Project Information
Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2
Start Date:
End Date:
Intellectual Merit: The PIs continued and expanded GPS and seismic measurements for ANET-POLENET to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations augmented ANET-POLENET instrumentation deployed during Phase 1. Siting was designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. A mini-array of temporary seismic sites was deployed to improve resolution of earth structure below West Antarctica. ANET-POLENET Phase 2 achievements included 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) improved estimates of intraplate vertical and horizontal bedrock crustal motions; and 3) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies has improved understanding of how Antarctic ice sheets respond to a warming world and how this response impacts sea-level and other global changes. Seismic and geodetic data collected by the ANET-POLENET network are openly available to the scientific community. ANET-POLENET has been integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET carried out a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research, including 2 week-long training schools on "Glacial Isostatic Adjustment" and "Glacial Seismology". ANET-POLENET continued broad public outreach about polar science through the website, university lectures, and K-12 school visits. This research involved multiple international partners.
Person Role
Wilson, Terry Investigator and contact
Dalziel, Ian W. Investigator
Bevis, Michael Co-Investigator
Aster, Richard Investigator
Huerta, Audrey D. Investigator
Winberry, Paul Co-Investigator
Anandakrishnan, Sridhar Co-Investigator
Nyblade, Andrew Investigator
Wiens, Douglas Investigator
Smalley, Robert Investigator
Antarctic Earth Sciences Award # 1249631
Antarctic Earth Sciences Award # 1419268
Antarctic Earth Sciences Award # 1249513
Antarctic Earth Sciences Award # 1246666
Antarctic Earth Sciences Award # 1246776
Antarctic Earth Sciences Award # 1246712
Antarctic Earth Sciences Award # 1247518
AMD - DIF Record(s)
Deployment Type
Richard Aster field camp
Data Management Plan
Repository Title (link) Status
UNAVCO Network/Campaign: Antarctica POLENET - ANET exists
IRIS POLENET - Network YT exists
  1. For complete project publication list, see:
  2. Lloyd, A., Wiens, D., Zhu, H., Tromp, J., Nyblade, A., Aster, R.C., Hansen, S.E., Dalziel, I., Wilson, T., Ivins, E., Radially Anisotropic Seismic Structure of the Antarctic Upper Mantle Based on Full-Waveform Adjoint Tomography, J. Geophysics. Res., 10.1029/2019JB017823, 2019. (doi:10.1029/2019JB017823)
  3. O'Donnell, J.P., Brisbourne, A.M., Stuart, GW. Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A., Wiens, D., Aster, R.C., Anandakrishnan, S., Huerta, A., Wilson, T., Winberry, J.P., Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise, Geochemistry, Geophysics, Geosystems, 10.1029/2019GC008459, 2019. (doi:10.1029/2019GC008459)
  4. O'Donnell, J.P., Stuart, G.W., Brisbourne, A.M., Selway, K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A., Wiens, D., Anandakrishnan, S., Aster, R.C., Huerta, A., Wilson, T., Winberry, J.P., The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: Insights into tectonic structure and geothermal heat flow, EPSL, 522, 219-233, 10.1016/j.epsl.2019.06.024, 2019. (doi:10.1016/j.epsl.2019.06.024)
  5. White-Gaynor, A., Nyblade, A., Aster, R.C., Wiens, D., Bromirski, P., Gerstoft, P., Stephen, R., Hansen, S., Wilson, T., Dalziel, I. Huerta, A., Winberry, P., Anandakrishnan, S., Heterogeneous upper mantle structure beneath the Ross Sea Embayment and Marie Byrd Land, West Antarctica, revealed by P-wave tomography, EPSL, 513, 40 - 50, 10.1016/j.epsl.2019.02.013, 2019. (doi:10.1016/j.epsl.2019.02.013)
  6. Shen, W., Wiens, D., Anandakrishnan, S., Aster, R.C., Gerstoft, P., Bromirski, P., Hansen, S., Dalziel, I., Heeszel, D., Huerta, A., Nyblade, A., Stephen, R., Wilson, T., Winberry, J.P., The crust and upper mantle structure of central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions, J. Geophys. Res.: Solid Earth, 10.1029/2017JB015346, 2018. (doi:10.1029/2017JB015346)
  7. Barletta, V., Bevis, M., Smith, B., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S., Rovira-Nararro, M., Smalley, B., Kendrick, E., Konfal, S., Caccamise, D., Aster, R.C., Nyblade, N., Wiens, D., Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360, no. 6395, p. 1335, 10.1126/science.aao1447, 2018. (doi:10.1126/science.aao1447)
  8. Shen, W., Wiens, D., Stern, T., Anandakrishnan, S., Aster, R.C., Dalziel, I., Hansen, S., Heeszel, D., Huerta, A., Nyblade, A., Wilson, T., Winberry, J.P., Seismic evidence for lithospheric foundering beneath the southern Transantarctic Mountains, Geology, 10.1130/G39555.1, 2018. (doi:10.1130/G39555.1)
  9. Ramirez, C., Nyblade, A., Emry, E., Julia, J., Sun, X., Anandakrishnan, S., Wiens, D. A., Aster, R. C., Huerta, A. D., Winberry, P., Shore, P., Wilson, T., Crustal structure in the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: New constraints on shear wave velocities, Poisson’s ratios and Moho depths, Geophys. J. Int., 10.1093/gji/ggx333, 2017. (doi:10.1093/gji/ggx333)
  10. O'Donnell, J.P., Selway, K., Nyblade, A., Brazier, R., Wiens, D., Anandakrishnan, S., Aster, R.C., Huerta, A., Wilson, T., Winberry, J.P., The uppermost mantle velocity and viscosity structure of central West Antarctica, EPSL, 472, 38-49, 10.1016/j.epsl.2017.05.016, 2017. (doi:10.1016/j.epsl.2017.05.016)
  11. Heeszel, D., Wiens, D., Nyblade, A., Aster, R., Huerta, A., Wilson, T., Kanao, M., An, M., Zhao, Y., Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities, J. Geophys. Res., 10.1002/2015JB012616, 2016. (doi:10.1002/2015JB012616)
  12. Emry, E. L., Nyblade, A. A., Julià, J., Anandakrishnan, S., Aster, R. C., Wiens, D. A., … Wilson, T. J. (2015). The mantle transition zone beneath West Antarctica: Seismic evidence for hydration and thermal upwellings. Geochemistry, Geophysics, Geosystems, 16(1), 40–58. (doi:10.1002/2014gc005588)
  13. Anthony, R. E., Aster, R. C., & McGrath, D. (2017). Links between atmosphere, ocean, and cryosphere from two decades of microseism observations on the Antarctic Peninsula. Journal of Geophysical Research: Earth Surface, 122(1), 153–166. (doi:10.1002/2016jf004098)
  14. Winberry, J. P., Huerta, A. D., Anandakrishnan, S., Aster, R. C., Nyblade, A. A., & Wiens, D. A. (2020). Glacial Earthquakes and Precursory Seismicity Associated With Thwaites Glacier Calving. Geophysical Research Letters, 47(3). (doi:10.1029/2019gl086178)