59.865502,-70.907166 -58.612585,-70.907166 -57.359668,-70.907166 -56.106751,-70.907166 -54.853834,-70.907166 -53.600917,-70.907166 -52.348))", "dataset_titles": "Expedition Data; Expedition data of LMG0002; Expedition data of LMG0005", "datasets": [{"dataset_uid": "002670", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0002", "url": "https://www.rvdata.us/search/cruise/LMG0002"}, {"dataset_uid": "001964", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0010"}, {"dataset_uid": "002667", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0005", "url": "https://www.rvdata.us/search/cruise/LMG0005"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9727077 SMITH The annual expansion and contraction of ice cover in the Southern Ocean is the largest seasonal process in the World Ocean. This seasonal variability in ice cover creates extensive fluctuations in primary production, which heavily impacts pelagic and benthic communities. This research will initiate a long time-series study of the water column and sea floor using long-term, autonomous monitoring and sampling systems developed for use in the Antarctic. The study will be located in Post Foster, Deception Island, which supports a pelagic and benthic fauna representative of the Antarctic coastal zone and experiences seasonal ice cover. A bottom-moored, upward-looking acoustic instrument will be deployed on the sea floor for a period of one year to monitor the vertical distribution, abundance and biomass of acoustically-detectable macrozooplankton and micronekton in the water column. Collections will be made over this period using a newly-developed vertically-profiling pump sampling. Simultaneously, a time-lapse camera system will be moored on the sea floor to monitor the spatial distribution, sizes and movements of the epibenthic megafauna component of the benthic community. The instrumentation development will allow the research project to focus on the effect of the seasonal sea ice cycle on the distribution, abundance and biomass of the macrozooplankton and micronekton in the water column. Similar questions on the distribution, abundance, size and movements of the epibenthic megafauna will be addressed. Results from this study will provide a valuable data base for the evaluation of the pelagic and benthic community responses to seasonal variability in the Southern Ocean.", "east": -58.3325, "geometry": "POINT(-64.619833 -58.612585)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.348, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Kenneth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87717, "title": "Influence of Seasonal Ice Cover on Pelagic and Benthic Communities: Long Time-Series Studies", "uid": "p0000608", "west": -70.907166}, {"awards": "0632399 Jefferies, Stuart", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "datasets": [{"dataset_uid": "600152", "doi": "10.15784/600152", "keywords": "Antarctica; Cosmos; Satellite Remote Sensing; Sun", "people": "Jefferies, Stuart M.", "repository": "USAP-DC", "science_program": null, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "url": "https://www.usap-dc.org/view/dataset/600152"}], "date_created": "Wed, 10 Mar 2010 00:00:00 GMT", "description": "The proposal is to develop an instrument that can simultaneously measure the sound speed and magnetic fields at three heights in the solar atmosphere. The instrument will use magneto-optical filters tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), and 770 nm (K) to make measurements of Doppler velocities and longitudinal magnetic field. These lines form in the mid- and low-chromosphere and photosphere, respectively. In addition, the instrument will also use a Fabry-Perot etalon as a narrowband filter to measure the intensity variations of the 1083 nm (He I) line that is formed high in the chromosphere and which shows the location of the \"foot points\" of coronal holes. Together, the four lines will allow studying wave motions throughout the solar atmosphere. The instrument will record images of the Sun every 10 seconds with a spatial resolution of 1 arc-second. Thus, the project will be fostering the development of existing magneto-optical filter technology to a new level. Upon construction, the telescope will be tested at South Pole for a long period of uninterrupted observations. Both the local and global helioseismic analysis procedures will be utilized to identify and to characterize different types of waves present in the solar atmosphere. These observations will allow determining the structure and dynamics of the Sun\u0027s atmosphere through seismic measurements and, thus, improve the atmosphere models, assess the role of waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun\u0027s atmosphere couples to the interior. The broader impact of the proposed project is two fold. First, there is a potential benefit to the science and to the society because it is believed that the solar atmosphere is a \"home\" to many phenomena that can have a direct effect on the solar activity, including flares, coronal mass ejections, and the solar wind. Understanding the structure and dynamics of the solar atmosphere will therefore lead to a better understanding of the Sun-Earth connection. The collected data will be made available to other researchers at DVDs. The broader audience of general public will be reached through presentations at high schools, libraries, and community events, and news articles in the general press. Most of the research materials will also be placed in the Web.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Jefferies, Stuart M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "uid": "p0000526", "west": -180.0}, {"awards": "0440817 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "WAIS Divide Ice Core Images, Antarctica", "datasets": [{"dataset_uid": "609375", "doi": "10.7265/N5348H8T", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Optical Images; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McGwire, Kenneth C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Images, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609375"}], "date_created": "Wed, 10 Feb 2010 00:00:00 GMT", "description": "This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The \u003cbr/\u003eproject will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctica; Not provided; Ice Core Data; West Antarctica; LABORATORY; Ice Core; FIELD INVESTIGATION", "locations": "Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000182", "west": null}, {"awards": "0551969 Moran, Amy", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 12 Jan 2010 00:00:00 GMT", "description": "This project seeks to understand the evolutionary physiology of reproductive strategies in Southern Ocean marine invertebrates. The fauna of the Southern Ocean has evolved under stable, cold temperatures for approximately 14 million years. These conditions have led to the evolution of unusual physiological and biochemical characteristics, many of which may reflect adaptations to relatively low oxygen availability and high larval oxygen demands. The goal of the proposed projects is to understand latitudinal variation in the function of invertebrate egg masses in relation to oxygen availability and temperature. This relationship is critical to larval survival in the low-temperature, high-oxygen conditions found at high latitudes. In particular, the investigators will: (1) use first principles to model the diffusion of oxygen into egg and embryo masses of Antarctic organisms at environmentally relevant temperatures; (2) test model assumptions by measuring the temperature-dependence of embryonic metabolism and oxygen diffusivity through natural and artificial gels; (3) test model predictions by using oxygen microelectrodes to measure oxygen gradients in both artificial and natural egg masses, and by measuring developmental rates of embryos at different positions in masses; and (4) compare the structure and function of egg masses from the Southern Ocean to those from temperate waters. These components of the study constitute an integrated examination of the evolutionary physiology of egg mass structure and function. Studies of masses endemic to polar conditions will increase the understanding of egg mass evolution across equator-to-pole gradients in temperature and across gradients in oxygen partial pressure. The proposal will support graduate students and will involve several undergraduates in research. The PIs will also design and implement units on polar biology for undergraduate classes at their respective institutions. These educational units will focus on the PIs\u0027 photographs, video footage, experiments, and data from this project. The PIs will use web-linked video and instructional technologies to design and co-teach a new class on polar ecological physiology, will work with local grade school institutions to involve high school students in research, and will develop high school course modules about polar biology.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Effects of Oxygen and Temperature on Egg Mass Function of Southern Ocean Marine Minvertebrates", "uid": "p0000716", "west": null}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": null, "dataset_titles": "Laboratory Studies of Isotopic Exchange in Snow; Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "datasets": [{"dataset_uid": "609445", "doi": "10.7265/N51834DX", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Snow/ice; Snow/Ice; Snow Sublimation Rate", "people": "Neumann, Thomas A.", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Studies of Isotopic Exchange in Snow", "url": "https://www.usap-dc.org/view/dataset/609445"}, {"dataset_uid": "609441", "doi": "10.7265/N54X55R2", "keywords": "Snow/ice; Snow/Ice", "people": "Wemple, Beverley C.", "repository": "USAP-DC", "science_program": null, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "url": "https://www.usap-dc.org/view/dataset/609441"}], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOW TUBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HYGROMETERS \u003e HYGROMETERS", "is_usap_dc": true, "keywords": "Snow Accumulation; Snow Chemistry; Snow Melt; Snowfall; Snow Water Equivalent; LABORATORY; Seasonal Snow Cover; Not provided; Snow; Sublimation Rate; FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Neumann, Thomas A.; Wemple, Beverley C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "uid": "p0000132", "west": null}, {"awards": "0230285 Wilson, Terry", "bounds_geometry": "POLYGON((152.833 -75.317,154.4897 -75.317,156.1464 -75.317,157.8031 -75.317,159.4598 -75.317,161.1165 -75.317,162.7732 -75.317,164.4299 -75.317,166.0866 -75.317,167.7433 -75.317,169.4 -75.317,169.4 -75.9186,169.4 -76.5202,169.4 -77.1218,169.4 -77.7234,169.4 -78.325,169.4 -78.9266,169.4 -79.5282,169.4 -80.1298,169.4 -80.7314,169.4 -81.333,167.7433 -81.333,166.0866 -81.333,164.4299 -81.333,162.7732 -81.333,161.1165 -81.333,159.4598 -81.333,157.8031 -81.333,156.1464 -81.333,154.4897 -81.333,152.833 -81.333,152.833 -80.7314,152.833 -80.1298,152.833 -79.5282,152.833 -78.9266,152.833 -78.325,152.833 -77.7234,152.833 -77.1218,152.833 -76.5202,152.833 -75.9186,152.833 -75.317))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 12 Dec 2009 00:00:00 GMT", "description": "OPP-0230285/OPP-0230356\u003cbr/\u003ePIs: Wilson, Terry J./Hothem, Larry D.\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.\u003cbr/\u003e\u003cbr/\u003eStrategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.\u003cbr/\u003e\u003cbr/\u003eAn education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.", "east": 169.4, "geometry": "POINT(161.1165 -78.325)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "GPS", "locations": null, "north": -75.317, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repositories": null, "science_programs": null, "south": -81.333, "title": "Collaborative Research: Transantarctic Mountains Deformation Network: GPS Measurements of Neotectonic Motion in the Antarctic Interior", "uid": "p0000574", "west": 152.833}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis; Expedition Data; Expedition data of LMG0705; Expedition data of LMG0706", "datasets": [{"dataset_uid": "002712", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0705", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "600039", "doi": "10.15784/600039", "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "people": "Sidell, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "url": "https://www.usap-dc.org/view/dataset/600039"}], "date_created": "Sun, 06 Dec 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. \u003cbr/\u003eFew distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. \u003cbr/\u003eWithin the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": true, "keywords": "R/V LMG; Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sidell, Bruce", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "uid": "p0000527", "west": -180.0}, {"awards": "0086645 Fountain, Andrew", "bounds_geometry": "POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))", "dataset_titles": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "datasets": [{"dataset_uid": "609421", "doi": "", "keywords": "Antarctica; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; LTER; LTER Mcmurdo Dry Valleys", "people": "Lyons, W. Berry; Basagic, Hassan; Nylen, Thomas; Fountain, Andrew; Langevin, Paul", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609421"}], "date_created": "Mon, 31 Aug 2009 00:00:00 GMT", "description": "0086645\u003cbr/\u003eFountain\u003cbr/\u003e\u003cbr/\u003eThis award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of \"application of new expertise or new approaches to established research topics\". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The \"exploratory\" and \"high risk\" nature of the proposed work and its \"potential\" to make an important \"impact\" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.", "east": 163.03, "geometry": "POINT(162.035 -77.69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Glacier Surface; Antarctic; LABORATORY; Byrd Polar Research Center; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; Not provided; Glacier; Mass Balance; Snow Density; Ice Core; Taylor Glacier", "locations": "Antarctic; Antarctica; Taylor Glacier", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nylen, Thomas; Basagic, Hassan; Langevin, Paul; Lyons, W. Berry; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "SGER Proposal:Glaciological change in the McMurdo Dry Valleys, Antarctica", "uid": "p0000541", "west": 161.04}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-119.533333 -80.016667)", "dataset_titles": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "datasets": [{"dataset_uid": "609407", "doi": "10.7265/N55X26V0", "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609407"}], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation\u0027s human resource base. Education and outreach will be an important component of the project.", "east": -119.533333, "geometry": "POINT(-119.533333 -80.016667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Firn Air Isotopes; Not provided; Nitrogen Isotopes; LABORATORY; Firn Isotopes; Paleoclimate; FIELD SURVEYS; Ice Core; Oxygen Isotope; FIELD INVESTIGATION; Siple Dome", "locations": "Antarctica; Siple Dome", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "uid": "p0000450", "west": -119.533333}, {"awards": "0741380 Smith, Walker", "bounds_geometry": "POLYGON((100 -65,106 -65,112 -65,118 -65,124 -65,130 -65,136 -65,142 -65,148 -65,154 -65,160 -65,160 -66.5,160 -68,160 -69.5,160 -71,160 -72.5,160 -74,160 -75.5,160 -77,160 -78.5,160 -80,154 -80,148 -80,142 -80,136 -80,130 -80,124 -80,118 -80,112 -80,106 -80,100 -80,100 -78.5,100 -77,100 -75.5,100 -74,100 -72.5,100 -71,100 -69.5,100 -68,100 -66.5,100 -65))", "dataset_titles": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "datasets": [{"dataset_uid": "600085", "doi": "10.15784/600085", "keywords": "Amundsen Sea; Chemistry:fluid; Chemistry:Fluid; CTD Data; Geochemistry; Oceans; Oden; OSO2007; Sea Surface; Southern Ocean", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "url": "https://www.usap-dc.org/view/dataset/600085"}], "date_created": "Mon, 22 Jun 2009 00:00:00 GMT", "description": "The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea", "east": 160.0, "geometry": "POINT(130 -72.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:", "uid": "p0000217", "west": 100.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "datasets": [{"dataset_uid": "600038", "doi": "10.15784/600038", "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Eastman, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "url": "https://www.usap-dc.org/view/dataset/600038"}], "date_created": "Mon, 30 Mar 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. \u003cbr/\u003eThe nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. \u003cbr/\u003eWith similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \"International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\" or, \"ICEFISH,\" provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Eastman, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "p0000106", "west": -180.0}, {"awards": "0741403 Sherrell, Robert", "bounds_geometry": "POLYGON((-180 -69,-172.5 -69,-165 -69,-157.5 -69,-150 -69,-142.5 -69,-135 -69,-127.5 -69,-120 -69,-112.5 -69,-105 -69,-105 -69.9,-105 -70.8,-105 -71.7,-105 -72.6,-105 -73.5,-105 -74.4,-105 -75.3,-105 -76.2,-105 -77.1,-105 -78,-112.5 -78,-120 -78,-127.5 -78,-135 -78,-142.5 -78,-150 -78,-157.5 -78,-165 -78,-172.5 -78,180 -78,178.8 -78,177.6 -78,176.4 -78,175.2 -78,174 -78,172.8 -78,171.6 -78,170.4 -78,169.2 -78,168 -78,168 -77.1,168 -76.2,168 -75.3,168 -74.4,168 -73.5,168 -72.6,168 -71.7,168 -70.8,168 -69.9,168 -69,169.2 -69,170.4 -69,171.6 -69,172.8 -69,174 -69,175.2 -69,176.4 -69,177.6 -69,178.8 -69,-180 -69))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 10 Mar 2009 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe research objective is (1) to determine the distributions and dynamics of a full suite of bioactive trace metals in dissolved and suspended particulate forms, along sampling transects of the Amundsen and Ross Seas. And (2) to test the sensitivity of overall cellular metal stoichiometry (metal/carbon ratios) to natural gradients in species assemblage and Fe availability. Our earlier findings from a single Ross Sea station and from a Drake Passage crossing suggest that Fe-limited phytoplankton cells are unusually enriched in Zn, Cu and Cd relative to biomass carbon, with strong implications for the biogeochemical cycling of these elements relative to carbon fluxes in the Southern Ocean. In collaboration with other researchers on the cruise, we will also measure metal stoichiometry of cells exposed to predicted 2010 temperature and carbon dioxide levels in shipboard incubation studies, as a window into possible effects of climate change on metals biogeochemistry in these regions. This proposal will support close international collaborations and lasting infrastructure development as US and Swedish scientists, and more importantly, their students, work toward shared the shared goal of understanding a region that is experiencing one of the fastest rates of climate change on the globe. Trace metal micro-nutrients are a key control on the productivity of Antarctic marine ecosystems. Our results will be made widely available through research publications and internet-available databases, and public outreach through COSEE at Rutgers University.", "east": -105.0, "geometry": "POINT(-148.5 -73.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -69.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Sherrell, Robert", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.0, "title": "SGER: Science-of-Opportunity Aboard Icebreaker Oden: Bioactive trace metals in the Amundsen and Ross Seas", "uid": "p0000561", "west": 168.0}, {"awards": "0440602 Saltzman, Eric; 0440701 Severinghaus, Jeffrey; 0440509 Battle, Mark; 0440759 Sowers, Todd; 0440498 White, James; 0440615 Brook, Edward J.", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane Isotopes from the WAIS Divide Ice Core; Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A; WAIS ice core Methane Data, Carbon Dioxide Data", "datasets": [{"dataset_uid": "609493", "doi": "10.7265/N5319SV3", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.; McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS ice core Methane Data, Carbon Dioxide Data", "url": "https://www.usap-dc.org/view/dataset/609493"}, {"dataset_uid": "609638", "doi": "10.7265/N56971HF", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Orsi, Anais J.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "url": "https://www.usap-dc.org/view/dataset/609638"}, {"dataset_uid": "609412", "doi": "10.7265/N5251G40", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609412"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609435", "doi": "10.7265/N5J67DW0", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Isotopes from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609435"}], "date_created": "Tue, 03 Feb 2009 00:00:00 GMT", "description": "This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; WAIS Divide; Firn; LABORATORY; Ice Core; Firn Air Isotope Measurements; Shallow Firn Air; FIELD INVESTIGATION; Ice Core Gas Records; GROUND-BASED OBSERVATIONS; Firn Isotopes; Wais Divide-project; Gas Data; Polar Firn Air; Not provided; Trace Gas Species; Trapped Gases; West Antarctic Ice Sheet; Deep Core; Ice Sheet; Gas; Firn Air Isotopes; FIELD SURVEYS; Air Samples; Atmospheric Gases; Isotope; Cores; Atmosphere; Ice Core Data; Surface Temperatures; Firn Air; Borehole; Antarctica", "locations": "West Antarctic Ice Sheet; Antarctica; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Battle, Mark; Mischler, John; Saltzman, Eric; Aydin, Murat; White, James; Brook, Edward J.; Orsi, Anais J.; Severinghaus, Jeffrey P.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "uid": "p0000368", "west": -112.085}, {"awards": "0225110 Garrott, Robert", "bounds_geometry": "POLYGON((163.1 -70.3,163.59 -70.3,164.08 -70.3,164.57 -70.3,165.06 -70.3,165.55 -70.3,166.04 -70.3,166.53 -70.3,167.02 -70.3,167.51 -70.3,168 -70.3,168 -70.98,168 -71.66,168 -72.34,168 -73.02,168 -73.7,168 -74.38,168 -75.06,168 -75.74,168 -76.42,168 -77.1,167.51 -77.1,167.02 -77.1,166.53 -77.1,166.04 -77.1,165.55 -77.1,165.06 -77.1,164.57 -77.1,164.08 -77.1,163.59 -77.1,163.1 -77.1,163.1 -76.42,163.1 -75.74,163.1 -75.06,163.1 -74.38,163.1 -73.7,163.1 -73.02,163.1 -72.34,163.1 -71.66,163.1 -70.98,163.1 -70.3))", "dataset_titles": "Weddell Seal data", "datasets": [{"dataset_uid": "000120", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Weddell Seal data", "url": "http://www.montana.edu/weddellseals/"}], "date_created": "Wed, 28 Jan 2009 00:00:00 GMT", "description": "The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (\u003e60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications.", "east": 168.0, "geometry": "POINT(165.55 -73.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Garrott, Robert; Siniff, Donald; Rotella, Jay", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -77.1, "title": "Patterns and Processes: Dynamics of the Erebus Bay Weddell Seal Population", "uid": "p0000109", "west": 163.1}, {"awards": "0443403 Measures, Christopher; 0444040 Zhou, Meng; 0230445 Measures, Christopher", "bounds_geometry": "POLYGON((-63 -60.3,-62 -60.3,-61 -60.3,-60 -60.3,-59 -60.3,-58 -60.3,-57 -60.3,-56 -60.3,-55 -60.3,-54 -60.3,-53 -60.3,-53 -60.77,-53 -61.24,-53 -61.71,-53 -62.18,-53 -62.65,-53 -63.12,-53 -63.59,-53 -64.06,-53 -64.53,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.53,-63 -64.06,-63 -63.59,-63 -63.12,-63 -62.65,-63 -62.18,-63 -61.71,-63 -61.24,-63 -60.77,-63 -60.3))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001663", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0402"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service\u0027s Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this\u003cbr/\u003ehypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.\u003cbr/\u003e\u003cbr/\u003eThe research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.", "east": -53.0, "geometry": "POINT(-58 -62.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -60.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Measures, Christopher; Selph, Karen; Zhou, Meng", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage", "uid": "p0000585", "west": -63.0}, {"awards": "0636706 Sivjee, Gulamabas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "NCAR Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Data System ID# 5700 (full data link not provided)", "datasets": [{"dataset_uid": "000137", "doi": "", "keywords": null, "people": null, "repository": "NCAR", "science_program": null, "title": "NCAR Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Data System ID# 5700 (full data link not provided)", "url": "http://cedarweb.hao.ucar.edu/"}], "date_created": "Thu, 23 Oct 2008 00:00:00 GMT", "description": "This project will provide for the continued operation and data analysis of an electro-optical remote sensing facility at South Pole Station. The facility will be used to examine 1) the source(s) and propagation of patches of enhanced plasma density in the F-region of the Antarctic ionosphere, 2) changes in the Antarctic E-region O/N2 ratio in the center of the night-sector of the auroral oval and compare the ratios with those found in the sun-aligned auroral arcs in the Polar Cap region, 3) Antarctic middle atmosphere disturbances generated by Stratospheric Warming Events (SWE), 4) quantitative characterization of the effects of solar variability on the temperature of the upper mesosphere region, 5) Antarctic thermospheric response to Solar Magnetic Cloud/Coronal Mass Ejection (SMC/CME) events, and 6) the effects of Joule heating on the thermodynamics of the Antarctic F-region. Data for all these studies will come from two sets of remote-sensing facilities at SPS: 1) Auroral emissions brightness measurements from the sun-synchronous Meridian Scanning Photon Counting Multichannel photometer; 2) Airglow and Auroral emission spectra recorded continuously during Austral winter at SPS with the high throughput, high resolution Infrared Michelson Interferometer as well as Visible - Near Infrared CCD spectrographs. \u003cbr/\u003e\u003cbr/\u003eMeridional variations in the brightness of F-region\u0027s auroral emissions provide the necessary data for investigations of the dynamics and IMF control, as well as the excitation mechanism(s), of the F-region patches. The brightness of auroral emissions from O and N relative to those from molecular species (O2 and N2) can be analyzed to assess, quantitatively, changes in the thermospheric composition. These data (from continuous (24 hours a day) measurements during the totally dark six months of each Austral winter at SPS) will be used to investigate the effects of solar-terrestrial disturbances on Antarctic thermospheric composition and thermodynamics, including response of the mesopause to solar cycle variations. Changes in airglow temperature (derived from OH and O2 bands), from different mesosphere/lower-thermosphere (MLT) heights, permit studies of the dynamical effects of Planetary, Tidal and Gravity waves propagating in the MLT regions as well as non-linear interactions among these waves. Coupling of different atmospheric regions over SPS, through enhanced gravity wave activities during SWE that lead to a precursor as Mesospheric cooling, will be investigated through the observed changes in MLT kinetic air temperature and density. \u003cbr/\u003e\u003cbr/\u003eThe project will enhance the infrastructure for research and education at Embry-Riddle Aeronautical University, bringing together the PI/Co-I and students from Departments of Physical Sciences and Aerospace Engineering. Graduate and undergraduate students will participate in modern research and software development.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Gulamabas, Sivjee; Azeem, Syed", "platforms": "Not provided", "repo": "NCAR", "repositories": "NCAR", "science_programs": null, "south": -90.0, "title": "Observations of Upper Atmospheric Energetics, Dynamics, and Long-Term Variations over the South Pole Station", "uid": "p0000292", "west": -180.0}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": "POINT(-148.82 -81.66)", "dataset_titles": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core; Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica; Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "datasets": [{"dataset_uid": "609599", "doi": "10.7265/N5S75D8P", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609599"}, {"dataset_uid": "609598", "doi": "10.7265/N5X0650D", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609598"}, {"dataset_uid": "609600", "doi": "10.7265/N5PG1PPB", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609600"}, {"dataset_uid": "609356", "doi": "10.7265/N56W9807", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric; Williams, Margaret", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609356"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "Saltzman/0636953\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man\u0027s activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).", "east": -148.82, "geometry": "POINT(-148.82 -81.66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Methyl Bromide; Antarctic; Ice Core Gas Records; Ice Core Data; Carbonyl Sulfide; Methyl Chloride; Antarctic Ice Sheet; Siple Dome; Trace Gases; Ice Core Chemistry; Biogeochemical; Atmospheric Chemistry; West Antarctic Ice Sheet; LABORATORY; Ice Core; West Antarctica", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Siple Dome; West Antarctica; West Antarctic Ice Sheet", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "uid": "p0000042", "west": -148.82}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Kreutz, Karl; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Holocene; Climate Research; AWS Climate Data; Paleoclimate; Climate Variation; Dry Valleys; Wright Valley; Little Ice Age; Stable Isotopes; Glaciochemical; Ice Core; FIELD INVESTIGATION; Enso; Antarctic Oscillation; Climate; GPS; El Nino-Southern Oscillation; LABORATORY; Not provided; Climate Change; Ice Core Records; Antarctica; Taylor Valley; FIELD SURVEYS; Variability", "locations": "Antarctica; Dry Valleys; Taylor Valley; Wright Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0648509 Sletten, Ronald", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2008 00:00:00 GMT", "description": "This Small Grant for Exploratory Research explores the use of magnesium isotopes in understanding the preservation of ice in soils from the Dry Valleys of Antarctica. With such little precipitation in the region, this ice should have completely sublimed away, nonetheless there is geologic evidence of ten-million-year-old ice in some areas. Its ubiquitous presence in Dry Valley\u0027s soils implies some form of recharge, seemingly incompatible with the low precipitation rates. This project studies the Mg-isotopes found in soluble salts and, by association, water transport. Magnesium isotopes undergo mass dependent fractionation during the volatilization and condensation, and thus offer the possibility to constrain both the water source and other processes by which ice is mobilized. The measurements require the high precision made possible only recently by development of the MC-ICPMS. The method will be applied to Mg-salts extracted from archived Antarctic soils, as well as cores recovered by the 1970s Dry Valley Drilling Project. \u003cbr/\u003e\u003cbr/\u003eIn terms of broader impacts, this project would support a graduate student, who would learn cutting edge geochemical techniques while applying them to an exciting earth science question. This work is critical to understanding the environmental record offered by the Dry Valleys, including the deep ice records that may give seven-million year old samples of the earth\u0027s atmosphere. The work also has applications to understanding permafrost on Mars and interpreting recent rover observations.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sletten, Ronald S.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Small Grant Exploratory Research: The Application of Mg Isotopes as an Indictor for Water and Brine Migration into Dry Valley Permafrost", "uid": "p0000089", "west": null}, {"awards": "0127022 Jeffrey, Wade", "bounds_geometry": "POLYGON((-177.639 -43.5676,-143.1091 -43.5676,-108.5792 -43.5676,-74.0493 -43.5676,-39.5194 -43.5676,-4.9895 -43.5676,29.5404 -43.5676,64.0703 -43.5676,98.6002 -43.5676,133.1301 -43.5676,167.66 -43.5676,167.66 -46.99877,167.66 -50.42994,167.66 -53.86111,167.66 -57.29228,167.66 -60.72345,167.66 -64.15462,167.66 -67.58579,167.66 -71.01696,167.66 -74.44813,167.66 -77.8793,133.1301 -77.8793,98.6002 -77.8793,64.0703 -77.8793,29.5404 -77.8793,-4.9895 -77.8793,-39.5194 -77.8793,-74.0493 -77.8793,-108.5792 -77.8793,-143.1091 -77.8793,-177.639 -77.8793,-177.639 -74.44813,-177.639 -71.01696,-177.639 -67.58579,-177.639 -64.15462,-177.639 -60.72345,-177.639 -57.29228,-177.639 -53.86111,-177.639 -50.42994,-177.639 -46.99877,-177.639 -43.5676))", "dataset_titles": "Expedition Data; Ross Sea microbial biomass and production", "datasets": [{"dataset_uid": "600029", "doi": "10.15784/600029", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Microbiology; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Jeffrey, Wade H.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea microbial biomass and production", "url": "https://www.usap-dc.org/view/dataset/600029"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}], "date_created": "Thu, 12 Jun 2008 00:00:00 GMT", "description": "Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.", "east": 167.66, "geometry": "POINT(-4.9895 -60.72345)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE MICROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e GO-FLO BOTTLES", "is_usap_dc": true, "keywords": "R/V NBP; B-15J", "locations": "B-15J", "north": -43.5676, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jeffrey, Wade H.; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.8793, "title": "Collaborative Proposal: Interactive Effects of UV Radiation and Vertical Mixing on Phytoplankton and Bacterial Productivity of Ross See Phaeocystis Blooms", "uid": "p0000578", "west": -177.639}, {"awards": "0232000 Cailliet, Gregor", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Mar 2008 00:00:00 GMT", "description": "Recent years have seen the re-establishment of large-scale marine resource utilization by humans in the Antarctic. In contrast to early sealing and whaling activity, the modern impact is directed on krill and finfish populations, most notably of the Patagonian toothfish (Dissostichus eleginoides), but also its congenor the Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. Toothfish are a valuable resource and are likely to continue to command a high price in world markets. However, extensive illegal fishing has lead to considerable concern that Patagonian toothfish populations are being over-harvested. In other parts of the world, over-harvesting of larger, commercially valuable species has led to fishing down of marine food webs, leaving impoverished, less valuable ecosystems. The goal of the Convention for the Conservation of Antarctic Marine Living Resources, part of the Antarctic Treaty System, is to allow harvest while avoiding disruptions to the Antarctic ecosystem. To achieve this, the sustainable management of the fishery depends on reliable age data. Age data allow population age structure to be modeled, so that growth, mortality and recruitment rates can be estimated and used to understand population dynamics. Age data provides the basis to determine the life history pattern of a species, to model population dynamics, and to determine which age classes are vulnerable to over-exploitation under a particular set of environmental conditions. Current age and growth information for toothfish is based on age determination methodologies which are not validated and depend on the specific laboratory and principal investigator. Recently, the Commission of the Conservation of Antarctic Marine Living Resources has endorsed three preparation methodologies using otoliths and a common set of criteria for estimating age from otolith micro-structure. The CCAMLR Otolith Network has also been initiated as a medium for exchanging samples to ensure that age estimates are comparable between readers and laboratories. However, considerable work is needed to ensure that age estimates generated by the three methodologies are accurate. One technique that has been successful is radiometric age determination, which uses the disequilibria of lead-210 and radium-226 in otoliths as a natural chronometer. This proposal brings together an international collaboration to examine population age structure for both toothfish species, in an experimental design built around radiometric validation tests of age data generated by all three preparation methodologies. To integrate the validation component within an Antarctic-wide effort to examine toothfish population age structure, sub-samples for validation work will be drawn from sample sets taken for population age studies by research teams working in Australia, New Zealand, the United Kingdom and France, as well as the United States. Scientists at Moss Landing Marine Laboratories will use radiometric age determination to independently age otoliths from Patagonian and Antarctic toothfishes. Scientists at Old Dominion University will use a system already established for aging to generate validated age data, allowing growth, mortality, and longevity to be estimated by geographic areas. The project will provide validated otolith sample sets that can be used as a foundation for a unified and validated age estimation system for the toothfishes. This study will provide information which will be disseminated to the public, policy-makers and the international community. The project will provide opportunities for under-represented students at both universities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ALPHA-SPECTROMETERS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Andrews, Alan G.; ANDREWS, ALLEN", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Radiometric Age Validation of the Patagonian and Antarctic Toothfishes (Dissostichus Eleginoides and D. Mawsoni)", "uid": "p0000738", "west": null}, {"awards": "0542293 Winckler, Gisela", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 17 Dec 2007 00:00:00 GMT", "description": "This Small Grant for Exploratory Research supports development of an innovative dating technique for application to ancient, relict ice bodies buried in the Western Dry Valleys of Antarctica. Dating of surrounding sediments and volcanic ashes indicates that these ice bodies may be up to six million years in age, offering the oldest direct atmospheric and climate records available. This SGER is a proof of concept to develop a new dating technique using beryllium (10Be) of cosmogenic origin from the atmosphere and extraterrestrial helium (3He) contained in interplanetary dust particles. Both tracers are deposited to the Earth\u0027s surface and likely incorporated into the ice matrix at constant rates. Radioactive decay of 10Be versus the stable extraterrestrial 3He signal may offer way to directly measure the age of the ice.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work are development of a new analytical technique that may improve society\u0027s understanding of the potential for global climate change from the perspective of the deep time record.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "Cosmogenic Radionuclides; Old Ice; Idp; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Winckler, Gisela", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Direct Dating of Old Ice by Extraterrestrial Helium-3 and Atmospheric Beryllium-10 - A Proof of Concept", "uid": "p0000127", "west": null}, {"awards": "0338244 Schaefer, Joerg", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 10 Dec 2007 00:00:00 GMT", "description": "This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": false, "keywords": "FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Schaefer, Joerg", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Age, Origin and Climatic Significance of Buried Ice in the Western Dry Valleys, Antarctica", "uid": "p0000255", "west": null}, {"awards": "0540915 Scambos, Ted", "bounds_geometry": "POLYGON((-57.9857 -48.444,-55.95557 -48.444,-53.92544 -48.444,-51.89531 -48.444,-49.86518 -48.444,-47.83505 -48.444,-45.80492 -48.444,-43.77479 -48.444,-41.74466 -48.444,-39.71453 -48.444,-37.6844 -48.444,-37.6844 -50.12802,-37.6844 -51.81204,-37.6844 -53.49606,-37.6844 -55.18008,-37.6844 -56.8641,-37.6844 -58.54812,-37.6844 -60.23214,-37.6844 -61.91616,-37.6844 -63.60018,-37.6844 -65.2842,-39.71453 -65.2842,-41.74466 -65.2842,-43.77479 -65.2842,-45.80492 -65.2842,-47.83505 -65.2842,-49.86518 -65.2842,-51.89531 -65.2842,-53.92544 -65.2842,-55.95557 -65.2842,-57.9857 -65.2842,-57.9857 -63.60018,-57.9857 -61.91616,-57.9857 -60.23214,-57.9857 -58.54812,-57.9857 -56.8641,-57.9857 -55.18008,-57.9857 -53.49606,-57.9857 -51.81204,-57.9857 -50.12802,-57.9857 -48.444))", "dataset_titles": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.; Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007; MODIS Mosaic of Antarctica (MOA)", "datasets": [{"dataset_uid": "000190", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "MODIS Mosaic of Antarctica (MOA)", "url": "http://nsidc.org/data/nsidc-0280.html"}, {"dataset_uid": "609466", "doi": "10.7265/N5N014GW", "keywords": "Ablation; Atmosphere; Glaciology; GPS; Meteorology; Oceans; Photo/video; Photo/Video; Sea Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; Bohlander, Jennifer; Scambos, Ted; Yermolin, Yevgeny; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007", "url": "https://www.usap-dc.org/view/dataset/609466"}, {"dataset_uid": "000189", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.", "url": "http://nsidc.org/MMS/atlas/cryosphere_atlas_north.html"}], "date_created": "Thu, 16 Aug 2007 00:00:00 GMT", "description": "This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.", "east": -37.6844, "geometry": "POINT(-47.83505 -56.8641)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Air Temperature; Weddell Sea; Edge-Wasting; Ice Shelf Meltwater; TERRA; Antarctic; GPS; Iceberg; Ice Breakup; South Atlantic Ocean; AQUA; Tabular; Photo; Not provided; Icetrek; HELICOPTER; Antarctica", "locations": "Antarctic; Weddell Sea; Antarctica; South Atlantic Ocean", "north": -48.444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e AQUA; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -65.2842, "title": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves", "uid": "p0000003", "west": -57.9857}, {"awards": "0337948 Bromwich, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001778", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://polarmet.mps.ohio-state.edu/PolarMet/ant_hindcast.html"}], "date_created": "Thu, 02 Aug 2007 00:00:00 GMT", "description": "This award supports a comprehensive investigation of the spatial and temporal characteristics of the surface mass balance of the Antarctic ice sheet and the governing mechanisms that affect it. A mesoscale atmospheric model, adapted for Antarctic conditions (Polar MM5), will be used in conjunction with the newly available reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to resolve the surface mass balance of Antarctica at a time resolution of 3 hours and a spatial resolution of 60 km from 1957 to 2001. Polar MM5 will be upgraded to account for key processes in the simulation, including explicit consideration of blowing snow transport and sublimation as well as surface melting/runoff. The proposed 45-y hindcast of all Antarctic surface mass balance components with a limited area model has not previously been attempted and will provide a dataset of unprecedented scope to complement existing ice core measurements of recent climate, especially those collected by the International Transantarctic Scientific Expedition (ITASE). The trends and variability in space and time over 4.5 decades will be resolved and the impact of the dominant modes of atmospheric variability (Antarctic Oscillation, El Nino-Southern Oscillation, etc.) will be isolated. Hypotheses concerning the Antarctic surface mass balance response to climate change will be tested. The research will provide a sound basis for evaluating the impact of future climate change on Antarctic surface mass balance and its contribution to global sea level change as well as providing an important perspective for the interpretation of Antarctic ice core records. The broader impacts include the education of a Ph.D. student, the development of material for use in university classes, and construction of an interactive educational webpage on Antarctic surface mass balance.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS", "is_usap_dc": false, "keywords": "El Nino-Southern Oscillation; ITASE; Atmospheric Model; Enso; Not provided; Antarctic Oscillation; Mesoscale; Antarctic; Polar Mm5; Climate", "locations": "Antarctic", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bromwich, David; Monaghan, Andrew", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "A 45-Y Hindcast of Antarctic Surface Mass Balance Using Polar MM5", "uid": "p0000722", "west": -180.0}, {"awards": "9615398 Encarnacion, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 11 Jul 2007 00:00:00 GMT", "description": "Encarnaci_n OPP 9615398 Abstract Basement rocks of the Transantarctic Mountains are believed to record a change in the paleo-Pacific margin of Gondwana from a rifted passive margin to a tectonically active margin (Ross orogen). Recent hypothesis suggest that the passive margin phase resulted from Neoproterozoic rifting of Laurentia from Antarctica (\"SWEAT\" hypothesis). The succeeding active margin phase (Ross orogeny) was one of several tectonic events (\"Pan African\" events) that resulted from plate convergence/transpression that was probably a consequence of the assembly of components of the Gondwana supercontinent. Although these basement units provide one of the keys for understanding the break up and assembly of these major continental masses, few precise ages are available to address the following important issues: (1) Is there any pre-rift high-grade cratonal basement exposed along the Transantarctic Mountains, and what is/are its precise age? Is this age compatible with a Laurentia connection? (2) What is the age of potential rift/passive margin sediments (Beardmore Group) along the Queen Maud Mountains sector of the orogen? (3) What is the relative and absolute timing of magmatism and contractional deformation of supracrustal units in the orogen? Was deformation diachronous and thus possibly related to transpressional tectonics, or did it occur in a discrete pulse that is more compatible with a collision? How does contraction of the orogen fit in with emplacement of voluminous plutonic and volcanic rocks? The answers to these questions are central to understanding the kinematic evolution of this major orogenic belt and its role in Neoproterozoic-Early Paleozoic continental reconstructions and plate kinematics. Hence, this award supports funding for precise U-Pb dating, using zircon, monazite, baddeleyite, and/or titanite from a variety of magmatic rocks in the Queen Ma ud Mountains, which can address the foregoing problems. In addition to the issues above, precise dating of volcanics that are interbedded with carbonates containing probable Middle Cambrian fauna could potentially provide a calibration point for the Middle Cambrian, which will fill a gap in the absolute time scale for the early Paleozoic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Encarnacion, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Constraints on the Tectonomagmatic Evolution of the Pacific Margin of Gondwana from U-Pb Geochronology of Magmatic Rocks in the Transantarctic Basement", "uid": "p0000277", "west": null}, {"awards": "9526556 Sowers, Todd", "bounds_geometry": "POINT(-148.3023 -81.403)", "dataset_titles": "Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609310", "doi": "10.7265/N5ST7MR2", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609310"}], "date_created": "Mon, 09 Jul 2007 00:00:00 GMT", "description": "This award is for support for a program to reconstruct records of the isotopic composition of paleoatmospheric methane and nitrous oxide covering the last 200,000 years. High resolution measurements of the carbon-13 isotopic composition of methane from shallow ice cores will help to determine the relative contributions of biogenic (wetlands, rice fields and ruminants) and abiogenic (biomass burning and natural gas) methane emissions which have caused the concentrations of this gas to increase at an exponential rate during the anthropogenic period. Isotopic data on methane and nitrous oxide over glacial/interglacial timescales will help determine the underlying cause of the large concentration variations that are known to occur. This project will make use of a new generation mass spectrometer which is capable of generating precise isotopic information on nanomolar quantities of methane and nitrous oxide, which means that samples can be 1000 times smaller than those needed for a standard isotope ratio instrument. The primary objective of the work is to further our understanding of the biogeochemical cycles of these two greenhouse gases throughout the anthropogenic period as well as over glacial interglacial timescales.", "east": -148.3023, "geometry": "POINT(-148.3023 -81.403)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core; Firn Air Isotope Measurements; Ice Core Chemistry; Firn Isotopes; Stable Isotopes; Methane; Carbon; Paleoclimate; LABORATORY; Siple Dome; Antarctica; Ice Core Data; Firn Air Isotopes; Antarctic Ice Sheet", "locations": "Antarctica; Antarctic Ice Sheet; Siple Dome", "north": -81.403, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Sowers, Todd A.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.403, "title": "Constructing Paleoatmospheric Records of the Isotopic Composition of Methane and Nitrous Oxide", "uid": "p0000611", "west": -148.3023}, {"awards": "0233303 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 09 Jul 2007 00:00:00 GMT", "description": "Major portions of the Antarctic Ice Sheet float in the surrounding ocean, at the physical and intellectual boundaries of oceanography and glaciology. These ice shelves lose mass continuously by melting into the sea, and periodically by the calving of icebergs. Those losses are compensated by the outflow of grounded ice, and by surface accumulation and basal freezing. Ice shelf sources and sinks vary on several time scales, but their wastage terms are not yet well known. Reports of substantial ice shelf retreat, regional ocean freshening and increased ice velocity and thinning are of particular concern at a time of warming ocean temperatures in waters that have access to deep glacier grounding lines.\u003cbr/\u003eThis award supports a study of the attrition of Antarctic ice shelves, using recent ocean geochemical measurements and drawing on numerical modeling and remote sensing resources. In cooperation with associates at Columbia University and the British Antarctic Survey, measurements of chlorofluorocarbon, helium, neon and oxygen isotopes will be used to infer basal melting beneath the Ross Ice Shelf, and a combination of oceanographic and altimeter data will be used to investigate the mass balance of George VI Ice Shelf. Ocean and remote sensing observations will also be used to help refine numerical models of ice cavity circulations. The objectives are to reduce uncertainties between different estimates of basal melting and freezing, evaluate regional variability, and provide an update of an earlier assessment of circumpolar net melting.\u003cbr/\u003eA better knowledge of ice shelf attrition is essential to an improved understanding of ice shelf response to climate change. Large ice shelf calving events can alter the ocean circulation and sea ice formation, and can lead to logistics problems such as those recently experienced in the Ross Sea. Broader impacts include the role of ice shelf meltwater in freshening and stabilizing the upper ocean, and in the formation of Antarctic Bottom Water, which can be traced far into the North Atlantic. To the extent that ice shelf attrition influences the flow of grounded ice, this work also has implications for ice sheet stability and sea level rise.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Ice Sheet; Basal Melting; Ice Shelf Meltwater; Not provided; Oceanography; Ice Velocity; Glaciology; Sea Level Rise; Ice Sheet Stability; Mass; Ross Ice Sheet; Numerical Model; Basal Freezing; Ice Cavity Circulations; George VI Ice Shelf; Outflow", "locations": "Ross Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Melting and Calving of Antarctic Ice Shelves", "uid": "p0000730", "west": null}, {"awards": "0125754 Hulbe, Christina", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 07 Jun 2007 00:00:00 GMT", "description": "This award supports a project to develop computational models to simulate ice-shelf rift propagation using a combination of well-established ice-shelf creep-flow models and new crevasse models, based on linear elastic fracture mechanics (LEFM). The overall objective of the proposed work is to simulate rift propagation and eventual large iceberg calving,and place those processes within a larger ice sheet and climate context. The work will proceed in stages, first developing models of single-and multiple-crevasse propagation; then using those models to evaluate propagation sensitivity to various environmental conditions; and third developing models that incorporate both crevasse propagation and advection within an ice- shelf system. Model development will be guided by and evaluated according to satellite observations of rift propagation in several characteristic locations on Antarctic ice shelves. New numerical models of fracture in ice will have applications to many problems in glaciology. The research proposed here is directed toward large rift formation in ice shelves and subsequent iceberg calving. It is motivated by the need to understand observed changes in modern ice shelves,and their connection to climate. Where it has been sampled, the sedimentary record of the Weddell Sea sector implies Peninsular ice shelf variability on millennial time scales. The ability to simulate iceberg calving in a credible way will improve our ability to reproduce such events and place the complete cycle of ice shelf advance and retreat in an ice-dynamics context. That will, in turn, enable us to place ice-shelf cycles within the climate cycles that ultimately drive ice-sheet mass balance.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Ice-Shelf Rift Propagation: Computational Simulation Using a Fracture Fracture Mechanics Approach", "uid": "p0000270", "west": null}, {"awards": "0229573 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Antarctic Mean Annual Temperature Map", "datasets": [{"dataset_uid": "609318", "doi": "10.7265/N51C1TTV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Dixon, Daniel A.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Mean Annual Temperature Map", "url": "https://www.usap-dc.org/view/dataset/609318"}], "date_created": "Wed, 04 Apr 2007 00:00:00 GMT", "description": "This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; West Antarctica; FIELD INVESTIGATION; West Antarctic Ice Sheet; Antarctic; Temperature; East Antarctic Plateau; FIELD SURVEYS; Antarctica; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land", "uid": "p0000199", "west": null}, {"awards": "0003844 Case, Judd", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002676", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Wed, 28 Mar 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary\u0027s College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.\u003cbr/\u003e\u003cbr/\u003eIn order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.\u003cbr/\u003e\u003cbr/\u003eThis project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.\u003cbr/\u003e\u003cbr/\u003eThis research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.\u003cbr/\u003e\u003cbr/\u003eThis is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "Not provided; R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e CRETACEOUS", "persons": "Case, Judd; Blake, Daniel", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Evolution and Biogeography of Late Cretaceous Vertebrates from the James Ross Basin, Antarctic Peninsula", "uid": "p0000129", "west": null}, {"awards": "0125579 Cuffey, Kurt; 0126202 Blankenship, Donald", "bounds_geometry": "POLYGON((160 -77.6,160.25 -77.6,160.5 -77.6,160.75 -77.6,161 -77.6,161.25 -77.6,161.5 -77.6,161.75 -77.6,162 -77.6,162.25 -77.6,162.5 -77.6,162.5 -77.63,162.5 -77.66,162.5 -77.69,162.5 -77.72,162.5 -77.75,162.5 -77.78,162.5 -77.81,162.5 -77.84,162.5 -77.87,162.5 -77.9,162.25 -77.9,162 -77.9,161.75 -77.9,161.5 -77.9,161.25 -77.9,161 -77.9,160.75 -77.9,160.5 -77.9,160.25 -77.9,160 -77.9,160 -77.87,160 -77.84,160 -77.81,160 -77.78,160 -77.75,160 -77.72,160 -77.69,160 -77.66,160 -77.63,160 -77.6))", "dataset_titles": "Ablation Rates of Taylor Glacier, Antarctica; Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica; Surface Velocities of Taylor Glacier, Antarctica", "datasets": [{"dataset_uid": "609326", "doi": "10.7265/N5N29TW8", "keywords": "Ablation Poles; Ablation Rates; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Taylor Glacier", "people": "Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Ablation Rates of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609326"}, {"dataset_uid": "609324", "doi": "10.7265/N5RV0KM7", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Velocity; Taylor Glacier", "people": "Kavanaugh, Jeffrey; Cuffey, Kurt M.; Bliss, Andrew; Aciego, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Surface Velocities of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609324"}, {"dataset_uid": "609323", "doi": "10.7265/N5WM1BBZ", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Taylor Glacier", "people": "Aciego, Sarah; Cuffey, Kurt M.; Bliss, Andrew; Kavanaugh, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "Stable Isotopes of Ice on the Surface of Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609323"}], "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.", "east": 162.5, "geometry": "POINT(161.25 -77.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Glacier; Glacier Surface; Glacier Surface Ablation; Ice Velocity; Velocity Measurements; Taylor Glacier; Isotope; GPS; Ice Sheet Elevation; Not provided; FIELD INVESTIGATION; Ice Surface Elevation; Ablation; Oxygen Isotope; Elevation; Deuterium; GROUND-BASED OBSERVATIONS; Glacier Surface Ablation Rate; Surface Elevation", "locations": "Taylor Glacier", "north": -77.6, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Bliss, Andrew; Kavanaugh, Jeffrey; Aciego, Sarah; Cuffey, Kurt M.; Morse, David L.; Blankenship, Donald D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Collaborative Research: Dynamics and Climatic Response of the Taylor Glacier System", "uid": "p0000084", "west": 160.0}, {"awards": "0229917 Becker, Luann", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 24 Jan 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an interdisciplinary study of fluvial sediments in Antarctica for evidence of what caused the greatest of all mass extinctions in the history of life at the Permian-Triassic boundary. This boundary was, until recently, difficult to locate and thought to be unequivocally disconformable in Antarctica. New studies, particularly of carbon isotopic chemostratigraphy and of paleosols and root traces as paleoecosystem indicators, together with improved fossil plant, reptile and pollen biostratigraphy, now suggest that the precise location of the boundary might be identified and have led to local discovery of iridium anomalies, shocked quartz, and fullerenes with extraterrestrial noble gases. These anomalies are associated with a distinctive claystone breccia bed, similar to strata known in South Africa and Australia, and taken as evidence of deforestation. There is already much evidence from Antarctica and elsewhere that the mass extinction on land was abrupt and synchronous with extinction in the ocean. The problem now is what led to such death and destruction. Carbon isotopic values are so low in these and other Permian-Triassic boundary sections that there was likely to have been some role for catastrophic destabilization of methane clathrates. Getting the modeled amount of methane out of likely reservoirs would require such catastrophic events as bolide impact, flood-basalt eruption or continental-shelf collapse, which have all independently been implicated in the mass extinction and for which there is independent evidence. Teasing apart these various hypotheses requires careful re-examination of beds that appear to represent the Permian-Triassic boundary, and search for more informative sequences, as was the case for the Cretaceous-Tertiary boundary. This collaborative research on geochemistry and petrography of boundary beds and paleosols (by Retallack), on carbon isotopic variation through the boundary interval (by Jahren), and on fullerenes, iridium and helium (by Becker) is designed to test these ideas about the Permian-Triassic boundary in Antarctica and to shed light on processes which contributed to this largest of mass extinctions on Earth. Fieldwork for this research will be conducted in the central Transantarctic Mountains and in Southern Victoria Land with an initial objective of examining the stratigraphic sequences for continuity across the boundary. Stratigraphic continuity is a critical element that must exist for the work to be successful. If fieldwork indicates sufficiently continuous sections, the full analytical program will follow fieldwork.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PROBES; SOLAR/SPACE OBSERVING INSTRUMENTS \u003e PARTICLE DETECTORS \u003e SEM", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Luann", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Permian-Triassic Mass Extinction in Antarctica", "uid": "p0000718", "west": null}, {"awards": "0230378 Kanagaratnam, Pannirselvam", "bounds_geometry": "POLYGON((-112.224 -79.3385,-112.1245 -79.3385,-112.025 -79.3385,-111.9255 -79.3385,-111.826 -79.3385,-111.7265 -79.3385,-111.627 -79.3385,-111.5275 -79.3385,-111.428 -79.3385,-111.3285 -79.3385,-111.229 -79.3385,-111.229 -79.35475,-111.229 -79.371,-111.229 -79.38725,-111.229 -79.4035,-111.229 -79.41975,-111.229 -79.436,-111.229 -79.45225,-111.229 -79.4685,-111.229 -79.48475,-111.229 -79.501,-111.3285 -79.501,-111.428 -79.501,-111.5275 -79.501,-111.627 -79.501,-111.7265 -79.501,-111.826 -79.501,-111.9255 -79.501,-112.025 -79.501,-112.1245 -79.501,-112.224 -79.501,-112.224 -79.48475,-112.224 -79.4685,-112.224 -79.45225,-112.224 -79.436,-112.224 -79.41975,-112.224 -79.4035,-112.224 -79.38725,-112.224 -79.371,-112.224 -79.35475,-112.224 -79.3385))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 18 Oct 2006 00:00:00 GMT", "description": "This award supports a project to build and test a 12-18 GHz radar system with a plane wave antenna. This is a wideband radar operating over a frequency range of 12 to 18 GHz to detect near-surface internal firn layers of the ice sheet with better than 10 cm resolution to a depth of approximately 7 m. These measurements will allow determination of spatially continuous snow accumulation rate in the firn, which would be useful along a traverse and is of critical importance to the validation of CryoSat and ICESAT satellite missions aimed at assessing the current state of mass balance of the polar ice sheets. The antenna system planned for the radar is relatively compact, and will be located on the sledge carrying the radar systems. The broad scientific focus of this project will be to investigate important glacial processes relevant to ice sheet mass balance. The new radar will allow the characterization (with high depth resolution) of the spatial variability of snow accumulation rate along a traverse route for interpreting data from CryoSat and ICESAT missions. As part of this project, we will institute a strong outreach program involving K-12 education and a minority institution of higher education. We currently work closely with the Advanced Learning Technology Program (ALTec) at the University of Kansas to develop interactive, resource-based lessons for use on-line by students of all grade levels, and we will develop new resources related to this project. We currently have an active research and education collaboration with faculty and undergraduate students at neighboring Haskell Indian Nations University, in Lawrence, Kansas, and we will expand our collaboration to include this project.", "east": -111.229, "geometry": "POINT(-111.7265 -79.41975)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Firn; Cryosat; Plane Wave Antenna; Glacial Processes; GROUND-BASED OBSERVATIONS; Not provided; Icesat; FIELD INVESTIGATION; Radar; LABORATORY; Snow Accumulation; Mass Balance; FIELD SURVEYS", "locations": null, "north": -79.3385, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kanagaratnam, Pannirselvam; Braaten, David; Bauer, Rob", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.501, "title": "High Resolution Ice Thickness and Plane Wave Mapping of Near-Surface Layers", "uid": "p0000731", "west": -112.224}, {"awards": "0126149 Liu, Hongxing", "bounds_geometry": null, "dataset_titles": "Access to Antarctic coastline coverage and reference documents; Access to Antarctic snow zone coverage and reference documents; Access to boundary file and reference documents; Access to ice velocity data and reference documents; Access to snow melt extent image files and reference documents", "datasets": [{"dataset_uid": "001779", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to ice velocity data and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001640", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to snow melt extent image files and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001350", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to boundary file and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001351", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic coastline coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001352", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic snow zone coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}], "date_created": "Tue, 15 Aug 2006 00:00:00 GMT", "description": "This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IFSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "DEM; Not provided; RADARSAT-1", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Liu, Hongxing; Jezek, Kenneth", "platforms": "Not provided; OTHER \u003e MODELS \u003e DEM; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques", "uid": "p0000204", "west": null}, {"awards": "0338363 Thiemens, Mark; 0337933 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Concentrations in 2004 South Pole Ice Core", "datasets": [{"dataset_uid": "609542", "doi": "10.7265/N5HX19N8", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609542"}], "date_created": "Fri, 11 Aug 2006 00:00:00 GMT", "description": "This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Not provided; Ion Chromatograph; Ions; LABORATORY; GROUND-BASED OBSERVATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "uid": "p0000031", "west": null}, {"awards": "0230316 White, James; 0230348 Dunbar, Nelia; 0230021 Sowers, Todd", "bounds_geometry": "POINT(135.1333 -76.05)", "dataset_titles": "Mount Moulton Isotopes and Other Ice Core Data", "datasets": [{"dataset_uid": "609640", "doi": "10.7265/N5FT8J0N", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "people": "Steig, Eric J.; White, James; Popp, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Mount Moulton Isotopes and Other Ice Core Data", "url": "https://www.usap-dc.org/view/dataset/609640"}], "date_created": "Tue, 01 Aug 2006 00:00:00 GMT", "description": "The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.", "east": 135.1333, "geometry": "POINT(135.1333 -76.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "LABORATORY; Climate; Argon-40; 40Ar; Argon-39; FIELD SURVEYS; Chronology; Ice Core Gas Age; Gas Record; Ice Core; FIELD INVESTIGATION; Tephra; Mount Moulton; Not provided; Caldera; 39Ar; Stratigraphy; Ice Core Depth", "locations": "Mount Moulton", "north": -76.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.05, "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "uid": "p0000755", "west": 135.1333}, {"awards": "0126187 Alley, Richard", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 Apr 2006 00:00:00 GMT", "description": "0126187\u003cbr/\u003eAlley\u003cbr/\u003e\u003cbr/\u003eThis award provides support for a 2 year modeling effort to study the dynamics of Pine Island Glacier (PIG). The discharge from the PIG constitutes the largest mass loss from any single West Antarctic ice stream. Satellite observations indicate that this outlet glacier is experiencing ongoing thinning and acceleration. The emphasis of this work will be on understanding the cause and the near-term projection of the observed thinning of PIG. Model experiments will address the hypothesis that the observed changes were caused by the loss of a buttressing ice shelf, and that the changes will continue in the form of an upglacier propagating wave of thinning and acceleration. To perform this work a numerical model of the coupled mass, energy, and momentum balance of Pine Island Glacier basin will be developed. The model will comprise four modular components, which will be coupled and then benchmarked against the European Ice Sheet Modeling Inititative (EISMINT) model intercomparison. The model will then be applied to the thinning of Pine Island Glacier using likely ice-shelf histories and possible basal boundary conditions to learn which may be accurate and to assess possible future behavior. The primary expected result will be an improved understanding of the importance of ice-shelf buttressing and the potential for inland thinning due to the reduction of ice-shelf drag.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Dupont, Todd K.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "The Thinning of Pine Island Glacier: Model Development and Study of the Importance of Ice-Shelf Drag on Inland Ice", "uid": "p0000715", "west": null}, {"awards": "0196441 Hamilton, Gordon", "bounds_geometry": null, "dataset_titles": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.; US ITASE International Trans-Antarctic Scientific Expedition", "datasets": [{"dataset_uid": "000586", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}, {"dataset_uid": "000109", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "US ITASE International Trans-Antarctic Scientific Expedition", "url": "http://www2.umaine.edu/USITASE/"}], "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Transantarctic Mountains; Not provided; US ITASE; Snow Accumulation; Mass Balance; Transantarctic; Outlet Glaciers; Antarctica; FIELD INVESTIGATION; FIELD SURVEYS", "locations": "Antarctica; Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "NSIDC", "repositories": "NSIDC; Project website", "science_programs": null, "south": null, "title": "Mass Balance and Accumulation Rate Along US ITASE Routes", "uid": "p0000727", "west": null}, {"awards": "0230448 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001; Trapped Gas Composition and Chronology of the Vostok Ice Core", "datasets": [{"dataset_uid": "609311", "doi": "10.7265/N5P26W12", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "people": "Bender, Michael; Suwa, Makoto", "repository": "USAP-DC", "science_program": null, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609311"}, {"dataset_uid": "609290", "doi": "10.7265/N5FJ2DQC", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Battle, Mark; Severinghaus, Jeffrey P.; Bender, Michael", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "url": "https://www.usap-dc.org/view/dataset/609290"}], "date_created": "Wed, 18 Jan 2006 00:00:00 GMT", "description": "High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.", "east": 106.8, "geometry": "POINT(106.8 -72.4667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Paleoclimate; Siple Dome; Ice Age; Shallow Firn Air; Firn Air Isotope Measurements; Polar Firn Air; Ice Sample Gas Integrity; Oxygen Isotope; Noble Gas; Ice Core Gas Records; Atmospheric Gases; Trapped Gases; Not provided; LABORATORY; Vostok; Firn Air Isotopes; Thermal Fractionation; Ice Core Chemistry; Trapped Air Bubbles; Ice Core; Antarctica; South Pole; Ice Core Data; GROUND-BASED OBSERVATIONS; Gas Age; Firn Isotopes", "locations": "Antarctica; Vostok; Siple Dome; South Pole", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -72.4667, "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "uid": "p0000257", "west": 106.8}, {"awards": "0401116 Twickler, Mark", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 13 Jan 2006 00:00:00 GMT", "description": "This award will support a workshop whose aim is to provide a forum for discussion of an international ice core initiative and to examine how such an initiative might work. This workshop will bring together members of the international ice core community to discuss what new large ice core projects are needed to address leading unanswered science questions, technical obstacles to initiating these projects, benefits and difficulties of international collaboration on such projects, and how these collaborations might be facilitated. The very positive response of numerous international ice core scientists consulted about this idea shows that the need for such an initiative is widely recognized. Ice cores have already revolutionized our view of the Earth System, providing, for example, the first evidence that abrupt climate changes have occurred, and showing that greenhouse gases and climate have been tightly linked over the last 400,000 years. Ice cores provide records at high resolution, with particularly good proxies for climate and atmospheric parameters. The challenge that ice core projects present is that they require large concentrations of resources and expertise (both in drilling and in science) that are generally beyond the capacity of any one nation. Maintaining a critical mass of knowledge between projects is also difficult. One way to avoid these problems is to expand international cooperation on ice core drilling projects, so that expertise and resources can be pooled and applied to the most exciting new projects. The broader impacts of this workshop include the societal relevance of ice core science and the fact that the data and interpretations derived from new ice cores will give policymakers the information necessary to make better decisions on the how the earth is responding to climate change. In addition, by improving ice core sciences through international partnerships more students will be able to become involved in an exciting and growing area of climate research.", "east": -9.36, "geometry": "POINT(-42.35 71.69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Drill; Arctic; Ice Core; Climate Record; Gas; Antarctic; Climate; Chemistry; Not provided; Time Scale", "locations": "Antarctic; Arctic", "north": 86.6, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": 56.78, "title": "Workshop for International Partnerships in Ice Core Sciences; March 13-16, 2004; Sterling, VA", "uid": "p0000100", "west": -75.34}, {"awards": "0088047 Bell, Robin", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 03 Jan 2006 00:00:00 GMT", "description": "0088047\u003cbr/\u003eBell\u003cbr/\u003e\u003cbr/\u003eThis award supports a two year project to address fundamental questions about the mass and energy flux through Lake Vostok, a subglacial lake in East Antarctica, sealed beneath almost 4 kilometers of ice. The project will involve developing lake circulation models, complemented by the analysis of new ice penetrating radar data over the lake and surrounding regions. This project will help to accurately define the regions of melting and freezing within the lake and help to provide an improved estimate of the form of the lake. The combined data analysis and modeling effort will provide a critical framework for developing international plans to sample the waters of Lake Vostok for biota and to recover sediments from Lake Vostok for paleoclimate studies.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Paleoclimate; Circulation Models; Lake Vostok; Data Analysis; Subglacial; Modeling; Not provided", "locations": "Lake Vostok", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Tremblay, Bruno; Hohmann, Roland; Clarke, Garry; Studinger, Michael S.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Mass and Energy Fluxes Through Lake Vostok: Observations and Models", "uid": "p0000093", "west": null}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": null, "dataset_titles": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "datasets": [{"dataset_uid": "609281", "doi": "10.7265/N5TT4NWF", "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "people": "Savarino, Joel; Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "url": "https://www.usap-dc.org/view/dataset/609281"}], "date_created": "Tue, 27 Dec 2005 00:00:00 GMT", "description": "This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Snow; GROUND STATIONS; Ion Chemistry; South Pole; Not provided; Aerosol; Oxygen Isotope; GROUND-BASED OBSERVATIONS; Snow Pit; Antarctica; Admundsen-Scott Station", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Savarino, Joel; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "uid": "p0000242", "west": null}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br); Antarctic Ice Cores: Methyl Chloride and Methyl Bromide; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "datasets": [{"dataset_uid": "609313", "doi": "10.7265/N5DN430Q", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "people": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "url": "https://www.usap-dc.org/view/dataset/609313"}, {"dataset_uid": "609279", "doi": "10.7265/N53B5X3G", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "url": "https://www.usap-dc.org/view/dataset/609279"}, {"dataset_uid": "609131", "doi": "10.7265/N5P848VP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "url": "https://www.usap-dc.org/view/dataset/609131"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Gas Records; Carbonyl Sulfide; Siple Coast; Chloride; Trapped Gases; Snow; Ice Core Chemistry; Chromatography; Siple; GROUND STATIONS; Atmospheric Gases; Ozone Depletion; AWS Siple; Ice Sheet; Ice Core Data; Antarctica; Glaciology; West Antarctica; Atmospheric Chemistry; Ice Core; Stratigraphy; LABORATORY; Methane; Mass Spectrometer; GROUND-BASED OBSERVATIONS; WAISCORES; Msa; Mass Spectrometry; Not provided; Siple Dome; Gas Measurement", "locations": "Antarctica; Siple Coast; Siple Dome; West Antarctica; Siple", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methyl chloride and methyl bromide in Antarctic ice cores", "uid": "p0000032", "west": -148.81}, {"awards": "0088035 Arcone, Steven", "bounds_geometry": "POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))", "dataset_titles": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles; US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "datasets": [{"dataset_uid": "609269", "doi": "10.7265/N5GH9FV6", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; ITASE; WAIS", "people": "Mayewski, Paul A.; Kaspari, Susan; Arcone, Steven; Spikes, Vandy Blue; Hamilton, Gordon S.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "url": "https://www.usap-dc.org/view/dataset/609269"}, {"dataset_uid": "609254", "doi": "10.7265/N58050J7", "keywords": "Airborne Radar; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ITASE; Radar; WAIS", "people": "Arcone, Steven", "repository": "USAP-DC", "science_program": null, "title": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles", "url": "https://www.usap-dc.org/view/dataset/609254"}], "date_created": "Sun, 01 May 2005 00:00:00 GMT", "description": "This award supports continued acquisition of high resolution, radar reflection profiles of the snow and ice stratigraphy between core sites planned along traverse routes of the U.S. component of the International\u003cbr/\u003eTrans-Antarctic Scientific Expedition (U.S.-ITASE). The purpose is to use the profiles to establish the structure and continuity of firn stratigraphic horizons over hundreds of kilometers and to quantitatively\u003cbr/\u003eassess topographic and ice movement effects upon snow deposition. Other objectives are to establish the climatic extent that a single site represents and to investigate the cause of firn reflections. The radar\u003cbr/\u003ewill also be used to identify crevasses ahead of the traverse vehicles in order to protect the safety of the scientists and support personnel on the traverse. Collaboration with other ITASE investigators will use the radar horizons as continuous isochronic references fixed by the core dating to calculate historical snow accumulation rates. The primary radar system uses 400-MHz (center frequency) short-pulse antennas, which (with processing) gives the penetration of 50-70 meters. This is the depth which is required to exceed the 200-year deposition horizon along the traverse routes. Profiles at 200 MHz will also be recorded if depths greater than 70 meters are of interest. Processing will be accomplished by data compression (stacking) to reveal long distance stratigraphic deformation, range gain corrections to give proper weight to signal amplitudes, and GPS corrections to adjust the records for the present ice sheet topography. Near surface stratigraphy will allow topographic and ice movement effects to be separated. This work is critical to the success of the U.S.-ITASE program.", "east": -90.0, "geometry": "POINT(-112.5 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice; Radar Echo Sounder; USAP-DC; US ITASE; Ice Cover; West Antarctic Ice Sheet; Snow Accumulation; CRREL; Antarctic Ice Sheet; Radar; Ice Surveys; ITASE; Ice Sheet; Radar Echo Sounding; GROUND-BASED OBSERVATIONS; Ice Thickness; Mass Balance", "locations": "Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Spikes, Vandy Blue; Arcone, Steven; Kaspari, Susan; Hamilton, Gordon S.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "uid": "p0000146", "west": -135.0}, {"awards": "0087390 Grunow, Anne", "bounds_geometry": "POLYGON((-170 -79,-164 -79,-158 -79,-152 -79,-146 -79,-140 -79,-134 -79,-128 -79,-122 -79,-116 -79,-110 -79,-110 -79.5,-110 -80,-110 -80.5,-110 -81,-110 -81.5,-110 -82,-110 -82.5,-110 -83,-110 -83.5,-110 -84,-116 -84,-122 -84,-128 -84,-134 -84,-140 -84,-146 -84,-152 -84,-158 -84,-164 -84,-170 -84,-170 -83.5,-170 -83,-170 -82.5,-170 -82,-170 -81.5,-170 -81,-170 -80.5,-170 -80,-170 -79.5,-170 -79))", "dataset_titles": "Polar Rock Repository; Rock Magnetic Clast data are at this website", "datasets": [{"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}, {"dataset_uid": "001970", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Rock Magnetic Clast data are at this website", "url": "http://bprc.osu.edu/"}], "date_created": "Mon, 23 Aug 2004 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (\u003e1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.\u003cbr/\u003e\u003cbr/\u003eThis research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.\u003cbr/\u003e\u003cbr/\u003eThe individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.", "east": -110.0, "geometry": "POINT(-140 -81.5)", "instruments": null, "is_usap_dc": false, "keywords": "Till; Subglacial; Clasts; Magnetic Properties; Rock Magnetics; FIELD INVESTIGATION; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Grunow, Anne; Vogel, Stefan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "PRR", "repositories": "PI website; PRR", "science_programs": null, "south": -84.0, "title": "Collaborative Research: Relationship Between Subglacial Geology and Glacial Processes in West Antarctica: Petrological and Geochemical Analyses of Subglacial and Basal Sediments", "uid": "p0000740", "west": -170.0}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Siple Shallow Core Density Data", "datasets": [{"dataset_uid": "609129", "doi": "10.7265/N52F7KCD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Lamorey, Gregg W.", "repository": "USAP-DC", "science_program": null, "title": "Siple Shallow Core Density Data", "url": "https://www.usap-dc.org/view/dataset/609129"}], "date_created": "Mon, 19 Apr 2004 00:00:00 GMT", "description": "This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAISCORES; Siple Coast; Glaciology; Not provided; GROUND-BASED OBSERVATIONS; Ice Core; Siple; Antarctica; Density; Snow; Ice Sheet; Siple Dome; Shallow Core; GROUND STATIONS; Stratigraphy", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lamorey, Gregg W.; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "uid": "p0000159", "west": -180.0}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": "POINT(-148.8 -81.7)", "dataset_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "datasets": [{"dataset_uid": "609201", "doi": "10.7265/N5S180F1", "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Finley, Brandon; Dioumaeva, Irina", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Biogenic Sulfur in the Siple Dome Ice Core", "url": "https://www.usap-dc.org/view/dataset/609201"}], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth\u0027s radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.", "east": -148.8, "geometry": "POINT(-148.8 -81.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; GROUND-BASED OBSERVATIONS; Biogenic Sulfur; FIELD INVESTIGATION; Not provided; LABORATORY; Methane Sulfonate", "locations": "Siple Dome", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "p0000251", "west": -148.8}, {"awards": "9526449 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "WAISCORES Snow Pit Chemistry, Antarctica", "datasets": [{"dataset_uid": "609420", "doi": "10.7265/N5SQ8XBR", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit; WAIS; WAISCORES", "people": "Mayewski, Paul A.; Kreutz, Karl", "repository": "USAP-DC", "science_program": null, "title": "WAISCORES Snow Pit Chemistry, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609420"}], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This award is for support for a program of glaciochemical analyses of shallow and deep ice cores from Siple Dome, West Antarctica. Measurements that have been proposed include chloride, nitrate, sulfate, calcium, magnesium, sodium, potassium, ammonium and methansulfonic acid. These measurements will provide information about past volcanic events, biomass source strength, sea ice fluctuations, atmospheric circulation, changes in ice-free areas and the environmental response to Earth orbit insolation changes and solar variability. The glaciochemical records from the Siple Dome core will be developed at a resolution sufficient to compare with the Summit, Greenland record, thus allowing a bipolar comparison of climate change event timing and magnitude. As part of this award, an international workshop will be held during the first year to formulate a science plan for the International Transantarctic Scientific Expedition (ITASE), a program of regional surveys documenting the spatial distribution of properties measured in ice cores .", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Ion Chemistry; Antarctic; Snow Chemistry; Stable Isotopes; Snow Density; Siple Dome; GROUND-BASED OBSERVATIONS", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kreutz, Karl; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Siple Dome Deep Ice Core Glaciochemistry and Regional Survey - A Contribution to the WAIS Initiative", "uid": "p0000012", "west": null}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum; Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "datasets": [{"dataset_uid": "609246", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Indermuhle, A.; Sowers, Todd A.; Smith, Jesse; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "url": "https://www.usap-dc.org/view/dataset/609246"}, {"dataset_uid": "609108", "doi": "10.7265/N54F1NN5", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Wahlen, Martin", "repository": "USAP-DC", "science_program": null, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "url": "https://www.usap-dc.org/view/dataset/609108"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; Ice Core; GROUND-BASED OBSERVATIONS; Carbon; Trapped Gases; Glaciology; GROUND STATIONS; Taylor Dome; Carbon Dioxide; Isotope; Antarctica; Nitrogen", "locations": "Antarctica; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Wahlen, Martin; Smith, Jesse; Brook, Edward J.; Indermuhle, A.; Mayewski, Paul A.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "uid": "p0000153", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "9725305 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "datasets": [{"dataset_uid": "609098", "doi": "10.7265/N51N7Z2P", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Battle, Mark; Severinghaus, Jeffrey P.; Grachev, Alexi", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "url": "https://www.usap-dc.org/view/dataset/609098"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Isotopic History; GROUND STATIONS; Thermal Diffusion; Firn Temperature Measurements; Not provided; Oxygen Isotope; Trapped Air Bubbles; Shallow Firn Air; Firn Air Isotope Measurements; Seasonal Temperature Gradients; Mass Spectrometry; GROUND-BASED OBSERVATIONS; Thermal Fractionation; Polar Firn Air; Isotopic Anomalies; Xenon; Atmospheric Gases; Argon Isotopes; Siple Dome; Krypton; Nitrogen Isotopes; Seasonal Temperature Changes; Antarctica; Ice Core Gas Records; Firn Air Isotopes; Mass Spectrometer; South Pole; Firn Isotopes; Borehole", "locations": "Antarctica; Siple Dome; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Grachev, Alexi; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "uid": "p0000160", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Non-Technical Abstract The deep world ocean is flooded with near 0°C water, drawn from the margins of Antarctica. Antarctic Bottom Water, as it is referred to, is mainly derived from cold water formed the over the continental shelves of the Weddell and Ross Seas, where the coastal water is exposed to frigid polar air masses spreading off the Antarctic ice sheet. Antarctic Bottom Water is a key component of the global ocean overturning system, which is fundamental to the global ocean heat, carbon and nutrient inventories, and hence the climate and marine ecosystem. The processes producing the dense shelf waters involve small scale factors associated with ocean/atmosphere/sea and glacial ice interaction. What is lacking from previous work is a coordinated, synchronous observational study of the seaward spreading, from formation, to export across the continental shelf edge, to its descent into the deep ocean. This work fills the gap, by investigating the characteristics of dense shelf water formed within Terra Nova Bay, Ross Sea, its transformation, modification and northward spreading within the Drygalski Trough in the western Ross Sea, feeding into the spill-over at the continental slope into the deep boundary current adjacent to Cape Adare. The sequence of events will be observed with a series of instrumented moorings along the pathway from Terra Nova Bay, along the Drygalski Trough and onto the boundary current adjacent to Cape Adare. The project is an international collaboration that involves the USA (this proposal), S. Korea, New Zealand and Italy. Technical Abstract The lower kilometer or two of the world ocean is flooded with near 0°C water derived from the Southern Ocean, the Antarctic Bottom Water (AABW). The cold end-member of AABW is formed over various sectors of the continental shelf of Antarctica, notable in the Weddell and Ross Seas. The governing processes producing the dense shelf waters involve small scale spatial and temporal factors associated with ocean/sea ice interaction, often related to coastal polynyas and katabatic winds, along with further modification by ocean-glacial ice interaction. There have been studies of the formation of dense shelf water, of export of shelf water over the shelf/slope, the descent of gravity currents into the AABW realm, and of flow paths of AABW spreading across the deep ocean well into the northern hemisphere. What is lacking is a coordinated, synchronous observational study of the seaward spreading, from formation of the dense shelf water to its spreading to the shelf/slope break and descent into the deep ocean. This program fills the gap, by investigating the characteristics of dense shelf water formed within Terra Nova Bay (TNB), Ross Sea, its transformation, modification and northward spreading within the Drygalski Trough in the western Ross Sea, feeding into the spill-over at the continental slope and the deep boundary current adjacent to Cape Adare. The team will deploy a series of moorings – two heavily instrumented full water column moorings within TNB to capture high-salinity shelf water (HSSW) production and a series of bottom-focused moorings to evaluate the transformation and northward spreading of the dense saline water. The broad science goals of the project will be addressed by this program through a coordinated analysis of these mooring measurements. The project is an international collaboration that involves the USA (this proposal), S. Korea, New Zealand and Italy. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Voluminous outpourings of iron-rich molten rock (magma), which can initiate from deep within the earth, occur regularly throughout geologic time. Understanding volcanic eruptions requires knowledge of the magmatic plumbing systems and magma chambers that feed eruptions. While many magma chambers are typically emplaced in the shallow subsurface of the earth, only rarely are the entirety of the solidified remnants of these chambers later exposed at the surface of the earth for study. One such magma chamber, the Dufek Intrusion, exists in Antarctica. The Dufek Intrusion is part of the Ferrar magmatic event, which was triggered by the separation or rifting of South America, Africa and Antarctic continents approximately 182 million years ago. The research objectives focus on analyzing existing samples to understand the thermal and chemical evolution of the magma in the Dufek Intrusion magma chamber and deciphering whether the exposed sections are part of the same magma chamber or represent two separate magma chambers. Results from this study may result in the research community questioning the assumption that small intrusions crystallized faster than larger layered intrusions such as the Dufek Intrusion. This project supports multiple early career researchers and provides laboratory training for undergraduate students. Preliminary high-precision U-Pb ages from zircon throughout the Dufek Intrusion show that rocks thought to represent the lowermost section of stratigraphy (the Dufek Massif) are younger than the rocks thought to represent the uppermost section (the Forrestal Range). This study tests whether the zircon ages represent a cooling profile of a single large layered intrusion, or whether the Dufek Massif and Forrestal Range are two separate smaller intrusions. Crystallization temperatures of the cumulus phases (plagioclase and clinopyroxene) and the zircons, as well as cooling rates from the cumulus phases will be obtained to test the cooling profile hypothesis. The research team will construct thermal models of emplacement and cooling to compare with the laboratory analyses. In order to test the two intrusions hypothesis, the team will analyze zircon Hf isotopic compositions and whole rock Sr, Nd, Pb isotopes from samples of the two intrusions to determine whether they are similar and therefore genetically related. Results will provide important constraints on the duration of magmatism associated with continental breakup and present a coherent picture of the construction of (possibly) one of the largest magmatic intrusions exposed on earth today. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: This project focuses on a group of ecologically important species of fishes which inhabit the frigid waters of Antarctica. They represent a key link in the polar food web as they are prey for penguins, seals and toothed whales. These fish have evolved in the constant, extreme cold for millions of years and therefore, are very sensitive to the increasing water temperatures associated with global warming. These studies will investigate the impacts of incremental heat exposure on the biology of these fishes by examining their ability to respond, or inability to respond, to elevated temperatures. The project will employ cutting-edge technology to examine responses at the cellular level that may help these environmentally sensitive fishes adapt to the challenges of global warming. The primary goal is to increase our collective understanding of how polar ecosystems are likely to be impacted in the coming decades. Part 2: The proposed research is designed to use an existing bank of frozen tissues from a species of cold-adapted Antarctic fish to investigate protein-level responses to heat stress. These samples were collected earlier in the PI's career during fieldwork at McMurdo Station, Antarctica. Four tissues (control as well as heat- stressed) will be analyzed via mass spectrometry to characterize their proteome, defined as the entire complement of proteins in a sample. This includes both identification and quantification of these proteins. The goal is to determine what mechanisms of response to elevated temperature are available to the extremely cold-adapted, stenothermic fishes of Antarctica. Follow-up analyses will use immunoblotting (Western blotting) with antibodies specific to a sub-set of proteins revealed to be heat-responsive in the proteomic analyses. As this is a Mid-Career Advancement Award, training and mentorship in proteomic analyses for the PI will be supported, with time spent at the partner institution, the University of California, Davis. Intellectual Merit While there has been an increase in the use of genomic technologies to probe gene expression profiles in Antarctic species, few studies exist looking at protein level changes during exposure to heat stress in these organisms. Therefore, the proposed studies would represent a large leap forward in our understanding of how these environmentally sensitive species can, or cannot, respond at the cellular level as the Earth continues to warm and water temperatures rise. As proteins do the "work" in the cell, it's vital to understand which proteins are present and in what quantity and how dynamic this "proteome" is during stress. The proposed studies would provide this information for thousands of proteins, using already existing samples. The findings would be entirely novel and would allow us a much better picture of how animals that evolved in the cold for millions of years are likely to respond to climate change. Broader Impacts The PI has established relationships with several regional K-12 institutions and will continue to provide outreach in the form of classroom visits and the creation of classroom curricula. The PI has an on-going collaboration with the Oregon Coast Aquarium (Newport, OR) to create novel teaching materials for grades 6-8. The Aquarium has partners in surrounding school districts and will help disseminate videos about marine biology and climate change. Modules concerning polar species will be created under this proposal. An interactive website will be created demonstrating the Antarctic food web. All of the proteomic analyses and libraries generated under this award will be made publicly available for use by any interested researcher. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The main goal of this project is to identify and geochemically characterize atmospheric mineral nanoparticles in pre-industrial Antarctic ice during the last climatic cycle. Recent technological and industrial development is introducing a large number of natural and engineered nanoparticles into Earth's atmosphere. These constitute a concern for human health, mainly due to their high chemical reactivity. While many atmospheric nanoparticle studies have been performed in modern urban environments, there is essentially no information about their occurrence in a pristine pre-industrial atmosphere. This information is critical, as it constitutes an important benchmark for comparison to the modern atmosphere. Information on nanoparticles from the pre-industrial atmosphere can be obtained from atmospheric mineral nanoparticles that are entrapped in remote pre-industrial Antarctic ice covering the last climatic cycles. Mineral nanoparticles can also affect several climatic processes. First, they directly influence the global energy balance by reflecting solar radiation and indirectly influence through changes in cloud formation (and clouds also reflect solar radiation). Second, atmospheric mineral nanoparticles such as iron oxides could have fertilized the oceans, causing blooms of marine phytoplankton that may have drawn part of the atmospheric carbon dioxide into the oceans during glacial ages (the "biological pump"). Third, a significant amount of extraterrestrial material entering the Earth atmosphere is thought to be transported to the poles as nanoparticles called "meteoric smoke" that form polar stratospheric clouds implicated in changes of the ozone hole. This project aims to establish the natural background of unknown classes of glacial particles whose size is below the detection limit of the conventional dust analyzers. The team will take advantage of ice samples from the "horizontal ice core", already extracted from the remote Taylor Glacier (coastal East Antarctica) covering the last ~44,000 years. These ancient samples are particularly suited to project scope because i) a large ice volume is available ii) the team expects to find a markedly different geochemistry between nanoparticles deposited during the last glacial age and during the current interglacial. A set of advanced techniques including Transmission Electron Microscopy, Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS), spICP-Time of Flight MS, and Field Flow Fractionation will be employed to determine mineral nanoparticle sizes, number/volume, and chemical composition. So far, the elemental composition of dust entrapped in polar ice has been mainly determined by Inductively Coupled Plasma Sector Field Mass Spectrometry and it is generally assumed to be descriptive of the coarse aeolian dust fraction. However, project will test whether or not the determined elemental composition is instead mainly linked to the previously unobserved smaller mineral nanoparticle content. Results on nanoparticles will be compared with a set of new experiments of total dust composition measured by Inductively Coupled Plasma Sector Field Mass Spectrometry, using the same ice samples from Taylor Glacier. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-Technical The future response of the East Antarctic Ice Sheet (EAIS) to climate change and its consequent effect on global sea level remains a pressing problem, with implications for societal well-being, the economy, and national security. Projections of future ice-sheet behavior rely in part on understanding gained from ice-sheet response to past climate change, which can be found in geologic records. This project uses geologic features produced at the base of the ice sheet to examine a large change in EAIS behavior and to place ages on when this change occurred. By comparison to climate records from the same time, the project results will allow assessment of ice-sheet response to a climate that likely was warmer than at present. Such information will improve understanding of possible ice-sheet responses to a warming climate, as well as the underlying mechanisms. A better assessment of the likely EAIS response to future warming climate will aid in setting national and international policy and improve public welfare, by promoting more accurate predictions of the amounts and rates of sea-level rise. This project will contribute to the education of young scientists, thereby increasing the STEM workforce, which is in the national interest. A general-audience book will be produced to explain the importance of Antarctica to the public. Technical Accurate, well-dated reconstructions of the behavior of the East Antarctic Ice Sheet (EAIS) afford insight into its response to future climate change. This project uses new insights in subglacial hydrology and erosion to identify and date a major missing piece of Antarctic glacial history, involving massive expansion of the EAIS over the Transantarctic Mountains. This expansion led to formation of an extensive erosional landscape that was characterized by subglacial meltwater and represents a significant shift in ice-sheet behavior. Understanding the age and reasons for such an expansion are important in part, because the subglacial meltwater must have been linked to the Wilkes Subglacial Basin – an area thought to be susceptible to large-scale ice collapse under warm climates. The project will constrain the extent and age of this surface through 1) detailed geomorphological mapping from imagery, 2) reassessment of existing chronologic data, and 3) new surface exposure dating of existing samples. Results will test the hypothesis that the scoured surface and the ice-sheet behavior that it represents is much younger than its traditionally assigned age of ≥14 Ma and thus relevant to current investigations into ice-sheet behavior under warmer-than-present climates. The work affords mentoring opportunities for students of all ages and will include the production of a book on the landscapes of the Transantarctic Mountains designed to introduce the public to the importance of Antarctica. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center. In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice sheets lose ice mass through gravity-driven flow to the ocean where ice breaks into icebergs and melts, contributing to global sea level rise. Water commonly found at the base of ice sheets facilitates this process by lubricating the ice-rock interface. The recent discovery of vast, kilometer-thick groundwater reservoirs beneath the Antarctic Ice Sheet thus raises important questions about the potential impact of groundwater on ice flow. It has been hypothesized that groundwater flow to the ice-sheet bed may accelerate ice flow as the ice sheet shrinks in response to global warming. Evaluating this hypothesis is challenging due to poorly understood interactions between water, ice, and rock, but is crucial for anticipating the response of ice sheets and sea level to climate change. Understanding how groundwater responds to a changing ice sheet also has important implications for the heat, chemical elements, and microorganisms it stores and transports. To assess the impact of groundwater processes on ice dynamics, a new idealized modeling framework will be developed, incorporating several novel hydromechanical couplings between ice sheets, subglacial drainage systems, and groundwater aquifers. This framework will enable testing the hypotheses that (1) aquifers decelerate ice mass loss in the absence of a well-developed subglacial drainage system, but that (2) an efficient, channelized drainage system can reduce and even reverse this decelerating effect, and that (3) the impact of these phenomena is most pronounced for steep ice flowing rapidly over thick sedimentary basins and depends in a complex way on aquifer permeability. Existing geodetic, seismic, and other geophysical datasets at well-studied Thwaites Glacier and Whillans Ice Stream will be used to constrain model parameters and investigate the impact of groundwater processes in contrasting glaciologic settings. This work will help rule out or highlight subglacial groundwater as one of the next major challenges for efforts to predict the future of the Antarctic Ice Sheet and sea-level rise on decadal to millennial timescales. The project will contribute to educating the next generation of scientists by supporting an early-career PI and a graduate student, as well as participation in a field and research educational program in Alaska and the production of chapters for an online, open-source, free interactive textbook. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical description The ecologically important notothenioid fish of the Southern Ocean surrounding Antarctica will be studied to address questions central to polar, evolutionary, and adaptational biology. The rapid diversification of the notothenioids into >120 species following a period of Antarctic glaciation and cooling of the Southern Ocean is thought to have been facilitated by key evolutionary innovations, including antifreeze glycoproteins to prevent freezing and bone reduction to increase buoyancy. In this project, a large dataset of genomic sequences will be used to evaluate the genetic mechanisms that underly the broad pattern of novel trait evolution in these fish, including traits relevant to human diseases (e.g., bone density, renal function, and anemia). The team will develop new STEM-based research and teaching modules for undergraduate education at Northeastern University. The work will provide specific research training to scholars at all levels, including a post-doctoral researcher, a graduate student, undergraduate students, and high school students. The team will also contribute to public outreach, including, in part, the develop of teaching videos in molecular evolutionary biology and accompanying educational supplements. Part II: Technical description The researchers will leverage their comprehensive notothenioid phylogenomic dataset comprising >250,000 protein-coding exons and conserved non-coding elements across 44 ingroup and 2 outgroup species to analyze the genetic origins of three iconic notothenioid traits: (1) loss of erythrocytes by the icefish clade in a cold, stable and highly-oxygenated marine environment; (2) reduction in bone mass and retention of juvenile skeletal characteristics as buoyancy mechanisms to facilitate foraging; and (3) loss of kidney glomeruli to retain energetically expensive antifreeze glycoproteins. The team will first track patterns of change in erythroid-related genes throughout the notothenioid phylogeny. They will then examine whether repetitive evolution of a pedomorphic skeleton in notothenioids is based on parallel or divergent evolution of genetic regulators of heterochrony. Third, they will determine whether there is mutational bias in the mechanisms of loss and re-emergence of kidney glomeruli. Finally, identified genetic mechanisms of evolutionary change will be validated by experimental testing using functional genomic strategies in the zebrafish model system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\sim3000$ and $\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly.
Perennially ice-covered lakes in the McMurdo Dry Valleys of Antarctica contain abundant microbial mats, and the export of this mat material can fertilize the surrounding polar desert ecosystems. These desert soils are one of the most organic-poor on earth yet host a community of microorganisms. Microbial mat material is exported from the shallow, gas-supersaturated regions of the lakes when gas bubbles form in the mats, lifting them to the ice cover; the perennial ice cover maintains gas supersaturation. These mats freeze in and are exported to the surrounding soils through ice ablation. The largest seasonal decrease and thinnest ice cover in the history of Lake Fryxell was recorded during the 2022-2023 Austral summer. In this thin ice year, the water column dissolved oxygen increased over prior observations, and the lake bottom surface area with bubble-disrupted mat was more than double that observed in 1980-1981 and 2006-2007. This work will constrain mat mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning to understand how future changing regional climate and predicted seasonal loss of lake ice cover will affect nutrient transport in the McMurdo Dry Valleys. Exceptional years of mat export are hypothesized to have the most significant impact on nutrient export to soil communities; variability in mat liftoff may thus play a role in the McMurdo Dry Valleys ecosystem response to changing climate. The perennial ice cover of lakes in the McMurdo Dry Valleys of Antarctica modulates the transfer of gasses, organic and inorganic material, between the lakes and surrounding soils. The export of biomass in these lakes is driven by the supersaturation of atmospheric gasses in the shallow regions under perennial ice cover. Gas bubbles nucleate in the mats, producing buoyancy that lifts them to the bottom of the ice, where they freeze in and are exported to the surrounding soils through ice ablation. These mats represent a significant source of biomass and nutrients to the McMurdo Dry Valleys soils, which are among the most organic-poor on earth. Nevertheless, this biomass remains unaccounted for in organic carbon cycling models for the McMurdo Dry Valleys. Ice cover data from the McMurdo Dry Valleys Long Term Ecological Research Project shows that the ice thickness has undergone cyclical variation over the last 40 years, reaching the largest seasonal decrease and thinnest ice-cover in the recorded history of Lake Fryxell during the 2022-2023 austral summer. Preliminary work shows that the surface area with mat liftoff at Lake Fryxell is more than double that observed in 1980-1981 and 2006-2007, coinciding with this unprecedented thinning of the ice-cover and an increase in the water column dissolved O2. This research will constrain biomass mobilization within and out of Lake Fryxell in the McMurdo Dry Valleys during a period of unprecedented ice thinning. The researchers hypothesize that a thinner ice cover promotes more biomass mobilization by 1) stimulating additional production of gas bubbles from the existing gas-supersaturated waters during summertime photosynthesis to create microbial mat liftoff and 2) promoting mat liftoff in deeper, thicker microbial mats, and 3) that this biomass can be traced into the soils by characterizing its chemistry and modeling the most likely depositional settings. This work will use microbial mat samples, lake dissolved oxygen and photosynthetically active radiation data and underwater drone footage documenting the depth distribution of liftoff mats in January 2023, and long-term ice cover thickness, photosynthetically active radiation, and lake level change data collected by the McMurdo Dry Valleys Long Term Ecological Research Project to test hypotheses 1-3. The dispersal of the liftoff mat exposed at Lake Fryxell surface will be modeled using a Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Exceptional liftoff years like the present are hypothesized to have the most significant impact on the soil communities as the rates of soil respiration increase with the addition of carbon. However, continued warming in the next 10 - 40 years may result in seasonal loss of the ice cover and cessation of liftoff mat export. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The objective of this project is to understand why the nitrous oxide (N2O) content of the atmosphere was lower during the last ice age (about 20,000-100,000 years ago) than in the subsequent warm period (10,000 years ago to present) and why it fluctuated during climate changes within the ice age. Nitrous oxide is a greenhouse gas that contributes to modern global warming. It is thought that modern warming will in turn cause increases in natural sources of nitrous oxide from bacteria in soils and the ocean, creating a "positive feedback." However, the amount these sources will increase is uncertain because the different ways that nitrous oxide are produced, and how sensitive they are to warmer climate, are not well known. This project will measure a unique property of the nitrous oxide molecule in very large ancient air samples from a glacier in Antarctica. This method can distinguish between different microbial processes that produce nitrous oxide but it has not been applied yet to the time periods in question. The data will provide information about how natural climate changes affect nitrous oxide production. This, in turn, will be useful for predicting future changes and for understanding why the Earth's climate shifts from ice ages to warm periods and back again. Ice-core records of greenhouse gas isotopic composition are useful for determining past changes in natural source and sink strengths and for understanding how natural emissions are linked to climate change. This project will develop two records of the intramolecular site preference of Nitrogen-15 in N2O. One record spans the last deglaciation (10,000-21,000 years ago) when atmospheric N2O concentration rose by 30 percent, and the other record spans millennial-scale climate changes during the last ice age when N2O varied by smaller amounts (Heinrich Stadial 4 and Dansgaard Oeschger 8, 35,000-41,000 years ago). The records will be used to understand what changes in the nitrogen cycle caused atmospheric N2O concentration to vary and what mechanisms link the N2O emissions to climate change. Ideally, studying the two different time periods will isolate the millennial climate responses entangled with the full deglacial sequence, creating a clearer picture of how N2O biogeochemistry responds to climate change. This work will also allow exploration of an isotopic tracer for in situ production of N2O that contaminates the atmospheric signal in particularly dusty ice. The project will use a unique, well-dated suite of ice samples from Taylor Glacier, Antarctica and continuous flow isotope ratio mass spectrometry on a custom gas extraction line operated in the Oregon State University laboratory. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
General abstract Most organisms alternate between life stages that vary in the number and arrangement of their chromosomes, in the number of cells they possess, and in the environmental conditions in which they are best adapted to live. Much of what we understand about these alternations comes from organisms like animals and land plants in which one of the two stages dominates the life cycle with the other small and short-lived. However, across the tree of life there are countless examples of organisms in which both stages are of long duration, multicellular, or both. These life cycles challenge common ideas used to explain ecological and evolutionary patterns we see in nature. Macroalgae (seaweeds) display a wide range of life cycle types and consequently are excellent models to test and expand ideas about how life cycles evolve. Undersea forests of seaweeds with a variety of life cycle types dominate the shallow waters of the western Antarctic Peninsula where they are ecologically important and, for most of the species, at the southern end of their geographic range. Using existing samples from previous expeditions to Antarctica, the investigators are uniquely positioned to test and expand knowledge of life cycle evolution and how this intersects with reproductive mode variation. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the public. The project will support a postdoctoral scholar as well as a faculty member new to US Antarctic research. The investigators will take advantage of an existing program to include high school or undergraduate students in the work which will also expand mentorship experience for the postdoc. All team members will contribute by writing for blogs produced by professional societies for the public. Technical abstract Existing macroalgal taxa samples from across a latitudinal gradient in the western Antarctic Peninsula will be used to explore patterns of genetic diversity from the center to the southern latitudinal limits of their range. Not only will genetic diversity be documented for an understudied and critical group of Antarctic organisms, but how it changes with latitude, compounded by high levels of endemism, will be explored. This will be accomplished by (i) characterization of latitudinal gradients in genetic diversity of many species and (ii) determination of the reproductive system of five focal foundation species. At present, there are few genetic data for macroalgae, dominant primary producers in coastal ecosystems around the world. This gap is particularly acute along Antarctic coastlines that are experiencing rapid climate change. Furthermore, Antarctica is isolated by the Southern Ocean, decreasing the likelihood of regular migration from other land masses. Latitudinal reproductive system patterns are predicted to be largely driven by recolonization events that increase with latitude due to changes in iceberg scour and sea ice coverage. Thus, Antarctica is the best place to understand what processes underlie reproductive mode variation in populations that are isolated, including many endemic taxa, while simultaneously extending our knowledge about how marginal environments converge with complex life cycles. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function.<br/> <br/> <br/>To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Satellite observations of Earth’s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth’s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth’s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical Description Glacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical Abstract The McMurdo Dry Valleys LTER seeks to understand how changes in the temporal variability of ecological connectivity interact with existing landscape legacies to alter the structure and functioning of this extreme polar desert ecosystem. This research has broad implications, as it will help us to understand how natural ecosystems respond to ongoing anthropogenic global change. At the same time, this project also serves an important educational and outreach function, providing immersive research and educational experiences to students and artists from diverse backgrounds, and helping to ensure a diverse and well-trained next generation of leaders in polar ecosystem science and stewardship. Ultimately, the results of this project will help us to better understand and prepare for the effects of climate change and develop scientific insights that are relevant far beyond Antarctic ecosystems. The McMurdo Dry Valleys (MDVs) make up an extreme polar desert ecosystem in the largest ice-free region of Antarctica. The organisms in this ecosystem are generally small. Bacteria, microinvertebrates, cyanobacterial mats, and phytoplankton can be found across the streams, soils, glaciers, and ice-covered lakes. These organisms have adapted to the cold and arid conditions that prevail outside of lakes for all but a brief period in the austral summer when the ecosystem is connected by liquid water. In the summer when air temperatures rise barely above freezing, soils warm and glacial meltwater flows through streams into the open moats of lakes. Most biological activity across the landscape occurs in summer. Through the winter, or polar night (6 months of darkness), glaciers, streams, and soil biota are inactive until sufficient light, heat, and liquid water return, while lake communities remain active all year. Over the past 30 years, the MDVs have been disturbed by cooling, heatwaves, floods, rising lake levels, as well as permafrost and lake ice thaw. Considering the clear ecological responses to this variation in physical drivers, and climate models predicting further warming and more precipitation, the MDV ecosystem sits at a threshold between the current extreme cold and dry conditions and an uncertain future. This project seeks to determine how important the legacy of past events and conditions versus current physical and biological interactions shape the current ecosystem. Four hypotheses will be tested, related to 1) whether the status of specific organisms are indicative ecosystem stability, 2) the relationship between legacies of past events to current ecosystem resilience (resistance to big changes), 3) carryover of materials between times of high ecosystem connectivity and activity help to maintain ecosystem stability, and 4) changes in disturbances affect how this ecosystem persists through the annual polar night (i.e., extended period of dark and cold). Technical Abstract In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world’s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education & Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical project description Museums of natural history, such as the Smithsonian National Museum of Natural History (NMNH) in Washington, D.C., are repositories for, among other things, biological specimens. Specimens stored at the NMNH were obtained over many decades and across the globe, resulting in what is currently a treasure trove of biological and chemical information. Chemical compounds (metabolites) found in the tissues of, for example, marine invertebrates, can record the organism’s response to a changing environment. This project seeks to establish a strategy for analyzing these compounds in Antarctic marine invertebrates held in the NMNH. These organisms are especially valuable for studies of their metabolites as such information will contribute to our understanding of the history of the polar environment and how organisms are able to adapt to extreme habitats. Further, studies of these rare and difficult to obtain metabolites have broad impacts in biotechnology and human health. Technical description of the project This project seeks to develop a workflow for the analysis of metabolites in archival marine invertebrate specimens held in the Smithsonian National Museum of Natural History (NMNH). Recent advances in mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, both instrumental as well as analysis platforms, enable the detection and annotation of chemical structures in these otherwise difficult to obtain metabolites. In particular, NMR strategy (Pure Shift NMR) will be implemented to increase sensitivity toward these sample-limited analytes. Further, the workflow will be applied in an analysis of storage methods used by the NMNH with the aim of understanding how best to preserve specimens for future metabolomics analyses. With an optimized workflow established, additional applications to inform our understanding of adaptation and (cryptic) speciation in the extreme habitats found in Antarctica are possible. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
1. A non-technical explanation of the project's broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these — viscous flow — is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a "crystal orientation fabric" (COF). Historically, ice flow has been modeled using an equation, termed “Glen’s law”, that describes ice-flow rate as a function of temperature and stress. Glen’s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, “superplastic” conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 µm to 1000 µm will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30°C to -10°C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Iceberg calving is a complex natural fracture process and a dominant cause of mass loss from the floating ice shelves on the margins of the Antarctic ice sheet. There is concern that rapid changes at these ice shelves can destabilize parts of the ice sheet and accelerate their contribution to sea-level rise. The goal of this project is to understand and simulate the fracture mechanics of calving and to develop physically-consistent calving schemes for ice-sheet models. This would enable more reliable estimation of Antarctic mass loss by reducing the uncertainty in projections. The research plan is integrated with an education and outreach plan that aims to (1) enhance computational modeling skills of engineering and Earth science students through a cross-college course and a high-performance computing workshop and (2) increase participation and diversity in engineering and sciences by providing interdisciplinary research opportunities to undergraduates and by deploying new cyberlearning tools to engage local K-12 students in the Metro Nashville Public Schools in computational science and engineering, and glaciology. This project aims to provide fundamental understanding of iceberg calving by advancing the frontiers in computational fracture mechanics and nonlinear continuum mechanics and translating it to glaciology. The project investigates crevasse propagation using poro-damage mechanics models for hydrofracture that are consistent with nonlinear viscous ice rheology, along with the thermodynamics of refreezing in narrow crevasses at meter length scales. It will develop a fracture-physics based scheme to better represent calving in ice-sheet models using a multiscale method. The effort will also address research questions related to calving behavior of floating ice shelves and glaciers, with the goal of enabling more reliable prediction of calving fronts in whole-Antarctic ice-sheet simulations over decadal-to-millennial time scales. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.
This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.
This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are "fingerprints" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. The project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: On frequent crossings of the Drake Passage on the US Antarctic vessel ARSV Laurence M. Gould, a range of underway measurements are taken. These data represent one of the few repeat year around shipboard measurements in the Southern Ocean. With close to two decades of data now available, the primary science objectives of this proposal are to continue to analyze the Drake Passage time series. Part 2: Some of the analyses are (1) describe and relate the seasonal and long-term ocean energy distribution to wind, buoyancy and topographic forcing and sinks, and (2) describe and relate seasonal and long-term changes in the ACC fronts, water masses and upwelling to biogeochemical and climate variability. High-resolution, near-repeat Expendable Bathythermograph (XBT) and Acoustic Doppler Current Profiler (ADCP) transect sampling in Drake Passage is thus used to study modes of variability in ocean temperature, salinity, currents and backscatter in the Antarctic Circumpolar Current (ACC) on seasonal to interannual time frames, and on space scales from current cores to eddies. This project is a continuation of the longstanding support for collecting the ADCP and other underway data on USAP vessels, such as the ASRV Laurence M Gould This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Hock/1543432 Over the last half century the Antarctic Peninsula has been among the most rapidly warming regions in the world. This has led to increased glacier melt, widespread glacier retreat, ice-shelf collapses, and glacier speed-ups. Many of these changes are driven by changing precipitation and increased melt due to warmer air temperatures. This project will use a combination of two models - a regional atmospheric model and a model of processes at the glacier surface - to simulate future changes in temperature and snowfall, and the resulting changes in glacier mass. The combination of models will be tested against the observational record (since 1979 when satellite observations became available), to verify that it can reproduce observed change, and then run to the year 2100. Results will provide better estimates of the impacts of future climate changes over the Antarctic Pensinsula and the expected glacier mass changes driven by the evolving climate. The project will use the large changes observed on the Peninsula to validate a model framework suitable for understanding the impact of these changes on the glaciers and ice shelves there, with the goal of developing optimally constrained future climate and surface mass change scenarios for the region. The framework will provide both a coherent picture of the impacts of past changes on the region's ice cover, and also the best available constraints on forcings that will determine ice mass loss from this region going forward under a standard scenario. The Weather Forecasting and Research (WRF) Model will be used over the domain of the Antarctic Peninsula and neighboring islands to quantify trends in spatio-temporal patterns of mass change with a focus on surface melt. The WRF model will be enhanced to account for the specific conditions of glacier surfaces, and the modified model will be used to simulate climate conditions and resulting surface mass budgets and melt over the period 1979-2100. Tying modeled past climate changes to the surface and satellite-based observational record will provide a foundation for interpreting projected future change. Results will be validated using available weather station observations, surface mass-balance data, and satellite-derived records of melt. The activity will foster partnerships through collaboration with colleagues in Spain, Germany and The Netherlands and will support an early-career postdoctoral researcher and two graduate students, introduce undergraduate and high-school students to original research and provide training of students through inclusion of data and results in course curriculums.
This project will investigate the change in brightness of objects known as Active Galactic Nuclei (AGN) using microwave telescopes. AGN are powered by matter falling onto supermassive black holes. The primary objective of this research is to undertake a study of AGN brightness fluctuations using light in multiple wavelengths. By studying the connections between the fluctuations at different wavelengths, we can learn what causes these fluctuations. The data produced under this project will be publicly released to enable other scientific investigations. The broader impacts of this project include the training of graduate students in the Fisk-Vanderbilt Masters-to-PhD Bridge program. In addition, the researcher will continue to work with the NAACP (ACT-SO) and First Discoveries programs as a science mentor, advisor and teacher for local pre-K and high school students and classrooms. The researcher has introduced a new process that uses repurposed Cosmic Microwave Background (CMB) data from the South Pole Telescope to produce millimeter-wavelength light curves of AGN with the goal of conducting a multi-wavelength correlation study. This study will be use the measured correlations between different wavelength emissions from AGN to better understand the origin and production of observed gamma-ray emissions. This project will fund the first large-scale effort to use CMB data for AGN monitoring and will provide a foundational observing program/strategy that will be implemented in future CMB experiments. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical Description: The age of rocks and soils at the surface of the Earth can help answer multiple questions that are important for human welfare, including: when did volcanoes erupt and are they likely to erupt again? when did glaciers advance and what do they tell us about climate? what is the frequency of hazards such as landslides, floods, and debris flows? how long does it take soils to form and is erosion of soils going to make farming unsustainable? One method that is used thousands of times every year to address these questions is called 'cosmogenic surface-exposure dating'. This method takes advantage of cosmic rays, which are powerful protons and neutrons produced by supernova that constantly bombard the Earth's atmosphere. Some cosmic rays reach Earth's surface and produce nuclear reactions that result in rare isotopes. Measuring the quantity of the rare isotopes enables the length of time that the rock or soil has been exposed to the atmosphere to be calculated. The distribution of cosmic rays around the globe depends on Earth's magnetic field, and this distribution must be accurately known if useful exposure ages are to be obtained. Currently there are two remaining theories, narrowed down from many, of how to calculate this distribution. Measurements from a site that is at both high altitude and high latitude (close to the poles) are needed to test the two theories. This study involves both field and lab research and includes a Ph.D. student and an undergraduate student. The research team will collect rocks from lava flows on an active volcano in Antarctica named Mount Erebus and measure the amounts of two rare isotopes: 36Cl and 3He. The age of eruption of the samples will be determined using a highly accurate method that does not depend on cosmic rays, called 40Ar/39Ar dating. The two cosmic-ray theories will be used to calculate the ages of the samples using the 36Cl and 3He concentrations and will then be compared to the ages calculated from the 40Ar/39Ar dating. The accurate cosmic-ray theory will be the one that gives the same ages as the 40Ar/39Ar dating. Identification of the accurate theory will enable use of the cosmogenic surface dating methods anywhere on earth. Technical Description: Nuclides produced by cosmic rays in rocks at the surface of the earth are widely used for Quaternary geochronology and geomorphic studies and their use is increasing every year. The recently completed CRONUS-Earth Project (Cosmic-Ray Produced Nuclides on Earth) has systematically evaluated the production rates and theoretical underpinnings of cosmogenic nuclides. However, the CRONUS-Earth Project was not able to discriminate between the two leading theoretical approaches: the original Lal model (St) and the new Lifton-Sato-Dunai model (LSD). Mathematical models used to scale the production of the nuclides as a function of location on the earth, elevation, and magnetic field configuration are an essential component of this dating method. The inability to distinguish between the two models was because the predicted production rates did not differ sufficiently at the location of the calibration sites. The cosmogenic-nuclide production rates that are predicted by the two models differ significantly from each other at Erebus volcano, Antarctica. Mount Erebus is therefore an excellent site for testing which production model best describes actual cosmogenic-nuclide production variations over the globe. The research team recently measured 3He and 36Cl in mineral separates extracted from Erebus lava flows. The exposure ages for each nuclide were reproducible within each flow (~2% standard deviation) and in very good agreement between the 3He and the 36Cl ages. However, the ages calculated by the St and LSD scaling methods differ by ~15-25% due to the sensitivity of the production rate to the scaling at this latitude and elevation. These results lend confidence that Erebus qualifies as a suitable high- latitude/high-elevation calibration site. The remaining component that is still lacking is accurate and reliable independent (i.e., non-cosmogenic) ages, however, published 40Ar/39Ar ages are too imprecise and typically biased to older ages due to excess argon contained in melt inclusions. The research team's new 40Ar/39Ar data show that previous problems with Erebus anorthoclase geochronology are now overcome with modern mass spectrometry and better sample preparation. This indicates a high likelihood of success for this proposal in defining an accurate global scaling model. Although encouraging, much remains to be accomplished. This project will sample lava flows over 3 km in elevation and determine their 40Ar/39Ar and exposure ages. These combined data will discriminate between the two scaling methods, resulting in a preferred scaling model for global cosmogenic geochronology. The LSD method contains two sub-methods, the 'plain' LSD scales all nuclides the same, whereas LSDn scales each nuclide individually. The project can discriminate between these models using 3He and 36Cl data from lava flows at different elevations, because the first model predicts that the production ratio for these two nuclides will be invariant with elevation and the second that there should be ~10% difference over the range of elevations to be sampled. Finally, the project will provide a local, finite-age calibration site for cosmogenic-nuclide investigations in Antarctica.
van der Veen, Cornelis; Stearns, Leigh; Paden, John
No dataset link provided
Van der Veen/1543530 The objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. To adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics.
Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph
No dataset link provided
Phytoplankton blooms throughout the world’s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University’s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford’s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford’s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford’s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial “radiator” pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship’s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical description: This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students. Technical description: The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Near the Antarctic coast, polynyas are open-water regions where extreme heat loss in winter causes seawater to become cold, salty, and dense enough to sink into the deep sea. The formation of this dense water has regional and global importance because it influences the ocean current system. Polynya processes are also tied to the amount of sea ice formed, ocean heat lost to atmosphere, and atmospheric CO2 absorbed by the Southern Ocean. Unfortunately, the ocean-atmosphere interactions that influence the deep ocean water properties are difficult to observe directly during the Antarctic winter. This project will combine field measurements and laboratory experiments to investigate whether differences in the concentration of noble gasses (helium, neon, argon, xenon, and krypton) dissolved in ocean waters can be linked to environmental conditions at the time of their formation. If so, noble gas concentrations could provide insight into the mechanisms controlling shelf and bottom-water properties, and be used to reconstruct past climate conditions. Project results will contribute to the Southern Ocean Observing System (SOOS) theme of The Future and Consequences of Carbon Uptake in the Southern Ocean. The project will also train undergraduate and graduate students in environmental monitoring, and earth and ocean sciences methods. Understanding the causal links between Antarctic coastal processes and changes in the deep ocean system requires study of winter polynya processes. The winter period of intense ocean heat loss and sea ice production impacts two important Antarctic water masses: High-Salinity Shelf Water (HSSW), and Antarctic Bottom Water (AABW), which then influence the strength of the ocean solubility pump and meridional overturning circulation. To better characterize how sea ice cover, ocean-atmosphere exchange, brine rejection, and glacial melt influence the physical properties of AABW and HSSW, this project will analyze samples and data collected from two Ross Sea polynyas during the 2017 PIPERS winter cruise. Gas concentrations will be measured in seawater samples collected by a CTD rosette, from an underwater mass-spectrometer, and from a benchtop Membrane Inlet Mass Spectrometer. Noble gas concentrations will reveal the ocean-atmosphere (dis)equilibrium that exists at the time that surface water is transformed into HSSW and AABW, and provide a fingerprint of past conditions. In addition, nitrogen (N2), oxygen (O2), argon, and CO2 concentration will be used to determine the net metabolic balance, and to evaluate the efficacy of N2 as an alternative to O2 as glacial meltwater tracer. Laboratory experiments will determine the gas partitioning ratios during sea ice formation. Findings will be synthesized with PIPERS and related projects, and so provide an integrated view of the role of the wintertime Antarctic coastal system on deep water composition. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Walker, Catherine; Zhang, Weifeng; Seroussi, Helene
No dataset link provided
Most of the mass loss from the Antarctic Ice Sheet, a major contributor to sea level rise, occurs at its margins, where ice meets the ocean. Glaciers and ice streams flow towards the coast and can go afloat over the water, forming ice shelves. Ice shelves make up almost half of the entire Antarctic coastline, and hold back the flow of inland ice in Antarctica continent; thus they are integral to the overall stability of the Antarctic Ice Sheet. Ice shelves lose mass by two main processes: iceberg calving and basal melting. Temporal and spatial fluctuations in both are driven by various processes; a major driver of ice shelf melt is the heat provided by the neighboring Southern Ocean. Ocean heat, in turn, is driven by various aspects of the ice shelf environment. One of the most significant contributors to changes in the ocean’s heat content is the presence of sea ice. This research will focus on the effects of coastal polynyas (areas of open water amidst sea ice), how they modulate the local ocean environment, and how that environment drives ice shelf basal melting. To date, the relationship between polynyas and ice shelf melt has not been characterized on an Antarctic-wide scale. Understanding the feedbacks between polynya size and duration, ocean stratification, and ice shelf melt, and the strength of those feedbacks, will improve the ability to characterize influences on the long-term stability of ice shelves, and in turn, the Antarctic Ice Sheet as a whole. A critical aspect of this study is that it will provide a framework for understanding ice shelf-ocean interaction across a diverse range of geographic settings. This, together with improvements of various models, will help interpret the impacts of future climate change on these systems, as their responses are likely quite variable and, overall, different from the large-scale response of the ice sheet. This project will also provide a broader context to better design future observational studies of specific coastal polynya and ice shelf processes. This study focuses on four main hypotheses: 1) Variations of coastal polynya extent are correlated with those of the ice shelf melt rates, and this correlation varies around Antarctica; 2) Polynya extent modulates a feedback between ice shelf melt and accretion regimes through stratification of local waters; 3) Polynya extent together with seafloor bathymetry regulate the volume of warm offshore waters that reach ice margins; and 4) The strength of the feedback between polynya and glacier ice varies with geographic setting and influences the long-term stability of the glacial system. Observational data, including ice-penetrating radar, radar and laser altimetry, and in situ hydrographic data, and derived data sets from the Southern Ocean State Estimate (SOSE) project and BedMachine Antarctica, will be used in conjunction with ocean (MIT global circulation model, MITgcm) and ice sheet (Ice sheet and Sea-level System Model, ISSM) models to reveal underlying dynamics. The joint analysis of the observational data enables an investigation of polynya, ocean, and ice shelf signals and their interplay over time across a range of settings. The results of this data analysis also provide inputs and validation data for the modeling tasks, which will allow for characterization of the feedbacks in our observations. The coupled modeling will enable us to examine the interaction between polynya circulation and ice shelves in different dynamical regimes and to understand ice and ocean feedback over time. Diagnosing and interpreting the pan-Antarctic spatial variability of the polynya-ice shelf interaction are the main objectives of this research and separates this study from other projects targeted at the interactive processes in specific regions. As such, this research focuses on seven preliminary target sites around the Antarctic coast to establish a framework for interpreting coupled ice shelf-ocean variability across a diverse range of geographic settings. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Non-technical description This is a continuation of a long-term population dynamics study (1978-present) using an intensive mark-recapture tagging of Weddell seals in Erebus Bay, Antarctica. Past work has become a global model for population studies of large animals. Results have documented strong annual variation in reproduction, abundance, and population composition. This program will add components to evaluate the demographic role of immigrant mothers, evaluate possible drivers of annual variation in overall population dynamics, assess genetic differences between immigrant and locally born mothers, and document patterns of gene flow among seal colonies in the Ross Sea region. These new aspects will focus on understanding of population structure, function, and genetics and provide key information for predicting how the seal population will respond to environmental change. The addition of genetic approaches will advance available data for multiple groups in multiple countries working on Weddell Seals. This work includes an early career scientists training program for faculty university graduate and undergraduate students and well as a defined program for data sharing. The research is paired with active education and outreach programs, social media, websites, educational resources, videos and high-profile public lecture activities. The informal science education program will expand on the project’s successful efforts at producing and delivering short-form videos that have been viewed over 1.6 million times to date. In addition, the education program will add new topics such as learning about seals using genomics and how seals respond to a changing world to a multimedia-enhanced electronic book about the project’s long-term research on Weddell seals, which will be freely available to the public early in the project. Part 2: Technical description Reliable predictions are needed for how populations of wild species, especially those at high latitudes, will respond to future environmental conditions. This study will use a strategic extension of the long-term demographic research program that has been conducted annually on the Erebus Bay population of Weddell seals since 1978 to help meet that need. Recent analyses of the study population indicate strong annual variation in reproduction, abundance, and population composition. The number of new immigrant mothers that join the population each year has recently grown such that most new mothers are now immigrants. Despite the growing number of immigrants, the demographic importance and geographic origins of immigrants are unknown. The research will (1) add new information on drivers of annual variation in immigrant numbers, (2) compare and combine information on the vital rates and demographic role of immigrant females and their offspring with that of locally born females, and (3) add genomic analyses that will quantify levels of genetic variation in and gene flow among the study population and other populations in the Ross Sea. The project will continue the long-term monitoring of the population at Erebus Bay and characterize population dynamics and the role of immigration using a combination of mark-recapture analyses, stochastic population modeling, and genomic analyses. The study will continue to provide detailed data on individual seals to other science teams, educate and mentor individuals in the next generation of ecologists, introduce two early-career, female scientists to Antarctic research, and add genomics approaches to the long-term population study of Erebus Bay Weddell seals. The research will be complemented with a robust program of training and an informal science education program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice cores provide valuable records of past climate such as atmospheric concentrations of greenhouse gasses and unmatched evidence of past abrupt climate change. Key to understanding past climate changes are the measurements of annual layers that are used to determine the age of the ice, and the timing and pace of major climate events. The current measurement limit for annual layers in ice cores is at the centimeter scale. This project aims to improve the depth resolution of measurements of the chemical impurities in ice using measurements such as electrical conductivity, hyperspectral imaging, major elements measured with laser ablation, and ice grain properties. This will advance understanding of the preservation and layering in ice cores and improve the accuracy and length of annual timescales for existing ice cores. Most of the past time preserved in an ice core is near the bed where the layers have been thinned to only a fraction of their original thickness. Interpreting highly compressed portions of ice cores is increasingly important as projects target climate records in basal ice, and old ice recovered from blue-ice areas. This project will integrate precisely co-registered electrical conductivity measurements, hyperspectral imaging, laser ablation mass spectrometer measurements of impurities, and ice physical properties to investigate sub-centimeter chemical and physical variations in polar ice. Critical to resolving thin ice layers is understanding the across-core variations that may obscure or distort the vertical layering. Analyses will be focused on samples from the WDC-06A (WAIS Divide), SPC-14 (South Pole), and GISP2 (Greenland Ice Sheet Project 2) ice cores that have well-established seasonal cycles that yielded benchmark timescales, as well a large-diameter ice core from the Allan Hills blue ice area. This work will develop state-of-the-art instrumentation and FAIR (findable, accessible, interoperable, and reusable) data handling workflow at the National Science Foundation Ice Core Facility available to the community both to enhance understanding of existing ice cores, and for use in future projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-Technical Description: Snow accumulation in the interior of the Antarctic Ice Sheet, and how much snow is redistributed by wind are important components of the climate system of Antarctica, yet remain largely unknown. Because of the extreme meteorological conditions found in Antarctica, direct observations of snowfall and related weather are few, leaving a gap in the regional climate records in the continent. Snow accumulation across the Antarctic Ice Sheet is a critical component for the assessment of the contribution of Antarctica to sea level rise, and accurate measurements are required to evaluate results from regional climate models, used to reconstruct climate trends of the recent past for the whole ice sheet. Owing to the size of Antarctica alone, small fluctuations in the total snow accumulation at the surface have a significant effect on the mass budget of the ice sheet and thus on global sea level. In this work will develop an instrument suite for deployment at the South Pole research station in Antarctica. The monitoring station will have new state-of-the-art sensors will record measurements of weather, snow accumulation, and structural conditions within the layer of packed snow. The autonomous system will be tested in the coldest and darkest winter on the planet, and will provide the first continuous measurements of snow accumulation processes in the interior of the ice sheet, which will be used to validate atmospheric and regional climate models. Technical Description: The overarching goal of the proposed work is to improve our understanding of the spatiotemporal variability in ice-sheet surface mass balance and densification rates within the layer of firn, a layer roughly 100 m thick consisting of the buried and compacted snow that has yet to densify into solid ice. For this, we will A) design and install a cost-efficient, reliable, and easily deployable surface mass balance and firn monitoring system for Antarctica; B) adapt the system to operate autonomously for long periods of time under the harshest meteorological conditions; C) use observations for evaluation of surface mass balance simulated by atmospheric reanalyzes and regional climate model; and D) measure the surface mass balance, surface density, and firn compaction rates to derive ice sheet surface elevation change in areas with low ice dynamics. The set up of the monitoring station is unique in that it is able to monitor separately height change due to surface mass balance variability and absolute surface mass balance, the latter in units of water equivalence, and differentiation of the two is crucial for understanding the role of surface processes in ice sheet mass balance. An installed sonic ranger will provide hourly measurements of surface height change that is due to snow accumulation. Surface height change alone is not sufficient to evaluate atmospheric models of surface mass balance, which is measured in in units of mass; a key variable missing is density. To overcome this, the system will be equipped with a SnowFox sensor that is able to capture the variations in surface mass balance in terms of mass through time. Combining the height change with mass change will allow us to determine the density of the material as well, which is very important for conversion of observed height changes due to surface processes into mass changes. Therefore, we aim to better evaluate the short-term variability in surface height and mass fluctuations due to surface mass balance to improve our understanding of the total mass change and to evaluate atmospheric models, which are typically used for ice sheet-wide mass balance studies.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical abstract Presently, Antarctica’s glaciers are melting as Earth’s atmosphere and the Southern Ocean warm. Not much is known about how Antarctica’s ice sheets might respond to ongoing and future warming, but such knowledge is important because Antarctica’s ice sheets might raise global sea levels significantly with continued melting. Over time, mud accumulates on the sea floor around Antarctica that is composed of the skeletons and debris of microscopic marine organisms and sediment from the adjacent continent. As this mud is deposited, it creates a record of past environmental and ecological changes, including ocean depth, glacier advance and retreat, ocean temperature, ocean circulation, marine ecosystems, ocean chemistry, and continental weathering. Scientists interested in understanding how Antarctica’s glaciers and ice sheets might respond to ongoing warming can use a variety of physical, biological, and chemical analyses of these mud archives to determine how long ago the mud was deposited and how the ice sheets, oceans, and marine ecosystems responded during intervals in the past when Earth’s climate was warmer. In this project, researchers from the University of South Florida, University of Massachusetts, and Northern Illinois University will reconstruct the depth, ocean temperature, weathering and nutrient input, and marine ecosystems in the central Ross Sea from ~17 to 13 million years ago, when the warm Miocene Climate Optimum transitioned to a cooler interval with more extensive ice sheets. Record will be generated from new sediments recovered during the International Ocean Discovery Program (IODP) Expedition 374 and legacy sequences recovered in the 1970’s during the Deep Sea Drilling Program. Results will be integrated into ice sheet and climate models to improve the accuracy of predictions. The research provides experience for three graduate students and seven undergraduate students via a multi-institutional REU program focused on increasing diversity in Antarctic Earth Sciences. Technical Abstract Deep-sea sediments reveal that the Miocene Climatic Optimum (MCO) was the warmest climate interval of the last ~20 Ma, was associated with global carbon cycle changes and ice growth, and immediately preceded the Middle Miocene Climate Transition (MMCT; ~14 Ma), one of three major intervals of Antarctic ice expansion and global cooling. Ice-proximal studies are required to assess: where and when ice grew, ice sheet extent, continental shelf geometry, high-latitude heat and moisture supply, oceanic and/or atmospheric temperature influence on ice dynamics, regional sea ice extent, meltwater input, and regions of bottom water formation. Existing studies indicate that ice expanded beyond the Transantarctic Mountains and onto the prograding Ross Sea continental shelf multiple times between ~17 and 13.5 Ma. However, these records are either too ice-proximal/terrestrial to adequately assess ocean-ice interactions or under-studied. To address this data gap, this work will: 1) generate micropaleontologic and geochemical records of oceanic and atmospheric temperature, water depth, ocean circulation, and paleoproductivity from existing Ross Sea marine sedimentary sequences, and 2) use these proxy records to test the hypothesis that dynamic glacial expansion in the Ross Sea sector during the MCO was driven by heat and moisture transport to the high latitudes during an interval of enhanced climate sensitivity. Downcore geochemical and micropaleontologic studies will focus on an expanded (120 m/my) early to middle Miocene (~17-16 Ma) diatom-bearing/rich mudstone/diatomite unit from IODP Site U1521, drilled on the Ross Sea continental shelf. A hiatus (~16-14.6 Ma) suggests ice expansion during the MCO, followed by diamictite to mudstone unit indicative of slight retreat (14.6 -14 Ma) immediately preceding the MMCT. Data from Site U1521 will be integrated with foraminiferal geochemical and micropaleontologic data from DSDP Leg 28 (1972/73) and RISP J-9 (1978-79) to develop a MCO to late Miocene regional view of ocean-ice sheet interactions using legacy core material previously processed for foraminifera. This integrated record will: 1) document the timing and extent of glacial advances and retreats across the prograding Ross Sea shelf during the middle and late Miocene, 2) provide orbital-scale paleotemperature reconstructions (TEX86, Mg/Ca, δ18O, MBT/CBT) to establish atmosphere-ocean-ice interactions during an extreme high-latitude warm interval, and 3) provide orbital-scale nutrient/paleoproductivity, ocean circulation, and paleoenvironmental data required to assess climate feedbacks associated with Miocene Antarctic ice sheet and global climate system development. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Freshwater discharges from melting high-latitude continental ice glacial reserves strongly control salt budgets, circulation and associated ocean water mass formation arising from polar ice shelves. These are different in nature than freshwater inputs associated with riverine coastal inputs. The PI proposes an observational deployment to measure a specific, previously-identified example of a coastal freshwater-driven current, the Antarctic Peninsula Coastal Current (APCC). The research component of this CAREER project aims to improve understanding of the dynamics of freshwater discharge around the Antarctic continent. Associated research questions pertain to the i) controls on the cross- and along-shelf spreading of fresh, buoyant coastal currents, ii) the role of distributed coastal freshwater sources (as opposed to 'point' source river outflow sources typical of lower latitudes), and iii) the contribution of these coastal currents to water mass transformation and heat transfer on the continental shelf. An educational CAREER program component leverages a series of field experiences and research outputs including data, model outputs, and theory, to bring polar science to the classroom and the general public, as well as training a new polar scientist. This combined strategy will allow the investigator to lay the foundation for a successful academic career as a researcher and teacher at the University of Delaware. The project will also provide the opportunity to train a PhD student. Informal outreach efforts will include giving public lectures at University of Deleware's sponsored events, including Coast Day, a summer event that attracts 8000-10000 people, and remote lectures from the field using an existing outreach network. This proposal requires fieldwork in the Antarctic. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children’s book, “Plankton do the Strangest Things”, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms. This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years’ worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Climate change is changing the number of sea-ice free days in coastal polar environments, which is impacting Antarctic communities. This study will evaluate the change in macroalgae (seaweed) communities to increased light availability in order to predict if macroalgae will be able to spread to newly ice-free locations faster than invertebrates (e.g., sponges, bryozoans, tunicates, and polychaetes) in shallow underwater rocky habitats. Study sites will include multiple locations in McMurdo Sound, Ross Sea, Antarctica. This study will establish patterns in plant properties, genetic diversity and reproductive characteristics of two species of seaweeds, Phyllophora antarctica and Iridaea cordata in relation to depth and light. Long-term changes will be assesed by comparing to results from a survey in 1980. This will be the first study in the region to estimate the potential effects of climate, in particular reductions in annual sea ice cover and resulting increase in light intensity and duration, on shifts in macroalgal communities in McMurdo Sound. Three-dimensional photogrammetry will also be used to evaluate benthic community structure on the newly discovered offshore Dellbridge Seamount. Visualization from the video footage will be shared with web-based interactive applications to engage and educate the public in polar ecology and factors causing changes in marine community ecosystem structure in this important region. This project is evaluating macroalgae biogeography in Antarctic coastal waters near McMurdo Sound, a relatively understudied region that is experiencing large changes in fast sea ice coverage. The population ecology and genetic diversity of nearshore shallow and deeper offshore benthic macroalgal communities of Phyllophora antarctica and Iridaea cordata will be assessed for percentage cover, biomass, blade length, and reproductive characteristics at seven locations: Cape Royds, Cape Evans, Little Razorback Islands, Turtle Rock, Arrival Heights, Granite Harbor, and Dellbridge Seamount in McMurdo Sound, Antarctica. The team is also assessing differential reproductive successes at different depths and comparing results to populations surveyed in 1980. The genetic diversity of the two species is being estimated using a combination of whole genome sequencing and species-specific microsatellite genetic markers. Samples from this study will be compared to samples collected from other regions in Antarctica such as the South Shetland Islands and Antarctic Peninsula. In addition, a macroalgal assemblage and 3D models of the community structure will be generated using photogrammetry from the newly discovered Dellbridge Seamount that is located 2 km offshore in McMurdo Sound. With the addition of photogrammetry and 3D visualization to this research, web-based applications will be used to engage and educate the public in subtidal polar ecology, population genetics, and the importance of Antarctic science to their lives. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences. This project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. As a part of this work, two graduate students will receive interdisciplinary training and each year two undergraduate students will be trained in experimental fluid mechanics to assist in this work and develop their own research projects. This project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Weddell Gyre is one of the major components of the Southern Ocean circulation system, linking heat and carbon fluxes in the Antarctic Circumpolar Current to the continental margins. Water masses entering the Weddell Gyre are modified as they move in a great circular route around the gyre margin and change through processes involving air-sea-cryosphere interactions as well as through ocean eddies that mix properties across the gyre boundaries. Some of the denser water masses exit the gyre through pathways along the northern boundary, and ultimately ventilate the global deep ocean as Antarctic Bottom Water. While in-situ and satellite observations, as well as computer modeling efforts, provide estimates of the large-scale average flow within the gyre, details of the smaller-scale, or "mesoscale" eddy flow remain elusive. The proposed research will quantify mixing due to mesoscale eddies within the Weddell Gyre, as well as the transport of incoming deep water from the northeast, thought to be a result of transient eddies. Since the Weddell Gyre produces source water for about 40% of Antarctic Bottom Water formation, understanding the dynamics in this region helps to identify causes of documented changes in global bottom waters. This in turn, will give insight into how climate change is affecting global oceans, through modification of dense polar waters and Antarctic Bottom Water characteristics. This project aims to track 153 RAFOS-enabled Argo floats in the ice-covered regions of the Weddell Gyre. The resultant tracks along with all available Argo and earlier float data will be used to calculate Eulerian and Lagrangian means and eddy statistics for the Weddell Gyre. The study will link RAFOS tracks with Argo profiles under ice, allowing one to characterize the importance of eddies in water column modification at critical ice-edge boundaries and leads. With RAFOS tracks near the northeastern limit of the gyre, the project will investigate the eddy-driven processes of incoming Circumpolar Deep Water, to understand better the mechanisms and volume fluxes involved. Previous work shows that a large fraction of the mean circulation in the southern and western limits of the gyre, where it contacts the Antarctic continent, occurs in a narrow boundary layer above the slope. The research here will integrate this flow structure into a complete interior and boundary layer mean circulation synthesis. The findings and products from the proposed work will improve the positioning of Argo profiles in the polar regions, which would allow for more accurate climatological maps and derived quantities. Estimates of meso-scale mixing may serve as a foundation for the development of new parameterization schemes employed in climate models, as well as local and global ocean circulation models in polar regions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project seeks to make detailed measurements of the oxygen content of the surface ocean along the Western Antarctic Peninsula. Detailed maps of changes in net oxygen content will be combined with measurements of the surface water chemistry and phytoplankton distributions. The project will determine the extent to which on-shore or offshore phytoplankton blooms along the peninsula are likely to lead to different amounts of carbon being exported to the deeper ocean. The project team members will participate in the development of new learning tools at the Museum of Life and Science. They will also teach secondary school students about aquatic biogeochemistry and climate, drawing directly from the active science supported by this grant. The project will analyze oxygen in relation to argon that will allow determination of the physical and biological contributions to surface ocean oxygen dynamics. These assessments will be combined with spatial and temporal distributions of nutrients (iron and macronutrients) and irradiances. This will allow the investigators to unravel the complex interplay between ice dynamics, iron and physical mixing dynamics as they relate to Net Community Production (NCP) in the region. NCP measurements will be normalized to Particulate Organic Carbon (POC) and be used to help identify area of "High Biomass and Low NCP" and those with "Low Biomass and High NCP" as a function of microbial plankton community composition. The team will use machine learning methods- including decision tree assemblages and genetic programming- to identify plankton groups key to facilitating biological carbon fluxes. Decomposing the oxygen signal along the West Antarctic Peninsula will also help elucidate biotic and abiotic drivers of the O2 saturation to further contextualize the growing inventory of oxygen measurements (e.g. by Argo floats) throughout the global oceans.
This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth's climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area.
Correlating ecosystem responses to past climate forcing is highly dependent on the use of reliable techniques for establishing the age of events (dating techniques). In Antarctic dry regions (land areas without glaciers), carbon-14 dating has been used to assess the ages of organic deposits left behind by ancient lakes. However, the reliability of the ages is debatable because of possible contamination with "old carbon" from the surrounding landscape. The proposed research will attempt to establish two alternate dating techniques, in situ carbon-14 cosmogenic radionuclide exposure dating and optically stimulated luminescence (OSL), as reliable alternate dating methods for lake history in Antarctic dry areas that are not contaminated by the old carbon. The end goal will be to increase scientific understanding of lake level fluctuation in the lakes of Taylor Valley, Antarctica so that inference about past climate, glacier, and ecosystem response can be inferred. The results of this study will provide a coarse-scale absolute chronology for lake level history in Taylor Valley, demonstrate that exposure dating and OSL are effective means to understand the physical dynamics of ancient water bodies, and increase the current understanding of polar lacustrine and ice sheet responses to past and present climatic changes. These chronologies will allow polar lake level fluctuations to be correlated with past changes in global and regional climate, providing information critical for understanding and modeling the physical responses of these environments to modern change. This research supports a PhD student; the student will highlight this work with grade school classes in the United States. This research aims to establish in situ carbon-14 exposure dating and OSL as reliable alternate (to carbon-14 of organic lake deposits) geochronometers that can be used to settle the long-disputed lacustrine history and chronology of Taylor Valley, Antarctica and elsewhere. Improved lake level history will have significant impacts for the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) site as the legacy of fluctuating lake levels of the past affects the distribution of organic matter and nutrients, and impacts biological connectivity valley-wide. This work will provide insight into the carbon reservoir of large glacial lakes in the late Holocene and have implications for previously reported radiocarbon chronologies. OSL samples will be analyzed in the Desert Research Institute Luminescence Laboratory in Reno, NV. For the in situ carbon-14 work, rock samples extracted from boulders and bedrock surfaces will be prepared at Tulane University. The prepared in situ carbon-14 samples will be analyzed at the National Ocean Sciences Accelerator Mass Spectrometry laboratory in Woods Hole, MA. The two datasets will be combined to produce a reliable, coarse scale chronology for late Quaternary lake level fluctuations in Taylor Valley. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The McMurdo Dry Valleys are the largest ice-free region in Antarctica and home to a seasonally active hydrologic system, with streams and saline lakes. Streams are fed by summer meltwater from local glaciers and snowbanks. Therefore, streamflow is tied to summer climate conditions such as air temperatures, ground temperatures, winds, and incoming solar radiation. Based on 50 years of monitoring, summer stream activity has been observed to change, and it likely varied during the geologic past in response to regional climate change and fluctuating glaciers. Thus, deposits from these streams can address questions about past climate, meltwater, and lake level changes in this region. How did meltwater streamflow respond to past climate change? How did streamflow vary during periods of glacial advance and retreat? At what times did large lakes fill many of the valleys and what was their extent? The researchers plan to acquire a record of stream activity for the Dry Valleys that will span the three largest valleys and a time period of about 100,000 years. This record will come from a series of active and ancient alluvial fans that were deposited by streams as they flowed from valley sidewalls onto valley floors. The study will provide a long-term context with which to assess recent observed changes to stream activity and lake levels. The research will be led by two female mid-career investigators and contribute significantly to student research opportunities and education. The research will contribute to graduate and undergraduate education by including students in both field and laboratory research, as well as incorporating data and results into the classroom. The research will be disseminated to K-12 and non-scientific communities through outreach that includes professional development training for K-12 teachers in eastern Massachusetts, development of hands-on activities, visits to K-12 classrooms, and STEM education and literacy activities in North Carolina. The PIs propose to constrain rates of fluvial deposition and periods of increased fluvial activity in the McMurdo Dry Valleys during the Holocene and late Pleistocene. During 50 years of hydrologic monitoring in the Dry Valleys, scientists have observed that streams exhibit significant response to summer conditions. Previous studies of glacial and lacustrine deposits indicate regional glacier advance in the Dry Valleys during recent interglacial periods and high lake levels during and after the Last Glacial Maximum (LGM), with potentially significant low and high stands during the Holocene. However, the geologic record of meltwater activity is poorly constrained. The PIs seek to develop the first spatially-extensive record of stream deposition in the Dry Valleys by analyzing and dating alluvial fans. Given that alluvial fans are deposited by summer meltwater streams in a relatively stable tectonic setting, this record will serve as a proxy of regional summer climate conditions. Meltwater streams are an important component of the regional hydrologic system, connecting glaciers to lakes and affecting ecosystems and soils. A record of fluvial deposition is key to understanding the relationship between past climate change and regional hydrology. The proposed research will include remote- and field-based mapping of alluvial fans, stream channels, and meltwater sources as well as modeling potential incoming solar radiation to the fans and moisture sources during the austral summer. In the field, the PIs will document stratigraphy, collect near-surface sediments from 25 fans across four valleys (Taylor, Pearse, Wright, and Victoria), and collect 2- to 3-m vertical cores of ice-cemented sediments from three alluvial fan complexes. The PIs will then conduct depositional dating of fluvial sands via optically stimulated luminescence, and analyze mineralogy and bulk major element chemistry with X-ray powder diffraction and X-ray fluorescence. From these analyses, the PIs propose to (1) determine the timing of local- to regional-scale periods of high fluvial deposition, (2) calculate depositional rates, and (3) constrain depositional environments and sediment provenance. Given that many of the alluvial fans occur below the hypothesized maximum extents of glacially-dammed lakes in Wright and Victoria valleys, detailed stratigraphy, sediment provenance, and OSL dating of these fans could shed light on ongoing debates regarding the timing and extent of LGM and post-LGM lakes. The work will support a postdoctoral researcher, a PhD student, and many undergraduate and master’s students in cross-disciplinary research that spans stratigraphy, geochemistry, paleoclimatology and physics. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Welten/1644128 This award supports a project to use existing samples from the West Antarctic Ice Sheet (WAIS) Divide ice core to align its timescale with that of the Greenland ice cores using common chronological markers. The upper 2850 m of the WAIS Divide core, which was drilled to a depth of 3405 m, has been dated with high precision. The timescale of the remaining (bottom) 550 m of the core has larger uncertainties, limiting our understanding of the timing of abrupt climate events in Antarctica relative to those in Greenland during the last ice age. The intellectual merit of this project is to further constrain the relative timing of these abrupt climate events in Greenland and Antarctica to obtain crucial insight into the underlying mechanism. The main objective of this project is to improve the current timescale of the WAIS Divide core from 31,000 to 65,000 years ago by synchronizing this core with the Greenland ice cores using common signals in Beryllium-10, a radioactive isotope of Be that is produced in the atmosphere by cosmic rays and is deposited onto the snow within 1-2 years of its production. The 10Be flux is largely independent of climate signals since its production varies with solar activity and the geomagnetic field. This project will further strengthen collaborations between the PI's in Berkeley and Purdue with ice core researchers in the US and Europe, involve undergraduate students in many aspects of its research, and continue outreach to under-represented students. The direct ice-to-ice synchronization of the WAIS Divide ice core with the Greenland Ice Core Chronology (GICC05) using cosmogenic 10Be is expected to reduce the uncertainty in the relative timing of more than 20 abrupt climate events in Greenland and Antarctica to a few decades. To achieve this goal the investigators will obtain a continuous high-resolution record of 10Be in the WAIS Divide core from 2850 to 3390 m depth, and compare the obtained 10Be record with existing 10Be records of the Greenland ice cores, including GISP2 and NGRIP. The scientists will separate 10Be from ~1000 ice samples of the WAIS Divide core and measure the 10Be concentration in each sample using accelerator mass spectrometry (AMS). Broader impacts of the 10Be measurements are that they will also provide information on the Laschamp event, a ~2000 year long period of low geomagnetic field strength around 41,000 years ago, and improve the calibration of the 14C dating method for organic samples older than 30,000 years. The broader impacts of the project include (1) the involvement and training of undergraduate students in ice core research and accelerator mass spectrometry measurements, (2) the incorporation of ice core and climate research into ongoing outreach programs at Purdue University and Berkeley SSL, (3) better understanding of abrupt climate changes in the past will improve our ability to predict future climate change, (4) evaluating the possible threat of a future geomagnetic excursion in the next few hundred years. This award does not require support in Antarctica.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Climate change is promoting increased melting in Greenland and Antarctica, contributing to the global sea level rise. Understanding what drives the increase and the amount of meltwater from the ice sheets is paramount to improve our skills to project future sea level rise and associated consequences. Melting in Antarctica mostly occurs along ice shelves (tongues of ice floating in the water). They do not contribute directly to sea level when they melt but their disappearance allows the glaciers at the top to flow faster towards the ocean, increasing the contribution of Antarctica to sea level rise. Satellite data can only offer a partial view of what is happening, either because of limited coverage or because of the presence of clouds, which often obstruct the view in this part of the world. Models, on the other hand, can provide estimates but the spatial detail they can provide is still limited by many factors. This project will use artificial intelligence to overcome these problems and to merge satellite data and model outputs to generate daily maps of surface melting with unprecedented detail. These techniques are similar to those used in cell phones to sharpen images or to create landscapes that look “real” but are only existing in the “computer world,” but they have never been applied to melting in Antarctica for improving estimates of sea level rise. Meltwater in Antarctica has been shown to impact ice shelf stability through the fracturing and flexural processes. Image scarcity has often forced the community to use general climate and regional climate models to explore hydrological features. Notwithstanding models having been considerably refined over the past years, they still require improvements in capturing the processes driving the energy balance and, most importantly, the feedback among the drivers and the energy balance terms that drive the hydrological processes. Moreover, spatial resolution is still too coarse to properly capture hydrological processes, especially over ice shelves. Machine learning (ML) tools can help in this regard, especially when it is computationally infeasible to run physics-based models at desired resolutions in space and time, like in the case of ice shelf surface hydrology. This project will train Generative Adversarial Networks (GANs) with the outputs of a regional climate model and remote sensing data to generate unprecedented, high-resolution (100 m) maps of surface melting. Beside improving the spatial resolution, and hence providing a long-needed and crucial dataset to the polar community, the tool here proposed will be able to provide satellite-like maps on a daily basis, hence addressing also those issues related to the lack of spatial coverage. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctic Ice Sheet stability remains a large uncertainty in predicting future sea level. Presently, the greatest ice mass loss is observed in locations where relatively warm water comes into contact with glaciers and ice shelves, melting them from below. This has led researchers to hypothesize that the interactions that occur between the ocean and the ice are important for determining ice sheet stability and that increased warm water presence will accelerate Antarctic ice mass loss and lead to greater sea level rise in the coming century. To better predict future ice sheet behavior, it is critical to understand past ice-ocean interactions around Antarctica, especially during warm periods and at times when Earth’s climate was undergoing major changes. Past Antarctic ice mass and environmental conditions like ocean temperature can be reconstructed using sediments, which capture an environmental record as they accumulate on the ocean floor. By looking at sediment composition and by analyzing geochemical signatures within the sediment, it is possible to piece together a record of climate change on hundred- to million-year timescales. This project will reconstruct upper ocean temperatures and Antarctic ice retreat/advance cycles from 2.6 to 0.7 million years ago, which encompasses the Mid-Pleistocene Transition, a time in Earth’s history that marks the shift from 41-thousand year glacial cycles to 100-thousand year glacial cycles. A record will be generated from existing sediment cores collected from the Scotia Sea during International Ocean Discovery Program Expedition 382. The Mid-Pleistocene Transition (MPT; ~1.25–0.7 Ma) marks the shift from glacial-interglacial cycles paced by obliquity (~41 kyr cycles) to those paced by eccentricity (~100-kyr cycles). This transition occurred despite little variation in Earth’s orbital parameters, suggesting a role for internal climate feedbacks. The MPT was accompanied by decreasing atmospheric pCO2, increasing deep ocean carbon storage, and changes in deep water formation and distribution, all of which are linked to Antarctic margin atmosphere-ice-ocean interactions. However, Pleistocene records that document such interactions are rarely preserved on the shelf due to repeated Antarctic Ice Sheet (AIS) advance; instead, they are preserved in deep Southern Ocean basins. This project takes advantage of the excellent preservation and recovery of continuous Pleistocene sediment sequences collected from the Scotia Sea during International Ocean Discovery Program Expedition 382 to test the following hypotheses: 1) Southern Ocean upper ocean temperatures vary on orbital timescales during the early to middle Pleistocene (2.6–0.7 Ma), and 2) Southern Ocean temperatures co-vary with AIS advance/retreat cycles. Paleotemperatures will be reconstructed using the TetraEther indeX of 86 carbons (TEX86), a proxy that utilizes marine archaeal biomarkers. The Scotia Sea TEX86-based paleotemperature record will be compared to records of AIS variability, including ice rafted debris. Expedition 382 records will be compared to orbitally paced climatic time series and the benthic oxygen isotope record of global ice volume and bottom water temperature to determine if a correlation exists between upper ocean temperature, AIS retreat/advance, and orbital climate forcing. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Icebergs influence climate by controlling how freshwater from ice sheets is distributed into the ocean, where roughly half of ice sheet mass loss is attributed to iceberg calving in the current climate. The freshwater deposited by icebergs as they drift and melt can affect ocean circulation, sea-ice formation, and biological primary productivity. Furthermore, calving of icebergs from ice shelves, the floating extensions of ice sheets, can influence ice sheet evolution and sea-level rise by reducing the resistive stresses provided by ice shelves on the seaward flow of upstream grounded ice. The majority of mass calved from ice shelves occurs in the form of tabular icebergs, which are typically hundreds of meters thick and on the order of tens to hundreds of kilometers in length and width. Tabular calving occurs when full-thickness ice shelf fractures known as rifts propagate to the edges of the ice shelf. These calving events are infrequent, often with decades between events on an individual ice shelf. Changes in tabular calving behavior, i.e., the size and frequency of calving events, can strongly influence climate and ice sheet evolution. However, tabular calving behavior, and how it responds to changes in climate, is neither well understood nor accurately represented in climate models. In this project, a tabular calving parameterization for climate models will be developed. The parameterization will be derived according to data generated from a series of realistic and idealized century-scale tabular calving simulations, which will be performed with a novel ice flow and damage framework that can be applied at the scale of individual ice sheet-ice shelf systems: the CD-MPM-SSA (Continuum Damage Material Point Method for Shelfy-Stream Approximation). During these simulations, the geometry of the ice shelf, mechanical/rheological properties of the ice, and climate forcings such as ocean temperature will be varied to determine the rifting and calving response. The calving parameterization derived from these experiments will be implemented in a Geophysical Fluid Dynamics Laboratory (GFDL) climate model, where it will be coupled with a bonded-particle iceberg model. Then, experiments will be run to study the feedback between changes in iceberg calving behavior and climate. Success of this project will improve our understanding and representation of the ice mass budget, ice sheet evolution, and ocean freshwater fluxes, and will improve projections of climate change and sea-level rise. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet. This project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Current ice mass loss in Antarctica is largely driven by changes at glacier grounding lines, where inland ice transitions from being grounded to floating in the ocean. The rate and pattern of glacier retreat in these circumstances is thought to be controlled by the terrain under the ice. This project incorporates evidence of past ice-retreat events and other field data, such as grounding-line positions and dates, subglacial topography, and meltwater features, into numerical models of ice flow to investigate the influence that grounding-line processes and subglacial topography have on glacier retreat rates over the past 15,000 years. Recent observations suggest that Antarctic ice mass loss is largely driven by perturbations at or near the grounding line. However, the lack of information on subglacial and grounding-line environments causes large uncertainties in projections of mass loss and sea-level rise. This project will integrate geologic data from the deglaciated continental shelf into numerical models of varying complexity from one to three-dimensions. Rarely do numerical ice-sheet models of Antarctica have multiple constraints on dynamics over the past ~15,000 years (a period that spans the deglaciation of the Antarctic continental shelf since the Last Glacial Maximum). The geologic constraints include grounding-line positions, deglacial chronologies, and information on grounding line-ice shelf processes. The models will be used to investigate necessary perturbations and controls that meet the geological constraints. The multidisciplinary approach of merging geologic reconstructions of paleo-ice behavior with numerical models of ice response will allow the research team to test understanding of subglacial controls on grounding-line dynamics and assess the stability of modern grounding lines. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Ice shelves play a critical role in restricting the seaward flow of grounded glacier ice by providing buttressing at their bases and sides. Processes that affect the long-term stability of ice shelves can therefore influence the future contribution of the Antarctic Ice Sheet to global sea-level rise. The Ross Ice Shelf is the largest ice shelf on Earth, and it buttresses massive areas of West and East Antarctica. Previous studies of modern ice velocity indicated that the Ross Ice Shelf’s mass loss is roughly balanced by its mass gain. However, more recent work that extends further back in time reveals the ice shelf is likely not in steady state, with possible long-term thinning since the late 1990s. Consequently, to accurately interpret modern-day ice-shelf changes, long-term observations are critical to evaluate how these recent variations fit into the historical context of ice-shelf variability. This project will examine more than four decades of historical and modern airborne radar sounding observations of the Ross Ice Shelf (spanning 1971 to 2017) to investigate ice-shelf changes on decadal timescales. The team will process, calibrate, and analyze radar data collected during 1971-79 field campaigns and compare them against modern observations collected between 2011-17. They will estimate basal melt rates by examining changes in ice-shelf thickness, and will determine other important metrics for melt, including ice-shelf roughness, englacial temperature, and marine-ice formation. The project will support the education of a Ph.D. student at each of the three participating institutions. In addition, the project will support the training of undergraduate and high-school researchers in radioglaciology and Antarctic sciences. The project will test the hypothesis that, over decadal timescales, the basal melt rates beneath the Ross Ice Shelf have been low, particularly under shallow ice drafts, leading to overall thickening and increased buttressing potential. The team aims to provide a direct estimate of basal melt rates based on changes in ice-shelf thickness that occurred between 1971 and 2017. This project will extend similar work completed at Thwaites Glacier and improve the calibration methods on the vertical scaling for fast-time and depth conversion. The work will also leverage the dense modern surveys to improve the geolocation of radar film collected on earlier field campaigns to produce a more precise comparison of local shelf thickness with the modern data. In addition, the team will conduct englacial attenuation analysis to calculate englacial temperature to infer the trends in local basal melting. They will also examine the radiometric and scatterometric character of bed echoes at the ice-ocean boundary to characterize changes in ice-shelf basal roughness, marine-ice formation related to local basal freezing, and structural damage from fracture processes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nontechnical Abstract Mount Erebus volcano on Ross Island, Antarctica, is the southernmost active volcano on the planet. It provides a natural laboratory to study a volcanic system that has been in a continuous state of activity with a persistent lava lake over at least the last 40 years. Worldwide only four other volcanoes with such long-lived lava lakes exist: Erta Ale, Ethiopia; Kilauea, Hawaii; Nyiragongo, Congo; and Ambrym, Vanuatu. These volcanoes are a rare anomaly that provide a window into the underlying magmatic system and behavior. Erebus is of particular interest as it cycles through phases of very explosive activity every 20 thousand years. This project will investigate interactions between the magmatic system, the rift it is located in, and the impact of the gravitational load the volcano imposes on the underlying crust and its own magmatic system. Possible interactions between these factors may explain the changes in activity. The project will analyze geophysical data that have been collected at Erebus over at least the last two decades. The results of this work will be available to the public and scientific community and inform geodynamic models in this region. The project funds an early-career scientist and a graduate student at New Mexico Tech and contributes to the development of the next generation of scientists. Technical Abstract The proposed work targets scientific questions recently formulated by the community during the 2016 NSF-sponsored Scientific Drivers and Future of Mount Erebus Volcano Observatory workshop. The location and geometry of the magmatic plumbing from vent to lower crust system remain poorly constrained, particularly below 1 km depth. The style and causes for changes in volcanic and magmatic activity over the short term (minutes to hours) and on the decadal scale remains enigmatic. Two decades of campaign and continuous GPS data on Ross Island will inform about the longer term dynamics of both, Ross Island growing within the Terror Rift, and Erebus? deeper magmatic system. This project will organize and analyze all existing GPS data for Ross Island, and interpret any anomalies in the resulting time series. These activities require organization, consistent processing and interpretation/modeling of the existing ~20 years of GPS data, which include campaign, continuous, and high-rate GPS observations. We will generate these position time series in a consistent local reference frame and make the results, including models of transient deformation available to the community. Volcanic, tectonic and isostatic adjustment related deformation will be modeled to place Erebus in a broad volcano-tectonic framework of West Antarctica. During the data analysis phase, the utility of existing GPS data for reflection studies of snow and sea-level dynamics will also be evaluated.
Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth's climate history that represents a plausible geologic analogue to future anthropogenic climate change. The results demonstrate a smaller glacial-interglacial variability of climate and greenhouse gases, and a persistent linkage between Antarctic climate and atmospheric carbon dioxide, between 1 and 2 million years ago. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change. Earth has been cooling, and ice sheets expanding, over the past ~52 million years. Superimposed on this cooling are periodic changes in Earth's climate system driven by variations in the eccentricity, precession, and obliquity of Earth's orbit around the Sun. Climate reconstructions based on measurements of oxygen isotopes in foraminiferal calcite indicate that, from ~2.8 to 1.2 million years before present (Ma), Earth's climate system oscillated between glacial and interglacial states every ~40,000 years (the "40k world"). Between 1.2-0.8 Ma and continuing to the present, the period of glacial cycles increased in amplitude and lengthened to ~100,000 years (the "100k world"). Ice cores preserve ancient air that allows direct reconstructions of atmospheric carbon dioxide and methane. They also archive proxy records of regional climate, mean ocean temperature, global oxygen cycling, and the aridity of nearby continents. Studies of stratigraphically continuous ice cores, extending to 800,000 years before present, have demonstrated that atmospheric carbon dioxide is strongly linked to climate, and it is of great interest to extend the ice-core record into the 40k world. Recent discoveries of well-preserved ice dating from 1.0 to 2.7 Ma from ice cores drilled in the Allan Hills Blue Ice Area (BIA), Antarctica, demonstrate the potential to retrieve stratigraphically discontinuous old ice at shallow depths (<200 meters). This project will continue this work by retrieving new large-volume ice cores and measuring paleoclimate properties in both new and existing ice from the Allan Hills BIA. The experimental objectives are to more fully characterize fundamental properties of the climate system and the carbon cycle during the 40k world. Project results will have implications for Pleistocene climate change, and will provide new constraints on the processes that regulate atmospheric carbon dioxide, methane, and oxygen on geologic timescales. Given a demonstrated age of the ice at the Allan Hills BIA of at least 2 million years, the team will drill additional cores to prospect for ice that predates the initiation of Northern Hemisphere glaciation at the Plio-Pleistocene transition (~2.8 Ma). This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The West Antarctic Ice Sheet is the most vulnerable polar ice mass to warming and already a major contributor to global mean sea level rise. Its fate in the light of prolonged warming is a topic of major uncertainty. Accelerated sea level rise from ice mass loss in the polar regions is a major concern as a cause of increased coastal flooding affecting millions of people. This project will disclose a unique geological archive buried beneath the seafloor off the Amundsen Sea, Antarctica, which will reveal how the West Antarctic Ice Sheet behaved in a warmer climate in the past. The data and insights can be used to inform ice-sheet and ocean modeling used in coastal policy development. The project will also support the development of a competitive U.S. STEM workforce. Online class exercises for introductory geology classes will provide a gateway for qualified students into undergraduate research programs and this project will enhance the participation of women in science by funding the education of current female Ph.D. students. The project targets the long-term variability of the West Antarctic Ice Sheet over several glacial-interglacial cycles in the early Pliocene sedimentary record drilled by the International Ocean Discovery Program (IODP) Expedition 379 in the Amundsen Sea. Data collection includes 1) the sand provenance of ice-rafted debris and shelf diamictites and its sources within the Amundsen Sea and Antarctic Peninsula region; 2) sedimentary structures and sortable silt calculations from particle size records and reconstructions of current intensities and interactions; and 3) the bulk provenance of continental rise sediments compared to existing data from the Amundsen Sea shelf with investigations into downslope currents as pathways for Antarctic Bottom Water formation. The results are analyzed within a cyclostratigraphic framework of reflectance spectroscopy and colorimetry (RSC) and X-ray fluorescence scanner (XRF) data to gain insight into orbital forcing of the high-latitude processes. The early Pliocene Climatic Optimum (PCO) ~4.5-4.1 Ma spans a major warm period recognized in deep-sea stable isotope and sea-surface temperature records. This period also coincides with a global mean sea level highstand of > 20 m requiring contributions in ice mass loss from Antarctica. The following hypotheses will be tested: 1) that the West Antarctic Ice Sheet retreated from the continental shelf break through an increase in sub iceshelf melt and iceberg calving at the onset of the PCO ~4.5 Ma, and 2) that dense shelf water cascaded down through slope channels after ~4.5 Ma as the continental shelf became exposed during glacial terminations. The project will reveal for the first time how the West Antarctic Ice Sheet operated in a warmer climate state prior to the onset of the current “icehouse” period ~3.3 Ma. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: Understanding human-induced changes on biodiversity is one of the most important scientific challenges we face today. This is especially true for marine environments that are home to much of the world’s biomass and biodiversity. A particularly effective approach to investigate the effects of climate change on marine ecosystems is to monitor top-predator populations such as seabirds or marine mammals. The food web in the Southern Ocean in relatively small and involves few species, therefore climate-induced variations at the prey species level directly affect the predator species level. For example, seabirds, like penguins, are ideal to detect and study these ecosystem changes. This study combines traditional methods to study emperor penguin population dynamics with the use of an autonomous vehicle to conduct the population dynamic measurements with less impact and higher accuracy. This project leverages an existing long-term emperor penguin observatory at the Atka Bay colony which hosts penguins living in the Weddell sea and the Atlantic sector of the Southern Ocean. The study will kickstart the collection of a multi-decadal data set in an area of the Southern Ocean that has been understudied. It will fill important gaps in ecological knowledge on the state of the Emperor penguin and its adaptive capabilities within a changing world. Finally, the project supports NSF goals of training new generations of scientists through collaborative training of undergraduate students and the creation of a new class on robotics for ecosystem study. Emperor penguins are an iconic species that few people will ever see in the wild. Through the technology developed in this proposal, the public can be immersed in real-time into the life of an emperor penguin colony. Public outreach will be achieved by showcasing real-time video and audio footage of emperor penguins from the field as social media science and engineering-themed educational materials. Part II: Technical description: Polar ecosystems currently experience significant impacts due to global changes. Measurable negative effects on polar wildlife have already occurred, such as population decreases of numerous seabird species, including the complete loss of colonies of one of the most emblematic species of the Antarctic, the emperor penguin. These existing impacts on polar species are alarming, especially because many polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness. Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. This project aims to help close major knowledge gaps about the emperor penguin, in particular about their adaptive capability to a changing environment, by the development of next-generation tools to remotely study entire colonies. Specifically, the main goal of this project is to implement and test an autonomous unmanned ground vehicle equipped with Radio-frequency identification (RFID) antennas and wireless mesh communication data-loggers to: 1) identify RFID-tagged emperor penguins during breeding to studying population dynamics without human presence; and 2) receive Global Positioning System-Time Domain Reflectometry (GPS-TDR) datasets from Very High Frequency VHF-GPS-TDR data-loggers without human presence to study animal behavior and distribution at sea. The autonomous vehicles navigation through the colony will be aided by an existing remote penguin observatory (SPOT). Properly implemented, this technology can be used to study of the life history of individual penguins, and therefore gather data for behavioral and population dynamic studies. The new data will contribute to intelligent establishment of marine protected areas in Antarctica. The education objectives of this CAREER project are designed to increase the interest in a STEM education for the next generation of scientists by combining the charisma of the emperor penguin with robotics research. Within this project, a new class on ecosystem robotics will be developed and taught, Robotics boot-camps will allow undergraduate students to remotely participate in Antarctic field trips, and an annual curriculum will be developed that allows K-12 students to follow the life of the emperor penguin during the breeding cycle, powered by real-time data obtained using the unmanned ground vehicle as well as the existing emperor penguin observatory. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The chemical composition of diatom fossils in the Southern Ocean provides information about the environmental history of Antarctica, including sea ice extent, biological production, and ocean nutrient distribution. The sea ice zone is an important habitat for a group of diatoms, largely from the genus Chaetoceros, that have a unique life cycle stage under environmental stress, when they produce a structure called a resting spore. Resting spores are meant to reseed the surface ocean when conditions are more favorable. The production of these heavy resting spores tends to remove significant amounts of carbon and silicon, essential nutrients, out of the surface ocean. As a result, this group has the potential to remove carbon from the surface ocean and can impact the sedimentary record scientists use to reconstruct environmental change. This project explores the role of resting spores in the sedimentary record using the nitrogen isotopic signature of these fossils and how those measurements are used to estimate carbon cycle changes. The work will include laboratory incubations of these organisms to answer if and how the chemistry of the resting spores differs from that of a typical diatom cell. The incubation results will be used to evaluate nutrient drawdown in sea ice environments during two contrasting intervals in earth history, the last ice age and the warm Pliocene. This work should have significant impact on how the scientific community considers the impact of seasonal sea ice cover in the Southern Ocean in terms of how it responds to and regulates global climate. The project provides training and research opportunities for undergraduate and graduate students. Ongoing research efforts in Antarctic earth sciences will be disseminated through an interactive display at the home institution. The work proposed here will address uncertainties in how Chaetoceros resting spores record surface nutrient conditions in their nitrogen stable isotopic composition, the relative impact of their specific signal with respect to the full sedimentary assemblage, and their potential to bias or enhance environmental reconstructions in the sea ice zone. Measurements of nitrogen stable isotopes of nitrate, biomass, and diatom-bound nitrogen and silicon-to-nitrogen ratios of individual species grown in the laboratory will be used to quantify how resting spores record nutrient drawdown in the water column and to what degree their signature is biased toward low nutrient conditions. These relationships will be used to inform diatom-bound nitrogen isotope reconstructions of nutrient drawdown from a Pliocene coastal polyna and an open ocean core that spans the last glacial maximum. This proposal capitalizes on the availability of Southern Ocean isolates of Chaetoceros spp. collected in 2017 for the proposed culture work and archived sediment cores and/or existing data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Ice Sheet (AIS) is sensitive to and an indicator of climate change. While ice loss is largely driven by ocean warming, this might be mitigated by enhanced snowfall on the ice sheet. By developing an understanding of the processes governing snowfall variability and change on the AIS, this project will contribute to understanding the long-term role of the AIS as a contributor to sea-level rise. This project is strongly embedded in the collaborative, open-source framework of the Community Earth System Model version 2 (CESM2) and will deliver new datasets of Antarctic precipitation for use by the research community. The project will help to build a diverse geoscience workforce by recruiting and training a student to be directly involved in the research through the Significant Opportunities in Atmospheric Research and Science (SOARS) program. The project will leverage the Climate Model Intercomparison Project 6 climate model ensemble as a whole, and CESM2 in particular, to disentangle the major sources of uncertainty and to elucidate the underlying mechanisms of Antarctic precipitation change, with a particular focus on the role of atmospheric circulation changes relative to the role of atmospheric warming. Using the variable resolution capabilities of CESM2, the team will provide the community with precipitation estimates at a very high horizontal resolution. The analyses will also use a forthcoming 100-member large ensemble. The project seeks to answer the following questions: 1) How well does the CESM2 represent the present-day Antarctic surface climate, precipitation, and surface mass balance, including the mean and its variability? 2) What is the sensitivity of simulated Antarctic precipitation to model resolution in present-day and future climates? 3) What are the roles of thermodynamics (warming atmosphere and ocean) and dynamics (changes in atmospheric circulation) in observed and projected snowfall changes? How do these break down into forced and internal variability? In particular, is there a significant forced precipitation trend due to circulation changes driven by stratospheric ozone depletion and recovery and increases in greenhouse gas concentration? 4) What processes and boundary conditions drive the ensemble spread of Antarctic precipitation in single-model and multi-model ensembles? How does the spread driven by initial surface conditions (including sea ice cover, surface fluxes, inversion strength) compare with the irreducible uncertainty due to internal climate system variability? This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical Summary Understanding the mechanisms that animals use to find and acquire food is a fundamental question in ecology. The survival and success of marine predators depends on their ability to locate prey in a variable or changing environment. To do this the predators need to be able to adjust foraging behavior depending on the conditions they encounter. Emperor penguins are ice-dependent, top predators in Antarctica. However, they are vulnerable to environmental changes that alter food web or sea ice coverage, and environmental change may lead to changes in penguin foraging behavior, and ultimately survival and reproduction success. Despite their importance in the Southern Ocean ecosystem, relatively little is known about the specific mechanisms Emperor penguins use to find and acquire food. This study combines a suite of technological and analytical tools to gain essential knowledge on Ross Sea penguin foraging energetics, ecology, and habitat use during critical periods in their life history, especially during late chick-rearing periods. Energy management is particularly crucial during this time as parents need to feed both themselves and their rapidly growing offspring, while being constrained to regions near the colony. Penguin ecology and habitat preference will also be evaluated after the molt and through early reproduction. This study fills important ecological knowledge gaps on the energy balance, diet, and habitat use by penguins during these critical periods. Finally, the project furthers the NSF goals of training new generations of scientists through training of undergraduates, graduate students and a postdoctoral researcher. Public outreach activities will be aligned with another NSF funded project designed to provide science training in afterschool and camp programs that target underrepresented groups. Part II: Technical summary This project will identify behavioral and physiological variability in foraging Emperor penguins that can be directly linked to individual success in the marine environment using an ecological theoretical framework during two critical life history stages. First, this project will investigate the foraging energetics, ecology, and habitat use of Emperor penguins at Cape Crozier using fine-scale movement and video data loggers during the energetically demanding life history phase of late chick-rearing. Specifically, this study will 1) Estimate the relationship of foraging efficiency to foraging behavior and diet using an optimal foraging theory framework to identify what environmental or physiological constraints influence foraging behavior; 2) Investigate the inter- and intra-individual behavioral variability exhibited by emperor penguins, which is essential to predict how resilient these penguins are to environmental change; and 3) Integrate penguin foraging efficiency data with environmental data to identify important habitat. Next the researchers will study the ecology and habitat preference after the molt and through early reproduction using satellite-linked data loggers. The team will: 1) Investigate penguin inter- and intra-individual behavioral variability during the three-month post-molt and early winter foraging trips; and 2) Integrate penguin behavioral data with environmental data to identify which environmental features are indicative of habitat preference when penguins are not constrained to returning to the colony to feed a chick. These fine- and coarse-scale data will be combined with climate predictions to create predictive habitat models. The education objectives of this CAREER project are designed to inspire, engage, and train the next generation of scientists using the data and video generated while investigating Emperor penguins in the Antarctic ecosystem. This includes development of two university courses, training of undergraduate and graduate students, and a collaboration with the NSF funded “Polar Literacy: A model for youth engagement and learning” program to develop after school and camp curriculum that target undeserved and underrepresented groups. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.
The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet. This atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and hence rising global sea levels. An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet, is envisioned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower at the West Antarctic ice sheet divide field camp. An additional unmanned aerial system field campaign will be conducted during the second year of this project and will supplement the West Antarctic ice sheet tall tower observations by sampling the depths of the boundary layer. The broader subject of the Antarctic ABL clearly supports a range of research activities ranging from the physics of turbulent mixing, its parameterization and constraints on meteorological forecasts, and even climatological effects, such as surface mass and energy balances. With the coming of the Thwaites WAIS program, a suite of metrological observables would be a welcome addition to the joint NSF/NERC (UK) Thwaites field campaigns. The meteorologists of this proposal have pioneered 30-m tall tower (TT) and unmanned aerial system (UAS) development in the Antarctic, and are well positioned to successfully carry out and analyze this work. In turn, the potential for these observations to advance our understanding of how the atmosphere exchanges heat with the ice sheet is high. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Uncertainty in projections of future sea level rise comes, in part, from ice-sheet melting under the influence of unpredictable variations in ocean and atmospheric temperature near ice sheets. Using state-of-the-art modeling techniques, the Antarctic Ice Sheet Large Ensemble (AISLENS) Project will estimate the range of possible Antarctic Ice Sheet melt during the recent past and over the next several centuries that could result from such climate variations. The AISLENS Project will also facilitate research by providing modeling output as an open product to the broader climate and glaciology communities. The project will support an early career faculty member, and interdisciplinary training for a graduate student, postdoctoral fellow and undergraduate student. As a part of this project, an undergraduate course on "Sea Level Rise and Coastal Engineering" will be also developed, bringing together Earth Science and Civil Engineering students in an interdisciplinary setting and contributing to their education in sea level science and coastal adaptation. This will be done in the geographic context of the Southeastern US, the region of most concentrated vulnerability to sea-level rise in the US. The primary goal of the proposed research is to understand and quantify the role of internal climate variability in driving ice loss from the Antarctic Ice Sheet over the recent past and into the future. The AISLENS Project will encompass hundreds of simulations of Antarctic ice sheet evolution from 1950 to 2300 forced by realistic variations in climate, including snowfall and melt from fluctuating oceanic and atmospheric temperatures. Plausible realizations of Antarctic climate forcing will be generated from stochastic emulation of output from the Energy Exascale Earth System Model (E3SM) under past and future emissions scenarios. These realizations of variable climate will be used to force the MPAS Albany Land Ice (MALI) model, a state-of-the-art model of ice flow in the Antarctic Ice Sheet. In this project, AISLENS will be used to conduct uncertainty and attribution analyses. In the uncertainty analysis, the evolution of ensemble spread in simulations of the future evolution of the Antarctic Ice Sheet will be systematically decomposed to determine which temporal and spatial scales of climate variability contribute the most to future ice-sheet projection uncertainty. In the attribution analysis, a range of satellite-based observations of recent Antarctic ice loss will be compared to the envelope of internal variability of Antarctic ice loss simulated in AISLENS simulations encompassing the recent past. This analysis will provide context to recent observations indicating significant variability of Antarctic climate forcing and provide a possible path forward for conducting robust statistical inference studies for observed ice-sheet changes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quantified via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward flow and distribution between the Atlantic, Indian and Pacific basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad´elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth's climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a “conduit" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC “blends" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-technical Abstract Around 252 million years ago, a major mass extinction wiped out over 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime devoid of a permanent ice cap. Compared to lower latitudes, relatively little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continents more polar location shielded it from the worst of the extinctions effects. As the result of a NSF-sponsored deep field camp in 2017/2018, a remarkable collection of vertebrate fossils was discovered in the rocks of the Shackleton Glacier region. This collection includes the best preserved and most complete materials of fossil amphibians ever recovered from Antarctica, including two previously undescribed species. This grant supports one postdoctoral researcher with expertise in fossil amphibians to describe and interpret the significance of these fossils, including their identification, relationships, and how they fit into the terrestrial ecosystem of Antarctica and other southern hemisphere terrestrial assemblages in light of the major reorganization of post-extinction environments. Historical collections of fossil amphibians will also be reviewed as part of this work. Undergraduate students at the University of Washington will be actively involved as part of this research and learn skills like hard tissue histology and CT data manipulation. Public engagement in Antarctic science will be accomplished at the University of Washington Burke Museum, which is the Washington State museum of natural history and culture. Specifically, a new exhibit on Antarctic amphibians will be developed as part of the paleontology gallery, which sees over 100,000 visitors per year. Technical Abstract This two-year project will examine the evolution of Triassic temnospondyls based on a remarkable collection of fossils recently recovered from the Shackleton Glacier region of Antarctica. Temnospondyls collected from the middle member of the Fremouw Formation are part of the first collection of identifiable tetrapod fossils from this stratigraphic interval. Thorough anatomical description and comparisons of these fossils will add new faunal information and also aid in determining if this horizon is Early or Middle Triassic in age. Exquisitely preserved temnospondyl material from the lower Fremouw Formation will permit more precise identification than previously possible and will provide insights into the earliest stages of their radiation in the extinction recovery interval. Overall, the Principal Investigator and Postdoctoral Researcher will spearhead an effort to revise the systematics of the Antarctic members of Temnospondyli and properly contextualize them in the framework of Triassic tetrapod evolution. The research team will also take advantage of the climate-sensitive nature of fossil amphibians to better understand patterns of seasonality at high-latitudes during the early Mesozoic by subjecting selected fossils to histological analysis. Preliminary data suggest that temnospondyls were exceptionally diverse and highly endemic immediately after the end-Permian extinction, when compared to their distribution before and after this interval. If confirmed, this macroevolutionary pattern could be used to predict the response of modern amphibians to future climate perturbations. Overall, this research will provide new insights into the vertebrate fauna of the Fremouw Formation, as well as shed light on the evolution of terrestrial ecosystems in southern Pangea in the wake of the Permian-Triassic mass extinction. As part of the broader impacts, the research team will help to develop an exhibit featuring some of the best preserved fossils from Antarctica to explain to the public how paleontologists use fossils and rocks to understand past climates like the Triassic 'hot-house' world that lacked permanent ice caps at the poles. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth's crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Around 252 million years ago, a major mass extinction wiped out upwards of 90% of species on Earth. Coincident with this extinction, the Antarctic portion of the supercontinent of Pangea transitioned to a warmer climatic regime and became devoid of glaciers. Little is known about the survivors of the extinction in Antarctica, although it has been hypothesized that the continent's high latitude location shielded it from the worst of the extinction's effects. The Shackleton Glacier region is the best place to study this extinction in Antarctica because it exposes an abundance of correct age rocks and relevant fossils were found there in the 1960s and 1980s. For this research, paleontologists will study fossil vertebrates that span from about 260 to 240 million years ago to understand how life evolved at high latitudes in the face of massive climate change. In addition, geologists will use fossil soils and fossil plant matter to more precisely reconstruct the climate of Antarctica across this extinction boundary. These data will allow for a more complete understanding of ancient climates and how Antarctic life compared to that at lower latitudes. Undergraduate and graduate students will be actively involved in this research. Public engagement in Antarctic science will be accomplished at several natural history museums. This three-year project will examine the evolution of Permo-Triassic paleoenvironments and their vertebrate communities by conducting fieldwork in the Shackleton Glacier region of Antarctica. The team will characterize the Permo-Triassic boundary within Shackleton area strata and correlate it to other stratigraphic successions in the region (e.g. via stable carbon isotope stratigraphy of fossilized plant organic matter). The researchers will use multiple types of data to assess the paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude (~70° S) tetrapod fauna of the entire Triassic and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. The biology of Triassic vertebrates from Antarctica will be compared to conspecifics from lower paleolatitudes through analysis of growth in bone and tusk histology. An interdisciplinary approach will be used to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region.
Ice supersaturation plays a key role in cloud formation and evolution, and it determines the partitioning among ice, liquid and vapor phases. Over the Southern Ocean and Antarctica, the transition between mixed-phase and ice clouds significantly impacts the radiative effects of clouds. Remote regions such as the Antarctica and Southern Ocean historically have been under-sampled by in-situ observations, especially by airborne observations. Even though more attention has been given to the cloud microphysical properties over these regions, the distribution and characteristics of ice supersaturation and its role in the current and future climate have not been fully investigated at the higher latitudes in the Southern Hemisphere. One of the main objectives of this study is to analyze observations from three recent major field campaigns sponsored by NSF and DOE, which provide intensive in-situ, airborne measurements over the Southern Ocean and ground-based observations at McMurdo station in Antarctica. This project will analyze aircraft-based and ground-based observations over the Southern Ocean and Antarctica, and compare the observations with the Community Earth System Model Version 2 (CESM2) simulations. The focus will be on the observations of ice supersaturation and the relative humidity distribution in mixed-phase and ice clouds, as well as their relationship with cloud micro- and macrophysical properties. Observations will be compared to CESM2 simulations to elucidate model biases. Surface radiation and the precipitation budget at the McMurdo station will be quantified and compared against the CESM2 simulations to improve the fidelity of the representation of Antarctic climate (and climate prediction over Antarctica). Results from our research will be released to the community for improving the understanding of cloud radiative effects and the mass transport of water in the high southern latitudes. Comparisons between the simulations and observations will provide valuable information for improving the next generation CESM model. Two education/outreach projects will be carried out by PI Diao at San Jose State University (SJSU), including a unique undergraduate student research project with hands-on laboratory work on an airborne instrument, and an outreach program that uses social media to broadcast news on polar research to the public. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.
Overview and Intellectual merit: This project extends and combines historical and recent ocean data sets to investigate ice-ocean-interactions along the Pacific continental margin of the West Antarctic Ice Sheet. The synthesis focuses on the strikingly different environments on and near the cold Ross Sea and warm Amundsen Sea continental shelves, where available measurements reach back to ~1958 and 1994, respectively. On the more extensively covered Ross Sea continental shelf, multiple reoccupations of ocean stations and transects are used to extend our knowledge of long-term ocean freshening and the mass balance of the world?s largest ice shelf. On the more rugged Amundsen Sea continental shelf, which contains the earth?s fastest melting ice shelves, continuing research on observed thermohaline variability also pursues connections between outer shelf shoals and vulnerable ice shelf grounding zones. This interdisciplinary work updates a prior study of ice shelf response to ocean thermal forcing, and uses chemical tracers to measure changes in shelf, deep and bottom water transformations and production rates. Broader Impacts : Recent and potential future rates of sea level rise are the primary broad-scale impacts of the ice and ocean changes revealed by observations in the study area. The overriding question is whether global and regional sea levels will accelerate gradually, allowing carbon usage reductions to head off the worst consequences, or so rapidly that they will contribute to major social and economic upheavals. Collaborations and data acquired by foreign vessels are also utilized to better understand the causes of rapid change in these shelf seas and ice shelves, along with associated wider implications. Data that are re-gridded, re-edited or newly collated will be archived, and results made available via presentations, publications, and press releases if warranted. This proposal does not require fieldwork in the Antarctic This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will test the hypothesis that physical and thermal properties of Antarctic firn--partially compacted granular snow in an intermediate stage between snow and glacier ice--can be remotely measured from space. Although these properties, such as internal temperature, density, grain size, and layer thickness, are highly relevant to studies of Antarctic climate, ice-sheet dynamics, and mass balance, their measurement currently relies on sparse in-situ surveys under challenging weather conditions. Sensors on polar-orbiting satellites can observe the entire Antarctic every few days during their years-long lifetime. Consequently, the approaches developed in this study, when coupled with the advancing technologies of small and low-cost CubeSats, aim to contribute to Antarctic science and lead to cost-effective, convenient, and accurate long-term analyses of the Antarctic system while reducing the human footprint on the continent. Moreover, the project will be solely based on publicly-available datasets; thus, while contributing to interdisciplinary undergraduate and graduate research and education at the grantee's institution, the project will also encourage engagement of citizen scientists through its website. The overarching goal of this project is to characterize Antarctic firn layers in terms of their thickness, physical temperature, density, and grain size through multi-frequency microwave radiometer measurements from space. Electromagnetic penetration depth changes with frequency in ice; thus, multi-frequency radiometers are able to profile firn layer properties versus depth. To achieve its objective, the project will utilize the Global Precipitation Measurement (GPM) satellite constellation as a single multi-frequency microwave radiometer system with 11 frequency channels observing the Antarctic Ice Sheet. Archived in-situ measurements of Antarctic firn density, grain size, temperature, and layer thickness will be collected and separated into training and test datasets. Microwave emissions simulated using the training data will be compared to GPM constellation measurements to evaluate and improve state-of-the-art forward microwave emission models. Based on these models, the project will develop numerical retrieval algorithms for the thermal and physical properties of Antarctic firn. Results of retrievals will be validated using the test dataset, and uncertainty and error analyses will be conducted. Lastly, changes in the thermal and physical characteristics of Antarctic firn will be examined through long-term retrieval studies exploiting GPM constellation measurements. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The coastal Antarctic is undergoing great environmental change. Physical changes in the environment, such as altered sea ice duration and extent, have a direct impact on the phytoplankton and bacteria species which form the base of the marine foodweb. Photosynthetic phytoplankton are the ocean's primary producers, transforming (fixing) CO2 into organic carbon molecules and providing a source of food for zooplankton and larger predators. When phytoplankton are consumed by zooplankton, or killed by viral attack, they release large amounts of organic carbon and nutrients into the environment. Heterotrophic bacteria must eat other things, and function as "master recyclers", consuming these materials and converting them to bacterial biomass which can feed larger organisms such as protists. Some protists are heterotrophs, but others are mixotrophs, able to grow by photosynthesis or heterotrophy. Previous work suggests that by killing and eating bacteria, protists and viruses may regulate bacterial populations, but how these processes are regulated in Antarctic waters is poorly understood. This project will use experiments to determine the rate at which Antarctic protists consume bacteria, and field studies to identify the major bacterial taxa involved in carbon uptake and recycling. In addition, this project will use new sequencing technology to obtain completed genomes for many Antarctic marine bacteria. To place this work in an ecosystem context this project will use microbial diversity data to inform rates associated with key microbial processes within the PALMER ecosystem model. This project addresses critical unknowns regarding the ecological role of heterotrophic marine bacteria in the coastal Antarctic and the top-down controls on bacterial populations. Previous work suggests that at certain times of the year grazing by heterotrophic and mixotrophic protists may meet or exceed bacterial production rates. Similarly, in more temperate waters bacteriophages (viruses) are thought to contribute significantly to bacterial mortality during the spring and summer. These different top-down controls have implications for carbon flow through the marine foodweb, because protists are grazed more efficiently by higher trophic levels than are bacteria. This project will use a combination of grazing experiments and field observations to assess the temporal dynamics of mortality due to temperate bacteriophage and protists. Although many heterotrophic bacterial strains observed in the coastal Antarctic are taxonomically similar to strains from other regions, recent work suggest that they are phylogenetically and genetically distinct. To better understand the ecological function and evolutionary trajectories of key Antarctic marine bacteria, their genomes will be isolated and sequenced. Then, these genomes will be used to improve the predictions of the paprica metabolic inference pipeline, and our understanding of the relationship between heterotrophic bacteria and their major predators in the Antarctic marine environment. Finally, researchers will modify the Regional Test-Bed Model model to enable microbial diversity data to be used to optimize the starting conditions of key parameters, and to constrain the model's data assimilation methods. There is an extensive education and outreach component to this project that is designed to engage students and the public in diverse activities centered on Antarctic microbiota and marine sciences. A new module on Antarctic marine science will be developed for the popular Sally Ride Science program, and two existing undergraduate courses at UC San Diego will be strengthened with laboratory modules introducing emerging technology, and with cutting-edge polar science. A PhD student and a post-doctoral researcher will be supported by this project. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The consequences of variation in maternal effects on the ability of offspring to survive, reproduce, and contribute to future generations has rarely been evaluated in polar marine mammals. This is due to the challenges of having adequate data on the survival and reproductive outcomes for numerous offspring born in diverse environmental conditions to mothers with known and diverse sets of traits. This research project will evaluate the survival and reproductive consequences of early-life environmental conditions and variation in offspring traits that are related to maternal attributes (e.g. birth date, birth mass, weaning mass, and swimming behavior) in a population of individually marked Weddell seals in the Ross Sea. Results will allow an evaluation of the importance of different types of individuals to the Weddell Seal's population sustenance and better assessments of factors contributing to the population dynamics in the past and into the future. The project allows for documentation of specific individual seal's unique histories and provisioning of such information to the broader science community that seeks to study these seals, educating graduate and undergraduate ecology students, producing science-outreach videos, and developing a multi-media iBook regarding the project's science activities, goals and outcomes. The research has the broad objective of evaluating the importance of diverse sources of variation in pup characteristics to survival and reproduction. The study will (1) record birth dates, body mass metrics, and time spent in the water for multiple cohorts of pups (born to known-age mothers) in years with different environmental conditions; (2) mark all pups born in the greater Erebus Bay study area and conduct repeated surveys to monitor fates of these pups through the age of first reproduction; and (3) use analyses specifically designed for data on animals that are individually marked and resighted each year to evaluate hypotheses about how variation in birth dates, pup mass, time spent in the water by pups, and environmental conditions relate to variation in early-life survival and recruitment for those pups. The research will also allow the documentation of the population status that will contribute to the unique long-term database for the local population that dates back to 1978.
Cold-blooded animals in the Antarctic ocean have survived in near-constant, extreme cold conditions for millions of years and are very sensitive to even small changes in water temperature. However, the consequences of this extreme thermal sensitivity for the energetics, development, and survival of developing embryos is not well understood. This award will investigate the effect of temperature on the metabolism, growth rate, developmental rate, and developmental energetics of embryos and larvae of Antarctic marine ectotherms. The project will also measure annual variation in temperature and oxygen at different sites in McMurdo Sound, and compare embryonic and larval metabolism in winter and summer to determine the extent to which these life stages can acclimate to seasonal shifts. This research will provide insight into the ability of polar marine animals and ecosystems to withstand warming polar ocean conditions. Antarctic marine ectotherms exhibit universally slow growth, low metabolic rates, and extended development, yet many of their rate processes related to physiology and metabolism are highly thermally sensitive. This suggests that small changes in temperature may result in dramatic changes to energy metabolism, growth, and the rate and duration of development. This project will measure the effects of temperature on metabolism, developmental rate, and the energetic cost of development of four common and ecologically important species of benthic Antarctic marine invertebrates. These effects will be measured over the functional ranges of the organisms and in the context of environmentally relevant seasonal shifts in temperature around McMurdo Sound. Recent data show that seasonal warming of ~1 deg C near McMurdo Station is accompanied by long-lasting hyperoxic events that impact the benthos in the nearshore boundary layer. This research will provide a more comprehensive understanding of both annual variation in environmental oxygen and temperature across the Sound, and whether this variation drives changes in developmental rate and energetics that are consistent with physiological acclimatization. These data will provide key information about potential impacts of warming Antarctic ectotherms. In addition, this project will support undergraduate and graduate research and partner with large-enrollment undergraduate courses and REU programs at an ANNH and AANAPISI Title III minority-serving institution. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The ice sheets of Antarctica and Greenland are losing mass and contributing to accelerating global sea-level rise. Satellite altimetry provides precise measurement of ice-sheet volume change, but computing ice-sheet mass change—the quantity relevant for estimating the ice sheet’s sea-level contribution—requires knowing the density of the ice sheet. The density near the ice-sheet surface also affects age estimates of air bubbles recovered in ice cores, which are a key source of information on past climate changes. Ice-sheet density is primarily controlled by the rate at which firn (snow that has persisted for a year or more on ice sheets) compacts into ice, but there is currently no widely accepted theory of how this compaction occurs. The goal of this project is thus to advance understanding of how firn densifies. The team will conduct laboratory experiments and analyze ice-penetrating radar and ice-core data from Antarctica. A key desired outcome of the project is a new model of firn densification that can be used to improve satellite-based altimetry measurements of present-day ice-sheet change and reconstructions of past climate changes from ice cores. This project will combine laboratory experiments, numerical modeling, and geophysical techniques to determine the rheology of firn as it compacts to form ice. The team will use two methods to measure firn compaction: (1) lab-based experiments and (2) analysis of ice-core and radar data. For the lab-based work, the team will conduct a suite of compaction experiments on synthetic firn samples under uni-axial strain and constant temperature and axial stress. They will also measure the grain-size evolution. By running a large number of experiments (> 25), the team will constrain key parameters that determine how firn compaction rate depends on density, temperature, grain size, and axial stress. The experiments will be conducted in a table-top apparatus at temperatures as low as -40 degrees C and axial stresses up to 4 MPa. For the field-data-based component, the team will analyze ice-core and ice-penetrating radar data to produce the first coincident set of radar-derived firn compaction rates, borehole temperatures, firn densities, and firn grain sizes. Results from lab and field data will be tied together using a numerical firn compaction model. This model is formulated using conservation of mass, momentum, and energy, along with an explicit description of firn rheology and grain-size evolution. Constraints on firn rheology will be incorporated into this model and the team will use it to examine fundamental questions about how changes in the climate affect firn density. This is a crucial unknown that contributes significant measurement uncertainty in estimates of past and present climate change. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice shelves slow the movement of the grounded ice sheets that feed them. This reduces the rate at which ice sheets lose mass to the oceans and contribute to sea-level rise. But ice shelves can be susceptible to collapse, particularly when surface meltwater accumulates in vulnerable areas. Meltwater lakes can create and enlarge fractures within the ice shelves, thereby triggering or hastening ice-shelf collapse. Also, water refreezing within ice shelves warms the ice and could affect the flow of the ice by changing its viscosity, which depends on temperature. The drainage of water across the surface of Antarctica and where it accumulates has received little attention. This drainage was assumed to be insignificant, but recent work shows that meltwater can drain for tens of kilometers across ice-shelf surfaces and access areas that would otherwise not accumulate meltwater. Surface meltwater drainage could play a major role in the future stability of ice sheets. This drainage is the focus of this project. The team will develop and test physics-based mathematical models of water flow and ice-shelf flow, closely informed by remote sensing observations, to ask (1) how drainage systems will grow in response to the increased melt rates that are predicted for this century, (2) how this drainage is influenced by ice dynamics and (3) whether enlarged drainage systems could deliver meltwater to areas of ice shelves that are vulnerable to water-driven collapse. The team hypothesizes that refreezing of meltwater in snow and firn will prove important for hydrology by impacting the permeability of the snow/firn and for ice-shelf dynamics by releasing latent heat within the ice and lowering ice viscosity. The project will examine these issues by (1) conducting a remote sensing survey of the structure and temporal evolution of meltwater systems around Antarctica, (2) developing and analyzing mathematical models of water flow across ice shelves, and (3) examining idealized and realistic models of ice-shelf flow. This project will support a first-time NSF PI, a post-doctoral researcher and a graduate student. An outreach activity will make use of the emerging technology of Augmented Reality to visualize the dynamics of ice sheets in three dimensions to excite the public about glaciology at outreach events around New York City. This approach will be made publicly available for wider use as Augmented Reality continues to grow in popularity. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Howat/1543501 This award will provide support to map the topography of the Antarctic continent at high spatial resolution and precision to measure ice sheet change, constrain models, correct satellite observations and support logistics. Antarctica remains the most poorly mapped landmass on Earth, yet, accurate and complete surface topography is essential for a wide range of scientific and logistical activities. The group will use a combination of very high-resolution satellite imagery, existing ground and airborne survey data and the NSF's supercomputer infrastructure to construct the Reference Elevation Model of Antarctica (REMA): a continuous, time-stamped reference surface that will be one to two orders of magnitude higher resolution than currently available. REMA will be constructed from stereoscopic, submeter resolution imagery collected by the WorldView satellite constellation, obtained at no cost in partnership with the National Geospatial Intelligence Agency and the NSF-supported Polar Geospatial Center (PGC). The high spatial and radiometric resolution of the imagery enables photogrammetric digital elevation model (DEM) extraction over low contrast terrains such as snow, ice and shadows. These DEM's have horizontal and vertical offsets of up to several meters that can be reduced to the DEM relative accuracy of 0.2 meter with a single ground control point. We will use available control points from ground and lidar surveys to register individual DEMs and optimized, least-squares co-registration to provide control between overlapping DEM's over large regions. REMA will have a posting of 10 meters and accuracy better than 1 meter. It will be distributed openly by the Polar Geospatial Center. This project will involve substantial undergraduate participation, providing training in geospatial science and remote sensing, and REMA will be used extensively for the outreach programs of the Byrd Polar and Climate Research Center. This project does not require field work in Antarctica.
Part 1: Non-technical description Polar regions are experiencing some of the most dramatic effects of climate change resulting in large-scale changes in sea ice cover. Despite this, there are relatively few long-term studies on polar species that evaluate the full scope of these effects. Over the last two decades, this team has conducted globally unique demographic studies of Adélie penguins in the Ross Sea, Antarctica, to explore several potential mechanisms for population change. This five-year project will use penguin-borne sensors to evaluate foraging conditions and behavior and environmental conditions on early life stages of Adélie penguins. Results will help to better understand population dynamics and how populations might respond to future environmental change. To promote STEM literacy, education and public outreach efforts will include multiple activities. The PenguinCam and PenguinScience.com website (impacts of >1 million hits per month and use by >300 classrooms/~10,000 students) will be continued. Each field season will also have ‘Live From the Penguins’ Skype calls to classes (~120/season). Classroom-ready activities that are aligned with Next Generation Science Standards will be developed with media products and science journal papers translated to grade 5-8 literacy level. The project will also train early career scientists, postdoctoral scholars, graduate students and post-graduate interns. Finally, in partnership with an Environmental Leadership Program, the team will host 2-year Roger Arliner Young Conservation Fellow, which is a program designed to increase opportunities for recent college graduates of color to learn about, engage with, and enter the environmental conservation sector. Part II: Technical description: Leveraging 25 years of data on marked individuals from two Adélie penguin colonies in the Ross Sea, combined with new biologging tags that track detailed penguin foraging efforts and environmental conditions, researchers will accomplish three major goals: 1) assess the quality of natal conditions by determining how environmental conditions, relative prey availability, and diet composition influence parental foraging behavior, chick provisioning, and fledging mass; 2) determine the spatial distribution and foraging behavior of juvenile Adélie penguins and the relative influence of natal versus post-fledging environmental conditions on their survival; and 3) determine the role of natal and post-fledging conditions in shaping individual life history traits and colony growth. Data from several types of penguin-borne biologging devices will be used to provide multiple lines of evidence for how early-life conditions and penguin behavior relate to penguin energetics and population size. This study is the first to integrate salinity, temperature, light level, depth, accelerometry, video loggers, and GPS data with longitudinal demographic information, providing an unprecedented ability to understand how penguins use the environment and enabling new insights from previously collected data. Changes in salinity due to increased glacial melt have important implications for sea ice formation, ocean circulation and productivity of the Southern Ocean, and potentially global temperature change. The penguin-borne sensors deployed in this study will support the NSF Office of Polar Programs priority: How does society more efficiently observe and measure the polar regions? It represents only the second study to track juvenile Adélie penguins at sea, the first in the Ross Sea region, the first with substantial sample sizes, and the first to assess juvenile survival rates directly, integrating early life factors and environmental conditions to better understand colony growth trajectories. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is to support measurements of the 14-billion-year cosmic microwave background (CMB) light with the South Pole Telescope (SPT) to address some of the most basic and compelling questions in cosmology: What is the origin of the Universe? What is the Universe made of? What is the mass scale of the neutrinos? When did the first stars and galaxies form and how was the Universe reionized? What is the Dark Energy that is accelerating the expansion of the Universe? The SPT plays a unique role in the pursuit of these questions. Its siting is ideal for ultra-low-noise imaging surveys of the sky at the millimeter and sub-millimeter radio wavelengths. The SPT is supported by the NSF's Amundsen-Scott South Pole Station, which is the best operational site on Earth for mm-wave sky surveys. This unique geographical location allows SPT to obtain extremely sensitive 24/7 observations of targeted low Galactic foreground regions of the sky. The telescope's third-generation, SPT-3G receiver has 16,000 detectors configured for polarization-sensitive observations in three millimeter-wave bands. The proposed operation includes five years of sky surveys to obtain ultra-deep measurements of a 1500 square degree field and to produce and publicly archive essential data products from the survey. The telescope's CMB temperatures and polarization power spectrum will play a central role in probing the nature of current tensions among cosmological parameter estimations from different data sets and determining if their explanation requires physics beyond the current LCDM model. The data will help constraining the Dark Energy properties that affect the growth of large structures through both the CMB lensing and abundance of galaxy clusters. The proposed operations also support SPT's critical role in the Event Horizon Telescope (EHT), a global array of telescopes to image the event horizon around the black hole at the center of Milky Way Galaxy. This award addresses and advances the science objectives and goals of the NSF's "Windows on the Universe: The Era of Multi-Messenger Astrophysics" program. The proposed research activity will also contribute to the training of the next generation of scientists by integrating graduate and undergraduate education with the technology development, astronomical observations, and scientific analyses of SPT data. Research and education are integrated by bringing research activities into the undergraduate classroom and sharing of forefront research with non-scientists extending it beyond the university through a well-established educational network that reaches a wide audience at all levels of the educational continuum. Through museum partnerships and new media, the SPT outreach and educational efforts reach large numbers of individuals while personalizing the experience. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. Project goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Thwaites Glacier system dominates the contribution to sea-level rise from Antarctica. Predicting how this system will evolve in coming decades, and thereby its likely contribution to sea level, requires detailed understanding of how it has responded to changes in climate and oceanographic conditions in the past. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. Specifically, the project will test the hypothesis--implied by existing geological evidence from the region--that present rapid retreat of the Thwaites Glacier system is reversible. The team aims to utilize two approaches: 1. To reconstruct relative sea level during the Holocene, it will map and date raised marine and shoreline deposits throughout Pine Island Bay. Chronological constraints on sea-level change will be provided by radiocarbon dating of organic material in landforms and sediments that are genetically related to past sea level, such as shell fragments, bones of marine fauna, and penguin guano. 2. To obtain geological evidence for past episodes of grounding-line retreat, the team will apply cosmogenic-nuclide exposure-dating of subglacial bedrock. Using drill systems recently developed for subglacial bedrock recovery, the team will obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Nontechnical Antarcticas ice sheets constitute the largest ice mass on Earth, with approximately 53 meters of sea level equivalent stored in the East Antarctic Ice Sheet alone. The history of the East Antarctic Ice Sheet is therefore important to understanding and predicting changes in sea level and Earths climate. There is conflicting evidence regarding long-term stability of the East Antarctic Ice Sheet, over the last twenty million years. To better understand past ice sheet changes, together with the history of the Transantarctic Mountains, accurate time scales are needed. One of the few dating methods applicable to the Antarctic glacial deposits, that record past ice sheet changes, is the measurement of rare isotopes produced by cosmic rays in surface rock samples, referred to as cosmogenic nuclides. Whenever a rock surface is exposed/free of cover, cosmic rays produce rare isotopes such as helium-3, beryllium-10, and neon-21within the minerals. This project will involve measurement of all three isotopes in some of the oldest glacial deposits found at high elevation in the Transantarctic Mountains. Because the amount of each isotope is directly linked to the exposure time, this can be used to calculate the age of a surface. This method requires knowledge of the rates that cosmic radiation produces each isotope, which depends upon mineral composition, and is presently a limitation of the method. The goal of this project is to advance and enhance existing measurement methods and expand the range of possibilities in surface dating with new measurements of all three isotopes in pyroxene, a mineral that is commonly found throughout the Transantarctic Mountains. This technological progress will allow a better application of the surface exposure dating method, which in turn will help to reconstruct Antarctic ice sheet history and provide valuable knowledge of former ice-extent. Understanding Antarcticas ice-sheet history is crucial to predict its influence on past and future sea level changes. Part II: Technical Description Measurements of in-situ produced cosmogenic nuclides in Antarctic surficial rock samples provide unique time scales for glacial and landscape evolution processes. However, due to analytical challenges, pyroxene-bearing and widely distributed lithologies like the Ferrar dolerite of the Transantarctic Mountains, are underutilized. This proposal aims to changes this and to improve the cosmogenic nuclide methodologies for stable isotopes (21Ne and 3He) and radioactive nuclides (10Be) in pyroxenes. Proposed methodological improvements will be directly applicable to erosion rates and deposition ages of important glacial deposits, such as the controversial Sirius Group tills, and also to younger glacial features. Bennett Platform is the focus of this study because it is one of the southern-most Sirius Group outcrops along the Transantarctic Mountains, where cosmogenic ages are sparse. Preliminary measurements demonstrate large discrepancies between 3He and 21Ne age determinations in Sirius Group pyroxenes. One possible explanation is composition dependence of the 21Ne production rates. Coupled measurements of 3He, 21Ne, and 10Be in well-characterized pyroxene mineral separates from Ferrar dolerite will be used to better constrain the production rates, major element and trace element dependencies, the assumptions of the method, and ultimately advance the application of cosmogenic nuclides to mafic Antarctic lithologies. The main goals of this study are to improve measurement protocols for 10Be in pyroxene, and the determination of the composition dependence of 21Ne production rates by measuring mineral compositions (by electron microprobe), and nuclide concentrations in mineral pairs from young lava flows. Further aims are the validation of the nucleogenic contributions and the effects of helium diffusive loss through measurements of 3He/21Ne production ratios, combined with measurements of shielded samples of the Ferrar dolerite. Combined measurements of 3He, 21Ne and 10Be in pyroxenes have rarely been published for individual samples in Antarctica. The new and unique measurements of this study will advance the applicability of in-situ produced cosmogenic nuclides to both young and ancient Antarctic surfaces. The study will be performed using existing samples: no field work is requested. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project evaluates the role that water and rock/ice properties at the base of a fast moving glacier, or ice stream, play in controlling its motion. In Antarctica, where surface melting is limited, the speed of ice flow through the grounding zone (where ice on land detaches, and begins to float on ocean water) controls the rate at which glaciers contribute to sea level rise. The velocity of the ice stream is strongly dependent on resistance from the bed, so understanding the processes that control resistance to flow is critical in predicting ice sheet mass balance. In fact, the Intergovernmental Panel on Climate Change (IPCC) recognized this and stated in their 4th assessment report that reliable predictions of future global sea-level rise require improved understanding of ice sheet dynamics, which include basal controls on fast ice motion. Drilling to obtain direct observations of basal properties over substantial regions is prohibitively expensive. This project uses passive source seismology to "listen to" and analyze sounds generated by water flow and/or sticky spots at the ice/bed interface to evaluate the role that basal shear stress plays in ice flow dynamics. Because polar science is captivating to both scientists and the general public, it serves as an excellent topic to engage students at all levels with important scientific concepts and processes. In conjunction with this research, polar science educational materials will be developed to be used by students spanning middle school through the University level. Starting in summer 2015, a new polar science class for high school students in the California State Summer School for Mathematics and Science (COSMOS) will be offered at the University of California-Santa Cruz. This curriculum will be shared with the MESA Schools Program, a Santa Cruz and Monterey County organization that runs after-school science clubs led by teachers at several local middle and high schools with largely minority and underprivileged populations. This proposal extends the period of borehole and surface geophysical monitoring of the Whillians Ice Stream (WIS) established under a previous award for an additional 2 years. Data from the WIS network demonstrated that basal heterogeneity, revealed by microseismicity, shows variation over scales of 100's of meters. An extended observation period will allow detailed seismic characterization of ice sheet bed properties over a crucial length scale comparable to the local ice thickness. Due to the fast ice velocity (>300 m/year), a single instrumented location will move approximately 1 km during the extended 3 year operational period, allowing continuous monitoring of seismic emissions as the ice travels over sticky spots and other features in the bed (e.g., patches of till or subglacial water bodies). Observations over ~1km length scales will help to bridge a crucial gap in current observations of basal conditions between extremely local observations made in boreholes and remote observations of basal shear stress inferred from inversions of ice surface velocity data.
Non-technical description: Global sea-level rise is a significant long-term risk for human population and infrastructure. To mitigate and properly react to this threat, society needs accurate predictions of future sea-level variations. The largest uncertainty in these predictions comes from estimating the amount of ice that melts from polar ice sheets, especially from the West Antarctica ice sheet. Right now, scientists estimate the mass variations of ice sheets in two ways. The first way is using airplanes and repeated flybys to monitor the variation of ice sheet topography and estimate the gain or loss of ice. The second way is using satellite measurements to track gravity fluctuations that correlate with the variation of ice sheet volume. Both techniques work, but both have limitations including cost and resolution. This project uses a passive seismic monitoring method to estimate the change in weight of the ice pressing on the Earth's crust. One advantage of this seismic method is that vibrations are recorded continuously; therefore, it is possible to monitor the changes of the ice sheet with better temporal resolution. The sensitivity of the seismic waves also provides a picture of the structure of the interface between the ice and the rocks beneath the ice, where most of the dynamics and changes of the ice sheet take place. This information is difficult to obtain with other methods. In this project, the researchers will process and analyze previously acquired seismic data from the POLENET-ANET array, measuring variations in seismic wave speed through time to assess the amount of ice lost or gained. They will also determine important information about the mechanical properties at the ice-rock interface. The project will support a postdoctoral scholar to develop this new branch of seismological research and more generally the field of environmental seismology. This project will also support the education of a PhD student who will work in close collaboration with the postdoctoral scholar and the two researchers. Technical description: The researchers plan to monitor ice-mass variations in the West-Antarctic ice sheet by measuring and interpreting seismic velocity changes in crust beneath the ice sheet. This project will extend similar work already completed on the Greenland ice sheet, where ice-mass fluctuations were found to lead to poroelastic changes in the crust and modify the seismic-wave velocity. This investigation uses a passive seismology method, whereby repetitive seismic noise correlation functions are computed from records of Earth's ambient seismic noise field. Measurements of the temporal changes in the correlation functions are made and then related to variations of the poroelastic properties of the crust. The physical model for the relationship between ice-mass change and surface-wave velocity change has previously been verified using GRACE satellite data in Greenland. This project will specifically focus on the recent rapid ice loss in Western Antarctica using data from the POLENET-ANET seismic network. A comparison between the ice-sheet behaviors in Greenland and Antarctica will provide clarification about the underlying physical processes responsible for the observed seismic velocity changes. This new method will be a transformative approach to monitor ice sheets with the potential for much higher spatial and temporal resolution than existing methods. The fact that this method relies on seismic waves makes the approach completely independent from other modern ice-sheet monitoring techniques.
This award supports a project to find and date geologic evidence of past ice-marginal positions in the Pensacola Mountains, which border the Foundation Ice Stream at the head of the Weddell Sea embayment. The project will involve glacial geologic mapping and cosmogenic-nuclide surface exposure dating of glacially transported erratics. An ice-flow model will be used to link our exposure-dating results together in a glaciologically consistent way, and to relate them to regional LGM to Holocene elevation changes. A secondary focus of the project seeks to improve the effectiveness of exposure-dating methods in understanding ice sheet change. Changes in the location of the ice margin, and thus the exposure ages that record these changes, are controlled not only by regional ice sheet mass balance, but also by local effects on snow- and icefields immediately adjacent to the exposure-dating sites. This part of the project will combine glaciological observations near the present ice margin with targeted exposure- age sampling in an effort to better understand the processes controlling the ice margin location, and improve the interpretation of very recent exposure-age data as a record of latest Holocene to present ice sheet changes. The intellectual merit of the project is that it will provide direct geologic evidence of LGM-to-Holocene ice volume change in a region of Antarctica where no such evidence now exists. The broader impacts of the work involve both gathering information needed for accurate understanding of past and present global sea level change. Secondly, this project will help to develop and maintain the human and intellectual resources necessary for continued excellence in polar research and global change education, by linking experienced Antarctic researchers with early career scientists who seek to develop their expertise in both research and education. In addition, it brings together two early career scientists whose careers are focused at opposite ends of the research-education spectrum, thus facilitating better integration of research and education both in the careers of these scientists and in the outcome of this project. This award has field work in Antarctica.
Part 1: Nitrification is the conversion of ammonium to nitrate by a two-step process involving two different guilds of microorganisms: ammonia- and nitrite-oxidizers. The process is central to the global nitrogen cycle, affecting everything from retention of fertilizer on croplands to removal of excess nitrogen from coastal waters before it can cause blooms of harmful algae. It also produces nitrous oxide, an ozone-destroying, greenhouse gas. The energy derived from both steps of nitrification is used to convert inorganic carbon into microbial biomass. The biomass produced contributes to the overall food web production of the Southern Ocean and may be a particularly important subsidy during winter when low light levels restrict the other major source of biomass, primary production by single-celled plants. This project addresses three fundamental questions about the biology and geochemistry of polar oceans, with a focus on the process of nitrification. The first question the project will address concerns the contribution of chemoautotrophy (based on nitrification) to the overall supply of organic carbon to the food web of the Southern Ocean. Previous measurements indicate that it contributes about 9% to the Antarctic food web on an annual basis, but those measurements did not include the additional production associated with nitrite oxidation. The second question to be addressed is related to the first and concerns the coupling between the steps of the process. The third seeks to determine the significance of the contribution of other sources of nitrogen, (specifically organic nitrogen and urea released by other organisms) to nitrification because these contributions may not be assessed by standard protocols. Measurements made by others suggest that urea in particular might be as important as ammonium to nitrification in polar regions. This project will result in training a postdoctoral researcher and provide undergraduate students opportunities to gain hand-on experience with research on microbial geochemistry. The Palmer LTER (PAL) activities have focused largely on the interaction between ocean climate and the marine food web affecting top predators. Relatively little effort has been devoted to studying processes related to the microbial geochemistry of nitrogen cycling as part of the Palmer Long Term Ecological Research (LTER) program, yet these are a major themes at other sites. This work will contribute substantially to understanding an important aspect of nitrogen cycling and bacterioplankton production in the PAL-LTER study area. The team will be working synergistically and be participating fully in the education and outreach efforts of the Palmer LTER, including making highlights of the findings available for posting to their project web site and participating in any special efforts they have in the area of outreach. Part 2: The proposed work will quantify oxidation rates of 15N supplied as ammonium, urea and nitrite, allowing us to estimate the contribution of urea-derived N and complete nitrification (ammonia to nitrate) to chemoautotrophy and bacterioplankton production in Antarctic coastal waters. The project will compare these estimates to direct measurements of the incorporation of 14C into organic matter the dark for an independent estimate of chemoautotrophy. The team aims to collect samples spanning the water column: from surface water (~10 m), winter water (50-100 m) and circumpolar deep water (>150 m); on a cruise surveying the continental shelf and slope west of the Antarctic Peninsula in the austral summer of 2018. Other samples will be taken to measure the concentrations of nitrate, nitrite, ammonia and urea, for qPCR analysis of the abundance of relevant microorganisms, and for studies of related processes. The project will rely on collaboration with the existing Palmer LTER to ensure that ancillary data (bacterioplankton abundance and production, chlorophyll, physical and chemical variables) will be available. The synergistic activities of this project along with the LTER activities will provide a unique opportunity to assess chemoautotrophy in context of the overall ecosystem?s dynamics- including both primary and secondary production processes.
The Earth's climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from 'greenhouse' to 'icehouse' conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty. The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth. The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.
Nontechnical Description Glacier ice loss from Antarctica has the potential to lead to a significant rise in global sea level. One line of evidence for accelerated glacier ice loss has been an increase in the rate at which the land has been rising across the Antarctic Peninsula as measured by GPS receivers. However, GPS observations of uplift are limited to the last two decades. One goal of this study is to determine how these newly observed rates of uplift compare to average rates of uplift across the Antarctic Peninsula over a longer time interval. Researchers will reconstruct past sea levels using the age and elevation of ancient beaches now stranded above sea level on the low-lying coastal hills of the Antarctica Peninsula to determine the rate of uplift over the last 5,000 years. The researchers will also analyze the structure of the beaches using ground-penetrating radar and the characteristics of beach sediments to understand how sea-level rise and past climate changes are recorded in beach deposits. The benefits of these new records will be threefold: (1) they will help determine the natural variability of the Antarctic Ice Sheet and relative sea level (2) they will provide new insight about uplift and the structure of the Earth's interior; and 3) they will help researchers refine the methods used to determine the age of geologic deposits. The study results will be shared in outreach events at K-12 schools and with visitors of the Santa Barbara Natural History Museum. Three graduate students will be supported through this project. Technical description Paleo sea-level data is critical for reconstructing the size and extent of past ice sheets, documenting increased uplift following glacial retreat, and correcting gravity-based measurements of ice-mass loss for the impacts of post-glacial rebound. However, there are only 14 sites with relative sea-level data for Antarctica compared to over 500 sites used in a recent study of the North American Ice-Sheet complex. The purpose of this project is to use optically stimulated luminescence to date a series of newly discovered raised beaches along the eastern Antarctic Peninsula and an already known, but only preliminarily dated, series of raised beaches in the South Shetland Islands. Data to be collected at the raised beaches include the age and elevation, ground-penetrating radar profiles, and the roundness of cobbles and the lithology of ice-rafted debris. The study will test three hypotheses: (1) uplift rates have increased in modern times relative to the late Holocene across the Antarctic Peninsula, (2) the sea-level history at the northern tip of the Antarctic Peninsula is distinctly different than that of the South Shetland Islands, and (3) cobble roundness and the source of ice-rafted debris on raised beaches varied systematically through time reflecting the climate history of the northern Antarctic Peninsula.
Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth's ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. Work proposed here will test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement will be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work will contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. The proposed work will add a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that will collect sediment cores at three to five locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170°W. The goal is to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. In the proposed work the radiocarbon age of foraminifera that inhabited the surface ocean will be compared with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms will be used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it is expected that surface and deep-dwelling foraminifera will exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters return to the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work is to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean?s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarcitca.
Abstract for the general public: The margins of the Antarctic ice sheet have advanced and retreated repeatedly over the past few million years. Melting ice from the last retreat, from 19,000 to 9,000 years ago, raised sea levels by 8 meters or more, but the extents of previous retreats are less well known. The main goal of this project is to understand how Antarctic ice retreats: fast or slow, stepped or steady, and which parts of the ice sheet are most prone to retreat. Antarctica loses ice by two main processes: melting of the underside of floating ice shelves and calving of icebergs. Icebergs themselves are ephemeral, but they carry mineral grains and rock fragments that have been scoured from Antarctic bedrock. As the icebergs drift and melt, this 'iceberg-rafted debris' falls to the sea-bed and is steadily buried in marine sediments to form a record of iceberg activity and ice sheet retreat. The investigators will read this record of iceberg-rafted debris to find when and where Antarctic ice destabilized in the past. This information can help to predict how Antarctic ice will behave in a warming climate. The study area is the Weddell Sea embayment, in the Atlantic sector of Antarctica. Principal sources of icebergs are the nearby Antarctic Peninsula and Weddell Sea embayment, where ice streams drain about a quarter of Antarctic ice. The provenance of the iceberg-rafted debris (IRD), and the icebergs that carried it, will be found by matching the geochemical fingerprint (such as characteristic argon isotope ages) of individual mineral grains in the IRD to that of the corresponding source area. In more detail, the project will: 1. Define the geochemical fingerprints of the source areas of the glacially-eroded material using samples from each major ice stream entering the Weddell Sea. Existing data indicates that the hinterland of the Weddell embayment is made up of geochemically distinguishable source areas, making it possible to apply geochemical provenance techniques to determine the origin of Antarctica icebergs. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till samples to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information identifies which groups of ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents), and the stratigraphy of the cores shows the relative sequence of ice stream activity through time. A further dimension is added by determining the time lag between fine sediment erosion and deposition, using a new method of uranium-series isotope measurements in fine grained material. Technical abstract: The behavior of the Antarctic ice sheets and ice streams is a critical topic for climate change and future sea level rise. The goal of this proposal is to constrain ice sheet response to changing climate in the Weddell Sea during the three most recent glacial terminations, as analogues for potential future warming. The project will also examine possible contributions to Meltwater Pulse 1A, and test the relative stability of the ice streams draining East and West Antarctica. Much of the West Antarctic ice may have melted during the Eemian (130 to 114 Ka), so it may be an analogue for predicting future ice drawdown over the coming centuries. Geochemical provenance fingerprinting of glacially eroded detritus provides a novel way to reconstruct the location and relative timing of glacial retreat during these terminations in the Weddell Sea embayment. The two major objectives of the project are to: 1. Define the provenance source areas by characterizing Ar, U-Pb, and Nd isotopic signatures, and heavy mineral and Fe-Ti oxide compositions of detrital minerals from each major ice stream entering the Weddell Sea, using onshore tills and existing sediment cores from the Ronne and Filchner Ice Shelves. Pilot data demonstrate that detritus originating from the east and west sides of the Weddell Sea embayment can be clearly distinguished, and published data indicates that the hinterland of the embayment is made up of geochemically distinguishable source areas. Few samples of onshore tills are available from this area, so this project includes fieldwork to collect till to characterize detritus supplied by the Recovery and Foundation ice streams. 2. Document the stratigraphic changes in provenance of iceberg-rafted debris (IRD) and glacially-eroded material in two deep water sediment cores in the NW Weddell Sea. Icebergs calved from ice streams in the embayment are carried by the Weddell Gyre and deposit IRD as they pass over the core sites. The provenance information will identify which ice streams were actively eroding and exporting detritus to the ocean (via iceberg rafting and bottom currents). The stratigraphy of the cores will show the relative sequence of ice stream activity through time. A further time dimension is added by determining the time lag between fine sediment erosion and deposition, using U-series comminution ages.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The Science Coordination Office will facilitate planning and coordination of the science and broader impacts of several international research projects studying Thwaites Glacier--one of the largest glaciers in Antarctica. The glacier is located on the Pacific coast of the Antarctic continent. It is flowing almost twice as fast now as in the 1970s, and is one of the largest likely contributors to sea-level rise over the coming decades to centuries. Many of the factors that will affect the speed and retreat of Thwaites Glacier will be addressed by the set of projects funded by the Thwaites initiative. The Science Coordination Office comprises a US-UK science and communications team that will work with each project's scientists and students, logistics planners, and NSF and NERC to ensure the overall success of the project. The Office will maintain an informative website, and will produce content to explain the activities of the scientists and highlight the results of the work. The role of the Science Coordination Office will be to enhance integration and coordination among the science projects selected for the joint NSF-NERC Thwaites initiative to achieve maximum collective scientific and societal impact. The Office will facilitate scientific and logistical planning; facilitate data management, sharing, and discovery; and facilitate and support web content, outreach, and education for this high-profile research endeavor. The Office's role will be key to enabling the program to achieve its scientific goals and for the program to be broadly recognized and valued by scientists, the public, and policymakers. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Snow or firn aquifers are areas of subsurface meltwater storage that form in glaciated regions experiencing intense summer surface melting and high snowfall. Aquifers can induce hydrofracturing, and thereby accelerate flow or trigger ice-shelf instability leading to increased ice-sheet mass loss. Widespread aquifers have recently been discovered in Greenland. These have been modelled and mapped using new satellite and airborne remote-sensing techniques. In Antarctica, a series of catastrophic break-ups at the Wilkins Ice Shelf on the Antarctic Peninsula that was previously attributed to effects of surface melting and brine infiltration is now recognized as being consistent with a firn aquifer--possibly stimulated by long-period ocean swell--that enhanced ice-shelf hydrofracture. This project will verify inferences (from the same mapping approach used in Greenland) that such aquifers are indeed present in Antarctica. The team will survey two high-probability sites: the Wilkins Ice Shelf, and the southern George VI Ice Shelf. This two-year study will characterize the firn at the two field sites, drill shallow (~60 m maximum) ice cores, examine snow pits (~2 m), and install two AMIGOS (Automated Met-Ice-Geophysics Observing System) stations that include weather, GPS, and firn temperature sensors that will collect and transmit measurements for at least a year before retrieval. Ground-penetrating radar survey in areas surrounding the field sites will track aquifer extent and depth variations. Ice and microwave model studies will be combined with the field-observed properties to further explore the range of firn aquifers and related upper-snow-layer conditions. This study will provide valuable experience for three early-career scientists. An outreach effort through field blogging, social media posts, K-12 presentations, and public lectures is planned to engage the public in the team?s Antarctic scientific exploration and discovery. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Southern Ocean in the vicinity of Antarctica is a region characterized by seasonally-driven marine phytoplankton blooms that are often dominated by microalgal species which produce large amounts of dimethylsulfoniopropionate (DMSP). DMSP can be converted to the compound dimethylsulfide (DMS) which is a molecule that can escape into the atmosphere where it is known to have strong condensation properties that are involved in regional cloud formation. Production of DMSP can influence the diversity and composition of microbial assemblages in seawater and the types and activities of microbes in the seawater will likely affect the magnitude of DMSP\DMS production. The proposal aims to examine the role of DMSP in structuring the microbial communities in Antarctic waters and how this structuring may influence DMSP cycling. The project will leverage the Antarctic research to introduce concepts and data linking microbial diversity and biogeochemistry to a range of audiences (including high school and undergraduate students in Maine). The project will also engage teacher and students in rural K-8 schools and will allow a collaboration with a science writer and illustrator who will join the team in the field. The writer will use the southern ocean experience as the setting for a poster and a book about the proposed research and the scientists studying extreme environments. The project will examine (1) the extent to which the cycling of DMSP in southern ocean waters influences the composition and diversity of bacterial and protistan assemblages; (2) conversely, whether the composition and diversity of southern ocean protistan and bacterial assemblages influence the magnitude and rates of DMSP cycling; (3) the expression of DMSP degradation genes by marine bacteria seasonally and in response to additions of DMSP; and, to synthesize these results by quantifying (4) the microbial networks resulting from the presence of DMSP-producers and DMSP-consumers along with their predators, all involved in the cycling of DMSP in southern ocean waters. The work will be accomplished by conducting continuous growth experiments with DMSP-amended natural samples during field sampling of different microbial communities present in summer and fall. Data from the molecular (such as 16S/ 18S tag sequences, DMSP-cycle gene transcripts) and biogeochemical (such as biogenic sulfur cycling, bacterial production, microbial biomass) investigations will be integrated via network analysis.
The Antarctic subglacial environment remains one of the least explored regions on Earth. This project will examine the physical and biological characteristics of Subglacial Lake Mercer, a lake that lies 1200m beneath the West Antarctic Ice Sheet. This study will address key questions relating to the stability of the ice sheet, the subglacial hydrological system, and the deep-cold subglacial biosphere. The education and outreach component aims to widely disseminate results to the scientific community and to the general public through short films, a blog, and a website. Subglacial Lake Mercer is one of the larger hydrologically active lakes in the southern basin of the Whillans Ice Plain, West Antarctica. It receives about 25 percent of its water from East Antarctica with the remainder originating from West Antarctica, is influenced by drain/fill cycles in a lake immediately upstream (Subglacial Lake Conway), and lies about 100 km upstream of the present grounding line of the Ross Ice Shelf. This site will yield information on the history of the Whillans and Mercer Ice Streams, and on grounding line migration. The integrated study will include direct sampling of basal ice, water, and sediment from the lake in concert with surface geophysical surveys over a three-year period to define the hydrological connectivity among lakes on the Whillans Ice Plain and their flow paths to the sea. The geophysical surveys will furnish information on subglacial hydrology, aid the site selection for hot-water drilling, and provide spatial context for interpreting findings. The hot-water-drilled boreholes will be used to collect basal ice samples, provide access for direct measurement of subglacial physical, chemical, and biological conditions in the water column and sediments, and to explore the subglacial water cavities using a remotely operated vehicle equipped with sensors, cameras, and sampling equipment. Data collected from this study will address the overarching hypothesis "Contemporary biodiversity and carbon cycling in hydrologically-active subglacial environments associated with the Mercer and Whillans ice streams are regulated by the mineralization and cycling of relict marine organic matter and through interactions among ice, rock, water, and sediments". The project will be undertaken by a collaborative team of scientists, with expertise in microbiology, biogeochemistry, hydrology, geophysics, glaciology, marine geology, paleoceanography, and science communication.
Mak/1443482 This project will compare current atmospheric conditions with those of the remote past prior to human influence. This is important in order to understand the impact of human activities on Earth's atmosphere, and to determine the stability of the composition of the atmosphere in the past. How humans have impacted Earth?s atmospheric composition is important for developing accurate predictions of future global atmospheric conditions. In addition to training students, the investigators will support continuing education of high school science teachers on Long Island through specifically tailored, interactive seminars on various topics in earth science, atmospheric sciences, physics and biology. A pilot program at Mount Sinai School District, near Stony Brook University will be the first implementation of this program. The investigators plan to reconstruct historical variations in the sources of atmospheric carbon monoxide (CO) from measurements of the concentration and stable isotopic abundance of carbon monoxide ([CO], 13CO and C18O) in the South Pole Ice Core, which is being drilled in 2014-2016. The goal is to strategically sample and reconstruct the relative variations in CO source strengths over the past 20,000 years. These will be the first measurements to extend the CO record beyond 650 years before present, back to the last glacial maximum. Both atmospheric chemical processes and variations in CO sources can impact the CO budget, and variations in the CO budget are useful in identifying and quantifying chemistry-climate interactions.
Non-technical description: East Antarctica holds a vast, ancient ice sheet. The bedrock hidden beneath this ice sheet may provide clues to how today's continents formed, while the ice itself contains records of Earth's atmosphere from distant eras. New drilling technologies are now available to allow for direct sampling of these materials from more than two kilometers below the ice surface. However, getting this material will require knowing where to look. The Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) project will use internationally collected airborne survey data to search East Antarctica near the South Pole for key locations that will provide insight into Antarctica's geology and for locating the oldest intact ice on Earth. Ultimately, scientists are interested in obtaining samples of the oldest ice to address fundamental questions about the causes of changes in the timing of ice-age conditions from 40,000 to 100,000 year cycles. SPICECAP data analysis will provide site survey data for future drilling and will increase the overall understanding of Antarctica's hidden ice and geologic records. The project involves international collaboration and leveraging of internationally collected data. The SPICECAP project will train new interdisciplinary scientists at the undergraduate, graduate, and postdoctoral levels. Technical description: This study focuses on processing and interpretation of internationally collected aerogeophysical data from the Southern Plateau of the East Antarctic Ice Sheet. The data include ice penetrating radar data, laser altimetry, gravity and magnetics. The project will provide information on geological trends under the ice, the topography and character of the ice/rock interface, and the stratigraphy of the ice. The project will also provide baseline site characterization for future drilling. Future drilling sites and deep ice cores for old ice require that the base of the ice sheet be frozen to the bed (i.e. no free water at the interface between rock and ice) and the assessment will map the extent of frozen vs. thawed areas. Specifically, three main outcomes are anticipated for this project. First, the study will provide an assessment of the viability of Titan Dome, a subglacial highland region located near South Pole, as a potential old ice drilling prospect. The assessment will include determining the hydraulic context of the bed by processing and interpreting the radar data, ice sheet mass balance through time by mapping englacial reflectors in the ice and connecting them to ice stratigraphy in the recent South Pole, and ice sheet geometry using laser altimetry. Second, the study will provide an assessment of the geological context of the Titan Dome region with respect to understanding regional geologic boundaries and the potential for bedrock sampling. For these two goals, we will use data opportunistically collected by China, and the recent PolarGAP dataset. Third, the study will provide an assessment of the risk posture for RAID site targeting in the Titan Dome region, and the Dome C region. This will use a high-resolution dataset the team collected previously at Dome C, an area similar to the coarser resolution data collected at Titan Dome, and will enable an understanding of what is missed by the wide lines spacing at Titan Dome. Specifically, we will model subglacial hydrology with and without the high resolution data, and statistically examine the detection of subglacial mountains (which could preserve old ice) and subglacial lakes (which could destroy old ice), as a function of line spacing.
Overview: In order to close the global overturning circulation, high-density deep- and bottom waters produced at high latitudes must be made less dense and upwell to shallower depths. Available observations from the subtropical South Atlantic indicate that the bulk of the mixing in the deep ocean there takes place over the topographically rough Mid-Atlantic Ridge, in particular in the quasi-regularly spaced "fracture zone canyons" corrugating the ridge flanks. There, dense water is advected toward the ridge crest (i.e. upwelled) by persistent along-valley currents that flow down the unidirectional density gradients, which are maintained by strong turbulence (diapycnal mixing). Most of the data on which these inferences are based were collected during the Brazil Basin Tracer Release Experiment (BBTRE) along a single ridge-flank canyon in the western South Atlantic near 22S where previous analyses have shown that both tidal mixing and overflow processes are important. Therefore, it is likely that both processes must be considered in order to understand and parameterize the effects of turbulence and mixing in the canyons corrugating the flanks of all slow-spreading ridges, which make up large fractions of the sea floor, in particular in the Atlantic, Indian and Southern Oceans. The primary aim of this follow-on project is to improve our understanding of the dynamics over the corrugated flanks of slow-spreading mid-ocean ridges. Due to the coarse sampling resolution and choice of station locations it is not possible to answer important questions, such as the relative importance of tidal and sill mixing, from the BBTRE data. Therefore, high-resolution surveys of hydrography, three-dimensional flow, turbulence and mixing will be carried out in two neighboring canyons and over the intervening topographic spur in the BBTRE region to determine the relative contributions of tidal and sill-related mixing. Furthermore, profiling moorings deployed on two nearby sill regions will be used to derive time series of spatially integrated mixing related buoyancy fluxes and to investigate the strong but unexplained sub-inertial variability of the along-canyon flow recorded previously. Additionally, three small moorings will be deployed in saddles between the two canyons to investigate inter-canyon exchange. The data analysis will include available data from previous experiments, including a set of tracer profiles that has not been analyzed before. Intellectual Merit: The corrugated flanks of slow-spreading ridges cover large areas of the sea floor of several major ocean basins. Therefore, understanding the dynamics in the ~100 km of ridge-flank canyons and its effects on the buoyancy and upwelling budget of the abyssal ocean is of global significance. In addition to determining the relative importance of tidal mixing and cross-sill flows in two canyons, the temporal variability of turbulence and mixing from tidal to yearly time scales will be investigated to gain insights into the forcing of the along-canyon flows, the exchange between neighboring canyons, and the eventual fate of the canyon waters. Broader Impacts: It is anticipated that insights gained during this project will improve our understanding of abyssal mixing in many different regions with similar bottom topography and provide the basis for better parameterizations of the effects of turbulence and mixing in large-scale circulation and climate models that cannot resolve these small-scale processes. As part of the project, a graduate student and a post-doctoral researcher will be trained in all aspects of observational physical oceanography, from data acquisition to interpretation.
The depletion of stratospheric ozone over Antarctica leads to abnormally high levels of ultraviolet radiation (UVR) from the sun reaching the surface of the ocean. This phenomenon is predicted to continue for the next half century, despite bans on ozone-destroying pollutants. Phytoplankton in the near surface ocean are subjected to variable amounts of UVR and contain a lot of lipids (fats). Because phytoplankton are at the base of the food chain their lipids makes their way into the Antarctic marine ecosystem's food web. The molecular structures of phytoplankton lipids are easily altered by UVR. When this happens, their lipids can be transformed from healthy molecules into potentially harmful molecules(oxylipins) known to be disruptive to reproductive and developmental processes. This project will use state-of-the-art molecular methods to answer questions about extent to which UVR damages lipid molecules in phytoplankton, and how these resultant molecules might effect the food chain in the ocean near Antarctica. Lipid peroxidation is often invoked as consequence of increased exposure of phytoplankton to UVR-produced reactive oxygen species (ROS), but the literature is practically silent on peroxidized lipids and their byproducts (i.e. oxylipins) in the ocean. In waters of the West Antarctic Peninsula (WAP), spring-time blooms of diatoms contribute significantly to overall marine primary production. Oxylipins from diatoms can be highly bioactive; their impact on zooplankton grazers, bacteria, and other phytoplankton has been the subject of intense study. However, almost all of this work has focused on the production of oxylipins via enzymatic pathways, not by pathways involving UVR and/or ROS. Furthermore, rigorous experimental work on the effects of oxylipins has been confined almost exclusively to pure cultures and artificial communities. Thus, the true potential of these molecules to disrupt carbon cycling is very poorly-constrained, and is entirely unknown in the waters of the WAP. Armed with new highly-sensitive, state-of-the-art analytical techniques based on high-mass-resolution mass spectrometry, the principal investigator and his research group have begun to uncover an exquisite diversity of oxylipins in natural WAP planktonic communities. These techniques will be applied to understand the connections between UVR, ROS, oxylipins, and carbon cycling. The project will answer the question of how UVR, via ROS, affects oxylipin production by diatoms in WAP surface waters in controlled experiments conducted at a field station. With the answer to this question in hand, the project will also seek to answer how this phenomenon impacts the flow of carbon, particularly the export of organic carbon from the system, during a research cruise. The level of UVR-induced stresses experienced by oxylipin-rich planktonic communities in the WAP is unique, making Antarctica the only location for answering these fundamental questions. Major activities will include laboratory experiments with artificial membranes and diatom cultures, as well field experiments with phytoplankton, zooplankton, and bacteria in WAP waters.
General Statement: The continental shelf region west of the Antarctic Peninsula has recently undergone dramatic changes and ecosystem shifts, and the community of organisms that live in, or feed off, the sea floor sediments is being impacted by species invasions from the north. Previous studies of these sediments indicate that this community may consume much more of the regional productivity than previously estimated, suggesting that sediments are a rich and important component of this ecosystem and one that may be ripe for dramatic change. Furthermore, under richer sediment conditions, iron is mobilized and released back to the water column. Since productivity in this ecosystem is thought to be limited by the availability of iron, increased rates of iron release from these sediments could stimulate productivity and promote greater overall ecosystem change. In this research, a variety of sites across the shelf region will be sampled to accurately evaluate the role of sediments in consuming ecosystem productivity and to estimate the current level of iron release from the sediments. This project will provide a baseline set of sediment results that will present a more complete picture of the west Antarctic shelf ecosystem, will allow for comparison with water column measurements and for evaluation of the fundamental workings of this important ecosystem. This is particularly important since high latitude systems may be vulnerable to the effects of climate fluctuations. Both graduate and undergraduate students will be trained. Presentations will be made at scientific meetings, at other universities, and at outreach events. A project web site will present key results to the public and explain how this new information improves understanding of Antarctic ecosystems. Technical Description of Project: In order to determine the role of sediments within the west Antarctic shelf ecosystem, this project will determine the rates of sediment organic matter oxidation at a variety of sites across the Palmer Long Term Ecosystem Research (LTER) study region. To estimate the rates of release of iron and manganese from the sediments, these same sites will be sampled for detailed vertical distributions of the concentrations of these metals both in the porewaters and in important mineral phases. Since sediment sampling will be done at LTER sites, the sediment data can be correlated with the rich productivity data set from the LTER. In detail, the project: a) will determine the rates of oxygen consumption, organic carbon oxidation, nutrient release, and iron mobilization by shelf sediments west of the Antarctic Peninsula; b) will investigate the vertical distribution of diagenetic reactions within the sediments; and c) will assess the regional importance of these sediment rates. Sediment cores will be used to determine sediment-water fluxes of dissolved oxygen, total carbon dioxide, nutrients, and the vertical distributions of these dissolved compounds, as well as iron and manganese in the pore waters. Bulk sediment properties of porosity, organic carbon and nitrogen content, carbonate content, biogenic silica content, and multiple species of solid-phase iron, manganese, and sulfur species will also be determined. These measurements will allow determination of total organic carbon oxidation and denitrification rates, and the proportion of aerobic versus anaerobic respiration at each site. Sediment diagenetic modeling will link the processes of organic matter oxidation to metal mobilization. Pore water and solid phase iron and manganese distributions will be used to model iron diagenesis in these sediments and to estimate the iron flux from the sediments to the overlying waters. Finally, the overall regional average and distribution of the sediment processes will be compared with the distributions of seasonally averaged chlorophyll biomass and productivity.
The geological structure and history of Antarctica remains poorly understood because much of the continental crust is covered by ice. Here, the PIs will analyze over 15 years of seismic data recorded by numerous projects in Antarctica to develop seismic structural models of the continent. The seismic velocity models will reveal features including crustal thinning due to rifting in West Antarctica, the structures associated with mountain building, and the boundaries between different tectonic blocks. The models will be compared to continents that are better understood geologically to constrain the tectonic evolution of Antarctica. In addition, the work will provide better insight into how the solid earth interacts with and influences the development of the ice sheet. Surface heat flow will be mapped and used to identify regions in Antarctica with potential melting at the base of the ice sheet. This melt can lead to reduced friction and lower resistance to ice sheet movement. The models will help to determine whether the earth response to ice mass changes occurs over decades, hundreds, or thousands of years. Estimates of mantle viscosity calculated from the seismic data will be used to better understand the pattern and timescales of the response of the solid earth to changes in ice mass in various parts of Antarctica. The study will advance our knowledge of the structure of Antarctica by constructing two new seismic models and a thermal model using different but complementary methodologies. Because of the limitations of different seismic analysis methods, efforts will be divided between a model seeking the highest possible resolution within the upper 200 km depth in the well instrumented region (Bayesian Monte-Carlo joint inversion), and another model determining the structure of the entire continent and surrounding oceans extending through the mantle transition zone (adjoint full waveform inversion). The Monte-Carlo inversion will jointly invert Rayleigh wave group and phase velocities from earthquakes and ambient noise correlation along with P-wave receiver functions and Rayleigh H/V ratios. The inversion will be done in a Bayesian framework that provides uncertainty estimates for the structural model. Azimuthal anisotropy will be determined from Rayleigh wave velocities, providing constraints on mantle fabric and flow patterns. The seismic data will also be inverted for temperature structure, providing estimates of lithospheric thickness and surface heat flow. The larger-scale model will cover the entire continent as well as the surrounding oceans, and will be constructed using an adjoint inversion of phase differences between three component seismograms and synthetic seismograms calculated in a 3D earth model using the spectral element method. This model will fit the entire waveforms, including body waves and both fundamental and higher mode surface waves. Higher resolution results will be obtained by using double-difference methods and by incorporating Green's functions from ambient noise cross-correlation, and solving for both radial and azimuthal anisotropy. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Abstract (non-technical) Sea level rise is a problem of global importance and it is increasingly affecting the tens of millions of Americans living along coastlines. The melting of glaciers in mountain areas worldwide in response to global warming is a major cause of sea level rise and increases in nuisance coastal flooding. However, the world's largest land-based ice sheets are situated in the Polar Regions and their response under continued warming is very difficult to predict. One reason for this uncertainty is a lack of observations of ice behavior and melt under conditions of warming, as it is a relatively new global climate state lasting only a few generations so far. Researchers will investigate ice growth on Antarctica under past warm conditions using geological archives embedded in the layers of sand and mud under the sea floor near Antarctica. By peeling back at the layers beneath the seafloor investigators can read the history book of past events affecting the ice sheet. The Antarctic continent on the South Pole, carries the largest ice mass in the world. The investigator's findings will substantially improve scientists understanding of the response of ice sheets to global warming and its effect on sea level rise. Abstract (technical) The melt of land based ice is raising global sea levels with at present only minor contributions from polar ice sheets. However, the future role of polar ice sheets in climate change is one of the most critical uncertainties in predictions of sea level rise around the globe. The respective roles of oceanic and atmospheric greenhouse forcing on ice sheets are poorly addressed with recent measurements of polar climatology, because of the extreme rise in greenhouse forcing the earth is experiencing at this time. Data on the evolution of the West Antarctic ice sheet is particularly sparse. To address the data gap, researchers will reconstruct the timing and spatial distribution of Antarctic ice growth through the last greenhouse to icehouse climate transition around 37 to 33 Ma. They will collect sedimentological and geochemical data on core samples from a high-latitude paleoarchive to trace the shutdown of the chemical weathering system, the onset of glacial erosion, ice rafting, and sea ice development, as East and West Antarctic ice sheets coalesced in the Weddell Sea sector. Their findings will lead to profound increases in the understanding of the role of greenhouse forcing in ice sheet development and its effect on the global climate system. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice cores contain detailed accounts of Earth's climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
OPP 9615281 Luyendyk OPP 9615282 Siddoway Abstract This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.
Blankenship: 9319369 Bell: 9319854 Behrendt: 9319877 This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.
Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.
The Ross Sea is the one of the most productive regions in Antarctica and supports large populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), and Antarctic silverfish (Pleuragramma antarcticum). Copepods and crystal krill dominate the diets of Antarctic silverfish, the dominant fish species in the high Antarctic zone, and silverfish are a major link between lower (copepods, krill) and higher (fishes, marine mammals, flighted birds, Adélie and Emperor penguins) trophic levels. Despite the significance of these key species, there is limited understanding of copepod, krill, and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers within the Ross Sea. Autonomous underwater profiling gliders are a developing technology that offers the potential for providing high spatial, temporal, and depth resolution data on regional scales. The project will test the capability of a multi-frequency echo sounder integrated into a Slocum Webb glider with the aim of providing the first glider-based acoustic assessment of simultaneous distributions of three trophic levels in the Ross Sea. Complementary glider sensors measuring physical, chemical, and biological parameters will provide mesoscale and sub-mesoscale hydrographic information from which phytoplankton-zooplankton-fish interactions and the relationships between these organisms and physics drivers (sea ice, circulation features) will be investigated. The approach proposed here, glider acoustics, is relatively new and has the potential to be transformational for investigating food webs and the Ross Sea ecosystem. Researchers will modify and integrate an Acoustic Zooplankton and Fish Profiler (AZFP) multi-frequency echo sounder into a Slocum Webb G2 glider with the capability to differentiate between krill and other types of zooplankton, including copepods, and different sizes of krill and silverfish. The AZFP will be complemented with the existing glider sensors including a CTD, a WET Labs BB2FL ECO puck configured for simultaneous chlorophyll fluorescence (phytoplankton biomass) and optical backscatter measurements, and an Aanderaa Optode for measuring dissolved oxygen. The new sensor suite will be tested during a four-week glider deployment, where it will conduct acoustic surveys to map distribution and abundance of multiple zooplankton taxa and silverfish during the austral summer along the Terra Nova Bay polynya ice shelf and in adjacent continental shelf waters. The relationships between phytoplankton-zooplankton-fish distributions and the physical drivers of zooplankton and silverfish species and size distributions will be investigated. Coordinated ship-based acoustic sampling and net tows/trawls will be conducted multiple times during the glider deployment to validate glider acoustic-based species, size, and abundance measurements. Open accessible, automated data produced during this project will be made available through RUCOOL (Rutgers University Center for Ocean Observing Leadership) and THREDDS (Thematic Real-time Environmental Data Distribution System). The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will define a successful outcome of this project that should help in identifying the challenges in their use as a potentially cost-effective, automated examination of food webs in the Antarctic.
Collaborative Proposal: A field and laboratory examination of the diatom N and Si isotope proxies: Implications for assessing the Southern Ocean biological pump The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience. This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.
Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth's largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth's surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers' involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.
Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.
This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible. This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.
Earth's geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad. The radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Stone/1341728 This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past and if so, when did this occur. This topic is of interest to geologists who have long been studying the history and behavior of ice sheets (including the WAIS) in order to determine what climatic conditions allow an ice sheet to survive and what conditions have caused them to collapse in the past. The bulk of this research has focused on the last ice age, when climate conditions were far colder than the present; this project will focus on the response of ice sheets to warmer climates in the past. A new and potentially transformative approach that uses the analysis of atoms transformed by cosmic-rays in bedrock beneath the WAIS will allow a definitive test for ice free conditions in the past. This is because the cosmic rays capable of producing the necessary reactions can penetrate only a few meters through glacier ice. Therefore, if they are detected in samples from hundreds of meters below the current ice sheet surface this would provide definitive proof of mostly ice-free conditions in the past. The concentrations of different cosmic ray products in cores from different depths will help answer the question of how frequently bedrock has been exposed, how much the ice sheet has thinned, and which time periods in the past produced climatic conditions capable of making the ice sheet unstable. Short bedrock cores beneath the ice sheet near the Pirrit Hills in West Antarctica will be collected using a new agile sub-ice geological drill (capable of drilling up to 200 meters beneath the ice surface) that is being developed by the Ice Drilling Program Office (IDPO) to support this and other projects. Favorable drilling sites have already been identified based on prior reconnaissance mapping, sample analysis and radar surveys of the ice-sheet bed. The cores collected in this study will be analyzed for cosmic-ray-produced isotopes of different elements with a range of half-lives from 5700 yr (C-14) to 1.4 Myr (Be-10), as well as stable Ne-21. The presence or absence of these isotopes will provide a definitive test of whether bedrock surfaces were ice-free in the past and due to their different half-lives, ratios of the isotopes will place constraints on the age, frequency and duration of past exposure episodes. Results from bedrock surfaces at different depths will indicate the degree of past ice-sheet thinning. The aim is to tie evidence of deglaciation in the past to specific periods of warmer climate and thus to gauge the ice sheet's response to known climate conditions. This project addresses the broad question of ice-sheet sensitivity to climate warming, which previously has been largely determined indirectly from sea-level records. In contrast, this project will provide direct measurements that provide evidence of ice-sheet thinning in West Antarctica. Results from this work will help to identify the climatic factors and thresholds capable of endangering the WAIS in future. The project will make a significant contribution to the ongoing study of climate change, ice-sheet melting and associated sea-level rise. This project has field work in Antarctica.
Accurate reconstructions and predictions of glacier movement on timescales of human interest require a better understanding of available observations and the ability to model the key processes that govern ice flow. The fact that many of these processes are interconnected, are loosely constrained by data, and involve not only the ice, but also the atmosphere, ocean, and solid Earth, makes this a challenging endeavor, but one that is essential for Earth-system modeling and the resulting climate and sea-level forecasts that are provided to policymakers worldwide. Based on the amount of ice present in the West Antarctic Ice Sheet and its ability to flow and/or melt into the ocean, its complete collapse would result in a global sea-level rise of 3.3 to 5 meters, making its stability and rate of change scientific questions of global societal significance. Whether or not a collapse eventually occurs, a better understanding of the potential West Antarctic contribution to sea level over the coming decades and centuries is necessary when considering the fate of coastal population centers. Recent observations of the Amundsen Sea Embayment of West Antarctica indicate that it is experiencing faster mass loss than any other region of the continent. At present, the long-term stability of this embayment is unknown, with both theory and observations suggesting that collapse is possible. This study is focused on this critical region. We will test an ice-sheet model against existing observations, improve treatment of key processes in the model, and make projections with uncertainty assessments. This is a three-year modeling study using the open-source Ice Sheet System Model in coordination with other models to improve projections of future sea-level change. Project goals are to: 1. hindcast the past two-to-three decades of evolution of the Amundsen Sea Embayment sector to determine controlling processes, incorporate and test parameterizations, and assess and improve model initialization, spinup, and performance; 2. improve the model by utilizing sensitivity studies with regional process-oriented models to create numerically efficient parameterizations for key sub-grid-scale processes; 3. project a range of likely evolutions of the Amundsen Sea Embayment sector and their respective contributions to sea level in the next several centuries; 4. attribute sources of errors in the hindcast and provide an assessment of the uncertainties in the projections, including a range of likely outcomes given various forcings and inclusion or omission of physical processes in the model. At present, the long-term stability of the Amundsen Sea Embayment is unknown, with both theory (the "marine ice sheet instability hypothesis") and observations (rapid thinning and grounding-line retreat approaching regions where the bed deepens inland) suggesting that collapse is possible. But incompletely understood physical processes (e.g., basal hydrology, rheology, and sliding; tidal effects; ice-ocean interaction along the shelf and within the grounding zone) and lack of resolution in basal topography datasets making the ultimate outcome uncertain. Thus, there is a pressing need for high-resolution simulations of this region that include numerical representations of controlling physical processes (many of which are applicable elsewhere) within a higher-order ice-sheet model capable of assimilating recent observations and providing uncertainty analyses associated with model and data limitations. By focusing on the Amundsen Sea Embayment as a connected region across the 10-10,000-meter scales using a hierarchy of one, two, and three-dimensional models along with the sensitivity analysis tools built into the Ice Sheet System Model, this project aims to produce (1) the most reliable results to date when compared with studies that consider only one ice stream or the entire ice sheet and (2) estimates of differing dynamic responses arising from errors in data, model parameterizations, and forcings. Given the uncertainties, the project will produce a range of predictions with characteristic trends that can be recognized within future observational data sets. As new data become available, some predicted rates of change could be culled from the predictive paths generated by this study.
The response of the Antarctic Ice Sheet to future climatic changes is recognized as the greatest uncertainty in projections of future sea level. An understanding of past ice fluctuations affords insight into ice-sheet response to climate and sea-level change and thus is critical for improving sea-level predictions. This project will examine deglaciation of the southern Ross Sea over the past few thousand years to document oscillations in Antarctic ice volume during a period of relatively stable climate and sea level. We will help quantify changes in ice volume, improve understanding of the ice dynamics responsible, and examine the implications for future sea-level change. The project will train future scientists through participation of graduate students, as well as undergraduates who will develop research projects in our laboratories. Previous research indicates rapid Ross Sea deglaciation as far south as Beardmore Glacier early in the Holocene epoch (which began approximately 11,700 years before present), followed by more gradual recession. However, deglaciation in the later half of the Holocene remains poorly constrained, with no chronological control on grounding-line migration between Beardmore and Scott Glaciers. Thus, we do not know if mid-Holocene recession drove the grounding line rapidly back to its present position at Scott Glacier, or if the ice sheet withdrew gradually in the absence of significant climate forcing or eustatic sea level change. The latter possibility raises concerns for future stability of the Ross Sea grounding line. To address this question, we will map and date glacial deposits on coastal mountains that constrain the thinning history of Liv and Amundsen Glaciers. By extending our chronology down to the level of floating ice at the mouths of these glaciers, we will date their thinning history from glacial maximum to present, as well as migration of the Ross Sea grounding line southwards along the Transantarctic Mountains. High-resolution dating will come from Beryllium-10 surface-exposure ages of erratics collected along elevation transects, as well as Carbon-14 dates of algae within shorelines from former ice-dammed ponds. Sites have been chosen specifically to allow close comparison of these two dating methods, which will afford constraints on Antarctic Beryllium-10 production rates.
This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators' efforts to disseminate outcomes of climate change science to the broader community.
The Antarctic marine ecosystem is highly productive and supports a diverse range of ecologically and commercially important species. A key species in this ecosystem is Antarctic krill, which in addition to being commercially harvested, is the principle prey of a wide range of marine organisms including penguins, seals and whales. The aim of this study is to use penguins and other krill predators as sensitive indicators of past changes in the Antarctic marine food web resulting from climate variability and the historic harvesting of seals and whales by humans. Specifically this study will recover and analyze modern (<20 year old), historic (20-200 year old) and ancient (200-10,000 year old) penguin and other krill predator tissues to track their past diets and population movements relative to shifts in climate and the availability of Antarctic krill. Understanding how krill predators were affected by these factors in the past will allow us to better understand how these predators, the krill they depend on, and the Antarctic marine ecosystem as a whole will respond to current challenges such as global climate change and an expanding commercial fishery for Antarctic krill. The project will further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This project will support the cross-institutional training of undergraduate and graduate students in advanced analytical techniques in the fields of ecology and biogeochemistry. In addition, this project includes educational outreach aimed encouraging participation in science careers by engaging K-12 students in scientific issues related to Antarctica, penguins, marine ecology, biogeochemistry, and global climate change. This research will help place recent ecological changes in the Southern Ocean into a larger historical context by examining decadal and millennial-scale shifts in the diets and population movements of Antarctic krill predators (penguins, seals, and squid) in concert with climate variability and commercial harvesting. This will be achieved by coupling advanced stable and radio isotope techniques, particularly compound-specific stable isotope analysis, with unprecedented access to modern, historical, and well-preserved paleo-archives of Antarctic predator tissues dating throughout the Holocene. This approach will allow the project to empirically test if observed shifts in Antarctic predator bulk tissue stable isotope values over the past millennia were caused by climate-driven shifts at the base of the food web in addition to, or rather than, shifts in predator diets due to a competitive release following the historic harvesting of krill eating whale and seals. In addition, this project will track the large-scale abandonment and reoccupation of penguin colonies around Antarctica in response to changes in climate and sea ice conditions over the past several millennia. These integrated field studies and laboratory analyses will provide new insights into the underlying mechanisms that influenced past shifts in the diets and population movements of charismatic krill predators such as penguins. This will allow for improved projections of the ecosystem consequences of future climate change and anthropogenic harvesting scenarios in the Antarctica that are likely to affect the availability of Antarctic krill.
Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. The study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.
During winter, sea-ice coverage along the Antarctic coast is punctuated by numerous polynyas--isolated openings of tens to hundreds of kilometer wide. These coastal polynyas are hotspots of sea ice production and the primary source regions of the bottom water in the global ocean. They also host high levels of biological activities and are the feeding grounds of Emperor penguins and marine mammals. The polynyas are a key component of the Antarctic coastal system and crucial for the survival of penguins and many other species. These features also differ dramatically from each other in timing of formation, duration, phytoplankton growth season, and overall biological productivity. Yet, the underlying reasons for differences among them are largely unknown. This project studies the fundamental biophysical processes at a variety of polynyas, examines the connection between the physical environment and the phytoplankton and penguin ecology, and investigates the mechanisms behind polynya variability. The results of this interdisciplinary study will provide a context for interpretation of field measurements in Antarctic coastal polynyas, set a baseline for future polynya studies, and examine how polynya ecosystems may respond to local and large-scale environmental changes. The project will include educational and outreach activities that convey scientific messages to a broad audience. It aims to increase public awareness of the interconnection between large-scale environmental change and Antarctic coastal systems. The main objectives of this study are to form a comprehensive understanding of the temporal and spatial variability of Antarctic coastal polynyas and the physical controls of polynya ecosystems. The project takes an interdisciplinary approach and seeks to establish a modeling system centered on the Regional Ocean Modeling System. This system links the ice and ocean conditions to the plankton ecology and penguin population. Applications of the modeling system in representative polynyas, in conjunction with analysis of existing observations, will determine the biophysical influences of individual forcing factors. In particular, this study will test a set of hypothesized effects of winds, offshore water intrusion, ice-shelf melting, sea-ice formation, glacier tongues, and ocean stratification on the timing of polynya phytoplankton bloom and the overall polynya biological productivity. The project will also examine how changing polynya state affects penguin breeding success, adult survival, and population growth. The team will conduct idealized sensitivity analysis to explore implications of forcing variability, including local and large-scale environmental change, on Antarctic coastal ecosystems.
Abstract During the Early Pliocene, 4.8 to 3.4 million years ago, warmer-than-present global temperatures resulted in a retreat of the Ross Ice Shelf and West Antarctic Ice Sheet. Understanding changes in ocean dynamics during times of reduced ice volume and increased temperatures in the geologic past will improve the predictive models for these conditions. The primary goal of the proposed research is to develop a new oxygen isotope record of Pliocene oceanographic conditions near the Antarctic continent. Oxygen isotope values from the carbonate tests of benthic foraminifera have become the global standard for paleo-oceanographic studies, but foraminifera are sparse in high-latitude sediment cores. This research will instead make use of oxygen isotope measurements from diatom silica preserved in a marine sediment core from the Ross Sea. The project is the first attempt at using this method and will advance understanding of global ocean dynamics and ice sheet-ocean interactions during the Pliocene. The project will foster the professional development of two early-career scientists and serve as training for graduate and undergraduate student researchers. The PIs will use this project to introduce High School students to polar/oceanographic research, as well as stable isotope geochemistry. Collaboration with teachers via NSTA and Polar Educators International will ensure the implementation of excellent STEM learning activities and curricula for younger students. Technical Description This project will produce a high-resolution oxygen isotope record from well-dated diatom rich sediments that have been cross-correlated with global benthic foraminifera oxygen isotope records. Diatom silica frustules deposited during the Early Pliocene and recovered by the ANDRILL Project (AND-1B) provide ideal material for this objective. Diatomite unites in the AND-1B core are nearly pure, with little evidence of opal formation. A diatom oxygen isotope record from this core offers the potential to constrain lingering uncertainties about Ross Sea and Southern Ocean paleoceanography and Antarctic Ice Sheet history during a time of high atmospheric carbon dioxide concentrations. Specifically, oxygen isotope variations will be used to constrain changes in the water temperature and/or freshwater flux in the Pliocene Ross Sea. Diatom species data from the AND-1B core have been used to infer variations in the extent and duration of seasonal sea ice coverage, sea surface temperatures, and mid-water advection onto the continental shelf. However, the diatom oxygen isotope record will provide the first direct measure of water/oxygen isotope values at the Antarctic continental margin during the Pliocene.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.
Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.
In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth's past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth's ancient climate and what we can learn from it. Antarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic.
Marine food webs can concentrate monomethylmercury (MMHg), a neurotoxin in mammals, in upper trophic level consumers. Despite their remoteness, coastal Antarctic marine ecosystems accumulate and biomagnify MMHg to levels observed at lower latitudes and in the Arctic. Marine sediments and other anoxic habitats in the oceans are typical areas where methylation of mercury occurs and these are likely places where MMHg is being produced. Krill, and more specifically their digestive tracts, may be a previously unaccounted for site where the production of MMHg may be occurring in the Antarctic. If monomethylmercury production is occurring in krill, current views regarding bioaccumulation in the food web and processes leading to the production and accumulation of mercury in the Antarctic Ocean could be better informed, if not transformed. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiome's genomic content and potential for production of monomethyl mercury by detecting the genes involved in mercury transformations. By analyzing the krill gut microbiome, the project will provide insights regarding animal-microbe interactions and their potential role in globally important biogeochemical cycles. This project will conduct a preliminary assessment of the krill gut microbiomes, the microbiomes genomic content and potential for production of monomethylmercury. The diversity and metabolic profiles of microorganisms in krill digestive tracts will be evaluated using massively parallel Illumina DNA sequencing technology to produce 16S rRNA gene libraries and assembled whole metagenomes. The project will also quantify the abundance and expression of Hg methylation genes, hgcAB, and identify their taxonomic affiliations in the microbiome communities. Environmental metagenomes, 16S rRNA gene inventories produced from this project will provide the polar science community with valuable databases and experimental tools with which to examine coastal Antarctic microbial ecology and biogeochemistry. The project will seek to provide a wider window into the diversity of extremophile microbial communities and the identification of potentially unique and useful bioactive compounds. In addition to public education and outreach. This project will train graduate students and provide educational and outreach opportunities at the participating institutions
Ice shelves are the floating portions of glaciers that terminate in the ocean. They are common around the periphery of Antarctica. The accumulation of surface meltwater on or near the surface of ice shelves can play a role in ice-shelf collapse, which leads to accelerated loss of grounded ice and sea-level rise. Recent studies have showed that present-day meltwater generation and movement across the surface of Antarctica is more widespread than previously thought and is expected to increase. Consequently, there is a growing need to address the role of surface water in forecasts of ice-shelf behavior. While much progress has been made, understanding of the role of water in ice-shelf collapse is still in its infancy. This award supports a workshop that will bring together experts from multiple disciplines that, together, can advance understanding of Antarctic surface hydrology and its role in the future stability of ice shelves. This workshop will bring together U.S. and international scientists with expertise in ice-sheet dynamics, glacial hydrology, climatology, and other disciplines to identify critical knowledge gaps and move the community towards answering fundamental questions such as: What climate dynamics are responsible for surface meltwater generation in Antarctica? What controls the spatiotemporal distribution of meltwater ponds on Antarctic ice shelves? Where is meltwater generated, where does it pond today, and how will this change this century? How will meltwater impact ice shelves? How will surface hydrology impact sea-level this century? The deliberations will be captured in a workshop report and review paper that will be broadly distributed.
This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999.
The Western Antarctic Peninsula is experiencing climate change at one of the fastest rates of anywhere around the globe. Accelerated climate change is likely to affect the many benthic marine invertebrates that live within narrow temperature windows along the Antarctic Continental Shelf in presently unidentified ways. At present however, there are few data on the physiological consequences of climate change on the sensitive larval stages of cold-water corals, and none on species living in thermal extremes such as polar waters. This project will collect the larvae of the non-seasonal, brooding scleractinian Flabellum impensum to be used in a month-long climate change experiment at Palmer Station. Multidisciplinary techniques will be used to examine larval development and cellular stress using a combination of electron microscopy, flow cytometry, and Inductively Coupled Plasma Mass Spectometry. Data from this project will form the first systematic study of the larval stages of polar cold-water corals, and how these stages are affected by temperature stress at the cellular and developmental level. Cold-water corals have been shown to be important ecosystem engineers, providing habitat for thousands of associated species, including many that are of commercial importance. Understanding how the larvae of these corals react to warming trends seen today in our oceans will allow researchers to predict future changes in important benthic communities around the globe. Associated education and outreach include: 1) Increasing student participation in polar research by involving postdoctoral and undergraduate students in the field and research program; ii) promotion of K-12 teaching and learning programs by providing information via a research website, Twitter, and in-school talks in the local area; iii) making the data collected available to the wider research community via peer reviewed published literature and iv) reaching a larger public audience through such venues as interviews in the popular media, You Tube and other popular media outlets, and local talks to the general public.
Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community "backbone network" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.
Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.
There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future.
This EAGER project will compare gene expression patterns in the planktonic communities under ice covers that form in coastal embayment's in the Antarctic Peninsula. Previous efforts taking advantage of unique ice conditions in November and December of 2015 allowed researchers to conduct an experiment to examine the role of sea ice cover on microbial carbon and energy transfer during the winter-spring transition. The EAGER effort will enable the researchers to conduct the "omics" analyses of the phytoplankton to determine predominant means by which energy is acquired and used in these settings. This EAGER effort will apply new expertise to fill an existing gap in ecological observations along the West Antarctic Peninsula. The principle product of the proposed work will be a novel dataset to be analyzed and by an early career researcher from an underserved community (veteran). The critical baseline data contained in this dataset enable a comparison of eukaryotic and prokaryotic gene expression patterns to establish the relative importance of chemoautotrophy, heterotrophy, mixotrophy, and phototrophy during the experiments. this information and data will be made immediately available to the broader scientific community, and will enable the development of further hypotheses on ecosystem change as sea ice cover changes in the region. Very little gene expression data is currently available for the Antarctic marine environment, and no gene expression data is available during the ecologically critical winter to spring transition. Moreover, ice cover in bays is common along the West Antarctic Peninsula yet the opportunity to study cryptophyte phytoplankton physiology beneath such ice conditions in coastal embayments is rare.
Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as 'polar gigantism.' Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.<br/><br/>The prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.
Aydin/1644245 This award supports a project to measure ethane in ice core air extracted from the recently drilled intermediate depth South Pole ice core (SPICECORE). Ethane is an abundant hydrocarbon in the atmosphere. The ice core samples that will be used in this analysis will span about 150 years before present to about 55,000 years before present and therefore, ethane emissions linked to human activities are not a subject of this study. The study will focus on quantifying the variability in the natural sources of ethane and the processes that govern its removal from the atmosphere. A long-term ice core ethane record will provide new knowledge on the chemistry of Earth?s atmosphere during time periods when human influence was either much smaller than present day or non-existent. The broader impacts of this work include education and training of students and a contribution to a better understanding of the chemistry of the atmosphere in the past and how it has been impacted by past changes in climate. Natural sources that emit ethane are both geologic (e.g. seeps, vents, mud volcanoes etc.) and pyrogenic (wild fires) which is commonly called biomass burning. Ethane is removed from the atmosphere via oxidation reactions. The ice core ethane measurements have great potential as a proxy for gaseous emissions from biomass burning. This is especially true for time periods preceding the industrial revolution when atmospheric variability of trace gases was largely controlled by natural processes. Another objective of this study is to improve understanding of the causes of atmospheric methane variability apparent which are in the existing ice core records. Methane is a simpler hydrocarbon than ethane and more abundant in the atmosphere. Even though the project does not include any methane measurements; the commonalities between the sources and removal of atmospheric ethane and methane mean that ethane measurements can be used to gain insight into the causes of changes in atmospheric methane levels. The broader impacts of the project include partial support for one Ph.D. student and support for undergraduate researchers at UC Irvine. The PIs group currently has 4 undergraduate researchers. The PI and the graduate students in the UCI ice core laboratory regularly participate in on- and off-campus activities such as laboratory tours and lectures directed towards educating high-school students and science teachers, and the local community at large about the scientific value of polar ice cores as an environmental record of our planet's past. The results of this research will be disseminated via peer-review publications and will contribute to policy-relevant activities such as the IPCC Climate Assessment. Data resulting from this project will be archived in a national data repository. This award does not have field work in Antarctica.
The solidified remnants of large magma bodies within the continental crust hold the key to understanding the chemical and physical evolution of volcanic provinces through time. These deposits also commonly contain some of the world's most important ore deposits. Exposed deposits in South Africa, Greenland, USA, Canada, and Antarctica have led researchers to propose that the bigger the magma body, the faster it will crystallize. While this might seem counter-intuitive (typically it is thought that more magma = hotter = harder to cool), the comparison of these exposures show that bigger magma chambers maintain a molten top that is always in contact with the colder crust; whereas smaller magma chambers insulate themselves by crystallizing at the margins. The process is similar to the difference between a large cup of coffee with no lid, and a smaller cup of coffee held in a thermos. The large unprotected cup of coffee will cool down much faster than that held in the thermos. This research project of VanTongeren and Schoene will use previously collected rocks from the large (~8-9 km thick) Dufek Intrusion in Antarctica to precisely quantify how fast the magma chamber crystallized, and compare that rate to the much smaller magma chamber exposed in the Skaergaard Intrusion of E. Greenland. The work is an important step towards improving our understanding of time-scales associated with the thermal and chemical evolution of nearly all magma chambers on Earth, which will ultimately lead to better predictions of volcanic hazards globally. The work will also yield important insights into the timescales and conditions necessary for developing vast magmatic ore deposits, which is essential to the platinum and steel industries in the USA and abroad. Based on observations of solidification fronts in six of the world's most completely exposed layered mafic intrusions, it was recently proposed that bigger magma chambers must crystallize faster than small magma chambers. While this is initially counter-intuitive, the hypothesis falls out of simple heat balance equations and the observation that the thickness of cumulates at the roofs of such intrusions is negatively proportional to the size of the intrusion. In this study, VanTongeren and Schoene will directly test the hypothesis that bigger magma chambers crystallize faster by applying high precision U-Pb zircon geochronology on 5-10 samples throughout the large Dufek Intrusion of Antarctica. Due to uncertainties in even the highest-precision ID-TIMS analyses, the Dufek Intrusion of Antarctica is the only large layered mafic intrusion on Earth where this research can be accomplished. VanTongeren and Schoene will place the geochronological measurements of the Dufek Intrusion into a comprehensive petrologic framework by linking zircon crystallization to other liquidus phases using mineral geochemistry, zircon saturation models, and petrologic models for intrusion crystallization. The research has the potential to radically change the way that we understand the formation and differentiation of large magma bodies within the shallow crust. Layered intrusions are typically thought to cool and crystallize over very long timescales allowing for significant differentiation of the magmas and reorganization of the cumulate rocks. If the 'bigger magma chambers crystallize faster hypothesis' holds this could reduce the calculated solidification time scales of the early earth and lunar magma oceans and have important implications for magma chamber dynamics of active intraplate volcanism and long-lived continental arcs. Furthermore, while the Dufek Intrusion is one of only two large layered intrusions exposed on Earth, very little is known about its petrologic evolution. The detailed geochemical and petrologic work of VanTongeren and Schoene based on analyses of previously collected samples will provide important observations with which to compare the Dufek and other large magma chambers.
Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores. Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. <br/><br/>INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. <br/><br/>BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.
Conway/1141866 This award supports a project to conduct a suite of experiments to study spatial and temporal variations of basal conditions beneath Beardmore Glacier, an East Antarctic outlet glacier that discharges into the Ross Sea Embayment. The intellectual merit of the project is that it should help verify whether or not global warming will play a much larger role in the future mass balance of ice sheets than previously considered. Recent observations of rapid changes in discharge of fast-flowing outlet glaciers and ice streams suggest that dynamical responses to warming could affect that ice sheets of Greenland and Antarctica. Assessment of possible consequences of these responses is hampered by the lack of information about the basal boundary conditions. The leading hypothesis is that variations in basal conditions exert strong control on the discharge of outlet glaciers. Airborne and surface-based radar measurements of Beardmore Glacier will be made to map the ice thickness and geometry of the sub-glacial trough and active and passive seismic experiments, together with ground-based radar and GPS measurements will be made to map spatial and temporal variations of conditions at the ice-bed interface. The observational data will be used to constrain dynamic models of glacier flow. The models will be used to address the primary controls on the dynamics of Antarctic outlet glaciers, the conditions at the bed, their spatial and temporal variation, and how such variability might affect the sliding and flow of these glaciers. The work will also explore whether or not these outlet glaciers could draw down the interior of East Antarctica, and if so, how fast. The study will take three years including two field seasons to complete and results from the work will be disseminated through public and professional meetings and journal publications. All data and metadata will be made available through the NSIDC web portal. The broader impacts of the work are that it will help elucidate the fundamental physics of outlet glacier dynamics which is needed to improve predictions of the response of ice sheets to changing environmental conditions. The project will also provide support for early career investigators and will provide training and support for one graduate and two undergraduate students. All collaborators are currently involved in scientific outreach and graduate student education and they are committed to fostering diversity.
Meltwater lakes that sit on top of Antarctica's floating ice shelves have likely contributed to the dramatic changes seen in Antarctica's glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that >2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.
Non-Technical Summary: About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Antártico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists. Technical Description of Project The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration). This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.
This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change. Independent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models.
This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth's crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth's bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the "bull's eye" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.
The extreme mountain topographies of alpine landscapes at mid latitudes (e.g., European Alps, Patagonia, Alaska) are thought to have formed by the erosive action of glaciers, yet our understanding of exactly when and how those topographies developed is limited. If glacial ice was responsible for forming them, then those landscapes must have developed primarily over the last 2-3 million years when ice was present at those latitudes; this timing has only recently been confirmed by observations. In contrast, the Antarctic Peninsula, which contains similarly spectacular topographic relief, is known to have hosted alpine glaciers as early as 37 million years ago, and is currently covered by ice. Thus, if caused by glacial erosion, the high relief of the peninsula should have formed much earlier than what has been observed at mid latitude sites, yet we know nearly nothing about the timing of its development. The primary benefit of this research will be to study the timing of topography development along the Antarctic Peninsula by applying state of the art chemical analyses to sediments collected offshore. This research is important because studying a high latitude site will enable comparison with sites at mid latitudes and test current hypotheses on the development of glacial landscapes in general. This project aims to apply low-temperature thermochronometry based on the (U-Th)/He system in apatite to investigate the exhumation history, the development of the present topography, and the pattern of glacial erosion in the central Antarctic Peninsula. A number of recent studies have used this approach to study the dramatic, high-relief landscapes formed by Pleistocene alpine glacial erosion in temperate latitudes: New Zealand, the Alps, British Columbia, Alaska, and Patagonia. These studies have not only revealed when these landscapes formed, but have also provided new insights into the physical mechanisms of glacial erosion. The Antarctic Peninsula is broadly akin to temperate alpine landscapes in that the dominant landforms are massive glacial troughs. However, what we know about Antarctic glacial history suggests that the timing and history of glacial erosion was most likely very different from the temperate alpine setting: The Antarctic Peninsula has been glaciated since the Eocene, and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. Our goal is to evaluate these hypotheses by developing a direct thermochronometric record of when and how the present glacial valley relief formed. We propose to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. In effect, since we cannot sample bedrock directly that is currently covered by ice, we will rely on these glaciers to do it for us.
Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.
Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica's continental margins.
This award provides support for "Investigating (Un)Stable Sliding of Whillans Ice Stream and Subglacial Water Dynamics Using Borehole Seismology: A proposed Component of the Whillans Ice Stream Subglacial Access and Research Drilling" from the Antarctic Integrated Systems Science (AISS) program in the Office of Polar Programs at NSF. The project will use the sounds naturally produced by the ice and subglacial water to understand the glacial dynamics of the Whillans Ice Stream located adjacent to the Ross Ice Shelf in Antarctica. Intellectual Merit: The transformative component of the project is that in addition to passive surface seismometers, the team will deploy a series of borehole seismometers. Englacial placement of the seismometers has not been done before, but is predicted to provide much better resolution (detection of smaller scale events as well as detection of a much wider range of frequencies) of the subglacial dynamics. In conjunction with the concurrent WISSARD (Whillans Ice Stream Subglacial Access and Research Drilling) project the team will be able to tie subglacial processes to temporal variations in ice stream dynamics and mass balance of the ice stream. The Whillans Ice Stream experiences large changes in ice velocity in response to tidally triggered stick-slip cycles as well as periodic filling and draining of subglacial Lake Whillans. The overall science goals include: improved understanding of basal sliding processes and role of sticky spots, subglacial lake hydrology, and dynamics of small earthquakes and seismic properties of ice and firn. Broader Impact: Taken together, the research proposed here will provide information on basal controls of fast ice motion which has been recognized by the IPCC as necessary to make reliable predictions of future global sea-level rise. The information collected will therefore have broader implications for global society. The collected information will also be relevant to a better understanding of earthquakes. For outreach the project will work with the overall WISSARD outreach coordinator to deliver information to three audiences: the general public, middle school teachers, and middle school students. The project also provides funding for training of graduate students, and includes a female principal investigator.
Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
Intellectual Merit: Southern Ocean processes play an important role in Late Quaternary glacial-interglacial climate change. However, the direct influence of newly upwelled warm nutrient-rich Circumpolar Deep Water on the Antarctic cryosphere remains speculative. The PI proposes to test the hypothesis that Circumpolar Deep Water-derived ocean heat negatively impacts the mass-balance of Antarctica?s ice sheets during deglaciations using precisely dated late Quaternary paleoceanographic studies of Antarctic margin sediments and a suite of geochemical proxies measured on three existing glacial marine sediment cores from the Prydz Channel, Antarctica. Specifically, the PI will use these data to reconstruct the Late Quaternary history of the Lambert Glacier/Amery Ice Shelf system; evaluate the timing, speed, and style of retreat of the Lambert Glacier/Amery Ice Shelf system during the last deglaciation, and to assess the impact of Circumpolar Deep Water intrusions on the Lambert Glacier/Amery Ice Shelf system in the Late Quaternary. Diatom bound radiocarbon and optically stimulated luminescence techniques will be used to obtain precise stratigraphic age control for the Prydz Channel siliceous muddy ooze intervals. In addition, the PI will measure sedimentary 10Be concentrations to determine the origin of the siliceous muddy ooze units and to track past changes in the position of the ice shelf front. Broader impacts: This proposal will support an early career female scientist and will provide professional development and research experiences for women/minority graduate and undergraduate students. The PI will take advantage of USF?s Oceanography Camp for Girls.
Paragraph for Public Audiences: Many of the natural processes that modify the landscape inhabited by humans occur over very long timescales, making them difficult to observe. Exceptions include rare catastrophic events such as earthquakes, volcanic eruptions, and floods that occur on short timescales. Many significant processes that affect the land and landscape that we inhabit operate on time scales imperceptible to humans. One of these processes is wind transport of sand, with related impacts to exposed rock surfaces and man-made objects, including buildings, windshields, solar panels and wind-farm turbine blades. The goal of this project is to gain an understanding of wind erosion processes over long timescales, in the Antarctic Dry Valleys, a cold desert environment where there were no competing processes (such as rain and vegetation) that might mask the effects. The main objective is recovery of rock samples that were deployed in 1983/1984 at 11 locations in the Antarctic Dry Valleys, along with measurements on the rock samples and characterization of the sites. In the late 1980's and early 1990's some of these samples were returned and indicated more time was needed to accumulate information about the timescales and impacts of the wind erosion processes. This project will allow collection of the remaining samples from this experiment after 30 to 31 years of exposure. The field work will be carried out during the 2014/15 Austral summer. The results will allow direct measurement of the abrasion rate and hence the volumes and timescales of sand transport; this will conclude the longest direct examination of such processes ever conducted. Appropriate scaling of the results may be applied to buildings, vegetation (crops), and other aspects of human presence in sandy and windy locations, in order to better determine the impact of these processes and possible mitigation of the impacts. The project is a collaborative effort between a small business, Malin Space Science Systems (MSSS), and the University of Washington (UW). MSSS will highlight this Antarctic research on its web site, by developing thematic presentations describing our research and providing a broad range of visual materials. The public will be engaged through daily updates on a website and through links to material prepared for viewing in Google Earth. UW students will be involved in the laboratory work and in the interpretation of the results. Technical Description of Project: The goal of this project is to study the role of wind abrasion by entrained particles in the evolution of the McMurdo Dry Valleys in the Transantarctic Mountains. During the 1983 to 1984 field seasons, over 5000 rock targets were installed at five heights facing the 4 cardinal directions at 10 locations (with an additional site containing fewer targets) to study rates of physical weathering due primarily to eolian abrasion. In addition, rock cubes and cylinders were deployed at each site to examine effects of chemical weathering. The initial examination of samples returned after 1, 5, and 10 years of exposure, showed average contemporary abrasion rates consistent with those determined by cosmogenic isotope studies, but further stress that "average" should not be interpreted as meaning "uniform." The samples will be characterized using mass measurements wtih 0.01 mg precision balances, digital microphotography to compare the evolution of their surface features and textures, SEM imaging to examine the micro textures of abraded rock surfaces, and optical microscopy of thin sections of a few samples to examine the consequences of particle impacts extending below the abraded surfaces. As much as 60-80% of the abrasion measured in samples from 1984-1994 appears to have occurred during a few brief hours in 1984. This is consistent with theoretical models that suggest abrasion scales as the 5th power of wind velocity. The field work will allow return of multiple samples after three decades of exposure, which will provide a statistical sampling (beyond what is acquired by studying a single sample), and will yield the mass loss data in light of complementary environmental and sand kinetic energy flux data from other sources (e.g. LTER meteorology stations). This study promises to improve insights into one of the principal active geomorphic process in the Dry Valleys, an important cold desert environment, and the solid empirical database will provide general constraints on eolian abrasion under natural conditions.
The biota of the world's seafloor is fueled by bursts of seasonal primary production. For food-limited sediment communities to persist, a balance must exist between metazoan consumption of and competition with bacteria, a balance which likely changes through the seasons. Polar marine ecosystems are ideal places to study such complex interactions due to stark seasonal shifts between heterotrophic and autotrophic communities, and temperatures that may limit microbial processing of organic matter. The research will test the following hypotheses: 1) heterotrophic bacteria compete with macrofauna for food; 2) as phytoplankton populations decline macrofauna increasingly consume microbial biomass to sustain their populations; and 3) in the absence of seasonal photosynthetic inputs, macrofaunal biodiversity will decrease unless supplied with microbially derived nutrition. Observational and empirical studies will test these hypotheses at McMurdo Station, Antarctica, where a high-abundance macro-infaunal community is adapted to this boom-and-bust cycle of productivity. The investigator will mentor undergraduates from a predominantly minority-serving institution, in the fields of invertebrate taxonomy and biogeochemistry. The general public and young scientists will be engaged through lectures at local K-12 venues and launch of an interactive website. The results will better inform scientists and managers about the effects of climate change on polar ecosystems and the mechanisms of changing productivity patterns on global biodiversity.
Ocean acidification (OA) poses a serious threat, particularly to organisms that precipitate calcium carbonate from seawater. One organism with an aragonite shell that is a key to high latitude ecosystems is the pteropod. With OA, the pteropod shell will thin because the aragonite is highly soluble. As the shell thins, it changes the mass distribution and buoyancy of the animal, which will affect locomotion and through it, all locomotion dependent behavior such as foraging, mating, predator avoidance and migratory patterns. A lower shell weight will be counterbalanced by a smaller mucus web potentially decreasing ingestion rates and carbon flux rates. This interdisciplinary research relies on biological studies of swimming behavior of the pteropod mollusk Limacina helicina in their natural environments with fluid mechanics analyses of swimming hydrodynamics via 3D tomographic particle-image velocimetry and computational fluid dynamics (CFD). This work will: (a) determine how the L. helicina uses its 'wings' (parapodia) to propel itself; (b) examine whether its locomotory kinematics provide efficient propulsion; (c) identify the factors that influence swimming trajectory and 'wobble'; and (d) synthesize all data and insights into guidelines for the potential use of pteropod swimming behavior as a bioassay for OA. The loss of these sentinels of anthropogenic increases in CO2 may result in an ecological shift since thecosome pteropods are responsible for ingesting nearly half the primary production in the Southern Ocean and also serve as a primary food resource to upper trophic levels like fish. Since locomotory data can be gathered immediately, the bioassay being developed in this proposal may serve as an early warning of the impending onset of OA effects on this important member of the plankton. Students and researchers will collaborate in a rich interdisciplinary research environment by working with a biological oceanographer, a fluid mechanics expert and a CFD expert coupled with the teamsmanship needed for work in the Antarctic. By setting up a one-of-a-kind 3D tomography system for visualizing flow around planktonic organisms in Norway and at Palmer Station, we increase international exchange of state-of-the-art techniques. The educational impact of the current research will be multiplied by including in the research team, undergraduate students, high-school students and underrepresented minorities in addition to graduate students.
Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the "Scotia Portal" permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.
Steig/1341360 This award supports a two-year project to develop a method for rapid and precise measurements of the difference in 18O/16O and 17O/16O isotope ratios in water, referred to as the 17O-excess. Measurement of 17O-excess is a recent innovation in geochemistry, complementing traditional measurements of the ratios of hydrogen (D/H) and oxygen (18O/16O). Conventional measurements of 17O/16O are limited in number because of the time-consuming and laborious nature of the analyses, which involves the conversion of water to oxygen via fluorination, followed by high-precision mass spectrometry. This project will use a novel cavity ring-down spectroscopy (CRDS) system developed by a joint effort of the University of Washington and Picarro, Inc. (Santa Clara, CA), along with the Centre for Ice and Climate (Neils Bohr Institute, Copenhagen). The primary intellectual merit of the research is the improvement of the CRDS method for measurements of 17Oexcess of discrete samples of water, to obtain precision and accuracy competitive with conventional methods using mass spectrometry. This will be achieved by quantification of the effects of water vapor concentration variability and instrument memory, precise calibration of the instrument against standard waters, and improvements to the spectroscopic analyses. The CRDS system will also be coupled to continuous-flow systems for ice core analysis, in collaboration with the University of Colorado, Boulder. The goal is to have an operational system available for ice core processing associated with the next major U.S.-led ice core project at South Pole, in 2015-2017. The broader impacts of the research include the ability to measure 17O-excess in ambient atmospheric water vapor, which can be used to improve understanding of convection, moisture transport, and condensation. The instrument development work proposed here is relevant to research supported by several NSF-GEO programs, including Hydrology, Climate and Large Scale Dynamics, Paleoclimate, Atmosphere Chemistry, and both the Arctic and Antarctic Programs. This proposal will support a postdoctoral researcher.
Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay's Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.
Hastings/1246223 This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women's Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.
0538427<br/>McConnell <br/>This award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF's Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.
McConnell/1142166 This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.
Uncovering the dynamics of dissolved organic matter (DOM) is central to an understanding of the global carbon cycle, as organic material from lakes, streams, oceans and soils passes through this pool. DOM acts as a key energy source for microbes in many ecosystems and therefore can affect regional nutrient cycling patterns. For example, preliminary results suggest that organisms isolated from a supraglacial stream on Cotton Glacier, Antarctica, may be important in DOM cycling in this relatively simple, low temperature system. However, little is known about the functional attributes of the microbes that interact with DOM in the environment. This project will use state-of-the-art genomics, proteomics and metabolomics approaches to understand the mechanisms by which two microbial isolates, CG3 and CG9_1, affect DOM cycling. Liquid chromatography-mass spectrometry will also be used to better characterize the microbially-derived DOM from this ecosystem. This project will support the research and training of one undergraduate and two graduate students. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Understanding the relationship between cold-adapted microbial metabolisms and DOM pools is important as more than 90% of the Earth?s oceans are below 5 degrees Celsius.
A 50+ year warming trend in the Southern Ocean has been most dramatic in Drake Passage and likely impacts ecosystem structure here. Acoustic Doppler Current Profiler (ADCP) records from multiple ?L.M. Gould? supply transits of Drake Passage from 1999 to present demonstrate spatial and temporal variability in acoustics backscattering. Acoustics backscattering strength in the upper water column corresponds to zooplankton and nekton biomass that supports predator populations. However, for much of Drake Passage the identity of taxa contributing to this acoustically detected biomass is not known. This project would introduce a biological component to ?L.M. Gould? transits of Drake Passage with the goal of determining the identity of taxa responsible for the backscattering records obtained by ADCP and relating these to higher trophic levels (seabird/marine mammal). Net sampling during spring, summer and fall transits will permit assessment of diel and seasonal changes in the abundance and taxonomic composition of zooplankton and top predators represented between Patagonia and the Antarctic Peninsula. Net samples and depth-referenced video records taken in conjunction with ADCP profiles will permit the identification of the dominant acoustic backscatters in the 3 biogeographic regions represented here, the Subantarctic, Polar Frontal, and Antarctic Zones. The validity of dominant backscattering taxa in the Antarctic Zone will be tested by comparing the ADCP records with abundant zooplankton data collected off the Antarctic Peninsula during January-March 1999-2009 as well with long-term top predator surveys. The broader impacts also include a cruise blog, the production of an article for an online outreach publication based at Moss Landing Marine Labs and a YouTube video featuring shipboard research in the Southern Ocean.
0538520<br/>Thiemens<br/>This award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.
This award supports a three-year study of the ongoing deceleration and stick-slip motion of Whillans Ice Stream (WIS), West Antarctica. Understanding the dynamic behavior of ice streams is essential for predicting the future of the West Antarctic Ice Sheet (WAIS). Despite being one of the best-studied ice streams in Antarctica, the surprising flow characteristics of WIS continue to demand interdisciplinary research. Recent estimates indicate that the WIS may stagnate within 50 years, resulting in a significant change to the mass balance of the Siple Coast sector of West Antarctica. The reasons for the ongoing stagnation are not well known, and are possibly linked (causally or coincidentally) to the stick-slip behavior. Our recent work on WIS stick-slip motion suggest that all slip events nucleate from a common location on the ice stream, suggesting that a relatively small (approximately 10 km in diameter) region of the exerts fundamental control over the flow of this large ice stream (100s of km long and 100 kilometers wide). We hypothesize that this is a region of increased bed strength and our measurements will address that hypothesis. We will deploy a series of GPS receivers and seismometers on the ice stream to accurately locate the nucleation region so that a comprehensive ground based geophysical survey can be conducted to determine the physical properties of bed at the nucleation point. The ground geophysical program will consist of reflection seismic and ice-penetrating radar studies that will better constrain the properties of both the hypothesized higher-friction nucleation zone and the surrounding regions. Slip events also generate seismic energy that can be recorded 100s of km away from the ice stream, thus, the GPS and seismometer deployment will also aid us in relating seismic waveforms directly with the rapid motion that occurs during slip events. The increased ability to relate rupture processes with seismic emissions will allow us to use archived seismic records to explore changes in the behavior of WIS during the later half of the 20th century. Broader impacts of this study include improved knowledge ice sheet dynamics, which remain a poorly constrained component of the climate system, thus, limiting our ability to predict the Earth's response to climate change. The scientific work includes the education of two graduate students and continued training of one post-doctoral scholar, thus helping to train the next generation of polar scientists. We will expose the broader public to polar science through interactions with the media and by take advantaging of programs to include K-12 educators in our field work.
1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.
Steig/1043092 This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.
The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. Using contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. The previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here.
1043481/Creyts This award supports a project to develop models of subglacial hydrology in order to understand dynamics of water movement, lake drainage, and how drainage affects ice slip over deformable till with the goal of understanding present and future behavior of fast flowing regions of Antarctica. Drainage of subglacial water falls into two broad categories: distributed and channelized. In distributed systems, water is forced out along the ice?bed interface. Conversely, in channelized systems water is drawn toward a few major arteries. Observations of lake filling and draining sup- port changes in subglacial water flow and suggest a switch from a low to high discharge state or vice versa. Filling or draining can move the subglacial system from one type of drainage morphology to the other. A switch of drainage type will affect slip along the ice-bed interface because distributed morphologies tend to cause enhanced sliding whereas channelized morphologies tend to cause enhanced coupling of the ice-bed interface. Conditions beneath fast flowing ice streams of West Antarctica are ideal for switching between subglacial drainage morphologies. Fast flowing ice in West Antarctica commonly rests on sub- glacial tills and is coincident, in some areas, with observed subglacial lake filling and draining. The goal of the work is to develop the next generation of spatially distributed hydraulic models that capture lake filling and draining phenomena and investigate the effects on subglacial till. Models will be theoretical, process-based descriptions of water drainage and till failure along fast flowing ice streams. Models will be based on balance of mass, momentum, and energy. Building on previous studies, we will incorporate two dimensional movement of water to investigate distributed basal hydrology, distributed basal hydrology coupled to channels, and couple these models with till deformation. These models will provide a framework for determining how lake draining and filling affects ice discharge by providing a constraints on ice?bed coupling. The intellectual merit of the work is that it will advance knowledge about drainage of water subglacially beneath Antarctica and how water affects ice motion. Our modeling provides a unique opportunity to understand the role subglacial hydrology plays in the dynamics of key outlet glaciers and ice streams. The broader impacts of the work include training for one postdoctoral scientist and training for a summer student in simple laboratory techniques for analog experiments. In addition, the proposal dovetails into an existing polar education and outreach plan by including a component of physical, numerical, and scale models in programs developed for high school and middle school classroom visits, teacher workshops and community events. Additionally, because knowledge of glacial hydrology is increasing rapidly, we will convene a workshop on observations and models of subglacial hydrology to facilitate transfer of knowledge and ideas.
Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.
1043750/Chen This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.
Intellectual Merit: The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the ?Scotia Portal? permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction. Broader impacts: The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.
Severinghaus/0839031 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the "clathrate hypothesis" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a "horizontal ice core" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.
1043649/Braun This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.
Abstract The Erebus Bay population of Weddell seals in Antarctica?s Ross Sea is the most southerly breeding population of mammal in the world, closely associated with persistent shore-fast ice, and one that has been intensively studied since 1968. The resulting long-term database, which includes data for 20,586 marked individuals, contains detailed population information that provides an excellent opportunity to study linkages between environmental conditions and demographic processes in the Antarctic. The population?s location is of special interest as the Ross Sea is one of the most productive areas of the Southern Ocean, one of the few pristine marine environments remaining on the planet, and, in contrast to the Antarctic Peninsula and Arctic, is undergoing a gradual lengthening of the sea-ice season. The work to be continued here capitalizes on (1) long-term data for individual seals and their polar environment; (2) experience collecting and analyzing data from the extensive study population; and (3) recent statistical advances in hierarchical modeling that allow for rigorous treatment of individual heterogeneity (in mark-recapture and body mass data) and inclusion of diverse covariates hypothesized to explain variation in fitness components. Covariates to be considered include traits of individuals and their mothers and environmental conditions throughout life. The study will continue to (1) provide detailed data on known-age individuals to other science projects and (2) educate and mentor the next generation of ecologists through academic and professional training and research experiences.
Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.
Intellectual Merit: The PIs propose to use airborne geophysics to provide detailed geophysical mapping over the Marie Byrd Land dome of West Antarctica. They will use a Basler equipped with advanced ice penetrating radar, a magnetometer, an airborne gravimeter and laser altimeter. They will test models of Marie Byrd Land lithospheric evolution in three ways: 1) constrain bedrock topography and crustal structure of central Marie Byrd Land for the first time; 2) map subglacial geomorphology of Marie Byrd Land to constrain landscape evolution; and 3) map the distribution of subglacial volcanic centers and identify active sources. Marie Byrd Land is one of the few parts of West Antarctica whose bedrock lies above sea level; as such, it has a key role to play in the formation and decay of the West Antarctic Ice Sheet (WAIS), and thus on eustatic sea level change during the Neogene. Several lines of evidence suggest that the topography of Marie Byrd Land has changed over the course of the Cenozoic, with significant implications for the origin and evolution of the ice sheet. Broader impacts: This work will have important implications for both the cryospheric and geodynamic communities. These data will also leverage results from the POLENET project. The PIs will train both graduate and undergraduate students in the interpretation of large geophysical datasets providing them with the opportunity to co-author peer-reviewed papers and present their work to the broader science community. This research will also support a young female researcher. The PIs will conduct informal education using their Polar Studies website and contribute formally to K-12 curriculum development. The research will incorporate microblogging and data access to allow the project?s first-order hypothesis to be confirmed or denied in public.
Intellectual Merit: Knowledge of englacial and subglacial conditions are critical for ice sheet models and predictions of sea-level change. Some of the critical variables that are poorly known but essential for improving flow models and predictions of sea-level change are: basal roughness, subglacial sedimentary and hydrologic conditions, and the temporal and spatial variability of the ice sheet flow field. Seismic reflection and refraction imaging and dense arrays of continuously operating GPS receivers can determine these parameters. The PIs propose to develop a network of wirelessly interconnected geophysical sensors (geoPebble) that will allow glaciologists to carry out these experiments simultaneously. This sensor web will provide a new way of imaging the ice sheet that is not possible with current instruments. With this sensor web, the PIs will extend the range of existing instruments from 2D to 3D, from low resolution to high resolution, but more importantly, all the geophysical measurements will be conducted synchronously. By the end of the proposal period the PIs will produce a network of 150-200 geoPebbles that will be available for NSF-sponsored glaciology research projects. Broader impacts: Improved knowledge of the flow law of ice, the sliding of glaciers and ice streams, and paleoclimate history will contribute to assessments of the potential for abrupt ice-sheet mass change, with consequent sea-level effects and significant societal impacts. This improved modeling ability will be a direct consequence of better knowledge of the physical properties of ice sheets, which this project will facilitate. The development effort will be integrated with the undergraduate education program via the capstone design classes in EE and the senior thesis requirement in Geoscience. The PIs will also form a cohort of first-year and sophomore students who will work in their labs from the beginning of the project to develop specifications through the commissioning of the network.
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.
This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.
Intellectual Merit: The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. Broader impacts: The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM "Explore Your World" website with images and findings from their field season.
Aydin/1043780 This award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities.
1042883/Mayewski This award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used.
Geochemical studies of single mineral grains in rocks can be probed to reconstruct the history of our planet. The mineral zircon (ZrSiO4) is of unique importance in that respect because of its reliability as a geologic clock due to its strong persistence against weathering, transport and changes in temperature and pressure. Uranium-Lead (U-Pb) dating of zircon grains is, perhaps, the most frequently employed method of extracting time information on geologic processes that shaped the continental crust, and has been used to constrain the evolution of continents and mountain belts through time. In addition, the isotopic composition of the element Hafnium (Hf) in zircon is used to date when the continental crust was generated by extraction of magma from the underlying mantle. Melting of rocks in the mantle and deep in the continental crust are key processes in the evolution of the continents, and they are recorded in the Hf isotopic signatures of zircon. Although the analytical procedures for U-Pb dating and Hf isotope analyses of zircon are robust now, our understanding of zircon growth and its exchange of elements and isotopes with its surrounding rock or magma are still underdeveloped. The focus of the proposed study, therefore, is to unravel the evolution of zircon Hf isotopes in rocks that were formed deep in the Earth?s crust, and more specifically, to apply these isotopic methods to rocks collected in Dronning Maud Land (DML), East Antarctica. Dronning Maud Land (DML) occupied a central location during the formation of supercontinents ? large landmasses made up of all the continents that exist today - more than 500 million years ago. It is currently thought that supercontinents were formed and dismembered five or six times throughout Earth?s history. The area of DML is key for understanding the formation history of the last two supercontinents. The boundaries of continents that were merged to form those supercontinents are most likely hidden in DML. In this study, the isotopic composition of zircon grains recovered from DML rocks will be employed to identify these boundaries across an extensive section through the area. The rock samples were collected by the investigator during a two-month expedition to Antarctica in the austral summer of 2007?2008. The results of dating and isotope analyses of zircon of the different DML crustal domains will deliver significant insight into the regional geology of East Antarctica and its previous northern extension into Africa. This has significance for the reconstruction of the supercontinents and defining the continental boundaries in DML.
Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.
Antarctic coastal polynas are, at the same time, sea-ice free sites and 'sea-ice factories'. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters A key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames.
1043421/Severinghaus This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed "replicate coring". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs' activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.
1143619/Severinghaus This award supports a project to extend the study of gases in ice cores to those gases whose small molecular diameters cause them to escape rapidly from ice samples (the so-called "fugitive gases"). The work will employ helium, neon, argon, and oxygen measurements in the WAIS Divide ice core to better understand the mechanism of the gas close-off fractionation that occurs while air bubbles are incorporated into ice. The intellectual merit of the proposed work is that corrections for this fractionation using neon (which is constant in the atmosphere) may ultimately enable the first ice core-based atmospheric oxygen and helium records. Neon may also illuminate the mechanistic link between local insolation and oxygen used for astronomical dating of ice cores. Helium measure-ments in the deepest ~100 m of the core will also shed light on the stratigraphic integrity of the basal ice, and serve as a probe of solid earth-ice interaction at the base of the West Antarctic ice sheet. Past atmospheric oxygen records, currently unavailable prior to 1989 CE, would reveal changes in the size of the terrestrial biosphere carbon pool that accompany climate variations and place constraints on the biogeochemical feedback response to future warming. An atmospheric helium-3/helium-4 record would test the hypothesis that the solar wind (which is highly enriched in helium-3) condensed directly into Earth?s atmosphere during the collapse of the geomagnetic field that occurred 41,000 years ago, known as the Laschamp Event. Fugitive-gas samples will be taken on-site immediately after recovery of the ice core by the PI and one postdoctoral scholar, under the umbrella of an existing project to support replicate coring and borehole deepening. This work will add value to the scientific return from field work activity with little additional cost to logistical resources. The broader impacts of the work on atmospheric oxygen are that it may increase understanding of how terrestrial carbon pools and atmospheric greenhouse gas sources will respond in a feedback sense to the coming warming. Long-term atmospheric oxygen trends are also of interest for understanding biogeochemical regulatory mechanisms and the impact of atmospheric evolution on life. Helium records have value in understanding the budget of this non-renewable gas and its implications for space weather and solar activity. The project will train one graduate student and one postdoctoral scholar. The fascination of linking solid earth, cryosphere, atmosphere, and space weather will help to entrain and excite young scientists and efforts to understand the Earth as a whole interlinked system will provide fuel to outreach efforts at all ages.
1245659/Petrenko This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.
Intellectual Merit: The PIs propose to use the (U-Th)/He system in apatite to investigate the exhumation history, development of the present topography, and pattern of glacial erosion in the central Antarctic Peninsula. The Antarctic Peninsula has been glaciated since the Eocene and Pleistocene climate cooling is hypothesized to have suppressed, rather than enhanced, glacial erosion. To achieve these goals, the PIs will use a thermochronometric record of when and how the present glacial valley relief formed. A challenge to the proposed research is that, unlike Pleistocene glacial landscapes in temperate areas, the Peninsula is ice-covered and it is not possible to directly sample the bedrock surface. The PIs hope to learn about the timing and process of glacial valley formation through apatite (U-Th)/He and 4He/3He measurements on glacial sediment collected near the grounding lines of major glaciers draining the Peninsula. Learning how the Antarctic Peninsula landscape formed is important to discern how the mechanics of glacial erosion operate on long time scales, and to understand how glaciers mediate the interaction between climate change and orogenic mass balance. This work addresses a fundamental question in Antarctic earth science of how to infer geologic and geomorphic processes active on an ice-covered and inaccessible landscape. Broader impacts: This proposal will bring new researchers into the Antarctic research community. A proposed collaboration with British Antarctic Survey researchers will build an international collaboration. The outcomes of this project have ancillary importance to other fields and addresses fundamental challenges in Antarctic Earth Science.
This award supports a project to understand the flow dynamics of large, fast-moving outlet glaciers that drain the East Antarctic Ice Sheet. The project includes an integrated field, remote sensing and modeling study of Byrd Glacier which is a major pathway for the discharge of mass from the East Antarctic Ice Sheet (EAIS) to the ocean. Recent work has shown that the glacier can undergo short-lived but significant changes in flow speed in response to perturbations in its boundary conditions. Because outlet glacier speeds exert a major control on ice sheet mass balance and modulate the ice sheet contribution to sea level rise, it is essential that their sensitivity to a range of dynamic processes is properly understood and incorporated into prognostic ice sheet models. The intellectual merit of the project is that the results from this study will provide critically important information regarding the flow dynamics of large EAIS outlet glaciers. The proposed study is designed to address variations in glacier behavior on timescales of minutes to years. A dense network of global positioning satellite (GPS) instruments on the grounded trunk and floating portions of the glacier will provide continuous, high-resolution time series of horizontal and vertical motions over a 26-month period. These results will be placed in the context of a longer record of remote sensing observations covering a larger spatial extent, and the combined datasets will be used to constrain a numerical model of the glacier's flow dynamics. The broader impacts of the work are that this project will generate results which are likely to be a significant component of next-generation ice sheet models seeking to predict the evolution of the Antarctic Ice Sheet and future rates of sea level rise. The most recent report from the Intergovernmental Panel on Climate Change (IPCC) highlights the imperfect understanding of outlet glacier dynamics as a major obstacle to the production of an accurate sea level rise projections. This project will provide significant research opportunities for several early-career scientists, including the lead PI for this proposal (she is both a new investigator and a junior faculty member at a large research university) and two PhD-level graduate students. The students will be trained in glaciology, geodesy and numerical modeling, contributing to society's need for experts in those fields. In addition, this project will strengthen international collaboration between polar scientists and geodesists in the US and Spain. The research team will work closely with science educators in the Center for Remote Sensing of Ice Sheets (CReSIS) outreach program to disseminate project results to non-specialist audiences.
This project constructs POLENET a network of GPS and seismic stations in West Antarctica to understand how the mass of the West Antarctic ice sheet (WAIS) changes with time. The information is ultimately used to predict sea level rise accompanying global warming and interpret climate change records. The GPS (global positioning system) stations measure vertical and horizontal movements of bedrock, while the seismic stations characterize physical properties of the ice/rock interface, lithosphere, and mantle. Combined with satellite data, this project offers a more complete picture of the ice sheet's current state, its likely change in the near future, and its overall size during the last glacial maximum. This data will also be used to infer sub-ice sheet geology and the terrestrial heat flux, critical inputs to models of glacier movement. As well, this project improves tomographic models of the earth's deep interior and core through its location in the Earth's poorly instrumented southern hemisphere. <br/><br/><br/><br/>Broader impacts of this project are varied. The work is relevant to society for improving our understanding of the impacts of global warming on sea level rise. It also supports education at the postdoctoral, graduate, and undergraduate levels, and outreach to groups underrepresented in the sciences. As an International Polar Year contribution, this project establishes a legacy of infrastructure for polar measurements. It also involves an international collaboration of twenty four countries. For more information see IPY Project #185 at IPY.org. NSF is supporting a complementary Arctic POLENET array being constructed in Greenland under NSF Award #0632320.
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an "International Climate Park" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.
Barbeau, David; Hemming, Sidney R.; Barbeau, David Jr
No dataset link provided
Intellectual Merit: Recent geochemical, sequence stratigraphic, and integrated investigations of marine strata from several continental margins and ocean basins suggest that ephemeral ice sheets may have existed on Antarctica during parts of the Cretaceous and early Paleogene. However, atmospheric carbon dioxide estimates for this time are as much as four times modern levels. With such greenhouse conditions, the presence of Antarctic ice sheets would imply that our current understanding of Earth?s climate system, and specifically the interpreted thresholds of Antarctic glaciation and deglaciation should be reconsidered. The proposed research will compare the quantity and provenance of Cretaceous sediments in the Larsen basin of the eastern Antarctic Peninsula with the exhumation chronology and composition of potential sediment source terranes on the peninsula and in adjacent regions. New outcrop stratigraphic analyses with improvements in the age models from radioisotopic approaches will be integrated to determine the amount of detrital sediment fluxed to the Larsen basin between key chronostratigraphic surfaces. Microtextural analysis of quartz sand and silt grains will help determine whether the Larsen basin detrital sediment originated from glacial weathering. These preliminary results will test the viability of the proposed approach to assess the controversial Cretaceous Antarctic glaciation hypothesis. Broader impacts: The proposed work will partially support a PhD, a MSc, and three undergraduate students at the University of South Carolina. The PIs will publicize this work through volunteer speaking engagements and the development of videos and podcasts. They also commit to prompt publication of the results and timely submission of data to archives. The development/improvement of the Larsen basin age model will benefit ongoing research in paleobiology, paleoclimate and biogeography. Development of the glauconite K-Ar and Rb-Sr chronometers could be an important outcome beyond the direct scope of the proposed research.
Intellectual Merit:<br/>The focus of this proposal is to collect fossil plants and palynomorphs from Permian-Triassic (P-T) rocks of the central Transantarctic Mountains (CTM), together with detailed data on sedimentologic and paleoecologic depositional environments. Fossil plants are important climate proxies that offer a unique window into the past, and the CTM fossils are an important source of data on the ways that plants responded to a strongly seasonal, polar light regime during a time of global change. The proposed project uses paleobotanical expertise, integrated with detailed sedimentology and stratigraphy, to reconstruct Permian-Triassic plant communities and their paleoenvironments. This interdisciplinary approach could uncover details of Antarctica?s complex late Paleozoic and Mesozoic environmental and climatic history which included: 1) deglaciation, 2) development and evolution of a post-glacial landscape and biota, 3) environmental and biotic change associated with the end-Permian mass extinction, 4) environmental recovery in the earliest Triassic, 5) strong, possible runaway Triassic greenhouse, and 6) widespread orogenesis and development of a foreland basin system. The PIs will collect compression floras both quantitatively and qualitatively to obtain biodiversity and abundance data. Since silicified wood is also present, the PIs will analyze tree rings and growth in a warm, high-latitude environment for which there is no modern analogue. Fossil plants from the CTM can provide biological and environmental information to: 1) interpret paleoclimate when Gondwana moved from icehouse to greenhouse conditions; 2) trace floral evolution across the P-T boundary; 3) reconstruct Antarctic plant life; 4) further understanding of plant adaptations to high latitudes. The Intellectual Merit of the research includes: 1) tracing floral evolution after the retreat of glaciers; 2) examining floral composition and diversity across the PTB; and 3) obtaining data on the recovery of these ecosystems in the Early Triassic, as well as changes in floral cover and diversity in the Early-Middle Triassic. Antarctica is the only place on Earth that includes extensive outcrops of terrestrial rocks, combined with widespread and well-preserved plant fossils, which spans this crucial time period.<br/><br/>Broader impacts:<br/>The broader impacts include public outreach; teaching, and mentoring of women and underrepresented students; mentoring graduate student, postdoctoral, and new faculty women; development of an inquiry-based workshop on Antarctic paleoclimate with the Division of Education, KU Natural History Museum; continuing support of workshops for middle school girls in science via the Expanding Your Horizons Program, Emporia State University, and the TRIO program, KU; exploring Antarctic geosciences through video/computer links from McMurdo Station and satellite phone conferences from the field with K-12 science classes in Wisconsin and Kansas, and through participation in the NSF Research Experiences for Teachers program at the University of Wisconsin.
The mesosphere and lower thermosphere (MLT), at an altitude between 80 and 120 km above the Earth's surface, is a highly dynamic region that couples the lower terrestrial atmosphere (troposphere and stratosphere) with the upper atmosphere near-Earth space environment (thermosphere and ionosphere). Of particular importance in this region are both the upward propagating thermally forced atmospheric tides and global scale planetary waves. Both of these phenomena transport heat and momentum from the lower atmosphere into the upper atmosphere. Studies in recent years have indicated that the Arctic and Antarctic MLT possess a rich spectrum waves and may be more sensitive to global change than the lower atmosphere. The primary goal of this research is to observe, quantify, model, and further understand the spatial-temporal structure and variability of the MLT circulation above Antarctica and its commonalities with the Arctic. A secondary goal is to quantify and understand the deposition of mass into the upper atmosphere through the ablation of meteors and the resulting effect on local and regional aeronomic processes. This includes the effect of meteor flux, temperature and dynamics on the seasonal distribution of sodium over the South Pole. Meteor radar was installed at the South Pole Amundsen-Scott station and has been running continuously since January 2002. A new sodium nightglow imager will be installed at the South Pole to infer the sodium abundance in the MLT. Observations from this instrument will be combined with the South Pole Fabry-Perot interferometer temperature measurements and the meteor radar wind and meteor flux measurements to improve our understanding of the sodium chemistry and dynamics. These observations will be interpreted using sophisticated numerical models and interpreted in conjunction with Arctic measurements along with current linear and nonlinear atmospheric models to advance the current understanding of processes important to the MLT region. This research also contributes to the training and education of the graduate and undergraduate students, a postdoc and early career tenure track faculty.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).<br/><br/>This award does not involve field work in Antarctica.
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the "winter water" (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the "circumpolar deep water" (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP "grows in" during spring and summer after this water mass forms. <br/><br/>The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer.
MacAyeal/0944248<br/><br/>This award supports a project to develop a better understanding of the processes and conditions that trigger ice shelf instability and explosive disintegration. A significant product of the proposed research will be the establishment of parameterizations of micro- and meso-scale ice-shelf surface processes needed in large scale ice-sheet models designed to predict future sea level rise. The proposed research represents a 3-year effort to conduct numerical model studies of 6 aspects of surface-water evolution on Antarctic ice shelves. These 6 model-study areas include energy balance models of melting ice-shelf surfaces, with treatment of surface ponds and water-filled crevasses, distributed, Darcian water flow modeling to simulate initial firn melting, brine infiltration, pond drainage and crevasse filling, ice-shelf surface topography evolution modeling by phase change (surface melting and freezing), surface-runoff driven erosion and seepage flows, mass loading and flexure effects of ice-shelf and iceberg surfaces; feedbacks between surface-water loads and flexure stresses; possible seiche phenomena of the surface water, ice and underlying ocean that constitute a mechanism for, inducing surface crevassing., surface pond and crevasse convection, and basal crevasse thermohaline convection (as a phenomena related to area 5 above). The broader impacts of the proposed work bears on the socio-environmental concerns of climate change and sea-level rise, and will contribute to the important goal of advising public policy. The project will form the basis of a dissertation project of a graduate student whose training will contribute to the scientific workforce of the nation and the PI and graduate student will additionally participate in a summer science-enrichment program for high-school teachers organized by colleagues at the University of Chicago.
The importance of gelatinous zooplankton in marine systems worldwide is increasing. In Southern Ocean, increasing salp densities could have a detrimental effect on higher predators, including penguins, fur seals, and baleen whales. The proposed research is a methods-develoment project that will improve the capability to indirectly assess abundances and distributions of salps in the Southern Ocean through acoustic surveys. Hydrographic, net tow, and acoustic backscatter data will be collected in the waters surrounding the South Shetland Islands and the Antarctic peninsula, where both krill and salps are found and compete for food. Shipboard experimental manipulations and measurements will lead to improved techniques for assessment of salp biomass acoustically. Experiments will focus on material properties (density and sound speed), size and shape of salps, as well as how these physical properties will vary with the salp's environment, feeding rate, and reproductive status. In the field, volume backscattering data from an acoustic echosounder will be collected at the same locations as the net tows to enable comparison of net and acoustic estimates of salp abundance. A physics-based scattering model for salps will be developed and validated, to determine if multiple acoustic frequencies can be used to discriminate between scattering associated with krill swarms and that from salp blooms. During the same period as the Antarctic field work, a parallel outreach and education study will be undertaken in Long Island, New York examining local gelatinous zooplankton. This study will enable project participants to learn and practice research procedures and methods before traveling to Antarctica; provide a comparison time-series that will be used for educational purposes; and include many more students and teachers in the research project than would be able to participate in the Antarctic field component.
The ocean plays a critical role in sequestering CO2 by exporting fixed carbon to the deep ocean through the biological pump. There is a pressing need to understand the systematics of carbon export in the Southern Ocean in the context of global warming because of the sensitivity of this region to climate change, already manifested as significant temperature increases. Numerous studies have indicated that Fe supply is a primary control on phytoplankton biomass and productivity in the Southern Ocean. The results from previous cruises in Feb-Mar 2004 and Jul-Aug 2006 have revealed the major natural Fe fertilization from Fe-rich shelf waters to the Fe-limited high nutrient low chlorophyll (HNLC) Antarctic Circumpolar Current Surface Water (ASW) in the southern Drake Passage, producing a series of phytoplankton blooms. Remaining questions include: How is natural Fe transported to the euphotic zone through small-meso-large scale horizontal-vertical transport and mixing in different HNLC ACC areas? How does plankton community structure evolve in response to a natural Fe addition, how does Fe speciation respond to biogeochemical processes, and how is Fe recycled to determine the longevity of phytoplankton blooms? How does the export of POC evolve as a function of upwelling-mixing, Fe addition-recycling and bacteria-plankton structure? This synthesis proposal will address these fundamental questions using a unique dataset combining multiyear physical, Fe and biogeochemical data collected between 2004 and 2006 from 2 NSF-funded Fe fertilization experiment cruises and 3 Antarctic Marine Living Resource (AMLR) cruises in the southern Drake Passage and southwestern Scotia Sea through collaboration with scientists in the AMLR program and US Southern Ocean GLOBEC projects. All investigators involved in this study are engaged in graduate and undergraduate instruction, and mentoring of postdoctoral researchers. Each P.I. will incorporate key elements of the proposed syntheses in our lectures, problem sets and group projects. The project includes support to convene a 4-5 day international workshop on natural Fe fertilization at Woods Hole Oceanographic Institution. The workshop will include scientists from United Kingdom, France and Germany who have conducted natural Fe fertilization experiments, and Korea and China who are planning to conduct natural Fe fertilization experiments. The participation of graduate students and postdoctoral scholars will be especially encouraged. The results will be published in a Deep-Sea Research II special issue.
Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk.
Sergienko/0838811 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to conduct a modeling study of the ice stream ? sub-glacial water system. A suite of numerical models of various dimensionality and complexity will be constructed in a sequential, hierarchical fashion to formulate and test hypotheses regarding how sub-glacial lakes form under ice streams, determine the effect of sub-glacial lakes on ice-stream flow and mass balance, and to determine feedback effects whereby the ice stream ? sub-glacial water system can elicit both stable and unstable responses to environmental perturbations. This research will address one of the only observationally verified fast-time-scale processes apparent within the Antarctic Ice Stream system. The intellectual merit of the project is that understanding the origins and consequences of near-grounding-line sub-glacial lakes is a priority in glaciological research designed to predict short-term variations in Antarctica?s near-term future mass balance. The broader impacts of the proposed work are that it will contribute to better understanding of a system that has important societal relevance through contribution to sea level rise. Participation of a graduate student in the project will provide the student?s training and education in application of the numerical modeling in geosciences.
The climatic changes of late Precambrian time, 600-800 million years ago, included episodes of extreme glaciation, during which ice may have covered nearly the entire ocean for several million years, according to the Snowball Earth hypothesis. These episodes would hold an important place in Earth?s evolutionary history; they could have encouraged biodiversity by trapping life forms in small isolated ice-free areas, or they could have caused massive extinctions that cleared the path for new life forms to fill empty niches. What caused the Earth to become iced over, and what later caused the ice to melt? Scientific investigation of these questions will result in greater understanding of the climatic changes that the Earth can experience, and will enable better predictions of future climate. This project involves Antarctic field observations as well as laboratory studies and computer modeling. The aim of this project is not to prove or disprove the Snowball Earth hypothesis but rather to quantify processes that are important for simulating snowball events in climate models. The principal goal is to identify the types of ice that would have been present on the frozen ocean, and to determine how much sunlight they would reflect back to space. Reflection of sunlight by bright surfaces of snow and ice is what would maintain the cold climate at low latitudes. The melting of the ocean required buildup of greenhouse gases, but it was probably aided by deposition of desert dust and volcanic ash darkening the snow and ice. With so much ice on the Earth?s surface, even small differences in the amount of light that the ice absorbed or reflected could cause significant changes in climate. The properties of the ice would also determine where, and in what circumstances, photosynthetic life could have survived. Some kinds of ice that are rare on the modern Earth may have been pivotal in allowing the tropical ocean to freeze. The ocean surfaces would have included some ice types that now exist only in Antarctica: bare cold sea ice with precipitated salts, and "blue ice" areas of the Transantarctic Mountains that were exposed by sublimation and have not experienced melting. Field expeditions were mounted to examine these ice types, and the data analysis is underway. A third ice type, sea ice with a salt crust, is being studied in a freezer laboratory. Modeling will show how sunlight would interact with ice containing light-absorbing dust and volcanic ash. Aside from its reflection of sunlight, ice on the Snowball ocean would have been thick enough to flow under its own weight, invading all parts of the ocean. Yet evidence for the survival of photosynthetic life indicates that some regions of liquid water were maintained at the ocean surface. One possible refuge for photosynthetic organisms is a bay at the far end of a nearly enclosed tropical sea, formed by continental rifting and surrounded by desert, such as the modern Red Sea. A model of glacier flow is being developed to determine the dimensions of the channel, connecting the sea to the ocean, necessary to prevent invasion by the flowing ice yet maintain a water supply to replenish evaporation.
Hulbe/0838810 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a modeling study of the processes in West Antarctic grounding zones, the transition from ice resting on bedrock to ice floating on the ocean surface with an eye toward understanding the interrelated causes of rapid change in grounding line configuration and outlet flow. A combination of satellite remote sensing and numerical modeling will be used to investigate both past and ongoing patterns of change. New high-resolution surface elevation maps made from a novel combination of satellite laser altimetry and remotely observed surface shape provide a unique view of grounding zones. These data will be used to diagnose events associated with the shutdown of Kamb Ice Stream, to investigate a recent discharge event on Institute Ice Stream and to investigate ongoing change at the outlet of Whillans Ice Stream, along with other modern processes around the West Antarctic. An existing numerical model of coupled ice sheet, ice stream, and ice shelf flow will be used and improved as part of the research project. The broader impacts of the project relate to the importance of understanding the role of polar ice sheets in global sea level rise. The work will contribute to the next round of deliberations for the Intergovernmental Panel on Climate Change (IPCC). Improved views, interpretations, and insights into the physical processes that govern variability in ice sheet outlet streams will help correct the shortcomings of the last IPCC report that didn?t include the role of ice sheets in sea level rise. The PIs have a strong record of public outreach, involvement in the professional community, and student training.
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.
This award supports a field experiment, with partners from Chile and the Netherlands, to determine the state of health and stability of Larsen C ice shelf in response to climate change. Significant glaciological and ecological changes are taking place in the Antarctic Peninsula in response to climate warming that is proceeding at 6 times the global average rate. Following the collapse of Larsen A ice shelf in 1995 and Larsen B in 2002, the outlet glaciers that nourished them with land ice accelerated massively, losing a disproportionate amount of ice to the ocean. Further south, the much larger Larsen C ice shelf is thinning and measurements collected over more than a decade suggest that it is doomed to break up. The intellectual merit of the project will be to contribute to the scientific knowledge of one of the Antarctic sectors where the most significant changes are taking place at present. The project is central to a cluster of International Polar Year activities in the Antarctic Peninsula. It will yield a legacy of international collaboration, instrument networking, education of young scientists, reference data and scientific analysis in a remote but globally relevant glaciological setting. The broader impacts of the project will be to address the contribution to sea level rise from Antarctica and to bring live monitoring of climate and ice dynamics in Antarctica to scientists, students, the non-specialized public, the press and the media via live web broadcasting of progress, data collection, visualization and analysis. Existing data will be combined with new measurements to assess what physical processes are controlling the weakening of the ice shelf, whether a break up is likely, and provide baseline data to quantify the consequences of a breakup. Field activities will include measurements using the Global Positioning System (GPS), installation of automatic weather stations (AWS), ground penetrating radar (GPR) measurements, collection of shallow firn cores and temperature measurements. These data will be used to characterize the dynamic response of the ice shelf to a variety of phenomena (oceanic tides, iceberg calving, ice-front retreat and rifting, time series of weather conditions, structural characteristics of the ice shelf and bottom melting regime, and the ability of firn to collect melt water and subsequently form water ponds that over-deepen and weaken the ice shelf). This effort will complement an analysis of remote sensing data, ice-shelf numerical models and control methods funded independently to provide a more comprehensive analysis of the ice shelf evolution in a changing climate.
This award supports a project to fully develop the analytical protocols needed to exploit a relatively new technique for the analysis of soluble organic matter in ice core samples. The technique couples Electrospray ionization to high resolution Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). Sample volume will be reduced and pre-concentration steps will be eliminated. Following method optimization a suite of ice core samples will be studied from several Antarctic and Greenland locations to address several hypothesis driven research questions. Preliminary results show that a vast record of relatively high molecular weight organic material exists in ice core samples and intriguing results from a few samples warrant further investigation. Several important questions related to developing a better understanding of the nature and paleo record of organic matter in ice cores will be addressed. These include developing a better understanding of the origin of nitrogen and sulfur isotopes in pre-industrial vs. modern samples, developing the methods to apply molecular biomarker techniques, routinely used by organic geochemists for sediment analyses, to the analysis of organic matter in ice cores, tracking the level of oxidation of homologous series of compounds and using them as a proxy for atmospheric oxidant levels in the past and determining whether or not high resolution FTICR mass spectral analysis can provide the ice core community with a robust method to analyze organic materials at the molecular level. The intellectual merit of this work is that this analytical method will provide a new understanding of the nature of organic matter in ice, possibly leading to the discovery of multitudes of molecular species indicative of global change processes whose abundances can be compared with other change proxies. The proposed studies are of an exploratory nature and potentially transformative for the field of ice core research and cryobiology. The broader impacts of these studies are that they should provide compelling evidence regarding organic matter sources, atmospheric processing and anthropogenic inputs to polar ice and how these have varied over time. The collaborative work proposed here will partner atmospheric chemistry/polar ice chemistry expertise with organic geochemistry expertise, resulting in significant contributions to both fields of study and significant advances in ice core analysis. Training of both graduate and undergraduate students will be a key component of the project and students will be involved in collaborative research using advanced analytical instrumentation, presentation of research results at national meetings, and will participate in manuscript preparation.
This project is an aerogeophysical survey to explore unknown terrain in East Antarctica to answer questions of climate change and earth science. The methods include ice-penetrating radar, gravity, and magnetic measurements. The project?s main goal is to investigate the stability and migration of ice divides that guide flow of the East Antarctic ice sheet, the world?s largest. The project also maps ice accumulation over the last interglacial, identifies subglacial lakes, and characterizes the catchment basins of the very largest glacial basins, including Wilkes and Aurora. The outcomes contribute to ice sheet models relevant to understanding sea level rise in a warming world. The work will also help understand the regional geology. Buried beneath miles-thick ice, East Antarctica is virtually uncharacterized, but is considered a keystone for tectonic reconstructions and other geologic questions. The region also hosts subglacial lakes, whose geologic histories are unknown. <br/><br/>The broader impacts are extensive, and include societal relevance for understanding sea level rise, outreach in various forms, and education at the K12 through postdoctoral levels. The project contributes to the International Polar Year (2007-2009) by addressing key IPY themes on frontiers in polar exploration and climate change. It also includes extensive international collaboration with the United Kingdom, Australia, France and other nations; and offers explicit opportunities for early career scientists.
Joughin 0631973<br/><br/>This award supports a project to gather data to better understand the mass balance of the West Antarctic Ice Sheet, in the Pine Island and Thwaites region, through the combination of radar altimetry and surface-based ice-core measurements of accumulation. The intellectual merit of the project is that the results of the field work will provide information on decadal-scale average accumulation extending back through the last century and will help constrain a modeling effort to determine how coastal changes propagate inland, to allow better prediction of future change. Comparison of the basin averaged accumulation with ice discharge determined using Interferometric Synthetic Aperture Radar (InSAR) velocity data will provide improved mass-balance estimates. Study of changes in flow speed will produce a record of mass balance over the last three decades. Analysis of the satellite altimeter record in conjunction with annual accumulation estimates also will provide estimates of changes and variability in mass balance. The broader impacts of the work are that it will make a significant contribution to future IPCC estimates of sea level, which are important for projection of the impacts of increased sea level on coastal communities. The research will contribute to the graduate education of students at the Universities of Washington and Kansas and will enrich K-12 education through the direct participation of the PIs in classroom activities. Informal science education includes 4-day glacier flow demonstrations at the Polar Science Weekend held annually at the Pacific Science Center in Seattle. The project also will communicate results through Center for the Remote Sensing of Ice Sheets (CReSIS) outreach effort. All field and remotely-sensed data sets will be archived and distributed by the National Snow and Ice Data Center. This project is relevant to IPY in that the West Antarctic Ice Sheet is losing mass, in large part because of rapid thinning of the Amundsen Coast glaciers so, it will directly address the NSF IPY emphasis on "ice sheet history and dynamics." The project is also international in scope.
This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.
Abstract<br/><br/><br/><br/>This project uses high-precision, U-Pb dating of zircons from the Ferrar igneous intrusion of Antarctica to determine when it formed and whether it caused a major extinction event. Amongst the world?s largest intrusions, the Ferrar is also associated with breakup of Gondwana, the last supercontinent. Data from this project will show how the Ferrar and similar intrusions form and their potential to cause mass extinctions. Intrusion of the Ferrar has been tentatively linked to the Toarcian extinction event of 183 million years ago, thought to have been caused by methane released when the Ferrar intersected subterranean coal beds. The broader impacts are undergraduate, graduate and postdoctoral involvement in research, new collaborations between a research and primarily undergraduate institution, and K12 outreach.
This award supports a three-year study to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica using a suite of existing numerical models in conjunction with existing and International Polar Year (IPY)-proposed data sets. Four different models will be utilized to explore the effects of embayment geometry, ice-shelf buttressing, basal-stress distribution, surface mass balance, surface climate, and inland dynamic perturbations on the present and future dynamics of TG. This particular collection of models is ideally suited for the broad nature of this investigation, as they incorporate efficient and complementary simplifications of the stress field (shallow-ice and shelf-stream), system geometry (1-d and 2-d plan-view and flowline; depth-integrated and depth-dependent), and mass-momentum energy coupling (mechanical and thermo-mechanical). The models will be constrained and validated by data sets (including regional maps of ice thickness, surface elevation, basal topography, ice surface velocity, and potential fields) and geophysical data analyses (including increasing the spatial resolution of surface elevations, improving regional estimates of geothermal flux, and characterizing the sub-glacial interface of grounded ice as well as the grounding-zone transition between grounded and floating ice). The intellectual merit of the research focuses on several of the NSF Glaciology program's emphases, including: ice dynamics, numerical modeling, and remote sensing of ice sheets. In addition, the research directly addresses the following specific NSF objectives: "investigation of the physics of fast glacier flow with emphasis on processes at glacier beds"; "investigation of ice-shelf stability"; and "identification and quantification of the feedback between ice dynamics and climate change". The broader impacts of this research effort will help answer societally relevant questions of future ice sheet stability and sea-level change. The research also will aid in the early career development of two young investigators and will contribute to the education of both graduate and undergraduate students directly involved in the research, and results will be incorporated into courses and informal presentations.
This award supports analyses of stable isotopes of water, dD, d18O and deuterium excess in the proposed West Antarctic Ice Sheet Divide (WAIS) deep ice core. The project will produce a continuous and high-resolution reconstruction of stable isotope ratios for the new core. dD and d18O values provide estimates of temperature change at the ice core site. Deuterium excess provides estimates of ocean surface conditions, such as sea surface temperature, at the moisture source areas. This new ice core is ideally situated to address questions ranging from ice sheet stability to abrupt climate change. WAIS Divide has high enough snowfall rates to record climate changes on annual to decadal time scales. It should also have ice old enough to capture the last interglacial period in detail. The West Antarctic ice sheet is the subject of great scrutiny as our modern climate warms and sea level rises. What are the prospects for added sea level rise from ice released by this ice sheet? Understanding how this ice sheet has responded to climate change in the past, which the data collected in this project will help to assess, is critical to answering this question. The high temporal resolution available in the WAIS Divide core will provide the best available basis for inter-comparison of millennial-scale climate changes between the poles, and thus a better understanding of the spatial expression and dynamics of rapid climate change events. Finally, the location of this core in the Pacific sector of West Antarctica makes it well situated for examining the influence of the tropical Pacific on Antarctica climate, on longer timescales than are available from the instrumental climate record. Analyses will include the measurement of sub-annually resolved isotope variations in the uppermost parts of the core, measurements at annual resolution throughout the last 10,000 years and during periods of rapid climate change prior to that, and measurements at 50-year resolution throughout the entire length of the core that is collected and processed during the period of this grant. We anticipate that this will be about half of the full core expected to be drilled. In terms of broader impacts, the PIs will share the advising of two graduate students, who will make this ice core the focus of their thesis projects. It will be done in an innovative multi-campus approach designed to foster a broader educational experience. As noted above, the data and interpretations generated by this proposal will address climate change questions not only of direct and immediate scientific interest, but also of direct and immediate policy interest.
This study will investigate how the Antarctic Slope Front and continental slope morphology determine the exchanges of mass, heat, and fresh water between the shelf and the deep ocean, in particular those leading to outflows of dense water into intermediate and deep layers of the adjacent basins and into the world ocean circulation <br/>While the importance to the global ocean circulation and climate of cold water masses originating in the Antarctic is unquestioned, the processes by which these water masses enter the deep ocean circulation are not. The primary goal of this work therefore is to identify the principal physical processes that govern the transfer of shelf-modified dense water into intermediate and deep layers of the adjacent deep ocean. At the same time, it seeks to understand the compensatory poleward flow of waters from the oceanic regime. The upper continental slope has been identified as the critical gateway for the exchange of shelf and deep ocean waters. Here the topography, velocity and density fields associated with the nearly ubiquitous front must strongly influence the advective and turbulent transfer of water properties between the shelf and oceanic regimes. The study has four specific objectives: [1] Determine the mean frontal structure and the principal scales of variability, and estimate the role of the front on cross-slope exchanges and mixing of adjacent water masses; [2] Determine the influence of slope topography and bathymetry on frontal location and outflow of dense Shelf Water; [3] Establish the role of frontal instabilities, benthic boundary layer transports, tides and other oscillatory processes on cross-slope advection and fluxes; and [4] Assess the effect of diapycnal mixing, lateral mixing identified through intrusions, and nonlinearities in the equation of state on the rate of descent and the fate of outflowing, near-freezing Shelf Water.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>An interdisciplinary team of researchers will focus on describing the high productivity patchiness observed in phytoplankton blooms in the mid to late summer in the Ross Sea, Antarctica. Key hypotheses to be tested and extended are that intrusions of nutrient and micro nutrient (e.g. Fe) rich water masses of the Antarctic modified circumpolar deep water (CDW) up onto continental shelves act to control the biogeochemical response of a large area of the productive Ross Sea coastal region. It is believed that this enhanced productivity may be a significant contributing factor to the global carbon cycle. <br/><br/>A novel sampling strategy to be used to test the above hypotheses will employ a remotely controlled deep (1000m) glider (AUV) to locate and map CDW in near real time measuring C (conductivity), T (temperature), D (pressure) and apparent optical properties, and which will serve to direct further ship-based sampling. <br/><br/>The adaptive coordination of a polar research vessel with an AUV additionally provides an opportunity to engage in formal and informal education and public outreach on issues in polar research.
Winckler/0636898<br/><br/>This award supports a project to study dust sources in Antarctic ice cores. Atmospheric aerosols play an important role both in global biogeochemical cycles as well as in the climate system of the Earth. Records extracted from Antarctic ice cores inform us that dust deposition from the atmosphere to the ice sheet was 15-20 times greater during glacial periods than during interglacials, which raises the possibility that dust may be a key player in climate change on glacial-interglacial timescales. By characterizing potential source areas from South America, South Africa, and Australia as well as fresh glacial flour from Patagonia, the project will determine if the interglacial dust was mobilized from a distinct geographical region (e.g., Australia) or from a more heavily weathered source region in South America. The intellectual merit of the project is that it will contribute to reconstructing climate-related changes in the rate of dust deposition, and in the provenance of the dust, it will provide critical constraints on hydrology and vegetation in the source regions, as well as on the nature of the atmospheric circulation transporting dust to the archive location. In a recent pilot study it was found that there is a dramatic glacial to Holocene change in the 4He/Ca ratio in the dust extracted from ice from Dronning Maud Land, Antarctica, indicating a shift in the source of dust transported to Antarctica. The broader impacts of the project are that Helium isotopes and calcium measurements provide a wealth of information that can then be turned into critical input for dust-climate models. Improved models, which are able to accurately reconstruct paleo dust distribution, will help us to predict changes in dust in response to future climate variability. This information will contribute to an improvement of our integrated understanding of the Earth's climate system and, in turn, will better inform policy makers of those processes and conditions most susceptible to perturbation by climate change, thereby leading to more meaningful climate-change policy. The project will support a graduate student in the dual masters Earth and Environmental Science Journalism program. The lead-PI manages the rock noble gas laboratory at Lamont. Her leadership role in this facility impacts the training of undergraduate and graduate students as well as visiting scientists.
This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man's input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.
Hall/0636687<br/><br/>This award supports a project to investigate late Pleistocene and Holocene changes in Scott Glacier, a key outlet glacier that flows directly into the Ross Sea just west of the present-day West Antarctic Ice Sheet (WAIS) grounding line. The overarching goals are to understand changes in WAIS configuration in the Ross Sea sector at and since the last glacial maximum (LGM) and to determine whether Holocene retreat observed in the Ross Embayment has ended or if it is still ongoing. To address these goals, moraine and drift sequences associated with Scott Glacier will be mapped and dated and ice thickness, surface velocity and surface mass balance will be measured to constrain an ice-flow model of the glacier. This model will be used to help interpret the dated geologic sequences. The intellectual merit of the project relates to gaining a better understanding of the West Antarctic Ice Sheet and how changing activity of fast-flowing outlet glaciers and ice streams exerts strong control on the mass balance of the ice sheet. Previous work suggests that grounding-line retreat in the Ross Sea continued into the late Holocene and left open the possibility of ongoing deglaciation as part of a long-term trend. Results from Reedy Glacier, an outlet glacier just behind the grounding line, suggest that retreat may have slowed substantially over the past 2000 years and perhaps even stopped. By coupling the work on Scott Glacier with recent data from Reedy Glacier, the grounding-line position will be bracketed and it should be possible to establish whether the retreat has truly ended or if it is ongoing. The broader impacts of the work relate to the societal relevance of an improved understanding of the West Antarctic ice sheet to establish how it will respond to current and possible future environmental changes. The work addresses this key goal of the West Antarctic Ice Sheet Initiative, as well as the International Polar Year focus on ice sheet history and dynamics. The work will develop future scientists through the education and training of one undergraduate and two Ph.D. students, interaction with K-12 students through classroom visits, web-based 'expedition' journals, letters from the field, and discussions with teachers. Results from this project will be posted with previous exposure dating results from Antarctica, on the University of Washington Cosmogenic Nuclide Lab website, which also provides information about chemical procedures and calculation methods to other scientists working with cosmogenic nuclides.
Tulaczyk/0636970<br/><br/>This award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA's represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.
0538120<br/>Catania<br/>This award supports a project to identify and map ice surface and internal features that chronicle the sequence of events leading to the shut-down of Kamb ice stream. In particular, the project will study past grounding line migration and the relationship between that process and ice stream shutdown. The intellectual merits of the project include the fact that an understanding of such processes has important implications for our ability to accurately predict mass balance changes in this region. Currently, one of the five major West Antarctic ice streams, Kamb, is quiescent, and another, Whillans, is slowing in its downstream reaches. The Kamb shutdown appears to have begun at its downstream end but beyond that simple observation, it is not possible, yet, to draw meaningful comparisons between the two adjacent streams. We do not know if current events on Whillans Ice Stream are similar to what transpired during the Kamb shut-down. The work proposed here intends to bridge that gap. It is expected that this effort will yield useful insights into the influence of grounding line dynamics on ice stream flow. The work will involve a combination of field investigations using radio-echo sounding and GPS combined with computational efforts involving the interpretation of ice-surface features such as relict flow traces and crevasses. The broader impacts of the project will be in addressing a global environmental problem with critical societal implications, training the next generation of scientists and engineers to serve the nation, and encouraging women to pursue scientific or engineering careers. Participants from both institutions are involved in a range of public outreach activities.
This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbræ. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.<br/><br/>The intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. <br/><br/>As lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.
Edwards/0739780<br/><br/>This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat.<br/><br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.
*** 9726186 Pilskaln This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People's Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***
9909734 Anderson This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research on the glaciomarine geology of the continental shelves of West Antarctica and the Antarctic Peninsula. It is hypothesized that the different glacial systems of the Antarctic Peninsula region have been more responsive to climate change and sea-level rise than either the West Antarctic or East Antarctic ice sheets. This is due mainly to the smaller size of these ice masses and the higher latitude location of the peninsula. Indeed, ice shelves of the Antarctic Peninsula are currently retreating at rates of up to a kilometer per year. But are these changes due to recent atmospheric warming in the region or are they simply the final phase of retreat since the last glacial maximum? This project hypothesizes that the deglacial history of the Antarctic Peninsula region has been quite complex, with different glacial systems retreating at different rates and at different times. This complex recessional history reflects the different sizes as well as different climatic and physiographic settings of glacial systems in the region. An understanding of the Late Pleistocene to Holocene glacial history of the Antarctic Peninsula glacial systems is needed to address how these systems responded to sea-level and climate change during that time interval. This investigation acquire new marine geological and geophysical data from the continental shelf to determine if and when different glacial systems were grounded on the shelf, to establish the extent of grounded ice, and to examine the history of glacial retreat. The project will build on an extensive seismic data set and hundreds of sediment cores collected along the Peninsula during earlier (1980's) cruises. Key to this investigation is the acquisition of swath bathymetry, side-scan sonar and very high-resolution sub-bottom (chirp) profiles from key drainage outlets. These new data will provide the necessary geomorphologic and stratigraphic framework for reconstructing the Antarctic Peninsula glacial record. Anticipated results will help constrain models for future glacier and ice sheet activity.
This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960's, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI's at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children's literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.
This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth's atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society's understanding of global climate change and sea level rise.
Mosley-Thompson<br/>0820779<br/><br/>This MRI award supports the acquisition of an inductively coupled-sector field mass spectrometer (ICP-SFMS) to extract atmospheric trace element histories from ice cores and to assess contemporary water quality. The intellectual merit and the scientific motivation for acquiring this instrument arises from the urgency to document and understand both contemporary and past Earth system changes. Trace elements are exceptional tools for reconstructing past processes in the Earth?s system and as some toxic species are produced by human activities, for monitoring the global anthropogenic footprint. The ICP-SFMS allows simultaneous analysis of numerous trace and ultra-trace elements from small mass samples and will allow new proxy information to be extracted from both new and archived ice cores. The analyses will make it possible to identify sources of impurities in ice cores and other water samples from which knowledge about past atmospheric circulation patterns, anthropogenic emissions, extraterrestrial contributions and volcanic circulation patterns can be derived. The broader impacts of the work relate to the societal relevance of the science and the strong education and outreach activities of the principal investigators. Students will receive training on state-of-the-art instrumentation which will support their graduate research training.
This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project will deploy a new Fabry-Perot interferometer (FPI) at the U.S. Palmer Station located in the Antarctic Peninsula. The FPI will observe mesospheric and thermospheric neutral winds and temperatures using multiple nightglow emissions (OH, 892 nm, 87 km; O 557.7 nm, 97 km; O 630 nm, 250 km; and O2 (0-1) 865 nm, 94 km). The project's team will collaborate with Australian scientists who operate similar FPI instruments at their Antarctic stations Mawson and Davis to jointly analyze the neutral wind and temperature data distributions over the continent and address the following scientific problems: (1) Thermospheric neutral winds effects on the Weddell Sea Anomaly, (2) Non-migrating tides in the mesosphere and lower thermosphere, (3) Lower thermospheric meridional wind circulation and mesosphere wind shear, (4) High-latitude geomagnetic field effects on the mid-latitude thermosphere, and (4) Conjugacy studies of the mesosphere and thermosphere with the incoherent scatter radar and FPI observations from Millstone Hill, Massachusetts. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate students.
0538657<br/>Severinghaus<br/>This award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation's human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.
Caffee/0839042 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to measure the concentration of the cosmogenic radionuclide, Beryllium-10 in the deep WAIS divide ice core. Since cosmogenic radionuclides are one of the key parameters used for absolute dating of the ice core and deriving paleoaccumulation rates, it is essential that these measurements be made quickly and efficiently, and that the information is disseminated as soon as the results are available. The intellectual merit of the project is that it will allow a comparison to be made between the core from WAIS Divide and previously measured cosmogenic radionuclide records from Arctic ice cores, particularly GISP2 and GRIP This project will enable scientists to delineate those processes acting at a local level from those that produce global effects and will provide independent chronological markers to aid in the reconstruction of the WAIS Divide ice core chronology. The cosmogenic 10Be profile can also be used to investigate the possible role of solar activity on climate. The direct comparison of radionuclide concentrations with paleoclimate records in ice cores from different sites will provide more insight in the timing and magnitude of solar forcing of climate. The broader impacts of this project include: (i) the formation of a multi-disciplinary team of collaborators for the interpretation of future analyses of cosmogenic radionuclide data from the WAIS divide and other ice cores. (ii) the involvement and training of graduate and undergraduate students in the large scale project of climate research through detailed studies of ice samples. (iii) the opportunity to highlight to a wide range of lab visitors and students from local K-12 schools the importance of ice core and climate change studies.<br/><br/>This award does not involve field work in Antarctica.
9317872 Cande This award supports a marine geophysical study of the southwest Pacific between 170 degrees E and 80 degrees W longitude. Recent marine geophysical cruises in the southwest Pacific and a high-resolution altimetric gravity field declassified Geosat data have allowed significant progress to be made towards deciphering the complex history of the rifting between the Campbell Plateau/Chatham Rise landmass and the Marie Byrd Land margin. A revised history of plate interactions explains many enigmatic features seen in the magnetic and gravity fields yet several questions remain that require new data for resolution. The marine geophysical survey proposed will: (1) elucidate plate interactions at the evolving triple junction between the Antarctic and Australian plates and the mosaic of SW Pacific plates; (2) define the boundaries and interactions of the mosaic of plates that accommodated the rapidly changing plate geometry associated with subduction of the Pacific-Phoenix ridge outboard of New Zealand, the rifting of continental and oceanic lithosphere, and hotspot activity; and (3) map the development of Pacific-Antarctic Ridge and the assembly of the several small plates into the modern day Pacific plate. This survey will help to elucidate the dynamics of plate interactions and the plate tectonic evolution of Antarctica and New Zealand. ***
OPP98-15823 P.I. Craig Smith<br/>OPP98-16049 P.I. David DeMaster<br/><br/>Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.
9528807 Gordon The proposed project is part of a multi-institutional integrated study of the outflow of newly formed bottom water from the Weddell Sea and its dispersion into the South Atlantic Ocean. It builds upon earlier successful studies of the inflow of intermediate water masses into the Eastern Weddell Sea, their modification within the Weddell Gyre, and their interaction with bottom water formation processes in the western Weddell Sea. The study is called Deep Ocean Ventilation Through Antarctic Intermediate Layers (DOVETAIL) and includes six components involving hydrographic measurements, natural tracer experiments, and modeling studies. The study will be centered east of the Drake Passage where water masses from the Weddell Sea and the Scotia Sea come together in the Weddell-Scotia Confluence, and will be carried out in cooperation with the national antarctic programs of Germany and Spain. This particular component concerns observations of the temperature and salinity structure, as well as the chemical nature of the water column in the confluence region. The study has four related objectives. The first is to assess the quantity and the physical and chemical characteristics of Weddell Sea source waters for the confluence. The second is to describe the dominant processes associated with spreading and sinking of dense antarctic waters within the Weddell-Scotia Confluence. The third is to estimate the ventilation rate of the world ocean, and the fourth is to estimate seasonal fluctuations in the regional ocean transport and hydrographic structure and to assess the likely influence of seasonal to interannual variability on rates of ventilation by Weddell Sea waters. Ventilation of the deep ocean -- the rising of sub-surface water masses to the surface to be recharged with atmospheric gases and to give up heat to the atmosphere -- is a uniquely antarctic phenomenon that has significant consequences for global change by affecting the g lobal reservoir of carbon dioxide, and by modulating the amount and extent of seasonal sea ice in the southern hemisphere. This component will make systematic observations of the temperature salinity structure of the water and undertake an extensive sampling program for other chemical studies. The purpose is to identify the individual water masses and to relate their temperature and salinity characteristics to the modification processes within the Weddell Sea. ***
*** 9725024 Jacobs This project will study the dynamics of Circumpolar Deep Water intruding on the continental shelf of the West Antarctic coast, and the effect of this intrusion on the production of cold, dense bottom water, and melting at the base of floating glaciers and ice tongues. It will concentrate on the Amundsen Sea shelf, specifically in the region of the Pine Island Glacier, the Thwaites Glacier, and the Getz Ice Shelf. Circumpolar Deep Water (CDW) is a relatively warm water mass (warmer than +1.0 deg Celsius) which is normally confined to the outer edge of the continental shelf by an oceanic front separating this water mass from colder and saltier shelf waters. In the Amundsen Sea however, the deeper parts of the continental shelf are filled with nearly undiluted CDW, which is mixed upward, delivering significant amounts of heat to the base of the floating glacier tongues and the ice shelf. The melt rate beneath the Pine Island Glacier averages ten meters of ice per year with local annual rates reaching twenty meters. By comparison, melt rates beneath the Ross Ice Shelf are typically twenty to forty centimeters of ice per year. In addition, both the Pine Island and the Thwaites Glacier are extremely fast-moving, and have a significant effect on the regional ice mass balance of West Antarctica. This project therefore has an important connection to antarctic glaciology, particularly in assessing the combined effect of global change on the antarctic environment. The particular objectives of the project are (1) to delineate the frontal structure on the continental shelf sufficiently to define quantitatively the major routes of CDW inflow, meltwater outflow, and the westward evolution of CDW influence; (2) to use the obtained data set to validate a three-dimensional model of sub-ice ocean circulation that is currently under construction, and (3) to refine the estiamtes of in situ melting on the mass balance of the antarctic ice sheet. The observational program will be carried out from the research vessel Nathaniel B. Palmer in February and March, 1999. ***
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula. The objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice. The water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes. ***
The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.
Domack: OPP 9615053 Manley: OPP 9615670 Banerjee: OPP 9615695 Dunbar: OPP 9615668 Ishman: OPP 9615669 Leventer: OPP 9714371 Abstract This award supports a multi-disciplinary, multi-institutional effort to elucidate the detailed climate history of the Antarctic Peninsula during the Holocene epoch (the last 10,000 years). The Holocene is an important, but often overlooked, portion of the Antarctic paleoclimatic record because natural variability in Holocene climate on time scales of decades to millennia can be evaluated as a model for our present "interglacial" world. This project builds on over ten years of prior investigation into the depositional processes, productivity patterns and climate regime of the Antarctic Peninsula. This previous work identified key locations that contain ultra-high resolution records of past climatic variation. These data indicate that solar cycles operating on multi-century and millennial time scales are important regulators of meltwater production and paleoproductivity. These marine records can be correlated with ice core records in Greenland and Antarctica. This project will focus on sediment dispersal patterns across the Palmer Deep region. The objective is to understand the present links between the modern climatic and oceanographic systems and sediment distribution. In particular, additional information is needed regarding the influence of sea ice on the distribution of both biogenic and terrigenous sediment distribution. Sediment samples will be collected with a variety of grab sampling and coring devices. Analytical work will include carbon-14 dating of surface sediments using accellerator mass spectrometry and standard sedimentologic, micropaleontologic and magnetic granulometric analyses. This multiparameter approach is the most effective way to extract the paleoclimatic signals contained in the marine sediment cores. Two additional objectives are the deployment of sediment traps in front of the Muller Ice Shelf in Lallemand Fjord and seismic reflection work in conjunction with site augmentation funded through the Joint Oceanographic Institute. The goal of sediment trap work is to address whether sand transport and deposition adjacent to the ice shelf calving line results from meltwater or aeolian processes. In addition, the relationship between sea ice conditions and primary productivity will be investigated. The collection of a short series of seismic lines across the Palmer Deep basins will fully resolve the question of depth to acoustic basement. The combination of investigators on this project, all with many years of experience working in high latitude settings, provides an effective team to complete the project in a timely fashion. A combination of undergraduate, graduate and post-graduate students will be involved in all stages of the project so that educational objectives will be met in-tandem with research goals of the project.
Notothenioid fish are a major group of fish in the Southern Ocean. The ancestral notothenioid fish stock of Antarctica probably arose as a sluggish, bottom-dwelling perciform species that evolved some 40-60 million years ago in the then temperate shelf waters of the Antarctic continent. The grounding of the ice sheet on the continental shelf and changing trophic conditions may have eliminated the taxonomically diverse late Eocene fauna and initiated the original diversification of notothenioids. On the High Antarctic shelf, notothenioids today dominate the ichthyofauna in terms of species diversity, abundance and biomass, the latter two at levels of 90-95%. Since the International Geophysical Year of 1957-58, fish biologists from the Antarctic Treaty nations have made impressive progress in understanding the notothenioid ichthyofauna of the cold Antarctic marine ecosystem. However, integration of this work into the broader marine context has been limited, largely due to lack of access to, and analysis of, specimens of Sub-Antarctic notothenioid fishes. Sub-Antarctic fishes of the notothenioid suborder are critical for a complete understanding of the evolution, population dynamics, eco-physiology, and eco-biochemistry of their Antarctic relatives. This project will support an international, collaborative research cruise to collect and study fish indigenous to sub-antarctic habitats. The topics included in the research plans of the international team of researchers includes Systematics and Evolutionary Studies; Life History Strategies and Population Dynamics; Physiological, Biochemical, and Molecular Biological Investigations of Major Organ and Tissue Systems; Genomic Resources for the Sub-Antarctic Notothenioids; and Ecological Studies of Transitional Benthic Invertebrates. In a world that is experiencing changes in global climate, the loss of biological diversity, and the depletion of marine fisheries, the Antarctic, Sub-Antarctic, and their biota offer compelling natural laboratories for understanding the evolutionary impacts of these processes. The proposed work will contribute to development of a baseline understanding of these sensitive ecosystems, one against which future changes in species distribution and survival may be evaluated judiciously.
Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students' quantitative skills. Both PI's will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.
9317598 Asper The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will focus on the collection of vertical flux samples which will be analyzed for carbon, nitrogen and total mass flux and also provided to the other investigators for their specific analyses. Profiles of the abundance of large aggregates in the water column using a non- contact photographic method will be made. These data will be used to complement other particle determinations, to investigate the role of these aggregates in particle flux and to determine the mechanisms of particle export as a function of season and phytoplankton species. The end result will be a better understanding of the bloom processes and significant contributions to the data base on aggregates and export mechanisms in this environment.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research program to initiate a Global Positioning System (GPS) network to measure crustal motions in the bedrock surrounding and underlying the West Antarctic Ice Sheet (WAIS). Evaluation of the role of both tectonic and ice-induced crustal motions of the WAIS bedrock is a critical goal for understanding past, present, and future dynamics of WAIS and its potential role in future global change scenarios, as well as improving our understanding of the role of Antarctica in global plate motions. The extent of active tectonism in West Antarctica is largely speculative, as few data exist that constrain its geographic distribution, directions, or rates of deformation. Active tectonism and the influence of bedrock on the WAIS have been highlighted recently by geophysical data indicating active subglacial volcanism and control of ice streaming by the presence of sedimentary basins. The influence of bedrock crustal motion on the WAIS and its future dynamics is a fundamental issue. Existing GPS projects are located only on the fringe of the ice sheet and do not address the regional picture. It is important that baseline GPS measurements on the bedrock around and within the WAIS be started so that a basis is established for detecting change.<br/><br/>To measure crustal motions, this project will build a West Antarctica GPS Network (WAGN) of at least 15 GPS sites across the interior of West Antarctica (approximately the size of the contiguous United States from the Rocky Mountains to the Pacific coast) over a two-year period beginning in the Antarctic field season 2001-2002. The planned network is designed using the Multi-modal Occupation Strategy (MOST), in which a small number of independent GPS "roving" receivers make differential measurements against a network of continuous GPS stations for comparatively short periods at each site. This experimental strategy, successfully implemented by a number of projects in California, S America, the SW Pacific and Central Asia, minimizes logistical requirements, an essential element of application of GPS geodesy in the scattered and remote outcrops of the WAIS bedrock.<br/><br/>The WAGN program will be integrated with the GPS network that has been established linking the Antarctic Peninsula with South America through the Scotia arc (Scotia Arc GPS Project (SCARP)). It will also interface with stations currently measuring motion across the Ross Embayment, and with the continent-wide GIANT program of the Working Group on Geodesy and Geographic Information Systems of the Scientific Committee on Antarctic Research (SCAR). The GPS network will be based on permanent monuments set in solid rock outcrops that will have near-zero set-up error for roving GPS occupations, and that can be directly converted to a continuous GPS site when future technology makes autonomous operation and satellite data linkage throughout West Antarctica both reliable and economical. The planned network both depends on and complements the existing and planned continuous networks. It is presently not practical, for reasons of cost and logistics, to accomplish the measurements proposed herein with either a network of continuous stations or traditional campaigns.<br/><br/>The proposed WAGN will complement existing GPS projects by filling a major gap in coverage among several discrete crustal blocks that make up West Antarctica, a critical area of potential bedrock movements. If crustal motions are relatively slow, meaningful results will only begin to emerge within the five-year maximum period of time for an individual funded project. Hence this proposal is only to initiate the network and test precision and velocities at the most critical sites. Once built, however, the network will yield increasingly meaningful results with the passage of time. Indeed, the slower the rates turn out to be, the more important an early start to measuring. It is anticipated that the results of this project will initiate an iterative process that will gradually resolve into an understanding of the contributions from plate rotations and viscoelastic and elastic motions resulting from deglaciation and ice mass changes. Velocities obtained from initial reoccupation of the most critical sites will dictate the timing of a follow-up proposal for reoccupation of the entire network when detectable motions have occurred.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a marine geological investigation of the Amundsen Sea region toward a better understanding of the deglaciation history of the West Antarctic Ice Sheet (WAIS). The WAIS may be inherently unstable because it is the last marine-based ice sheet in the world. Unlike other embayments in West Antarctica, major ice streams draining into the Amundsen Sea from the interior of the WAIS lack buttressing ice shelves. Mass balance data for the distal portions of these ice streams (Pine Island and Thwaites glaciers) appear to be in balance or may be becoming negative. Because both ice streams have beds that slope downward toward the center of the ice sheet, grounding-line recession resulting from either continued thinning or sea-level rise could trigger irreversible grounding-line retreat, leading to ice-sheet disintegration and consequent global sea-level rise. The limited marine geological and geophysical data available from the Amundsen Sea suggest that grounded ice or an ice shelf occupied the inner Amundsen Sea embayment until perhaps as recently as 1000 to 2000 years ago, and this ice may have retreated rapidly in historic time. This project, a study of the marine geology and geophysics of the Amundsen Sea continental shelf from 100 degrees W to 130 degrees W, is designed to address the Amundsen Sea part of WAIS Science Plan Priority Goal H2: "What is the deglaciation history in the eastern Ross, the Bellingshausen and Amundsen Seas?" This project will examine bathymetric data of the Amundsen Sea continental shelf to determine the positions of former ice-steam channels, and to aid in choosing sites for sediment coring. Single-channel seismic reflection studies will be conducted in order to determine sediment-thickness patterns, to aid in choice of coring sites, and to locate and identify morphologic features indicative of former grounded ice (e.g., moraines, scours, flutes, striations, till wedges and deltas, etc.). Coring will be concentrated along former ice flow-lines. Core samples will be analyzed in the laboratory for sedimentology, to determine whether of not basal tills are present (indicating former grounded ice and its former extent), and for calcareous and siliceous microfossils. The chronology of grounding-line and ice-shelf retreat from a presumed Last Glacial Maximum position near the shelf break will be established using accelerator mass spectrometry (AMS) carbon-14 dates of acid-insoluble particulate organic carbon. This project will share ship time in the Amundsen Sea with a physical oceanographic project. Marine geologic data and samples collected will be integrated with findings of other investigators toward developing a comprehensive interpretation of the history of the WAIS.
This project is a two-year investigation into the dynamics and processes of deep water mass formation in the western Weddell Sea, combining physical and chemical oceanographic techniques to produce a coherent picture of the importance of this unique region to the structure of the world ocean. In the global context, this area is a major water mass modification site, involving open ocean convective events, the continental margin, and the ice cover. At this time the various water types that combine to form Weddell Sea Deep Water and Antarctic Bottom Water, and the conditions under which these water masses form, are not known well enough to establish direct physical links and volumetric budgets. It is suspected that the outflow from the Weddell Sea is restricted to quite narrow boundary currents flowing near the base of the continental shelf, and consequently may be observed with conventional current meter moorings from the shelf into the deep ocean. Two oceanographic expeditions to the western Weddell Sea are planned as part of this study: the first in the 1990/91, and the second in 1991/92. The objectives will be to measure the flow of newly-formed bottom water and to explore the sinking process of near-surface waters in the open ocean to see how these affect the deep water flows. In the first year the primary objective will be to set out an array of eight current meters in the bottom water core, while a secondary objective will be to grapple for an existing array that was set out in early 1988 but could not be recovered in 1989 because Antarctic Program ship resources had to be diverted to deal with the oil spill at Palmer Station. In the second year the array will be retrieved. Hydrographic cruises in order to define the upper ocean temperatures and salinity structure in the outflow region where unusually large step structures have been found in the past. A chemistry program consistent with the objectives of the World Ocean Circulation Experiment (WOCE) and presently planned experiments in the South Atlantic Ocean, will be integrated into the cruises carried out under this project.
OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.
The suborder Notothenoidei is the dominant fish group of the Southern Ocean surrounding Antarctica, both in terms of number of species and biomass. For about fourteen million years, these highly successful fish evolved under stable thermal conditions that result in body temperatures of about zero degrees centigrade throughout their life histories. Evolution this cold environment has led to unusual physiological and biochemical characteristics. In some cases, the characteristics contribute to overcoming constraints of cold temperature on biological processes. In other instances, mutations that probably would have been lethal in warmer, less oxygen-rich environments than the Southern Ocean have been retained in Antarctic fishes. This research project focuses on three major objectives that exploit these unusual conditions to identify mechanisms compatible with normal cellular function at cold temperature and to gain unique insights into the physiological roles of key intracellular proteins. The three lines of study proposed are the molecular basis for the failure of the myoglobin encoding gene to be expressed in certain Antarctic notothenioid fishes, the basis of the substrate specificity of the enzyme fatty acyl-CoA synthetase that is involved in the catabolism of fatty acids, and the functional roles played by different isoforms of creatine phosphokinase in locomotory muscle of Antarctic fish. Results from this study will not only provide insight into the evolutionary biology of the Antarctic notothenioid fishes, but will elucidate important general principles that are applicable to widely different taxa beyond the Antarctic.
This project is a study of the evolution of the sea ice cover, and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the internationally collaborative context of the International Polar Year (2007-2008). In its simplest terms, the mass balance is the net freezing and melting that occurs over an annual cycle at a given location. If the ice were stationary and were completely to melt every year, the mass balance would be zero. While non-zero balances have significance in questions of climate and environmental change, the process itself has global consequences since the seasonal freeze-melt cycle has the effect of distilling the surface water. Oceanic salt is concentrated into brine and rejected from the ice into deeper layers in the freezing process, while during melt, the newly released and relatively fresh water stabilizes the surface layers. The observation program will be carried out during a drift program of the Nathaniel B. Palmer, and through a buoy network established on the sea ice that will make year-long measurements of ice thickness, and temperature profile, large-scale deformation, and other characteristics. The project is a component of the Antarctic Sea Ice Program, endorsed internationally by the Joint Committee for IPY. Additionally, the buoys to be deployed have been endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB). While prior survey information has been obtained in this region, seasonal and time-series measurements on sea ice mass balance are crucial data in interpreting the mechanisms of air-ice-ocean interaction. <br/> The network will consist of an array of twelve buoys capable of GPS positioning. Three buoys will be equipped with thermister strings and ice and snow thickness measurement gauges, as well as a barometer. Two buoys will be equipped with meteorological sensors including wind speed and direction, atmospheric pressure, and incoming radiation. Seven additional buoys will have GPS positioning only, and will be deployed approximately 100 km from the central site. These outer buoys will be critical in capturing high frequency motion complementary to satellite-derived ice motion products. Additional buoys have been committed internationally through IPAB and will be deployed in the region as part of this program.<br/> This project will complement similar projects to be carried out in the Weddell Sea by the German Antarctic Program, and around East Antarctica by the Australian Antarctic Program. The combined buoy and satellite deformation measurements, together with the mass balance measurements, will provide a comprehensive annual data set on sea ice thermodynamics and dynamics for comparison with both coupled and high-resolution sea ice models.
The goal of this investigation is to understand the role of snow in sea ice development processes and air-ice-ocean heat exchange interactions in the seasonal and perennial sea ice zones of the Ross Sea, the Amundsen Sea, and the Bellingshausen Sea. Observations and measurements of the characteristics of sea ice and snow will be combined with numerical models of sea-ice flooding and the entrainment of snow into the ice cover in order to gain an understanding of the sea-ice heat and mass balance, and to quantify the energy exchange within the antarctic sea-ice cover. The snow measurement program, using the RVIB Nathaniel B. Palmer, will include depth, grain size and morphology, density, temperature, thermal conductivity, water content, and stable isotope ratio. The ice measurement program will include thickness, salinity, temperature, density, brine content, and included gas volume, as well as such structural properties as the fraction of frazil, platelet, and congelation ice in the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The numerical models will involve the thermodynamics of phase changes from liquid water to ice, along with the resulting energy transfer, brine expulsion, and the modulating effect of a snow cover. The results are expected to have broad relevance and application to understanding the effects of sea-ice processes in global change, and atmospheric, oceanographic, and remote sensing investigations of the Southern Ocean.
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.
Recent studies of marine ecosystems show conflicting evidence for trophic cascades, and in particular the relative strength of the crustacean zooplankton-phytoplankton link. The Ross Sea is a natural laboratory for investigating this apparent conflict. It is a site of seasonally high abundances of phytoplankton, characterized by regions of distinct phytoplankton taxa; the southcentral polynya is strongly dominated by the colony-forming prymnesiophyte Phaeocystis antarctica, while coastal regions of this sea are typically dominated by diatoms or flagellate species. Recent studies indicate that, while the south-central polynya exhibits a massive phytoplankton bloom, the poor food quality of P. antarctica for many crustacean zooplankton prevents direct utilization of much of this phytoplankton bloom. Rather, evidence suggests that indirect utilization of this production may be the primary mechanism by which carbon and energy become available to those higher trophic levels. Specifically, we hypothesize that nano and microzooplankton constitute an important food source for crustacean zooplankton (largely copepods and juvenile euphausiids) during the summer period in the Ross Sea where the phytoplankton assemblage is dominated by the prymnesiophyte. In turn, we also hypothesize that predation by copepods (and other Crustacea) controls and structures the species composition of these protistan assemblages. We will occupy stations in the south-central Ross Sea Polynya (RSP) and Terra Nova Bay (TNB) during austral summer to test these hypotheses. We hypothesize that the diatom species that dominate the phytoplankton assemblage in TNB constitute a direct source of nutrition to herbivorous/omnivorous zooplankton (relative to the situation in the south-central RSP). That is, the contribution of heterotrophic protists to crustacean diets will be reduced in TNB. Our research will address fundamental gaps in our knowledge of food web structure and trophic cascades, and provide better understanding of the flow of carbon and energy within the biological community of this perennially cold sea. The PIs will play active roles in public education (K-12) via curriculum development (on Antarctic biology) and teacher trainer activities in the Centers for Ocean Science Education Excellence (COSEE-West), an innovative, NSF-funded program centered at USC and UCLA.
9317538 Nelson The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will test the closely related hypotheses that: (1) phytoplankton growth is controlled primarily by the relationship between solar irradiance and mixed-layer depth throughout the spring (2) diatom growth rates are much higher in spring than at any other time of year, in response to the more favorable irradiance/mixing relationships, and (3) persistence of diatom blooms in summer results from the diatoms' ability to outcompete other groups under the light-limited conditions that develop in turbid, high-biomass waters. These hypotheses will be tested by (1) obtaining the first reliable estimates of the Sverdrup "critical depth" in the Antarctic so that the changing relationship between the critical depth and the mixed- layer depth in spring can be defined, and (2) estimating diatom growth rates and the gross and net production attributable to diatoms throughout the spring. The results will provide information critical to an understanding of phytoplankton bloom dynamics in the Ross Sea.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds and field support to continue a study of plate motions in the Antarctic Peninsula and Scotia Sea region. The principal aim of the original "Scotia Arc GPS Project (SCARP)" was to determine motions of the Scotia Plate relative to adjacent plates and to measure crustal deformation along its margins with special attention to the South Sandwich microplate and Bransfield Strait extension. The focus of the present proposal is confined to the part of the SCARP project that includes GPS sites at Elephant Island, the South Shetland Islands and on the Antarctic Peninsula. The British Antarctic Survey provides data from two sites on the Scotia arc for this project. The northern margin of the Scotia Plate is not included herein because that region is not covered under Polar Programs. A separate proposal will request support for re-measuring SCARP GPS stations in South America. With regard to the Antarctic Peninsula area, continuously operating GPS stations were established at Frei Base, King George Island (in 1996) and at the Argentine Base, South Orkney Islands (in 1998). A number of monumented sites were established in the Antarctic Peninsula region in 1997 to support campaign-style GPS work in December 1997 and December 1998. Because of the expected slow crustal motion in the Bransfield Strait and expiration of the initial grant, no further data collection will be done until enough time has passed so that new measurements can be expected to yield precise results.<br/><br/>The primary aim of this work is to complete the measurements required to quantify crustal deformation related to opening of the Bransfield Strait, the South Shetland microplate, and to identify any other independent tectonic blocks that the GPS data may reveal. The measurements to be completed under this award will be done using ship support during the 2002-2003 season. This would be five years after the first measurements and would provide quite precise horizontal velocities. This project will complete the acquisition, processing, and interpretation of a single data set to continue this initial phase of the NSF-funded project to measure crustal motions along the southern margin of the Scotia plate. A principal investigator and one graduate student from the University of Texas will perform fieldwork. A graduate student from the University of Hawaii will process the new data consistent with previous data, and all of the SCARP investigators (Bevis, Dalziel, Smalley, Taylor: from U. Texas, U. Hawaii, and U. Memphis) will participate in interpreting the data. The British Antarctic Survey (BAS) and Alfred Wegener Institute (AWI) also recognized the importance of the Scotia plate and the Bransfield system in both global and local plate tectonic frameworks. They, too, have used GPS to measure crustal motions in this region and duplicate a number of our sites. They began earlier than we, have taken data more recently, presumably will continue taking data, and they have published some results. The collaboration between SCARP, BAS, and AWI begun earlier, will continue into this new work. Joint and separate publications are anticipated. The existing SCARP network has several advantages that justify collection and analysis of another set of data. One is that SCARP has established and measured GPS sites on Smith, Low, and Livingston Islands, where other groups have not. These sites significantly extend the dimensions of the South Shetland microplate so that we can determine a more precise pole of rotation and recognize any sub-blocks within the South Shetland arc. Smith and Low Islands are near the end of the Bransfield Basin where relative motion between the South Shetland Microplate must somehow terminate, perhaps by faulting along an extension of the Hero fracture zone. Another advantage is that measurements under SCARP were made using fixed-height masts that eliminate all but a fraction of a millimeter of vertical error in exactly re-occupying each site. Vertical motion associated with postglacial rebound should be on the order of several mm/yr, which will eventually be measurable. Mid-Holocene shorelines that emerged to more than 20m on some South Shetland arc islands suggest that vertical motion is significant. Thus, this work will contribute to understanding both plate motions and post-glacial rebound from ice mass loss in the region.
The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. The focus of this proposal is the role of microzooplankton in controlling the production and fate of carbon during the two types of blooms. Objectives are: 1) to determine biomass, abundance, size and selected species composition of primary producer assemblages, 2) to determine similar features of nano- and microplanktonic heterotrophic assemblages, 3) to measure total community grazing on heterotrophic bacteria and phytoplankton, 4) to examine which grazers are the major herbivores and bacterivores, and 5) to measure the contribution of microzooplankton and mesozooplankton egesta, sinking of algal cells and colonies, and sinking of protozoan assemblages associated with detritus to the total carbon flux from the euphotic zone through 250 m depth. Water samples for abundance and biomass determinations will be taken and samples will be examined with epifluorescence microscopy. Grazing rates will be measured using the dilution grazing technique and the dual-isotope radiolabeling single cell method. Carbon fluxes will be determined on sinking material collected with particle interceptor traps at the base of the euphotic zone and two deeper depths, using microscopical analysis . An understanding of these processes and other fundamental processes studied by collaborating investigators will contribute to the understanding of the role of the Southern Ocean in present, past and predicted future sequestration of carbon, as well as in other global elemental cycles.
9815961 BENGTSON The pack ice region surrounding Antarctica contains at least fifty percent of the world's population of seals, comprising about eighty percent of the world's total pinniped biomass. As a group, these seals are among the dominant top predators in Southern Ocean ecosystems, and the fluctuation in their abundance, growth patterns, life histories, and behavior provide a potential source of information about environmental variability integrated over a wide range of spatial and temporal scales. This proposal was developed as part of the international Antarctic Pack Ice Seals (APIS) program, which is aimed to better understand the ecological relationships between the distribution of pack ice seals and their environment. During January-February, 2000, a research cruise through the pack ice zone of the eastern Ross Sea and western Amundsen Sea will be conducted to survey and sample along six transects perpendicular to the continental shelf. Each of these transects will pass through five environmental sampling strata: continental shelf zone, Antarctic slope front, pelagic zone, the ice edge front, and the open water outside the pack ice zone. All zones but open water will be ice-covered to some degree. Surveys along each transect will gather data on bathymetry, hydrography, sea ice dynamics and characteristics, phytoplankton and ice algae stocks, prey species (e.g., fish, cephalopods and euphausiids), and seal distribution, abundance and diet. This physical and trophic approach to investigating ecological interactions among pack ice seals, prey and the physical environment will allow the interdisciplinary research team to test the hypothesis that there are measurable physical and biological features in the Southern Ocean that result in area of high biological activity by upper trophic level predators. Better insight into the interplay among pack ice seals and biological and physical features of Antarctic marine ecosystems will allow for a better prediction of fluctuation in seal population in the context of environmental change.
The proposed project will expand the suite of observations and lengthen the existing time series of underway surface dissolved carbon dioxide (pCO2) measurements transects across the Drake Passage on the R/VIB L.M. Gould. The additional observations include oxygen, nutrients and total CO2 (TCO2) concentrations, and the 13C to 12C ratio of TCO2. The continued and expanded time series will contribute towards two main scientific goals: the quantification of the spatial and temporal variability and the trends of surface carbon dioxide species in four major water mass regimes in the Drake Passage, and the understanding of the dominant processes and changes in those processes that contribute to the variability in surface pCO2 and the resulting air-sea flux of CO2 in the Drake Passage. The expanded program will also include the analysis of the 14C/12C of TCO2 and the specific study of the observations on one short wintertime cruise, with the objective of testing the hypothesis that the dissolved carbon dioxide in surface waters of the Drake Passage is determined by the degree of winter mixing. This is of special significance in light of two scenarios that may be affecting the ventilation of Southern Ocean deep water now and in the future: a decrease in water column stratification with the observations of higher zonal winds, or an increase in stratification due to higher precipitation and warming from climate change. If winter mixing determines the mean annual pCO2 in the Drake Passage, the increasing trend in atmospheric pCO2 should have little effect on sea surface pCO2.
The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will conduct a set of process-oriented experiments designed to elucidate the controls of phytoplankton productivity, growth and accumulation as well as the mechanisms which control bacterial abundance and productivity in Antarctic waters. Specifically, the relative photosynthetic and nutrient (nitrate, ammonium) characteristics of diatom- vs. Phaeocystis- dominated assemblages will be examined to test if Phaeocystis simply grows faster under spring conditions in the Ross Sea. Phytoplankton and bacterial biomass, productivity and their interactions will be measured to elucidate the complex physical-chemical-biological interactions which occur. Substantial understanding of the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions will result from this research. Finally, because the Antarctic is the ocean's largest high-nutrient, low biomass system, and hence has the greatest potential for sequestering carbon dioxide, knowledge of the dynamics of the Ross Sea phytoplankton will also increase our understanding of the carbo n cycle of the Southern Ocean.
The krill surplus hypothesis argues that the near-extirpation of baleen whales from Antarctic waters during much the twentieth century led to significant changes in the availability of krill for other predators. Over the past decade, however, overall krill abundance has decreased by over an order of magnitude around the Antarctic Peninsula, in part due to physical forces, including the duration and extent of winter sea ice cover. Krill predators are vulnerable to variability in prey and have been shown to alter their demography in response to changes in prey availability This research will use novel tagging technology combined with traditional fisheries acoustics methods to quantify the prey consumed by a poorly understood yet ecologically integral and recovering krill predator in the Antarctic, the humpback whale (Megaptera novaeangliae). It also will use a combination of advanced non-invasive tag technology to study whale behavior concurrent with hydro-acoustic techniques to map krill aggregations. The project will (1) provide direct and quantitative estimates of krill consumption rates by humpback whales and incorporate these into models for the management of krill stocks and the conservation of the Antarctic marine ecosystem; (2) provide information integral to understanding predator-prey ecology and trophic dynamics, i.e., if/how baleen whales affect the distribution and behavior of krill and/or other krill predators; (3) add significantly to the knowledge of the diving behavior and foraging ecology of baleen whales in the Antarctic; and (4) develop new geospatial tools for the construction of multi-trophic level models that account for physical as well as biological data. <br/><br/>Broader Impacts: Whales are assumed to be a major predator on Antarctic krill, yet there is little understanding of how whales utilize this resource. This knowledge is critical to addressing both bottom-up and top-down questions, e.g., how climate change may affect whales or how whales may affect falling krill abundances. This program will integrate research and education by providing opportunities for undergraduate and graduate students as well as postdoctoral researchers at Duke University, the Florida State University and the University of Massachusetts at Boston. This project will also seek to integrate interactive learning through real time, seasonal and curriculum development in collaboration with the National Geographic Society as well as at the participating universities and local schools in those communities.
An array of moorings will be deployed and maintained east of Cape Adare, Antarctica, at the northwestern corner of the Ross Sea to observe the properties of Antarctic Bottom Water (AABW) exiting the Ross Sea. This location has been identified from recent studies as an ideal place to make such measurements. Antarctic Bottom Water has the highest density of the major global water masses, and fills the deepest parts of the world's oceans. Because it obtains many of its characteristics during its contact with the atmosphere and with glacial ice along the continental margins of Antarctica, it is expected that changes in newly-formed AABW may represent an effective indicator for abrupt climate change. The heterogeneous nature of the source regions around Antarctica complicates the observation of newly-formed AABW properties. The two most important source regions for AABW are within the Weddell and the Ross Seas, with additional sources drawn from the east Antarctic margins. In the northwestern Weddell Sea, several programs have been undertaken in the last decade to monitor the long term variability of Weddell Sea Deep and Bottom Water, precursors of AABW originating from the Weddell Sea, however no such systematic efforts have yet been undertaken to make longterm measurements of outflow from the Ross Sea. The proposed study will significantly improve our knowledge of the long term variability in the outflow of deep and bottom water from the Ross Sea, and will provide the beginnings of a long-term monitoring effort which ultimately will allow detection of changes in the ocean in the context of global climate change. When joined with similar efforts ongoing in the Weddell Sea, long-term behavior and possible coupling of these two important sources of the ocean's deepest water mass can be examined in detail.
9909374 Fairbanks This study will investigate how the formation of dense water masses on the antarctic continental shelves is affected by the periodic flushing by relatively warm circumpolar deep water, and whether the intrusion of warm water cna enhance the rate of formation of dense antarctic water. The study involves the observation of water mass modification processes on the continental shelf off the Adelie Coast in East Antarctica, near a quasi-permanent area of open water in the vicinity of the Mertz and Ninnis Glacier tongues - the so-called Mertz polynya. Antarctic coastal polynyas, formed by strong offshore winds, are often referred to as major sea ice and salt "factories" because the newly formed ice is blown seaward, allowing more ice to be formed along the coast, and because the freezing process increases the salinity of the continental shelf water. The thin ice, or even open water, implies significant heat losses from the ocean to the atmosphere, which also increases the density of the shelf water. The shelf water sinks, fills any depressions in the bottom, and is gravitationally driven down the continental slope. An additional process is identified for this study and is expected to be at work in this area: the intrusion of relatively warm water onto the continental shelf, overriding the shelf water and essentially shutting down the densification processes. The study will make use of the RVIB Nathaniel B. Palmer to obtain a closely spaced array of hydrographic stations over the continental shelf and slope along the George V Coast in the austral summer. The dat obtained here will complement a similar winter study by the Australian National Antarctic Program. ***
9727077 SMITH The annual expansion and contraction of ice cover in the Southern Ocean is the largest seasonal process in the World Ocean. This seasonal variability in ice cover creates extensive fluctuations in primary production, which heavily impacts pelagic and benthic communities. This research will initiate a long time-series study of the water column and sea floor using long-term, autonomous monitoring and sampling systems developed for use in the Antarctic. The study will be located in Post Foster, Deception Island, which supports a pelagic and benthic fauna representative of the Antarctic coastal zone and experiences seasonal ice cover. A bottom-moored, upward-looking acoustic instrument will be deployed on the sea floor for a period of one year to monitor the vertical distribution, abundance and biomass of acoustically-detectable macrozooplankton and micronekton in the water column. Collections will be made over this period using a newly-developed vertically-profiling pump sampling. Simultaneously, a time-lapse camera system will be moored on the sea floor to monitor the spatial distribution, sizes and movements of the epibenthic megafauna component of the benthic community. The instrumentation development will allow the research project to focus on the effect of the seasonal sea ice cycle on the distribution, abundance and biomass of the macrozooplankton and micronekton in the water column. Similar questions on the distribution, abundance, size and movements of the epibenthic megafauna will be addressed. Results from this study will provide a valuable data base for the evaluation of the pelagic and benthic community responses to seasonal variability in the Southern Ocean.
The proposal is to develop an instrument that can simultaneously measure the sound speed and magnetic fields at three heights in the solar atmosphere. The instrument will use magneto-optical filters tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), and 770 nm (K) to make measurements of Doppler velocities and longitudinal magnetic field. These lines form in the mid- and low-chromosphere and photosphere, respectively. In addition, the instrument will also use a Fabry-Perot etalon as a narrowband filter to measure the intensity variations of the 1083 nm (He I) line that is formed high in the chromosphere and which shows the location of the "foot points" of coronal holes. Together, the four lines will allow studying wave motions throughout the solar atmosphere. The instrument will record images of the Sun every 10 seconds with a spatial resolution of 1 arc-second. Thus, the project will be fostering the development of existing magneto-optical filter technology to a new level. Upon construction, the telescope will be tested at South Pole for a long period of uninterrupted observations. Both the local and global helioseismic analysis procedures will be utilized to identify and to characterize different types of waves present in the solar atmosphere. These observations will allow determining the structure and dynamics of the Sun's atmosphere through seismic measurements and, thus, improve the atmosphere models, assess the role of waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun's atmosphere couples to the interior. The broader impact of the proposed project is two fold. First, there is a potential benefit to the science and to the society because it is believed that the solar atmosphere is a "home" to many phenomena that can have a direct effect on the solar activity, including flares, coronal mass ejections, and the solar wind. Understanding the structure and dynamics of the solar atmosphere will therefore lead to a better understanding of the Sun-Earth connection. The collected data will be made available to other researchers at DVDs. The broader audience of general public will be reached through presentations at high schools, libraries, and community events, and news articles in the general press. Most of the research materials will also be placed in the Web.
This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The <br/>project will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.
This project seeks to understand the evolutionary physiology of reproductive strategies in Southern Ocean marine invertebrates. The fauna of the Southern Ocean has evolved under stable, cold temperatures for approximately 14 million years. These conditions have led to the evolution of unusual physiological and biochemical characteristics, many of which may reflect adaptations to relatively low oxygen availability and high larval oxygen demands. The goal of the proposed projects is to understand latitudinal variation in the function of invertebrate egg masses in relation to oxygen availability and temperature. This relationship is critical to larval survival in the low-temperature, high-oxygen conditions found at high latitudes. In particular, the investigators will: (1) use first principles to model the diffusion of oxygen into egg and embryo masses of Antarctic organisms at environmentally relevant temperatures; (2) test model assumptions by measuring the temperature-dependence of embryonic metabolism and oxygen diffusivity through natural and artificial gels; (3) test model predictions by using oxygen microelectrodes to measure oxygen gradients in both artificial and natural egg masses, and by measuring developmental rates of embryos at different positions in masses; and (4) compare the structure and function of egg masses from the Southern Ocean to those from temperate waters. These components of the study constitute an integrated examination of the evolutionary physiology of egg mass structure and function. Studies of masses endemic to polar conditions will increase the understanding of egg mass evolution across equator-to-pole gradients in temperature and across gradients in oxygen partial pressure. The proposal will support graduate students and will involve several undergraduates in research. The PIs will also design and implement units on polar biology for undergraduate classes at their respective institutions. These educational units will focus on the PIs' photographs, video footage, experiments, and data from this project. The PIs will use web-linked video and instructional technologies to design and co-teach a new class on polar ecological physiology, will work with local grade school institutions to involve high school students in research, and will develop high school course modules about polar biology.
This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.
OPP-0230285/OPP-0230356<br/>PIs: Wilson, Terry J./Hothem, Larry D.<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to conduct GPS measurements of bedrock crustal motions in an extended Transantarctic Mountains Deformation network (TAMDEF) to document neotectonic displacements due to tectonic deformation within the West Antarctic rift and/or to mass change of the Antarctic ice sheets. Horizontal displacements related to active neotectonic rifting, strike-slip translations, and volcanism will be tightly constrained by monitoring the combined TAMDEF and Italian VLNDEF networks of bedrock GPS stations along the Transantarctic Mountains and on offshore islands in the Ross Sea. Glacio-isostatic adjustments due to deglaciation since the Last Glacial Maximum and to modern mass change of the ice sheets will be modeled from GPS-derived crustal motions together with new information from other programs on the configurations, thicknesses, deglaciation history and modern mass balance of the ice sheets. Tectonic and rheological information from ongoing structural and seismic investigations in the Victoria Land region will also be integrated in the modeling. The integrative and iterative modeling will yield a holistic interpretation of neotectonics and ice sheet history that will help us to discriminate tectonic crustal displacements from viscoelastic/elastic glacio-isostatic motions. These results will provide key information to interpret broad, continental-scale crustal motion patterns detected by sparse, regionally distributed GPS continuous trackers and by spaceborne instruments. This study will contribute to international programs focused on Antarctic neotectonic and global change issues.<br/><br/>Strategies to meet these science objectives include repeat surveys of key sites in the existing TAMDEF network, extension of the array of TAMDEF sites southward about 250 km along the Transantarctic Mountains, linked measurements with the VLNDEF network, and integration of quasi-continuous trackers within the campaign network. By extending the array of bedrock sites southward, these measurements will cross gradients in predicted vertical motion due to viscoelastic rebound. The southward extension will also allow determination of the southern limit of the active Terror Rift and will provide a better baseline for constraints on any ongoing tectonic displacements across the West Antarctic rift system as a whole that might be possible using GPS data collected by the West Antarctic GPS Network. This project will also investigate unique aspects of GPS geodesy in Antarctica to determine how the error spectrum compares to mid-latitude regions and to identify the optimum measurement and data processing schemes for Antarctic conditions. The geodetic research will improve position accuracies within our network and will also yield general recommendations for deformation monitoring networks in polar regions.<br/><br/>An education and outreach program is planned and will be targeted at non-science-major undergraduate students taking Earth System Science at Ohio State University. The objective will be to illuminate the research process for nonscientists. This effort will educate students on the process of science and inform them about Antarctica and how it relates to global science issues.
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. <br/>Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. <br/>Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicated in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.
0086645<br/>Fountain<br/><br/>This award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of "application of new expertise or new approaches to established research topics". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The "exploratory" and "high risk" nature of the proposed work and its "potential" to make an important "impact" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.
The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation's human resource base. Education and outreach will be an important component of the project.
The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. <br/>The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. <br/>With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 "International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats," or, "ICEFISH," provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.
Abstract<br/><br/>The research objective is (1) to determine the distributions and dynamics of a full suite of bioactive trace metals in dissolved and suspended particulate forms, along sampling transects of the Amundsen and Ross Seas. And (2) to test the sensitivity of overall cellular metal stoichiometry (metal/carbon ratios) to natural gradients in species assemblage and Fe availability. Our earlier findings from a single Ross Sea station and from a Drake Passage crossing suggest that Fe-limited phytoplankton cells are unusually enriched in Zn, Cu and Cd relative to biomass carbon, with strong implications for the biogeochemical cycling of these elements relative to carbon fluxes in the Southern Ocean. In collaboration with other researchers on the cruise, we will also measure metal stoichiometry of cells exposed to predicted 2010 temperature and carbon dioxide levels in shipboard incubation studies, as a window into possible effects of climate change on metals biogeochemistry in these regions. This proposal will support close international collaborations and lasting infrastructure development as US and Swedish scientists, and more importantly, their students, work toward shared the shared goal of understanding a region that is experiencing one of the fastest rates of climate change on the globe. Trace metal micro-nutrients are a key control on the productivity of Antarctic marine ecosystems. Our results will be made widely available through research publications and internet-available databases, and public outreach through COSEE at Rutgers University.
This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.
The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (>60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications.
The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service's Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this<br/>hypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.<br/><br/>The research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.
This project will provide for the continued operation and data analysis of an electro-optical remote sensing facility at South Pole Station. The facility will be used to examine 1) the source(s) and propagation of patches of enhanced plasma density in the F-region of the Antarctic ionosphere, 2) changes in the Antarctic E-region O/N2 ratio in the center of the night-sector of the auroral oval and compare the ratios with those found in the sun-aligned auroral arcs in the Polar Cap region, 3) Antarctic middle atmosphere disturbances generated by Stratospheric Warming Events (SWE), 4) quantitative characterization of the effects of solar variability on the temperature of the upper mesosphere region, 5) Antarctic thermospheric response to Solar Magnetic Cloud/Coronal Mass Ejection (SMC/CME) events, and 6) the effects of Joule heating on the thermodynamics of the Antarctic F-region. Data for all these studies will come from two sets of remote-sensing facilities at SPS: 1) Auroral emissions brightness measurements from the sun-synchronous Meridian Scanning Photon Counting Multichannel photometer; 2) Airglow and Auroral emission spectra recorded continuously during Austral winter at SPS with the high throughput, high resolution Infrared Michelson Interferometer as well as Visible - Near Infrared CCD spectrographs. <br/><br/>Meridional variations in the brightness of F-region's auroral emissions provide the necessary data for investigations of the dynamics and IMF control, as well as the excitation mechanism(s), of the F-region patches. The brightness of auroral emissions from O and N relative to those from molecular species (O2 and N2) can be analyzed to assess, quantitatively, changes in the thermospheric composition. These data (from continuous (24 hours a day) measurements during the totally dark six months of each Austral winter at SPS) will be used to investigate the effects of solar-terrestrial disturbances on Antarctic thermospheric composition and thermodynamics, including response of the mesopause to solar cycle variations. Changes in airglow temperature (derived from OH and O2 bands), from different mesosphere/lower-thermosphere (MLT) heights, permit studies of the dynamical effects of Planetary, Tidal and Gravity waves propagating in the MLT regions as well as non-linear interactions among these waves. Coupling of different atmospheric regions over SPS, through enhanced gravity wave activities during SWE that lead to a precursor as Mesospheric cooling, will be investigated through the observed changes in MLT kinetic air temperature and density. <br/><br/>The project will enhance the infrastructure for research and education at Embry-Riddle Aeronautical University, bringing together the PI/Co-I and students from Departments of Physical Sciences and Aerospace Engineering. Graduate and undergraduate students will participate in modern research and software development.
Saltzman/0636953<br/><br/>This award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man's activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).
This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.
This Small Grant for Exploratory Research explores the use of magnesium isotopes in understanding the preservation of ice in soils from the Dry Valleys of Antarctica. With such little precipitation in the region, this ice should have completely sublimed away, nonetheless there is geologic evidence of ten-million-year-old ice in some areas. Its ubiquitous presence in Dry Valley's soils implies some form of recharge, seemingly incompatible with the low precipitation rates. This project studies the Mg-isotopes found in soluble salts and, by association, water transport. Magnesium isotopes undergo mass dependent fractionation during the volatilization and condensation, and thus offer the possibility to constrain both the water source and other processes by which ice is mobilized. The measurements require the high precision made possible only recently by development of the MC-ICPMS. The method will be applied to Mg-salts extracted from archived Antarctic soils, as well as cores recovered by the 1970s Dry Valley Drilling Project. <br/><br/>In terms of broader impacts, this project would support a graduate student, who would learn cutting edge geochemical techniques while applying them to an exciting earth science question. This work is critical to understanding the environmental record offered by the Dry Valleys, including the deep ice records that may give seven-million year old samples of the earth's atmosphere. The work also has applications to understanding permafrost on Mars and interpreting recent rover observations.
Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.
Recent years have seen the re-establishment of large-scale marine resource utilization by humans in the Antarctic. In contrast to early sealing and whaling activity, the modern impact is directed on krill and finfish populations, most notably of the Patagonian toothfish (Dissostichus eleginoides), but also its congenor the Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. Toothfish are a valuable resource and are likely to continue to command a high price in world markets. However, extensive illegal fishing has lead to considerable concern that Patagonian toothfish populations are being over-harvested. In other parts of the world, over-harvesting of larger, commercially valuable species has led to fishing down of marine food webs, leaving impoverished, less valuable ecosystems. The goal of the Convention for the Conservation of Antarctic Marine Living Resources, part of the Antarctic Treaty System, is to allow harvest while avoiding disruptions to the Antarctic ecosystem. To achieve this, the sustainable management of the fishery depends on reliable age data. Age data allow population age structure to be modeled, so that growth, mortality and recruitment rates can be estimated and used to understand population dynamics. Age data provides the basis to determine the life history pattern of a species, to model population dynamics, and to determine which age classes are vulnerable to over-exploitation under a particular set of environmental conditions. Current age and growth information for toothfish is based on age determination methodologies which are not validated and depend on the specific laboratory and principal investigator. Recently, the Commission of the Conservation of Antarctic Marine Living Resources has endorsed three preparation methodologies using otoliths and a common set of criteria for estimating age from otolith micro-structure. The CCAMLR Otolith Network has also been initiated as a medium for exchanging samples to ensure that age estimates are comparable between readers and laboratories. However, considerable work is needed to ensure that age estimates generated by the three methodologies are accurate. One technique that has been successful is radiometric age determination, which uses the disequilibria of lead-210 and radium-226 in otoliths as a natural chronometer. This proposal brings together an international collaboration to examine population age structure for both toothfish species, in an experimental design built around radiometric validation tests of age data generated by all three preparation methodologies. To integrate the validation component within an Antarctic-wide effort to examine toothfish population age structure, sub-samples for validation work will be drawn from sample sets taken for population age studies by research teams working in Australia, New Zealand, the United Kingdom and France, as well as the United States. Scientists at Moss Landing Marine Laboratories will use radiometric age determination to independently age otoliths from Patagonian and Antarctic toothfishes. Scientists at Old Dominion University will use a system already established for aging to generate validated age data, allowing growth, mortality, and longevity to be estimated by geographic areas. The project will provide validated otolith sample sets that can be used as a foundation for a unified and validated age estimation system for the toothfishes. This study will provide information which will be disseminated to the public, policy-makers and the international community. The project will provide opportunities for under-represented students at both universities.
This Small Grant for Exploratory Research supports development of an innovative dating technique for application to ancient, relict ice bodies buried in the Western Dry Valleys of Antarctica. Dating of surrounding sediments and volcanic ashes indicates that these ice bodies may be up to six million years in age, offering the oldest direct atmospheric and climate records available. This SGER is a proof of concept to develop a new dating technique using beryllium (10Be) of cosmogenic origin from the atmosphere and extraterrestrial helium (3He) contained in interplanetary dust particles. Both tracers are deposited to the Earth's surface and likely incorporated into the ice matrix at constant rates. Radioactive decay of 10Be versus the stable extraterrestrial 3He signal may offer way to directly measure the age of the ice.<br/><br/>The broader impacts of this work are development of a new analytical technique that may improve society's understanding of the potential for global climate change from the perspective of the deep time record.
This project will determine the age, origin, and climatic significance of buried ice found in the western Dry Valleys of Antarctica. Previous studies indicate that this ice may be over a million years in age, making it by far the oldest ice yet discovered on Earth. An alternative view is that this ice is represents recently frozen groundwater. To distinguish between these hypotheses and characterize the ice, we are undertaking an interdisciplinary research program focused on: 1) understanding the surface processes that permit ice preservation; and 2) testing the efficacy of cosmogenic nuclides and 40Ar/39Ar analyses in dating both tills and volcanic ash associated with the ice. Our plan calls for the analysis of a minimum of six cosmogenic depth profiles to determine if and how cryoturbation reworks sublimation tills and assess the average rate of ice sublimation for three debris-covered glaciers. We will model through finite- element analyses at least three buried glaciers and compare flow rates with those based on radiometric dating of surface deposits. Ten ice cores will also be collected for measurement of d18O, dD, ice fabric, ice texture, total gas content/composition. Better understanding of surface processes above buried ice will permit researchers to gain access to a record of atmospheric and climate change that could well cover intervals that predate Quaternary time. The work may also add valuable insight into Martian history. In terms of broader impacts, we have recruited three female PhD students and developed interdisciplinary collaborations among geochemists at Columbia University, planetary geologists at Brown University, geomorphologists at Boston University, and numerical modelers at the University of Maine.
This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.
This award supports a comprehensive investigation of the spatial and temporal characteristics of the surface mass balance of the Antarctic ice sheet and the governing mechanisms that affect it. A mesoscale atmospheric model, adapted for Antarctic conditions (Polar MM5), will be used in conjunction with the newly available reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to resolve the surface mass balance of Antarctica at a time resolution of 3 hours and a spatial resolution of 60 km from 1957 to 2001. Polar MM5 will be upgraded to account for key processes in the simulation, including explicit consideration of blowing snow transport and sublimation as well as surface melting/runoff. The proposed 45-y hindcast of all Antarctic surface mass balance components with a limited area model has not previously been attempted and will provide a dataset of unprecedented scope to complement existing ice core measurements of recent climate, especially those collected by the International Transantarctic Scientific Expedition (ITASE). The trends and variability in space and time over 4.5 decades will be resolved and the impact of the dominant modes of atmospheric variability (Antarctic Oscillation, El Nino-Southern Oscillation, etc.) will be isolated. Hypotheses concerning the Antarctic surface mass balance response to climate change will be tested. The research will provide a sound basis for evaluating the impact of future climate change on Antarctic surface mass balance and its contribution to global sea level change as well as providing an important perspective for the interpretation of Antarctic ice core records. The broader impacts include the education of a Ph.D. student, the development of material for use in university classes, and construction of an interactive educational webpage on Antarctic surface mass balance.
Encarnaci_n OPP 9615398 Abstract Basement rocks of the Transantarctic Mountains are believed to record a change in the paleo-Pacific margin of Gondwana from a rifted passive margin to a tectonically active margin (Ross orogen). Recent hypothesis suggest that the passive margin phase resulted from Neoproterozoic rifting of Laurentia from Antarctica ("SWEAT" hypothesis). The succeeding active margin phase (Ross orogeny) was one of several tectonic events ("Pan African" events) that resulted from plate convergence/transpression that was probably a consequence of the assembly of components of the Gondwana supercontinent. Although these basement units provide one of the keys for understanding the break up and assembly of these major continental masses, few precise ages are available to address the following important issues: (1) Is there any pre-rift high-grade cratonal basement exposed along the Transantarctic Mountains, and what is/are its precise age? Is this age compatible with a Laurentia connection? (2) What is the age of potential rift/passive margin sediments (Beardmore Group) along the Queen Maud Mountains sector of the orogen? (3) What is the relative and absolute timing of magmatism and contractional deformation of supracrustal units in the orogen? Was deformation diachronous and thus possibly related to transpressional tectonics, or did it occur in a discrete pulse that is more compatible with a collision? How does contraction of the orogen fit in with emplacement of voluminous plutonic and volcanic rocks? The answers to these questions are central to understanding the kinematic evolution of this major orogenic belt and its role in Neoproterozoic-Early Paleozoic continental reconstructions and plate kinematics. Hence, this award supports funding for precise U-Pb dating, using zircon, monazite, baddeleyite, and/or titanite from a variety of magmatic rocks in the Queen Ma ud Mountains, which can address the foregoing problems. In addition to the issues above, precise dating of volcanics that are interbedded with carbonates containing probable Middle Cambrian fauna could potentially provide a calibration point for the Middle Cambrian, which will fill a gap in the absolute time scale for the early Paleozoic.
This award is for support for a program to reconstruct records of the isotopic composition of paleoatmospheric methane and nitrous oxide covering the last 200,000 years. High resolution measurements of the carbon-13 isotopic composition of methane from shallow ice cores will help to determine the relative contributions of biogenic (wetlands, rice fields and ruminants) and abiogenic (biomass burning and natural gas) methane emissions which have caused the concentrations of this gas to increase at an exponential rate during the anthropogenic period. Isotopic data on methane and nitrous oxide over glacial/interglacial timescales will help determine the underlying cause of the large concentration variations that are known to occur. This project will make use of a new generation mass spectrometer which is capable of generating precise isotopic information on nanomolar quantities of methane and nitrous oxide, which means that samples can be 1000 times smaller than those needed for a standard isotope ratio instrument. The primary objective of the work is to further our understanding of the biogeochemical cycles of these two greenhouse gases throughout the anthropogenic period as well as over glacial interglacial timescales.
Major portions of the Antarctic Ice Sheet float in the surrounding ocean, at the physical and intellectual boundaries of oceanography and glaciology. These ice shelves lose mass continuously by melting into the sea, and periodically by the calving of icebergs. Those losses are compensated by the outflow of grounded ice, and by surface accumulation and basal freezing. Ice shelf sources and sinks vary on several time scales, but their wastage terms are not yet well known. Reports of substantial ice shelf retreat, regional ocean freshening and increased ice velocity and thinning are of particular concern at a time of warming ocean temperatures in waters that have access to deep glacier grounding lines.<br/>This award supports a study of the attrition of Antarctic ice shelves, using recent ocean geochemical measurements and drawing on numerical modeling and remote sensing resources. In cooperation with associates at Columbia University and the British Antarctic Survey, measurements of chlorofluorocarbon, helium, neon and oxygen isotopes will be used to infer basal melting beneath the Ross Ice Shelf, and a combination of oceanographic and altimeter data will be used to investigate the mass balance of George VI Ice Shelf. Ocean and remote sensing observations will also be used to help refine numerical models of ice cavity circulations. The objectives are to reduce uncertainties between different estimates of basal melting and freezing, evaluate regional variability, and provide an update of an earlier assessment of circumpolar net melting.<br/>A better knowledge of ice shelf attrition is essential to an improved understanding of ice shelf response to climate change. Large ice shelf calving events can alter the ocean circulation and sea ice formation, and can lead to logistics problems such as those recently experienced in the Ross Sea. Broader impacts include the role of ice shelf meltwater in freshening and stabilizing the upper ocean, and in the formation of Antarctic Bottom Water, which can be traced far into the North Atlantic. To the extent that ice shelf attrition influences the flow of grounded ice, this work also has implications for ice sheet stability and sea level rise.
This award supports a project to develop computational models to simulate ice-shelf rift propagation using a combination of well-established ice-shelf creep-flow models and new crevasse models, based on linear elastic fracture mechanics (LEFM). The overall objective of the proposed work is to simulate rift propagation and eventual large iceberg calving,and place those processes within a larger ice sheet and climate context. The work will proceed in stages, first developing models of single-and multiple-crevasse propagation; then using those models to evaluate propagation sensitivity to various environmental conditions; and third developing models that incorporate both crevasse propagation and advection within an ice- shelf system. Model development will be guided by and evaluated according to satellite observations of rift propagation in several characteristic locations on Antarctic ice shelves. New numerical models of fracture in ice will have applications to many problems in glaciology. The research proposed here is directed toward large rift formation in ice shelves and subsequent iceberg calving. It is motivated by the need to understand observed changes in modern ice shelves,and their connection to climate. Where it has been sampled, the sedimentary record of the Weddell Sea sector implies Peninsular ice shelf variability on millennial time scales. The ability to simulate iceberg calving in a credible way will improve our ability to reproduce such events and place the complete cycle of ice shelf advance and retreat in an ice-dynamics context. That will, in turn, enable us to place ice-shelf cycles within the climate cycles that ultimately drive ice-sheet mass balance.
This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the Saint Mary's College of California, the South Dakota School of Mines and technology, and the Argentine Antarctic Institute (Instituto Antartico Argentino or IAA) to investigate the Late Mesozoic vertebrate paleontology of the James Ross Basin in the Antarctic Peninsula region. The Campanian through the Maastrichtian ages (80 to 65 million years ago) is an important time interval concerning vertebrate biogeography (i.e. dispersals and separations due to moving landmasses) and evolution between Antarctica and other Southern Hemisphere continents (including India, i.e. Gondwana). Moreover, the dispersal of terrestrial vertebrates (i.e. dinosaurs and marsupial mammals) from North America to Antarctica and beyond (e.g. Australia) via Patagonia and the Antarctic Peninsula, as well as the dispersal of modern birds from Antarctica northward are important unresolved questions in paleontology. These dispersal events include vertebrates not only in the terrestrial realms, but also in marine settings. Both widely distributed and localized marine reptile species have been identified in Antarctica, creating questions concerning their dispersal in conjunction with the terrestrial animals.<br/><br/>The Antarctic Peninsula and Patagonia represent the western-most portion of the Weddellian Paleobiogeographic Province, a region that extends from Patagonia through the Antarctic Peninsula and western Antarctica to Australia and New Zealand. Within this province lie the dispersal routes for interchanges of vertebrates between South America and: 1) Madagascar and India, and 2) Australia. As the result of previous work by the principal investigators, it is postulated that an isthmus between more northern South America and the Antarctic craton has served to bring typical North American dinosaurs, such as hadrosaurs (duck-billed dinosaurs) and presumably marsupials traveling overland, while marine reptiles swam along coastal waters, to Antarctica in the latest Cretaceous. Finally, this region has served as the cradle for the evolution, if not the origin, for groups of modern birds, and evolution of a suite of typical southern hemisphere plants.<br/><br/>In order to confirm and expand upon these hypotheses, investigations into the latest Cretaceous deposits of the James Ross Basin, Antarctica Peninsula must be continued. The Cape Lamb and Sandwich Bluff geological units, of the Lopez de Bertodano Formation in the James Ross Basin along the eastern Antarctic Peninsula, exhibit a mixture of marine and terrestrial deposits. The following vertebrates have been recovered from these sedimentary deposits during previous field seasons: plesiosaur and mosasaur marine reptiles; plant eating dinosaurs; a meat eating dinosaur; and a variety of modern bird groups, including shorebirds, wading birds and lagoonal birds.<br/><br/>This project will undertake new fieldwork to recover new specimens in order to test biogeographic and evolutionary hypotheses concerning Late Cretaceous vertebrates in Gondwana. Fieldwork is planned in January 2002 and 2003 to explore the eastern slopes of Cape Lamb, Sandwich Bluff and False Island Point on Vega Island, and the Santa Marta Cove area of James Ross Island.<br/><br/>This research will result in important new insights about the evolution and geographic dispersal of several vertebrate species. The results are important to understanding the development and evolution of life on Earth.<br/><br/>This is a collaborative research project with Argentinean scientists from the IAA and it continues a productive collaboration that began in 1995. In addition, collaboration with vertebrate paleontologists from the Museo de La Plata, both in the field and at our respective institutions in Argentina and in the United States, will continue.
This award supports a project to significantly improve our understanding of how Taylor Glacier flows and responds to climate changes. Taylor Glacier drains the Taylor Dome region of the East Antarctic Ice Sheet and terminates in Taylor Valley, one of the Dry Valleys of Victoria Land. It provides a crucial and unique link between two intensively studied Antarctic environments: the Taylor Dome, from which a 130 kyr ice core paleoclimate record has recently been extracted, and the Dry Valleys, a pivotal Long-Term Ecological Research (LTER) site and a focus of research on geomorphology and glacial geology. The proposed work will thus make an important contribution to ongoing efforts to exploit the Taylor Dome - Dry Valleys system to build a uniquely comprehensive view of regional long-term environmental changes. The proposed work has two complementary components: field research and numerical modelling. Two field seasons will be used to measure velocity, surface strain rate, mass balance, ice thickness, glacier bed reflectance, and subglacial topography, along a nearly complete longitudinal transect of the Taylor Glacier, and along select cross-valley transects. This information will be used to constrain numerical models of ice and heat flow for the Taylor Dome - Taylor Glacier system. These calibrated models will be used to analyze the time-dependent response of the Taylor Glacier to climate changes. The synthesis of results will be aimed to improve understanding of the glacial geomorphology of Taylor Valley, and to illuminate impacts on the Taylor Valley lakes ecosystem. The project will have a major role in furthering the careers of a doctoral-level graduate student and a post-doctoral researcher.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports an interdisciplinary study of fluvial sediments in Antarctica for evidence of what caused the greatest of all mass extinctions in the history of life at the Permian-Triassic boundary. This boundary was, until recently, difficult to locate and thought to be unequivocally disconformable in Antarctica. New studies, particularly of carbon isotopic chemostratigraphy and of paleosols and root traces as paleoecosystem indicators, together with improved fossil plant, reptile and pollen biostratigraphy, now suggest that the precise location of the boundary might be identified and have led to local discovery of iridium anomalies, shocked quartz, and fullerenes with extraterrestrial noble gases. These anomalies are associated with a distinctive claystone breccia bed, similar to strata known in South Africa and Australia, and taken as evidence of deforestation. There is already much evidence from Antarctica and elsewhere that the mass extinction on land was abrupt and synchronous with extinction in the ocean. The problem now is what led to such death and destruction. Carbon isotopic values are so low in these and other Permian-Triassic boundary sections that there was likely to have been some role for catastrophic destabilization of methane clathrates. Getting the modeled amount of methane out of likely reservoirs would require such catastrophic events as bolide impact, flood-basalt eruption or continental-shelf collapse, which have all independently been implicated in the mass extinction and for which there is independent evidence. Teasing apart these various hypotheses requires careful re-examination of beds that appear to represent the Permian-Triassic boundary, and search for more informative sequences, as was the case for the Cretaceous-Tertiary boundary. This collaborative research on geochemistry and petrography of boundary beds and paleosols (by Retallack), on carbon isotopic variation through the boundary interval (by Jahren), and on fullerenes, iridium and helium (by Becker) is designed to test these ideas about the Permian-Triassic boundary in Antarctica and to shed light on processes which contributed to this largest of mass extinctions on Earth. Fieldwork for this research will be conducted in the central Transantarctic Mountains and in Southern Victoria Land with an initial objective of examining the stratigraphic sequences for continuity across the boundary. Stratigraphic continuity is a critical element that must exist for the work to be successful. If fieldwork indicates sufficiently continuous sections, the full analytical program will follow fieldwork.
Kanagaratnam, Pannirselvam; Braaten, David; Bauer, Rob
No dataset link provided
This award supports a project to build and test a 12-18 GHz radar system with a plane wave antenna. This is a wideband radar operating over a frequency range of 12 to 18 GHz to detect near-surface internal firn layers of the ice sheet with better than 10 cm resolution to a depth of approximately 7 m. These measurements will allow determination of spatially continuous snow accumulation rate in the firn, which would be useful along a traverse and is of critical importance to the validation of CryoSat and ICESAT satellite missions aimed at assessing the current state of mass balance of the polar ice sheets. The antenna system planned for the radar is relatively compact, and will be located on the sledge carrying the radar systems. The broad scientific focus of this project will be to investigate important glacial processes relevant to ice sheet mass balance. The new radar will allow the characterization (with high depth resolution) of the spatial variability of snow accumulation rate along a traverse route for interpreting data from CryoSat and ICESAT missions. As part of this project, we will institute a strong outreach program involving K-12 education and a minority institution of higher education. We currently work closely with the Advanced Learning Technology Program (ALTec) at the University of Kansas to develop interactive, resource-based lessons for use on-line by students of all grade levels, and we will develop new resources related to this project. We currently have an active research and education collaboration with faculty and undergraduate students at neighboring Haskell Indian Nations University, in Lawrence, Kansas, and we will expand our collaboration to include this project.
This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.
This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.
The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.
0126187<br/>Alley<br/><br/>This award provides support for a 2 year modeling effort to study the dynamics of Pine Island Glacier (PIG). The discharge from the PIG constitutes the largest mass loss from any single West Antarctic ice stream. Satellite observations indicate that this outlet glacier is experiencing ongoing thinning and acceleration. The emphasis of this work will be on understanding the cause and the near-term projection of the observed thinning of PIG. Model experiments will address the hypothesis that the observed changes were caused by the loss of a buttressing ice shelf, and that the changes will continue in the form of an upglacier propagating wave of thinning and acceleration. To perform this work a numerical model of the coupled mass, energy, and momentum balance of Pine Island Glacier basin will be developed. The model will comprise four modular components, which will be coupled and then benchmarked against the European Ice Sheet Modeling Inititative (EISMINT) model intercomparison. The model will then be applied to the thinning of Pine Island Glacier using likely ice-shelf histories and possible basal boundary conditions to learn which may be accurate and to assess possible future behavior. The primary expected result will be an improved understanding of the importance of ice-shelf buttressing and the potential for inland thinning due to the reduction of ice-shelf drag.
High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.
This award will support a workshop whose aim is to provide a forum for discussion of an international ice core initiative and to examine how such an initiative might work. This workshop will bring together members of the international ice core community to discuss what new large ice core projects are needed to address leading unanswered science questions, technical obstacles to initiating these projects, benefits and difficulties of international collaboration on such projects, and how these collaborations might be facilitated. The very positive response of numerous international ice core scientists consulted about this idea shows that the need for such an initiative is widely recognized. Ice cores have already revolutionized our view of the Earth System, providing, for example, the first evidence that abrupt climate changes have occurred, and showing that greenhouse gases and climate have been tightly linked over the last 400,000 years. Ice cores provide records at high resolution, with particularly good proxies for climate and atmospheric parameters. The challenge that ice core projects present is that they require large concentrations of resources and expertise (both in drilling and in science) that are generally beyond the capacity of any one nation. Maintaining a critical mass of knowledge between projects is also difficult. One way to avoid these problems is to expand international cooperation on ice core drilling projects, so that expertise and resources can be pooled and applied to the most exciting new projects. The broader impacts of this workshop include the societal relevance of ice core science and the fact that the data and interpretations derived from new ice cores will give policymakers the information necessary to make better decisions on the how the earth is responding to climate change. In addition, by improving ice core sciences through international partnerships more students will be able to become involved in an exciting and growing area of climate research.
Bell, Robin; Tremblay, Bruno; Hohmann, Roland; Clarke, Garry; Studinger, Michael S.
No dataset link provided
0088047<br/>Bell<br/><br/>This award supports a two year project to address fundamental questions about the mass and energy flux through Lake Vostok, a subglacial lake in East Antarctica, sealed beneath almost 4 kilometers of ice. The project will involve developing lake circulation models, complemented by the analysis of new ice penetrating radar data over the lake and surrounding regions. This project will help to accurately define the regions of melting and freezing within the lake and help to provide an improved estimate of the form of the lake. The combined data analysis and modeling effort will provide a critical framework for developing international plans to sample the waters of Lake Vostok for biota and to recover sediments from Lake Vostok for paleoclimate studies.
This award supports a detailed laboratory analysis of the mass-independent isotopic composition of processes associated with atmospheric nitrate trapped in the snow pack at the South Pole. The project will specifically test if the oxygen isotopes 16O, 17O, 18O of nitrate can be used to probe the denitrification of the Antarctic stratosphere. Despite decades of research, there are several important issues in Antarctic atmospheric science, which are presently inadequately resolved. This includes quantification over time of the sources of nitrate aerosols. Today, little is known about the past denitrification of the stratosphere in high latitude regions. This lack of knowledge significantly limits our ability to understand the chemical state of ancient atmospheres and therefore evaluate present and past-coupled climate/atmosphere models. The role of nitrogen in environmental degradation is well known. This issue will also be addressed in this proposal. Atmospheric aerosols have now been shown to possess a mass-independent oxygen isotopic content. The proposed research will investigate the stable oxygen isotope ratios of nitrate in Antarctica both collected in real time and from the snow. Two periods of time will be covered. Full year nitrate aerosol collections, with week resolution time horizons, will be performed at the South Pole. Weekly aerosol collections will help us to identify any seasonal trend of the oxygen-17 excess anomaly, and eventually link this anomaly to the denitrification of the Antarctic stratosphere. This data set will also be used to test our assumption that the oxygen isotopic anomaly of nitrate is mainly formed in the stratosphere and is well preserved in the snow pack. If true, we will for the first time resolve an atmospheric signal extracted from a nitrate profile. The snow pit will allow us to see any trend in the data on a multiple decade timescale.
This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.
This award supports continued acquisition of high resolution, radar reflection profiles of the snow and ice stratigraphy between core sites planned along traverse routes of the U.S. component of the International<br/>Trans-Antarctic Scientific Expedition (U.S.-ITASE). The purpose is to use the profiles to establish the structure and continuity of firn stratigraphic horizons over hundreds of kilometers and to quantitatively<br/>assess topographic and ice movement effects upon snow deposition. Other objectives are to establish the climatic extent that a single site represents and to investigate the cause of firn reflections. The radar<br/>will also be used to identify crevasses ahead of the traverse vehicles in order to protect the safety of the scientists and support personnel on the traverse. Collaboration with other ITASE investigators will use the radar horizons as continuous isochronic references fixed by the core dating to calculate historical snow accumulation rates. The primary radar system uses 400-MHz (center frequency) short-pulse antennas, which (with processing) gives the penetration of 50-70 meters. This is the depth which is required to exceed the 200-year deposition horizon along the traverse routes. Profiles at 200 MHz will also be recorded if depths greater than 70 meters are of interest. Processing will be accomplished by data compression (stacking) to reveal long distance stratigraphic deformation, range gain corrections to give proper weight to signal amplitudes, and GPS corrections to adjust the records for the present ice sheet topography. Near surface stratigraphy will allow topographic and ice movement effects to be separated. This work is critical to the success of the U.S.-ITASE program.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a collaborative research project between the University of California-Santa Cruz, the University of Texas-Austin, and the Ohio State University to investigate sediment samples recovered from the base of the West Antarctic Ice Sheet (WAIS). West Antarctica is a remote polar region but its dynamic ice sheet, complicated tectonic history, and the sedimentary record of Cenozoic glaciation make it of particular interest to glaciologists and geologists. Glaciologists are concerned with the possibility of significant near-future changes in mass balance of the WAIS that may contribute to the ongoing global sea level rise. Geologists are investigating in West Antarctica the fundamental process of continental extension and are constructing models of a polar marine depositional system using this region as the prime modern example. The subglacial part of West Antarctica has escaped direct geological investigations and all that is known about subglacial geology comes from geophysical remote sensing. Recent acquisitions of new, high-quality geophysical data have led to generation of several enticing models. For instance, subglacial presence of high-magnitude, short-wavelength magnetic anomalies has prompted the proposition that there may be voluminous (>1 million cubic km), Late Cenozoic flood basalts beneath the ice sheet. Another important model suggests that the patterns of fast ice streaming (~100 meters/year) and slow ice motion (~1-10 meters/year) observed within the WAIS are controlled by subglacial distribution of sedimentary basins and resistant bedrock. These new geophysics-based models should be tested with direct observations because they are of such great importance to our understanding of the West Antarctic tectonic history and to our ability to predict the future behavior of the WAIS.<br/><br/>This research is designed as a pilot study to provide new geologic data, which may help to test the recent models inferred from geophysical observations. The new constraints on subglacial geology and on its interactions with the WAIS will be obtained through petrological and geochemical analyses of basal and subglacial sediments collected previously from seven localities. This investigation will take place in the context of testing the following three hypotheses: (A) the provenance of bedrock clasts in the glacial sediment samples is primarily from West Antarctica, (B) some clasts and muds from the West Antarctic subglacial sediments have been derived by erosion of the (inferred) subglacial Late Cenozoic flood basalts, and (C) the sediments underlying the West Antarctic ice streams were generated by glacial erosion of preglacial sedimentary basins but the sediments recovered from beneath the slow-moving parts of the WAIS were produced through erosion of resistant bedrock.<br/><br/>The individual hypotheses will be tested by collecting data on: (A) petrology, geochemistry and age of granitoid clasts, (B) petrology, geochemistry and age of basaltic clasts combined with mud geochemistry, and (C) clay mineralogy/paragenesis combined with textural maturity of sand and silt grains. The results of these tests will help evaluate the interesting possibility that subglacial geology may have first-order control on the patterns of fast ice flow within the WAIS. The new data will also help to determine whether the subglacial portion of West Antarctica is a Late Cenozoic flood basalt province. By combining glaciological and geological aspects of West Antarctic research the proposed collaborative project will add to the ongoing U.S. effort to create a multidisciplinary understanding of this polar region.
This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.
This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth's radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.
This award is for support for a program of glaciochemical analyses of shallow and deep ice cores from Siple Dome, West Antarctica. Measurements that have been proposed include chloride, nitrate, sulfate, calcium, magnesium, sodium, potassium, ammonium and methansulfonic acid. These measurements will provide information about past volcanic events, biomass source strength, sea ice fluctuations, atmospheric circulation, changes in ice-free areas and the environmental response to Earth orbit insolation changes and solar variability. The glaciochemical records from the Siple Dome core will be developed at a resolution sufficient to compare with the Summit, Greenland record, thus allowing a bipolar comparison of climate change event timing and magnitude. As part of this award, an international workshop will be held during the first year to formulate a science plan for the International Transantarctic Scientific Expedition (ITASE), a program of regional surveys documenting the spatial distribution of properties measured in ice cores .
This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.
9725305 Severinghaus This award supports a project to develop and apply a new technique for quantifying temperature changes in the past based on the thermodynamic principle of thermal diffusion, in which gas mixtures in a temperature gradient become fractionated. Air in polar firn is fractionated by temperature gradients induced by abrupt climate change, and a record of this air is preserved in bubbles in the ice. The magnitude of the abrupt temperature change, the precise relative timing, and an estimate of the absolute temperature change can be determined. By providing a gas-phase stratigraphic marker of temperature change, the phasing of methane (with decadal precision) and hence widespread climate change (relative to local polar temperature changes) can be determined (across five abrupt warming events during the last glacial period).