IEDA
Project Information
EAGER: Metabolomics Analysis of Archival Marine Invertebrates
Short Title:
Museum sample analysis
Start Date:
2023-09-01
End Date:
2024-08-31
Description/Abstract
Secondary metabolites (also known as natural products) play a key role in ecosystem structure, protecting producers from all manner of harm, both biological (e.g., deterring predation and competitors) and physical (e.g., harmful light exposure). In a resource-limited ecosystem such as Antarctica, diverting energy and nutrients to secondary metabolism has to be measured very carefully against growth and reproduction. The fact that production of secondary metabolites by Antarctic marine organisms is common is testament to the significance of these metabolites – Antarctic organisms are spending precious resources on the biosynthesis of secondary metabolites. In our studies of the ecological role(s) and chemical diversity of Antarctic marine organisms, we have found Antarctic ecosystems rich in predator-prey dynamics, contributing to ecosystem structure, e.g., among other phenomena, cryptic speciation. But much of the chemical ecology work in Antarctica, our own as well as that of others, is generally done withing a few Km of a research station or on a random plot of benthos that happened to be scarred by a trawl. A broad view of ecosystem dynamics is out of the reach of most research groups due in part to the immense size of the continent as well as the difficulty in accessing such remote locations. However, with improvements in instrumentation and bioinformatic platforms, a broad view of the contributions of secondary metabolism to Antarctic chemical ecology is now available in the stacks of various museums of natural history. Museums have been archiving Antarctic and other biological specimens for decades and more. The common practice of preserving marine invertebrates in alcohol is fortuitous since alcohol is an good extraction solvent for secondary metabolites. To be sure, such secondary metabolites in many of those preservation fluids will be dilute and near the limits of detection of some analytical techniques. But to the extent that countless metabolites will be amenable to analysis using contemporary workflows, the new knowledge gained from such an in-depth study of Antarctic secondary metabolism could be transformative, illuminating both temporal as well as geographic patterns previously hidden by the difficulty of broadly accessing specimens. Herein we propose to optimize a chemical analysis workflow using to two species of Antarctic marine invertebrates sampled from the Smithsonian National Museum of Natural History (NMNH) holdings. Further, we will assess the storage methods utilized by the NMNH to inform future interests in preservation of specimen metabolomes.
Personnel
Person Role
Baker, Bill Investigator and contact
Funding
Antarctic Organisms and Ecosystems Award # 2341344
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided

This project has been viewed 6 times since May 2019 (based on unique date-IP combinations)