IEDA
Project Information
Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2
Start Date:
2013-09-01
End Date:
2018-08-31
Program:
POLENET
Description/Abstract
Intellectual Merit: The PIs continued and expanded GPS and seismic measurements for ANET-POLENET to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations augmented ANET-POLENET instrumentation deployed during Phase 1. Siting was designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. A mini-array of temporary seismic sites was deployed to improve resolution of earth structure below West Antarctica. ANET-POLENET Phase 2 achievements included 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) improved estimates of intraplate vertical and horizontal bedrock crustal motions; and 3) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies has improved understanding of how Antarctic ice sheets respond to a warming world and how this response impacts sea-level and other global changes. Seismic and geodetic data collected by the ANET-POLENET network are openly available to the scientific community. ANET-POLENET has been integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET carried out a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research, including 2 week-long training schools on "Glacial Isostatic Adjustment" and "Glacial Seismology". ANET-POLENET continued broad public outreach about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involved multiple international partners.
Personnel
Person Role
Wilson, Terry Investigator and contact
Dalziel, Ian W. Investigator
Bevis, Michael Co-Investigator
Aster, Richard Investigator
Huerta, Audrey D. Investigator
Winberry, Paul Co-Investigator
Anandakrishnan, Sridhar Co-Investigator
Nyblade, Andrew Investigator
Wiens, Douglas Investigator
Smalley, Robert Investigator
Funding
Antarctic Earth Sciences Award # 1249631
Antarctic Earth Sciences Award # 1419268
Antarctic Earth Sciences Award # 1249513
Antarctic Earth Sciences Award # 1246666
Antarctic Earth Sciences Award # 1246776
Antarctic Earth Sciences Award # 1246712
Antarctic Earth Sciences Award # 1247518
AMD - DIF Record(s)
Deployment
Deployment Type
Richard Aster field camp
Data Management Plan
Datasets
Repository Title (link) Status
UNAVCO Network/Campaign: Antarctica POLENET - ANET exists
IRIS POLENET - Network YT exists
Publications
  1. For complete project publication list, see: http://polenet.org/publications
  2. Lloyd, A., Wiens, D., Zhu, H., Tromp, J., Nyblade, A., Aster, R.C., Hansen, S.E., Dalziel, I., Wilson, T., Ivins, E., Radially Anisotropic Seismic Structure of the Antarctic Upper Mantle Based on Full-Waveform Adjoint Tomography, J. Geophysics. Res., 10.1029/2019JB017823, 2019. (doi:10.1029/2019JB017823)
  3. O'Donnell, J.P., Brisbourne, A.M., Stuart, GW. Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A., Wiens, D., Aster, R.C., Anandakrishnan, S., Huerta, A., Wilson, T., Winberry, J.P., Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise, Geochemistry, Geophysics, Geosystems, 10.1029/2019GC008459, 2019. (doi:10.1029/2019GC008459)
  4. O'Donnell, J.P., Stuart, G.W., Brisbourne, A.M., Selway, K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A., Wiens, D., Anandakrishnan, S., Aster, R.C., Huerta, A., Wilson, T., Winberry, J.P., The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: Insights into tectonic structure and geothermal heat flow, EPSL, 522, 219-233, 10.1016/j.epsl.2019.06.024, 2019. (doi:10.1016/j.epsl.2019.06.024)
  5. White-Gaynor, A., Nyblade, A., Aster, R.C., Wiens, D., Bromirski, P., Gerstoft, P., Stephen, R., Hansen, S., Wilson, T., Dalziel, I. Huerta, A., Winberry, P., Anandakrishnan, S., Heterogeneous upper mantle structure beneath the Ross Sea Embayment and Marie Byrd Land, West Antarctica, revealed by P-wave tomography, EPSL, 513, 40 - 50, 10.1016/j.epsl.2019.02.013, 2019. (doi:10.1016/j.epsl.2019.02.013)
  6. Shen, W., Wiens, D., Anandakrishnan, S., Aster, R.C., Gerstoft, P., Bromirski, P., Hansen, S., Dalziel, I., Heeszel, D., Huerta, A., Nyblade, A., Stephen, R., Wilson, T., Winberry, J.P., The crust and upper mantle structure of central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions, J. Geophys. Res.: Solid Earth, 10.1029/2017JB015346, 2018. (doi:10.1029/2017JB015346)
  7. Barletta, V., Bevis, M., Smith, B., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S., Rovira-Nararro, M., Smalley, B., Kendrick, E., Konfal, S., Caccamise, D., Aster, R.C., Nyblade, N., Wiens, D., Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360, no. 6395, p. 1335, 10.1126/science.aao1447, 2018. (doi:10.1126/science.aao1447)
  8. Shen, W., Wiens, D., Stern, T., Anandakrishnan, S., Aster, R.C., Dalziel, I., Hansen, S., Heeszel, D., Huerta, A., Nyblade, A., Wilson, T., Winberry, J.P., Seismic evidence for lithospheric foundering beneath the southern Transantarctic Mountains, Geology, 10.1130/G39555.1, 2018. (doi:10.1130/G39555.1)
  9. Ramirez, C., Nyblade, A., Emry, E., Julia, J., Sun, X., Anandakrishnan, S., Wiens, D. A., Aster, R. C., Huerta, A. D., Winberry, P., Shore, P., Wilson, T., Crustal structure in the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: New constraints on shear wave velocities, Poisson’s ratios and Moho depths, Geophys. J. Int., 10.1093/gji/ggx333, 2017. (doi:10.1093/gji/ggx333)
  10. O'Donnell, J.P., Selway, K., Nyblade, A., Brazier, R., Wiens, D., Anandakrishnan, S., Aster, R.C., Huerta, A., Wilson, T., Winberry, J.P., The uppermost mantle velocity and viscosity structure of central West Antarctica, EPSL, 472, 38-49, 10.1016/j.epsl.2017.05.016, 2017. (doi:10.1016/j.epsl.2017.05.016)
  11. Heeszel, D., Wiens, D., Nyblade, A., Aster, R., Huerta, A., Wilson, T., Kanao, M., An, M., Zhao, Y., Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities, J. Geophys. Res., 10.1002/2015JB012616, 2016. (doi:10.1002/2015JB012616)