Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2
Description/Abstract
Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community "backbone network" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.
Personnel
Person |
Role |
Wilson, Terry
|
Investigator and contact |
Dalziel, Ian W.
|
Investigator |
Bevis, Michael
|
Co-Investigator |
Aster, Richard
|
Investigator |
Huerta, Audrey D.
|
Investigator |
Winberry, Paul
|
Co-Investigator |
Anandakrishnan, Sridhar
|
Co-Investigator |
Nyblade, Andrew
|
Investigator |
Wiens, Douglas
|
Investigator |
Smalley, Robert
|
Investigator |
Funding
Antarctic Earth Sciences
|
Award # 1419268
|
Antarctic Earth Sciences
|
Award # 1249631
|
Antarctic Earth Sciences
|
Award # 1249513
|
Antarctic Earth Sciences
|
Award # 1247518
|
Antarctic Earth Sciences
|
Award # 1246776
|
Antarctic Earth Sciences
|
Award # 1246712
|
Antarctic Earth Sciences
|
Award # 1246666
|
Deployment
Deployment |
Type |
Richard Aster
| field camp |
Product Level:
0 (raw data)
Publications
-
For complete project publication list, see: http://polenet.org/publications
-
Lloyd, A., Wiens, D., Zhu, H., Tromp, J., Nyblade, A., Aster, R.C., Hansen, S.E., Dalziel, I., Wilson, T., Ivins, E., Radially Anisotropic Seismic Structure of the Antarctic Upper Mantle Based on Full-Waveform Adjoint Tomography, J. Geophysics. Res., 10.1029/2019JB017823, 2019.
(doi:10.1029/2019JB017823)
-
O'Donnell, J.P., Brisbourne, A.M., Stuart, GW. Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A., Wiens, D., Aster, R.C., Anandakrishnan, S., Huerta, A., Wilson, T., Winberry, J.P., Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise, Geochemistry, Geophysics, Geosystems, 10.1029/2019GC008459, 2019.
(doi:10.1029/2019GC008459)
-
O'Donnell, J.P., Stuart, G.W., Brisbourne, A.M., Selway, K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A., Wiens, D., Anandakrishnan, S., Aster, R.C., Huerta, A., Wilson, T., Winberry, J.P., The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: Insights into tectonic structure and geothermal heat flow, EPSL, 522, 219-233, 10.1016/j.epsl.2019.06.024, 2019.
(doi:10.1016/j.epsl.2019.06.024)
-
White-Gaynor, A., Nyblade, A., Aster, R.C., Wiens, D., Bromirski, P., Gerstoft, P., Stephen, R., Hansen, S., Wilson, T., Dalziel, I. Huerta, A., Winberry, P., Anandakrishnan, S., Heterogeneous upper mantle structure beneath the Ross Sea Embayment and Marie Byrd Land, West Antarctica, revealed by P-wave tomography, EPSL, 513, 40 - 50, 10.1016/j.epsl.2019.02.013, 2019.
(doi:10.1016/j.epsl.2019.02.013)
-
Shen, W., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Gerstoft, P., Bromirski, P. D., et al. (2018). The crust and upper mantle structure of central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions. Journal of Geophysical Research: Solid Earth, 123, 7824–7849
(doi:10.1029/2017JB015346)
-
Barletta, V., Bevis, M., Smith, B., Wilson, T., Brown, A., Bordoni, A., Willis, M., Khan, S., Rovira-Nararro, M., Smalley, B., Kendrick, E., Konfal, S., Caccamise, D., Aster, R.C., Nyblade, N., Wiens, D., Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability, Science, 360, no. 6395, p. 1335, 10.1126/science.aao1447, 2018.
(doi:10.1126/science.aao1447)
-
Shen, W., Wiens, D., Stern, T., Anandakrishnan, S., Aster, R.C., Dalziel, I., Hansen, S., Heeszel, D., Huerta, A., Nyblade, A., Wilson, T., Winberry, J.P., Seismic evidence for lithospheric foundering beneath the southern Transantarctic Mountains, Geology, 10.1130/G39555.1, 2018.
(doi:10.1130/G39555.1)
-
Ramirez, C., Nyblade, A., Emry, E., Julia, J., Sun, X., Anandakrishnan, S., Wiens, D. A., Aster, R. C., Huerta, A. D., Winberry, P., Shore, P., Wilson, T., Crustal structure in the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: New constraints on shear wave velocities, Poisson’s ratios and Moho depths, Geophys. J. Int., 10.1093/gji/ggx333, 2017.
(doi:10.1093/gji/ggx333)
-
O'Donnell, J.P., Selway, K., Nyblade, A., Brazier, R., Wiens, D., Anandakrishnan, S., Aster, R.C., Huerta, A., Wilson, T., Winberry, J.P., The uppermost mantle velocity and viscosity structure of central West Antarctica, EPSL, 472, 38-49, 10.1016/j.epsl.2017.05.016, 2017.
(doi:10.1016/j.epsl.2017.05.016)
-
Heeszel, D., Wiens, D., Nyblade, A., Aster, R., Huerta, A., Wilson, T., Kanao, M., An, M., Zhao, Y., Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities, J. Geophys. Res., 10.1002/2015JB012616, 2016.
(doi:10.1002/2015JB012616)
-
Emry, E. L., Nyblade, A. A., Julià, J., Anandakrishnan, S., Aster, R. C., Wiens, D. A., … Wilson, T. J. (2015). The mantle transition zone beneath West Antarctica: Seismic evidence for hydration and thermal upwellings. Geochemistry, Geophysics, Geosystems, 16(1), 40–58.
(doi:10.1002/2014gc005588)
-
Anthony, R. E., Aster, R. C., & McGrath, D. (2017). Links between atmosphere, ocean, and cryosphere from two decades of microseism observations on the Antarctic Peninsula. Journal of Geophysical Research: Earth Surface, 122(1), 153–166.
(doi:10.1002/2016jf004098)
-
Winberry, J. P., Huerta, A. D., Anandakrishnan, S., Aster, R. C., Nyblade, A. A., & Wiens, D. A. (2020). Glacial Earthquakes and Precursory Seismicity Associated With Thwaites Glacier Calving. Geophysical Research Letters, 47(3).
(doi:10.1029/2019gl086178)
-
Lucas, E. M., Soto, D., Nyblade, A. A., Lloyd, A. J., Aster, R. C., Wiens, D. A., … Huerta, A. D. (2020). P- and S-wave velocity structure of central West Antarctica: Implications for the tectonic evolution of the West Antarctic Rift System. Earth and Planetary Science Letters, 546, 116437.
(doi:10.1016/j.epsl.2020.116437)
-
Lucas, E. M., Nyblade, A. A., Accardo, N. J., Lloyd, A. J., Wiens, D. A., Aster, R. C., Wilson, T. J., Dalziel, I. W., Stuart, G. W., O’Donnell, J. P., Winberry, J. P., & Huerta, A. D. (2022). Shear Wave Splitting Across Antarctica: Implications for Upper Mantle Seismic Anisotropy. Journal of Geophysical Research: Solid Earth, 127(4). Portico.
(doi:10.1029/2021jb023325)
-
Phillips, Erin H. and Sims, Kenneth W.W. and Blichert-Toft, Janne and Aster, Richard C. and Gaetani, Glenn A. and Kyle, Philip R. and Wallace, Paul J. and Rasmussen, Daniel J.. "The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas," Earth and Planetary Science Letters, v.498, 2018.
(doi:10.1016/j.epsl.2018.05.049)
-
Wiens, D. A., Shen, W., & Lloyd, A. (2021). The Seismic Structure of the Antarctic Upper Mantle. Geological Society, London, Memoirs, M56–2020–18.
(doi:10.1144/m56-2020-18)
-
Shen, W., Wiens, D. A., Lloyd, A. J., & Nyblade, A. A. (2020). A Geothermal Heat Flux Map of Antarctica Empirically Constrained by Seismic Structure. Geophysical Research Letters, 47(14).
(doi:10.1029/2020gl086955)
-
Hay, C. C., Lau, H. C. P., Gomez, N., Austermann, J., Powell, E., Mitrovica, J. X., … Wiens, D. A. (2017). Sea Level Fingerprints in a Region of Complex Earth Structure: The Case of WAIS. Journal of Climate, 30(6), 1881–1892.
(doi:10.1175/jcli-d-16-0388.1)
-
Alley, R. B., Pollard, D., Parizek, B. R., Anandakrishnan, S., Pourpoint, M., Stevens, N. T., … Holschuh, N. (2019). Possible Role for Tectonics in the Evolving Stability of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 124(1), 97–115.
(doi:10.1029/2018jf004714)
-
Shen, W., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Gerstoft, P., Bromirski, P. D., … Winberry, J. P. (2018). The Crust and Upper Mantle Structure of Central and West Antarctica From Bayesian Inversion of Rayleigh Wave and Receiver Functions. Journal of Geophysical Research: Solid Earth, 123(9), 7824–7849.
(doi:10.1029/2017jb015346)
-
Lloyd, A. J., Wiens, D. A., Zhu, H., Tromp, J., Nyblade, A. A., Aster, R. C., … O’Donnell, J. P. (2020). Seismic Structure of the Antarctic Upper Mantle Imaged with Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 125(3).
(doi:10.1029/2019jb017823)
-
Heeszel, D. S., Wiens, D. A., Anandakrishnan, S., Aster, R. C., Dalziel, I. W. D., Huerta, A. D., … Winberry, J. P. (2016). Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities. Journal of Geophysical Research: Solid Earth, 121(3), 1758–1775.
(doi:10.1002/2015jb012616)
-
Hansen, S. E., Graw, J. H., Kenyon, L. M., Nyblade, A. A., Wiens, D. A., Aster, R. C., … Wilson, T. (2014). Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: Evidence for heterogeneous structure beneath West Antarctica. Earth and Planetary Science Letters, 408, 66–78.
(doi:10.1016/j.epsl.2014.09.043)
-
Lucas, E. M., Nyblade, A. A., Aster, R. C., Wiens, D. A., Wilson, T. J., Winberry, J. P., & Huerta, A. D. (2023). Tidally Modulated Glacial Seismicity at the Foundation Ice Stream, West Antarctica. Journal of Geophysical Research: Earth Surface, 128(7). Portico.
(doi:10.1029/2023jf007172)
-
Pourpoint, M., Anandakrishnan, S., & Ammon, C. J. (2018). High-Resolution Rayleigh Wave Group Velocity Variation Beneath Greenland. Journal of Geophysical Research: Solid Earth, 123(2), 1516–1539.
(doi:10.1002/2017jb015072)
-
Lough, A. C., Barcheck, C. G., Wiens, D. A., Nyblade, A., & Anandakrishnan, S. (2015). A previously unreported type of seismic source in the firn layer of the East Antarctic Ice Sheet. Journal of Geophysical Research: Earth Surface, 120(11), 2237–2252.
(doi:10.1002/2015jf003658)
Platforms and Instruments
|
|