{"dp_type": "Dataset", "free_text": "Climate"}
[{"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.067 -64.766,-64.05669999999999 -64.766,-64.04639999999999 -64.766,-64.03609999999999 -64.766,-64.02579999999999 -64.766,-64.0155 -64.766,-64.0052 -64.766,-63.994899999999994 -64.766,-63.9846 -64.766,-63.9743 -64.766,-63.964 -64.766,-63.964 -64.7688,-63.964 -64.7716,-63.964 -64.7744,-63.964 -64.77720000000001,-63.964 -64.78,-63.964 -64.7828,-63.964 -64.7856,-63.964 -64.7884,-63.964 -64.7912,-63.964 -64.794,-63.9743 -64.794,-63.9846 -64.794,-63.994899999999994 -64.794,-64.0052 -64.794,-64.0155 -64.794,-64.02579999999999 -64.794,-64.03609999999999 -64.794,-64.04639999999999 -64.794,-64.05669999999999 -64.794,-64.067 -64.794,-64.067 -64.7912,-64.067 -64.7884,-64.067 -64.7856,-64.067 -64.7828,-64.067 -64.78,-64.067 -64.77720000000001,-64.067 -64.7744,-64.067 -64.7716,-64.067 -64.7688,-64.067 -64.766))"], "date_created": "Mon, 24 Mar 2025 00:00:00 GMT", "description": "Environmental conditions are the major drivers of species distribution, and terrestrial Antarctica arguably presents the most dramatic challenges for its inhabitants. Many animals rely on acclimation to enhance their stress tolerance to face unfavorable conditions. Some animals can also rely on their phenotypic plasticity to respond to these unfavorable conditions without the need to slowly experience increasing levels of stress to enhance their stress tolerance (i.e., acclimate). \r\n\u003cbr/\u003eBelgica antarctica can rely on both types of strategies, but since they evolved to live in a habitat with such dramatic environmental changes as Antarctica, they are very sensitive to any type of stress (e.g., a sudden drop in temperature, or a bout of high-speed wind). Studying the extent to which B. antarctica rely on each of these strategies to survive and how environmental variation can shape this species\u2019 biology across distinct populations (i.e., that might experience distinct selective pressures) is important to help us better understand how polyextremophiles adapt and evolve while inhabiting extreme environments. This project focused on studying stress tolerance in B. antarctica populations of three distinct islands, Torgersen, Cormorant, and Outcast. In addition, we investigated how these responses to stress change between early- and late-summer (i.e., between larvae that recently finished overwintering - here referred as summer larvae, and larvae that are preparing to overwinter - here referred as winter larvae).", "east": -63.964, "geometry": ["POINT(-64.0155 -64.78)"], "keywords": "Antarctica; Belgica Antarctica; Cryosphere; Population Genetics", "locations": "Antarctica", "north": -64.766, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Teets, Nicholas", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.794, "title": "Temporal and spatial variation in stress tolerance in Belgica antarctica populations from distinct islands", "uid": "601873", "west": -64.067}, {"awards": "2423761 Blackburn, Terrence; 2042495 Blackburn, Terrence", "bounds_geometry": ["POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))"], "date_created": "Mon, 17 Mar 2025 00:00:00 GMT", "description": "This dataset includes geochemical analyses of carbonate nodules collected at Elephant Moraine and the Pensacola Mountains, East Antarctica. Oxygen and uranium-series isotope analyses indicate that these carbonates precipitated from glacial meltwater during deglacial periods in the late Pleistocene. Carbonate \u03b413C values as low as -32.75 \u2030 identify thermogenic methane as a primary carbon source, while clumped isotope measurements indicate formation temperatures of 12 - 20\u02daC, consistent with a geothermal origin. Lipid biomarker analyses further show that organic matter preserved in the nodules is highly thermally matured. These findings indicate that deep-sourced thermogenic methane migrated as hydrocarbon seeps to shallow pore spaces within basal sediments, demonstrating that geothermally active areas can be hotspots for methane accumulation below the Antarctic Ice Sheet. This material is based on services provided by the Polar Rock Repository with support from the National Science Foundation, under Cooperative Agreement OPP-2137467.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Subglacial", "locations": "Antarctica; Elephant Moraine; East Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Piccione, Gavin", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates; EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica", "projects": [{"proj_uid": "p0010459", "repository": "USAP-DC", "title": "EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica"}, {"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps", "uid": "601918", "west": -180.0}, {"awards": "2042495 Blackburn, Terrence", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 05 Mar 2025 00:00:00 GMT", "description": "This dataset contains U-series, d18O, d13C and 87Sr/86Sr data from 25 subglacial calcite precipitates from locations around the Antarctic ice sheet, primarily outlet glaciers near the ice sheet margins and nunataks in the Transantarctic mountains. Lat-lon data for each sample is given as well.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gagliardi, Jessica", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "projects": [{"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ", "uid": "601911", "west": -180.0}, {"awards": "2114839 Passchier, Sandra", "bounds_geometry": ["POLYGON((-109.05 -68.612,-108.8974 -68.612,-108.7448 -68.612,-108.59219999999999 -68.612,-108.4396 -68.612,-108.287 -68.612,-108.1344 -68.612,-107.98179999999999 -68.612,-107.8292 -68.612,-107.67660000000001 -68.612,-107.524 -68.612,-107.524 -68.62429999999999,-107.524 -68.6366,-107.524 -68.6489,-107.524 -68.6612,-107.524 -68.67349999999999,-107.524 -68.6858,-107.524 -68.6981,-107.524 -68.71039999999999,-107.524 -68.7227,-107.524 -68.735,-107.67660000000001 -68.735,-107.8292 -68.735,-107.98179999999999 -68.735,-108.1344 -68.735,-108.287 -68.735,-108.4396 -68.735,-108.59219999999999 -68.735,-108.7448 -68.735,-108.8974 -68.735,-109.05 -68.735,-109.05 -68.7227,-109.05 -68.71039999999999,-109.05 -68.6981,-109.05 -68.6858,-109.05 -68.67349999999999,-109.05 -68.6612,-109.05 -68.6489,-109.05 -68.6366,-109.05 -68.62429999999999,-109.05 -68.612))"], "date_created": "Mon, 24 Feb 2025 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus at International Ocean Discovery Program Sites U1532 and U1533 in the Amundsen Sea sector. The depositional age of the sediments is early Pliocene.", "east": -107.524, "geometry": ["POINT(-108.287 -68.67349999999999)"], "keywords": "40Ar/39Ar; Amundsen Sea; Amundsen Sea Sector; Antarctica; Cryosphere; Ice-Rafted Detritus; IODP; Paleoclimate; Pliocene; Provenance; Sedimentology", "locations": "Antarctica; Amundsen Sea; Amundsen Sea Sector", "north": -68.612, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hemming, Sidney R.; Passchier, Sandra", "project_titles": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "projects": [{"proj_uid": "p0010252", "repository": "USAP-DC", "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.735, "title": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector", "uid": "601907", "west": -109.05}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.356125 -76.732376)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.", "east": 159.356125, "geometry": ["POINT(159.356125 -76.732376)"], "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciology; Ice Core Data; MOT; Ocean Temperature; Paleoclimate; Xe/Kr", "locations": "Allan Hills; Antarctica", "north": -76.732376, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.732376, "title": "MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601897", "west": 159.356125}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Wed, 12 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice.\r\n\u003cbr/\u003e", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "Allan Hills; Antarctica; Ch4; CO2; Cryosphere; Glaciology; Glaciology; Ice Core Data; Ice Core Records", "locations": "Antarctica; Allan Hills", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903", "uid": "601896", "west": 159.3562}, {"awards": "1744993 Higgins, John", "bounds_geometry": null, "date_created": "Tue, 11 Feb 2025 00:00:00 GMT", "description": "Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. ", "east": null, "geometry": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Noble Gas", "locations": "Antarctica; Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Higgins, John", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903", "uid": "601895", "west": null}, {"awards": "2011454 Veit, Richard", "bounds_geometry": ["POLYGON((-39 -53.5,-38.6 -53.5,-38.2 -53.5,-37.8 -53.5,-37.4 -53.5,-37 -53.5,-36.6 -53.5,-36.2 -53.5,-35.8 -53.5,-35.4 -53.5,-35 -53.5,-35 -53.65,-35 -53.8,-35 -53.95,-35 -54.1,-35 -54.25,-35 -54.4,-35 -54.55,-35 -54.7,-35 -54.85,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.85,-39 -54.7,-39 -54.55,-39 -54.4,-39 -54.25,-39 -54.1,-39 -53.95,-39 -53.8,-39 -53.65,-39 -53.5))"], "date_created": "Mon, 10 Feb 2025 00:00:00 GMT", "description": "Birds and mammals sighted along transect surveys around South Georgia, and maps of their distributions. Associated plankton and oceanographic data.", "east": -35.0, "geometry": ["POINT(-37 -54.25)"], "keywords": "Abundance; Antarctica; Antarctic Winter; Birds; Cryosphere; CTD; Mammals; Plankton; South Georgia Island", "locations": "Antarctica; South Georgia Island", "north": -53.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Manne, Lisa; Veit, Richard; Santora, Jarrod; Czapanskiy, Max", "project_titles": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter", "projects": [{"proj_uid": "p0010382", "repository": "USAP-DC", "title": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -55.0, "title": "Bird, Mammal, Plankton, Oceanographic data, South Georgia, July 2023", "uid": "601890", "west": -39.0}, {"awards": "1745130 Moran, Amy", "bounds_geometry": null, "date_created": "Fri, 31 Jan 2025 00:00:00 GMT", "description": "This dataset includes oxygen consumption rates of larvae of the sea spider Nymphon australe acclimated in the laboratory to two different temperatures, assessed across four different temperatures. The dataset also includes oxygen consumption measured at the same range of temperatures between larvae collected in the field in the late winter (cold) and mid spring (slightly warmer).", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere; McMurdo; Temperature", "locations": "McMurdo; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Lobert, Graham; Toh, MIng Wei Aaron", "project_titles": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development ", "projects": [{"proj_uid": "p0010187", "repository": "USAP-DC", "title": "Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Temperature acclimation and acclimatization of sea spider larvae", "uid": "601889", "west": null}, {"awards": "1542778 Alley, Richard", "bounds_geometry": ["POLYGON((-180 -89,-144 -89,-108 -89,-72 -89,-36 -89,0 -89,36 -89,72 -89,108 -89,144 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.9,-180 -89.8,-180 -89.7,-180 -89.6,-180 -89.5,-180 -89.4,-180 -89.3,-180 -89.2,-180 -89.1,-180 -89))"], "date_created": "Wed, 15 Jan 2025 00:00:00 GMT", "description": "This data set includes the bubble number-density data measured in the SPC14 South Pole Ice Core from depths of 160 m to 1200 m. Traditional bubble-section data are included measured from 53 samples taken at 20 m intervals (tab 1). Additionally, we include new micro-CT data from 11 new samples taken at 100 m intervals (tab 2). The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006) and Fegyveresi and others (2011). This data set also includes a tab for bubble sizes measured in the traditional bubble-sections.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctic; Antarctica; Bubble Number Density; Cryosphere; Glaciers; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow; South Pole", "locations": "Antarctica; Antarctica; Antarctic; South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fegyveresi, John", "project_titles": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core", "projects": [{"proj_uid": "p0000141", "repository": "USAP-DC", "title": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole Ice Core (SPC14) Bubble Number-Density Data", "uid": "601880", "west": -180.0}, {"awards": "2042032 Huckstadt, Luis", "bounds_geometry": ["POLYGON((-120 -60,-112 -60,-104 -60,-96 -60,-88 -60,-80 -60,-72 -60,-64 -60,-56 -60,-48 -60,-40 -60,-40 -62,-40 -64,-40 -66,-40 -68,-40 -70,-40 -72,-40 -74,-40 -76,-40 -78,-40 -80,-48 -80,-56 -80,-64 -80,-72 -80,-80 -80,-88 -80,-96 -80,-104 -80,-112 -80,-120 -80,-120 -78,-120 -76,-120 -74,-120 -72,-120 -70,-120 -68,-120 -66,-120 -64,-120 -62,-120 -60))"], "date_created": "Mon, 13 Jan 2025 00:00:00 GMT", "description": "", "east": -40.0, "geometry": ["POINT(-80 -70)"], "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Huckstadt, Luis", "project_titles": "NSFGEO-NERC Collaborative Research: Effects of a Changing Climate on the Habitat Utilization, Foraging Ecology and Distribution of Crabeater Seals", "projects": [{"proj_uid": "p0010490", "repository": "USAP-DC", "title": "NSFGEO-NERC Collaborative Research: Effects of a Changing Climate on the Habitat Utilization, Foraging Ecology and Distribution of Crabeater Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Crabeater seal tracking data 2022-2023", "uid": "601861", "west": -120.0}, {"awards": "1745006 Brook, Edward J.; 2019719 Brook, Edward", "bounds_geometry": ["POINT(159.356125 -76.732376)"], "date_created": "Mon, 06 Jan 2025 00:00:00 GMT", "description": "This dataset contains snapshots of carbon dioxide and methane concentrations, total air content, stable isotope measurements of carbon dioxide, as well as measurements of molecular oxygen and nitrogen and their stable isotopic signatures. Samples come from the ALHIC1901 ice core from the Allan Hills, Antarctica. Where possible, new ages have been assigned to previous measurements from the ALHIC1503 ice core. For samples containing excess CO2 from a secondary source, estimated atmospheric CO2 ranges are included. ", "east": 159.356125, "geometry": ["POINT(159.356125 -76.732376)"], "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Cryosphere; Methane", "locations": "Allan Hills; Allan Hills; Antarctica", "north": -76.732376, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Hishamunda, Valens; Shackleton, Sarah; Severinghaus, Jeffrey P.", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -76.732376, "title": "Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old", "uid": "601878", "west": 159.356125}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.067 -64.766,-64.05669999999999 -64.766,-64.04639999999999 -64.766,-64.03609999999999 -64.766,-64.02579999999999 -64.766,-64.0155 -64.766,-64.0052 -64.766,-63.994899999999994 -64.766,-63.9846 -64.766,-63.9743 -64.766,-63.964 -64.766,-63.964 -64.7688,-63.964 -64.7716,-63.964 -64.7744,-63.964 -64.77720000000001,-63.964 -64.78,-63.964 -64.7828,-63.964 -64.7856,-63.964 -64.7884,-63.964 -64.7912,-63.964 -64.794,-63.9743 -64.794,-63.9846 -64.794,-63.994899999999994 -64.794,-64.0052 -64.794,-64.0155 -64.794,-64.02579999999999 -64.794,-64.03609999999999 -64.794,-64.04639999999999 -64.794,-64.05669999999999 -64.794,-64.067 -64.794,-64.067 -64.7912,-64.067 -64.7884,-64.067 -64.7856,-64.067 -64.7828,-64.067 -64.78,-64.067 -64.77720000000001,-64.067 -64.7744,-64.067 -64.7716,-64.067 -64.7688,-64.067 -64.766))"], "date_created": "Fri, 03 Jan 2025 00:00:00 GMT", "description": "Environmental conditions are the major drivers of species distribution, and terrestrial Antarctica arguably presents the most dramatic challenges for its inhabitants. Many animals rely on acclimation to enhance their stress tolerance to face unfavorable conditions. Some animals can also rely on their phenotypic plasticity to respond to these unfavorable conditions without the need to slowly experience increasing levels of stress to enhance their stress tolerance (i.e., acclimate). Belgica antarctica can rely on both types of strategies, but since they evolved to live in a habitat with such dramatic environmental changes as Antarctica, they are very sensitive to any type of stress (e.g., a sudden drop in temperature, or a bout of high-speed wind). Studying the extent to which B. antarctica rely on each of these strategies to survive and how environmental variation can shape this species\u2019 biology across distinct populations (i.e., that might experience distinct selective pressures) is important to help us better understand how polyextremophiles adapt and evolve while inhabiting extreme environments. This project focused on studying freeze tolerance in B. antarctica populations populations within Cormorant Island that inhabited three distinct microhabitats over the course of the summer season (January-March).", "east": -63.964, "geometry": ["POINT(-64.0155 -64.78)"], "keywords": "Antarctica; Belgica Antarctica; Cryosphere; Soil Temperature; Temperature", "locations": "Antarctica", "north": -64.766, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Teets, Nicholas; Lima, Cleverson de Sousa", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -64.794, "title": "The effects of microhabitat temperature in phenotypic variation across B. antarctica populations", "uid": "601874", "west": -64.067}, {"awards": "1744993 Higgins, John; 1443306 Mayewski, Paul; 0838843 Kurbatov, Andrei; 1745007 Mayewski, Paul; 1744832 Severinghaus, Jeffrey; 2019719 Brook, Edward; 1745006 Brook, Edward J.", "bounds_geometry": null, "date_created": "Mon, 16 Dec 2024 00:00:00 GMT", "description": "This project aimed to reconstruct paleoclimate conditions from old Antarctic ice using stable water isotope analysis. Through multi-year, multi-institutional collaboration, data from several sites have been analyzed. These findings will contribute to several studies, advancing our understanding of Earth\u0027s past climate and long-term climate changes.", "east": null, "geometry": null, "keywords": "Allan Hills; Antarctica; Cryosphere; Isotope Data", "locations": "Allan Hills; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Higgins, John; Brook, Edward", "project_titles": "Center for Oldest Ice Exploration; Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills; COLDEX", "south": null, "title": "Allan Hills ice water stable isotope record for dD, d18O", "uid": "601863", "west": null}, {"awards": "2149518 Fudge, Tyler; 2019719 Brook, Edward", "bounds_geometry": ["POINT(159.36 -76.73)"], "date_created": "Fri, 06 Dec 2024 00:00:00 GMT", "description": "This dataset includes three-dimensional multitrack electrical conductivity measurements (3D ECM) results from measurements in the upper sections of the ALHIC2201 and ALHIC2302 large (241mm) diameter ice cores drilled in the Allan Hills blue ice area (76.73\u00b0S,159.36\u00b0E) in Victoria Land, East Antarctica. The data extends from the surface to 23.0 m depth in ALHIC2201 and from 8.5 m to 46.3 m depth in ALHIC2302. We include the raw 3D ECM data (AC and DC multitrack ECM measurements on perpendicular faces of a quarter-core cut) in CSV format and basic plots of this data. We also provide dip and dip direction estimates of the layering observed in each core section in a CSV table.", "east": 159.36, "geometry": ["POINT(159.36 -76.73)"], "keywords": "Allan Hills; Antarctica; Cryosphere", "locations": "Allan Hills; Antarctica", "north": -76.73, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah; Fudge, T. J.", "project_titles": "Center for Oldest Ice Exploration; Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010365", "repository": "USAP-DC", "title": "Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -76.73, "title": "ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations", "uid": "601854", "west": 159.36}, {"awards": "1443105 Steig, Eric; 1141839 Steig, Eric; 1443336 Osterberg, Erich; 1443397 Kreutz, Karl; 1443663 Cole-Dai, Jihong", "bounds_geometry": ["POINT(-99 -90)"], "date_created": "Wed, 20 Nov 2024 00:00:00 GMT", "description": "This dataset includes all major ion chemistry data from the South Pole Ice Core as well as sea salt sodium data resampled at annual resolution. The development of this dataset is discussed in Winski et al. 2021. The chloride, nitrate, sulfate, magnesium and calcium data have not yet been published, nor has any data prior to the Holocene. Please contact the dataset authors if you have questions.", "east": -99.0, "geometry": ["POINT(-99 -90)"], "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Winski, Dominic A.", "project_titles": "Collaborative Research: A 1500m Ice Core from South Pole; Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole; Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010060", "repository": "USAP-DC", "title": "Collaborative Research: A 1500m Ice Core from South Pole"}, {"proj_uid": "p0010065", "repository": "USAP-DC", "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole"}, {"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole Ice Core Sea Salt and Major Ions", "uid": "601851", "west": -99.0}, {"awards": "1443336 Osterberg, Erich; 1443397 Kreutz, Karl; 1443663 Cole-Dai, Jihong; 1443105 Steig, Eric; 1141839 Steig, Eric", "bounds_geometry": ["POINT(-89.16 -89.99)"], "date_created": "Mon, 18 Nov 2024 00:00:00 GMT", "description": "This dataset includes major ion and seasonal sea salt chemistry data from the South Pole Ice Core. Included are the raw major ion data, annually resolved mean, maximum and minimum sea salt sodium concentrations and centennially resolved principal components (discussed in Winski et al. (2021).", "east": -89.16, "geometry": ["POINT(-89.16 -89.99)"], "keywords": "Antarctica; Cryosphere; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "locations": "Antarctica; South Pole", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Winski, Dominic A.", "project_titles": "Collaborative Research: A 1500m Ice Core from South Pole; Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole; Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010065", "repository": "USAP-DC", "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole"}, {"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}, {"proj_uid": "p0010060", "repository": "USAP-DC", "title": "Collaborative Research: A 1500m Ice Core from South Pole"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "South Pole Ice Core Holocene Major Ion Dataset", "uid": "601850", "west": -89.16}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"], "date_created": "Mon, 21 Oct 2024 00:00:00 GMT", "description": "Totten Glacier is the termination of the largest marine-based portion of the East Antarctic Ice Sheet, the Aurora Subglacial Basin. Yet little is known about the glacial evolution of the catchment and the factors influencing its present and past behavior. Due its remote location and heavy sea ice, the continental shelf in front of the Totten Glacier had not been comprehensively surveyed prior to this study. Satellite observations indicate that the Totten ice drainage system is thinning, and it has been hypothesized that this thinning is in response to undermelting by warm ocean waters over the continental shelf. While this process is observed elsewhere in Antarctica (e.g. the rapidly retreating Pine Island Glacier in West Antarctica), the Totten Glacier system is potentially Antarcticas most important glacial drainage system due to its large size; it is three times larger than any system in West Antarctica. \u003c/br\u003eThe main goals of this proposal were: \u003c/br\u003eTo generate multibeam bathymetric maps of the continental shelf proximal to the Totten Glacier system to understand the recent regional glacial history and to document the pathways, if any, for circumpolar deep water to move onto the shelf. \u003c/br\u003eTo conduct a physical oceanographic survey of the region proximal to the Totten Glacier system, to determine the presence, if any, of warm ocean waters over the continental shelf.\u003c/br\u003eTo conduct a seismic survey of the continental shelf to assess the long-term evolution of the glacial system in the Aurora Subglacial Basin.\u003c/br\u003eTo collect marine sediment cores to determine the regional deglacial to Holocene climate history and the influence of warm circumpolar deep water.", "east": 146.0, "geometry": ["POINT(131.5 -66.5)"], "keywords": "Antarctica; Cryosphere; Diatom; NBP1402; Totten Glacier", "locations": "Antarctica; Antarctica; Totten Glacier", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Leventer, Amy; NBP1402 science party, ", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "NBP1402 diatom data", "uid": "601845", "west": 117.0}, {"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003eA similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. \r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e", "east": -36.11, "geometry": ["POINT(-38.055 66.25)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Greenland; Antarctica; Greenland", "north": 67.55, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 64.95, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "uid": "601841", "west": -40.0}, {"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center.", "east": -57.0, "geometry": ["POINT(-62.75 -67.25999999999999)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Antarctica; Larsen C Ice Shelf", "north": -65.25, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.27, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "uid": "601842", "west": -68.5}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": ["POINT(140.017 -66.66)"], "date_created": "Mon, 16 Sep 2024 00:00:00 GMT", "description": "Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated\u201d mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. \r\n\u003cbr/\u003e", "east": 140.017, "geometry": ["POINT(140.017 -66.66)"], "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "locations": "Antarctica; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "north": -66.66, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "jenouvrier, stephanie", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.66, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "uid": "601832", "west": 140.017}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains Sr and Nd isotope compositions of ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Dust; Ice Core Data; Isotope; Nd; Neodymium; Sr; Strontium", "locations": "Antarctica; Antarctica; Allan Hills", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.7, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "uid": "601820", "west": 159.31}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "locations": "Allan Hills; Antarctica", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.7, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "uid": "601825", "west": 159.31}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Deuterium; Hydrogen; Ice; Ice Core Data; Isotope; Oxygen; Water", "locations": "Allan Hills; Antarctica", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.7, "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "uid": "601822", "west": 159.31}, {"awards": "2035580 Aarons, Sarah", "bounds_geometry": ["POINT(159.31 -76.7)"], "date_created": "Thu, 15 Aug 2024 00:00:00 GMT", "description": "This dataset contains rare earth elemental concentrations of leached ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e.", "east": 159.31, "geometry": ["POINT(159.31 -76.7)"], "keywords": "ALHIC1903; Allan Hills; Antarctica; Blue Ice; Cryosphere; Dust; Leach; Rare Earth Element", "locations": "Allan Hills; Antarctica", "north": -76.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Carter, Austin", "project_titles": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "projects": [{"proj_uid": "p0010270", "repository": "USAP-DC", "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.7, "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "uid": "601821", "west": 159.31}, {"awards": null, "bounds_geometry": null, "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": "This dataset includes measurements of the Deuterium isotopic Composition of Atmospheric Methane (\u03b4D-CH4) of gas bubbles from the Talos Dome Ice Core (TALDICE). All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data are displayed as a function of TALDICE depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation: Award #200020_172506, and #200020B_200328L.", "east": null, "geometry": null, "keywords": "Abrupt Climate Change; Antarctica; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Ice Core Records; Talos Dome", "locations": "Talos Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Riddell-Young, Benjamin; Iseli, Rene; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, James; Clark, Reid; Brook, Edward J.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "uid": "601814", "west": null}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": "This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (\u03b413C-CH4 and \u03b4D-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L.", "east": null, "geometry": null, "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "locations": "West Antarctic Ice Sheet Divide; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "uid": "601813", "west": null}, {"awards": "0087144 Conway, Howard", "bounds_geometry": ["POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\\sim3000$ and $\\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly.", "east": -130.0, "geometry": ["POINT(-140 -84.25)"], "keywords": "Antarctica; Cryosphere; Siple Coast", "locations": "Siple Coast; Antarctica", "north": -83.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hoffman, Andrew; Conway, Howard; Christianson, Knut", "project_titles": "Glacial History of Ridge AB, West Antarctica", "projects": [{"proj_uid": "p0010470", "repository": "USAP-DC", "title": "Glacial History of Ridge AB, West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Impulse HF radar data from Conway Ridge", "uid": "601810", "west": -150.0}, {"awards": "2042495 Blackburn, Terrence; 1644171 Blackburn, Terrence", "bounds_geometry": ["POLYGON((161.9 -77.65,161.96 -77.65,162.02 -77.65,162.08 -77.65,162.14000000000001 -77.65,162.2 -77.65,162.26 -77.65,162.32 -77.65,162.38 -77.65,162.44 -77.65,162.5 -77.65,162.5 -77.66000000000001,162.5 -77.67,162.5 -77.68,162.5 -77.69,162.5 -77.7,162.5 -77.71000000000001,162.5 -77.72,162.5 -77.73,162.5 -77.74,162.5 -77.75,162.44 -77.75,162.38 -77.75,162.32 -77.75,162.26 -77.75,162.2 -77.75,162.14000000000001 -77.75,162.08 -77.75,162.02 -77.75,161.96 -77.75,161.9 -77.75,161.9 -77.74,161.9 -77.73,161.9 -77.72,161.9 -77.71000000000001,161.9 -77.7,161.9 -77.69,161.9 -77.68,161.9 -77.67,161.9 -77.66000000000001,161.9 -77.65))"], "date_created": "Mon, 01 Jul 2024 00:00:00 GMT", "description": "This dataset contains uranium and thorium isotopic compositions (U-234, U-235, U-238, Th-230, Th-232) and major element compositions (Al, K, Na, Ca, Fe, Mn, reported as oxides) for silicate sediments from glaciogenic drifts associated with advances of Taylor Glacier in Taylor Valley, Antarctica. Isotopic measurements were obtained by ID-TIMS in the Keck Isotope Facility at UC Santa Cruz and elemental measurements were obtained by ICP-OES in the Plasma Analytical Laboratory. All measurements include fully propagated analytical and systematic (e.g. isotopic tracer) uncertainties. Chemical index of alteration was calculated from major element data. Prior to measurements, sediments were sieved to \u2264125 \u03bcm grain sizes, separated into quartz-feldspar-rich and clay-rich aliquots by hydraulic settling, and subjected to sequential chemical extractions (\"leaching\") prior to silicate digestion.", "east": 162.5, "geometry": ["POINT(162.2 -77.7)"], "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "locations": "Taylor Valley; Taylor Glacier; Antarctica", "north": -77.65, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Edwards, Graham; Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates; U-Series Comminution Age Constraints on Taylor Valley Erosion", "projects": [{"proj_uid": "p0010243", "repository": "USAP-DC", "title": "U-Series Comminution Age Constraints on Taylor Valley Erosion"}, {"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "uid": "601806", "west": 161.9}, {"awards": "2213704 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 13 Jun 2024 00:00:00 GMT", "description": "This document represents a white paper that articulates a perspective on future research directions based on discussions of glacial climate intervention held at workshops at the University of Chicago (2\u20133 October 2023) and Stanford University (8\u20139 December 2023), and at an American Geophysical Union town hall (12 December 2023). Opinions expressed here are those of the authors only and do not necessarily reflect opinions held by all attendees of the workshops and town hall.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chicago; Cryosphere", "locations": "Chicago; Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacAyeal, Douglas; Mankoff, Kenneth; Minchew, Brent; Moore, John; Wolovick, Michael", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Glacial Climate Intervention: A Research Vision", "uid": "601797", "west": -180.0}, {"awards": "2011285 Santora, Jarrod", "bounds_geometry": ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"], "date_created": "Tue, 28 May 2024 00:00:00 GMT", "description": "Winter survey data from the Antarctic Peninsula (including hydrography, zooplankton, and top predators) conducted from the R/V Nathaniel B. Palmer during the austral winter (August-September) of 2012-2016. Survey stations were selected from the U.S. Antarctic Marine Living Resources Program\u0027s standard grid, approximately 15-20 nm apart covering the region 60\u00b0 to 64\u00b0 S and 54\u00b0 to 63\u00b0 W. At each station, hydrography and chlorophyll measurements were collected with CTD profilers and Niskin bottles, and macrozooplankton samples were collected using an Isaacs-Kidd Midwater Trawl. Between stations, observers recorded abundance and behavior of top predators (seabirds and marine mammals).", "east": -54.0, "geometry": ["POINT(-58.5 -62)"], "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Cryosphere; Pack Ice; Polynya; Seabirds; Sea Ice; Winter; Zooplankton", "locations": "Antarctic Peninsula; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Santora, Jarrod; Reiss, Christian; Dietrich, Kim; Czapanskiy, Max", "project_titles": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter", "projects": [{"proj_uid": "p0010382", "repository": "USAP-DC", "title": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Winter marine communities of the Antarctic Peninsula", "uid": "601795", "west": -63.0}, {"awards": "2044924 Barrett, John", "bounds_geometry": ["POLYGON((161.70776367188 -77.519802097166,161.899475097661 -77.519802097166,162.091186523442 -77.519802097166,162.282897949223 -77.519802097166,162.474609375004 -77.519802097166,162.666320800785 -77.519802097166,162.858032226566 -77.519802097166,163.049743652347 -77.519802097166,163.241455078128 -77.519802097166,163.433166503909 -77.519802097166,163.62487792969 -77.519802097166,163.62487792969 -77.54867059480199,163.62487792969 -77.57753909243799,163.62487792969 -77.606407590074,163.62487792969 -77.63527608771,163.62487792969 -77.664144585346,163.62487792969 -77.69301308298199,163.62487792969 -77.72188158061799,163.62487792969 -77.750750078254,163.62487792969 -77.77961857589,163.62487792969 -77.808487073526,163.433166503909 -77.808487073526,163.241455078128 -77.808487073526,163.049743652347 -77.808487073526,162.858032226566 -77.808487073526,162.666320800785 -77.808487073526,162.474609375004 -77.808487073526,162.282897949223 -77.808487073526,162.091186523442 -77.808487073526,161.899475097661 -77.808487073526,161.70776367188 -77.808487073526,161.70776367188 -77.77961857589,161.70776367188 -77.750750078254,161.70776367188 -77.72188158061799,161.70776367188 -77.69301308298199,161.70776367188 -77.664144585346,161.70776367188 -77.63527608771,161.70776367188 -77.606407590074,161.70776367188 -77.57753909243799,161.70776367188 -77.54867059480199,161.70776367188 -77.519802097166))"], "date_created": "Wed, 03 Apr 2024 00:00:00 GMT", "description": "Microbial communities are the primary drivers of carbon cycling in the McMurdo Dry Valleys of Antarctica. Dense microbial mats, consisting mainly of photosynthetic cyanobacteria, occupy aquatic areas associated with streams and lakes. Other microbial communities also occur at lower densities as patchy surface biological soil crusts (biocrusts) across the terrestrial landscape. Multispectral satellite data have been used to model microbial mat abundance in high-density areas like stream and lake margins, but no previous studies had investigated the lower detection limits of biocrusts. Here, we describe remote sensing and field-based survey and sampling approaches to study the detectability and distribution of biocrusts in the McMurdo Dry Valleys. Using a combination of multi- and hyperspectral tools and spectral linear unmixing, we modeled the abundances of biocrust in eastern Taylor Valley. Our spectral approaches can detect low masses of biocrust material in laboratory microcosms down to biocrust concentrations of 1% by mass. These techniques also distinguish the spectra of biocrust from both surface rock and mineral signatures from orbit. We found that biocrusts are present throughout the soils of eastern Taylor Valley and are associated with diverse underlying soil communities. The densest biocrust communities identified in this study had total organic carbon 5x greater than the content of typical arid soils. The most productive biocrusts were located downslope of melting snowpacks in unique soil ecosystems that are distinct from the surrounding arid landscape. There are similarities between the snowpack and stream sediment communities (high diversity of soil invertebrates) as well as their ecosystem properties (e.g., persistence of liquid water, high transfer of available nutrients, lower salinity from flushing) compared to the typical arid terrestrial ecosystem of the dry valleys. Our approach extends the capability of orbital remote sensing of photosynthetic communities out of the aquatic margins and into the drier soils which comprise most of this landscape. This interdisciplinary work is critical for measuring and monitoring terrestrial carbon stocks and predicting future ecosystem dynamics in this currently water-limited but increasingly dynamic Antarctic landscape, which is particularly climate-sensitive and difficult to access.\r\n", "east": 163.62487792969, "geometry": ["POINT(162.666320800785 -77.664144585346)"], "keywords": "Antarctica; Carbon; Cryosphere; McMurdo Dry Valleys; Snow", "locations": "McMurdo Dry Valleys; Antarctica", "north": -77.519802097166, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Barrett, John", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -77.808487073526, "title": "Hyperspectral reflectance values and biophysicochemical properties of biocrusts and soils in the Fryxell Basin, McMurdo Dry Valleys, Antarctica", "uid": "601773", "west": 161.70776367188}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": null, "date_created": "Wed, 07 Feb 2024 00:00:00 GMT", "description": "In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers.", "east": null, "geometry": null, "keywords": "Antarctica; McMurdo Sound", "locations": "Antarctica; McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Todgham, Anne; Mandic, Milica; Frazier, Amanda; Naslund, Andrew", "project_titles": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "projects": [{"proj_uid": "p0010241", "repository": "USAP-DC", "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species", "uid": "601766", "west": null}, {"awards": "1744999 Todgham, Anne", "bounds_geometry": null, "date_created": "Tue, 06 Feb 2024 00:00:00 GMT", "description": "This dataset records temperature preference of two species of Antarctic nototheniod fishes, as described in the draft manuscript \u2018Naslund et al. (Forthcoming 2024) Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii.", "east": null, "geometry": null, "keywords": "Antarctica; McMurdo Sound; Ross Sea", "locations": "McMurdo Sound; Antarctica; Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Todgham, Anne; Naslund, Andrew; Zillig, Ken; Mandic, Milica; Frazier, Amanda", "project_titles": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes", "projects": [{"proj_uid": "p0010241", "repository": "USAP-DC", "title": "Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii", "uid": "601765", "west": null}, {"awards": "1851022 Fudge, Tyler", "bounds_geometry": ["POINT(123.33 -75.09)"], "date_created": "Fri, 22 Dec 2023 00:00:00 GMT", "description": "Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 \u00b1 3 \u00d7 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10\u00b0C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point.", "east": 123.33, "geometry": ["POINT(123.33 -75.09)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -75.09, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.; Severi, Mirko", "project_titles": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "projects": [{"proj_uid": "p0010211", "repository": "USAP-DC", "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -75.09, "title": "EPICA Dome C Sulfate Data 7-3190m", "uid": "601759", "west": 123.33}, {"awards": "0917509 Spencer, Matthew", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 18 Oct 2023 00:00:00 GMT", "description": "This data set consists of bubble-number densities in glacier ice, in units of bubbles per cubic centimeter, based on firn densification and grain-growth modeling under steady-state climate conditions.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Spencer, Matthew", "project_titles": "Collaborative Research: Combined Physical Property Measurements at Siple Dome", "projects": [{"proj_uid": "p0000658", "repository": "USAP-DC", "title": "Collaborative Research: Combined Physical Property Measurements at Siple Dome"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Firn depth and bubble density for Siple Ice Core and other sites", "uid": "601746", "west": -149.0}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Mon, 02 Oct 2023 00:00:00 GMT", "description": "This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "locations": "Greenland; West Antarctic Ice Sheet; Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; M\u00fchl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "uid": "601736", "west": -112.05}, {"awards": "2139002 Huth, Alexander", "bounds_geometry": ["POLYGON((-67 -66,-66.3 -66,-65.6 -66,-64.9 -66,-64.2 -66,-63.5 -66,-62.8 -66,-62.1 -66,-61.4 -66,-60.7 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.7 -70,-61.4 -70,-62.1 -70,-62.8 -70,-63.5 -70,-64.2 -70,-64.9 -70,-65.6 -70,-66.3 -70,-67 -70,-67 -69.6,-67 -69.2,-67 -68.8,-67 -68.4,-67 -68,-67 -67.6,-67 -67.2,-67 -66.8,-67 -66.4,-67 -66))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "This dataset contains a model (Elmer/Ice Fortran modules) to simulate rifting on ice shelves. The model combines the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. Additionally, it accounts for rift-flank boundary processes, including pressure on rift-flank walls from seawater, contact between flanks, and ice m\u00e9lange that may also transmit stress between flanks.\r\n\r\nThis dataset also contains the input data (Elmer restart files), input files (Elmer .sifs), and Slurm batch scripts to run five experiments. All experiments aim to simulate the final two years of rift propagation that led to the calving of tabular iceberg A68 from Larsen C ice shelf in 2017. However, each experiment differs in its treatment of rift-flank boundary processes, which affects the rift path.\r\n\r\nFor more information, see the associated publication (Huth et al., 2023).", "east": -60.0, "geometry": ["POINT(-63.5 -68)"], "keywords": "Antarctica; Glaciology; Iceberg; Ice Shelf Dynamics; Larsen C Ice Shelf; Model Data; Modeling", "locations": "Larsen C Ice Shelf; Antarctica", "north": -66.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Huth, Alexander", "project_titles": "OPP-PRF Calving, Icebergs, and Climate", "projects": [{"proj_uid": "p0010276", "repository": "USAP-DC", "title": "OPP-PRF Calving, Icebergs, and Climate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "uid": "601718", "west": -67.0}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POLYGON((159.17 -76.67,159.195 -76.67,159.22 -76.67,159.24499999999998 -76.67,159.26999999999998 -76.67,159.295 -76.67,159.32 -76.67,159.345 -76.67,159.36999999999998 -76.67,159.39499999999998 -76.67,159.42 -76.67,159.42 -76.676,159.42 -76.682,159.42 -76.688,159.42 -76.694,159.42 -76.7,159.42 -76.706,159.42 -76.712,159.42 -76.718,159.42 -76.724,159.42 -76.73,159.39499999999998 -76.73,159.36999999999998 -76.73,159.345 -76.73,159.32 -76.73,159.295 -76.73,159.26999999999998 -76.73,159.24499999999998 -76.73,159.22 -76.73,159.195 -76.73,159.17 -76.73,159.17 -76.724,159.17 -76.718,159.17 -76.712,159.17 -76.706,159.17 -76.7,159.17 -76.694,159.17 -76.688,159.17 -76.682,159.17 -76.676,159.17 -76.67))"], "date_created": "Fri, 16 Jun 2023 00:00:00 GMT", "description": "Unpublished field report describing drilling, sampling, and temperature profiles for shallow ice cores and boreholes at Allan Hills in 2022-2023 field season", "east": 159.42, "geometry": ["POINT(159.295 -76.7)"], "keywords": "Allan Hills; Antarctica; Ice Core", "locations": "Allan Hills; Antarctica", "north": -76.67, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shackleton, Sarah; Brook, Edward J.", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}, {"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73, "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "uid": "601696", "west": 159.17}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.366767 -62.681,-63.991703599999994 -62.681,-63.6166402 -62.681,-63.2415768 -62.681,-62.866513399999995 -62.681,-62.49145 -62.681,-62.1163866 -62.681,-61.7413232 -62.681,-61.366259799999995 -62.681,-60.9911964 -62.681,-60.616133 -62.681,-60.616133 -62.9536677,-60.616133 -63.226335399999996,-60.616133 -63.4990031,-60.616133 -63.7716708,-60.616133 -64.04433850000001,-60.616133 -64.31700620000001,-60.616133 -64.58967390000001,-60.616133 -64.86234160000001,-60.616133 -65.13500930000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"], "date_created": "Sun, 11 Jun 2023 00:00:00 GMT", "description": "Antarctic winters are challenging for terrestrial invertebrates, and species that\r\nlive there have specialised adaptations to conserve energy and protect against\r\ncold injury in the winter. However, rapidly occurring climate change in these\r\nregions will increase the unpredictability of winter conditions, and there is\r\ncurrently a dearth of knowledge on how the highly adapted invertebrates of\r\nAntarctica will respond to changes in winter temperatures.\r\n2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica,\r\nto simulated winters at three ecologically relevant mean temperature scenarios:\r\nwarm (\u22121\u00b0C), normal (\u22123\u00b0C) and cold (\u22125\u00b0C). Within each scenario, larvae were\r\nplaced into three distinct habitat types in which they are commonly observed\r\n(decaying organic matter, living moss, and Prasiola crispa algae). Following the\r\nsimulated overwintering period, a range of physiological outcomes were measured,\r\nnamely survival, locomotor activity, tissue damage, energy store levels and\r\nmolecular stress responses.\r\n3. Survival, energy stores and locomotor activity were significantly lower following\r\nthe Warm overwintering environment than at lower temperatures, but tissue\r\ndamage and heat shock protein expression (a proxy for protein damage) did not\r\nsignificantly differ between the three temperatures. Survival was also significantly\r\nlower in larvae overwintered in Prasiola crispa algae, although the underlying\r\nmechanism is unclear. Heat shock proteins were expressed least in larvae\r\noverwintering in living moss, suggesting it is less stressful to overwinter in this\r\nsubstrate, perhaps due to a more defined structure affording less direct contact\r\nwith ice.\r\n4. Our results demonstrate that a realistic 2\u00b0C increase in winter microhabitat temperature\r\nreduces survival and causes energy deficits that have implications for subsequent\r\ndevelopment and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters\r\nare expected to become more common in response to climate change. Conversely,\r\nif climate change reduces the length of winter, some of the negative consequences\r\nof winter warming may be attenuated, so it will be important to consider this factor\r\nin future studies. Nonetheless, our results indicate that winter warming could\r\nnegatively impact cold-adapted insects such as the Antarctic midge.", "east": -60.616133, "geometry": ["POINT(-62.49145 -64.04433850000001)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -62.681, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -65.407677, "title": "Simulated winter warming negatively impacts survival of Antarctica\u0027s only endemic insect", "uid": "601694", "west": -64.366767}, {"awards": "1443397 Kreutz, Karl", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 16 Mar 2023 00:00:00 GMT", "description": "This dataset contains biologically relevant trace metal concentrations metrics for the\r\nSPICEcore intermediate core (SPC14), from the surface to 1751 m (~54 ka). The data set\r\nincludes cleaned Fe and Mn biologically relevant concentrations (operationally defined pH 5)\r\ntrace mental concentration measurements and dissolved concentrations (operationally defined as concentration \u0026lt;0.45\u00b5m and acidified to \u0026lt;pH 1).", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.", "uid": "601675", "west": -180.0}, {"awards": "1744993 Higgins, John", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167000000002 -76.66667,159.21667000000002 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667000000002 -76.66667,159.34167000000002 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.67333599999999,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.69999999999999,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.71999799999999,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167000000002 -76.73333,159.31667000000002 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667000000002 -76.73333,159.19167000000002 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.71999799999999,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.69999999999999,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.67333599999999,159.16667 -76.66667))"], "date_created": "Fri, 03 Mar 2023 00:00:00 GMT", "description": "This document details the ground-penetrating radar (GPR) collection activities carried out by I. Nesbitt in the Allan Hills during the 2019-2020 field season. This document is intended as an informal catalogue of the fild work and post-processing activities performed at the Allan Hills and later at McMurdo and elsewhere. It contains preliminary post-processing and analysis only. Any interpretation made and presented in this report based on the data herein is subject to change pending further examination. GPR was used to examine sub-ice bedrock topography and the stratigraphic relationship between two shallow ice core drill sites (CMC1 and CMC2), as well as to explore potential future drill sites. In accordance with. the project\u0027s objective to drill and analyze ancient ice at relatively shallow depths, the two main features of interest in this study are 1) bedrock topographic features in which ancient ice could be trapped, and 2) englacial stratigraphic layers, especially those which may represent large age discontinuities.", "east": 159.41667, "geometry": ["POINT(159.29167 -76.69999999999999)"], "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "locations": "Antarctica; Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Nesbitt, Ian; Brook, Edward J.", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "I-165-M GPR Field Report 2019-2020", "uid": "601669", "west": 159.16667}, {"awards": "2021245 Li, Yun; 1643735 Li, Yun", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -61.8,180 -63.6,180 -65.4,180 -67.2,180 -69,180 -70.8,180 -72.6,180 -74.4,180 -76.2,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.2,-180 -74.4,-180 -72.6,-180 -70.8,-180 -69,-180 -67.2,-180 -65.4,-180 -63.6,-180 -61.8,-180 -60))"], "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "Coastal Antarctic polynyas are regions with concentrated phytoplankton blooms, and therefore have important implications for marine ecosystems and the associated carbon cycles. Seasonal water-column stratification, regulated by sea ice, can modulate the exposure of phytoplankton to light and nutrients, and is one of the most important factors that control the duration and strength of algal blooms. Polynyas differ greatly in their stratification, thus are not equally productive in terms of phytoplankton biomass, nor equally vulnerable to the changes in regional climate. To date, most studies have been focusing on individual polynyas, yet a systematic assessment of stratification patterns across polynyas is still lacking. Therefore, we examined the spatial and seasonal variability of stratification in circum-Antarctic coastal polynyas. Using \u003e105 in situ hydrographic casts combined from the World Ocean Database (1970-2021) and the Marine Mammals Exploring the Oceans Pole to Pole Consortium Database (2004-2017), we constructed stratification seasonal climatology using 0-100 m Simpson Energy. Our results showed that stratification magnitude varies by a factor of 6 and its onset time displays 1-2 months difference across all the polynyas. In the presence of warmer water at depths, polynyas tend to develop stronger stratification than others. The spatial variations of stratification are negatively related to sea ice retreat rate and polynya size, indicative of distinct dynamics resulted from the interaction of sea ice melting, advection and water-column mixing.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctic; Antarctica; Antarctic Coastal Polynyas; Polynya", "locations": "Antarctic Coastal Polynyas; Antarctic; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Li, Yun; Shunk, Nathan; Zhang, Weifeng", "project_titles": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "projects": [{"proj_uid": "p0010044", "repository": "USAP-DC", "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas", "uid": "601628", "west": -180.0}, {"awards": "1744832 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Tue, 22 Nov 2022 00:00:00 GMT", "description": "These data cover the penultimate glacial period (MIS 6) and parts of MIS5, in Allan Hills ice. The d18Oatm data are useful for dating the core, and the 15N is useful for inferring firn thickness. Importantly, the data have only been corrected for gas loss using published methods (i.e. Baggenstos et al. 2017), but not for recently recognized (and unpublished) effects of declining contemporary atmospheric O2/N2 due to fossil fuel burning. These changes unfortunately affect the La Jolla Air standard gas O2/N2 ratio that is used in our lab to make the measurements. Users of this data are encouraged to contact Jeff Severinghaus for help in making these novel corrections to the standard gas.", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "locations": "Allan Hills; Antarctica", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "uid": "601620", "west": 159.3562}, {"awards": "1933764 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"], "date_created": "Mon, 24 Oct 2022 00:00:00 GMT", "description": "This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994\u20142100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994\u20142019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in \u201c.mat\u201d format, which can be read using MATLAB\u2019s \u201cload\u201d function or using Python with the Scipy \u201cscipy.io.loadmat\u201d function. ", "east": -62.0, "geometry": ["POINT(-62.55 -65.4)"], "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "locations": "Crane Glacier; Antarctica; Antarctic Peninsula", "north": -65.2, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.6, "title": "Crane Glacier centerline observations and modeling results ", "uid": "601617", "west": -63.1}, {"awards": "2042495 Blackburn, Terrence", "bounds_geometry": null, "date_created": "Wed, 10 Aug 2022 00:00:00 GMT", "description": "This file includes U-series isotopic and 234U/230Th chronologic data from two chemical precipitates deposited beneath the Antarctic Ice Sheet. Precipitate mineral compositions consist of opal and calcite layers. Sample MA113 was found at Mount Achernar moraine (84.2\u00b0S, 161\u00b0E), and sample PRR50489 was found at Elephant Moraine (76.3\u00b0S, 157.3\u00b0E).", "east": null, "geometry": null, "keywords": "Antarctica; East Antarctica", "locations": "Antarctica; East Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Piccione, Gavin; Blackburn, Terrence", "project_titles": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "projects": [{"proj_uid": "p0010192", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles", "uid": "601594", "west": null}, {"awards": "1246407 Jenouvrier, Stephanie; 1840058 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 27 Jun 2022 00:00:00 GMT", "description": "Individuals differ in many ways. Most produce few offspring; a handful produce many. Some\r\ndie early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is\r\nmore to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due\r\nto individual stochasticity, i.e., to chance. Quantifying the contributions of heterogeneity and\r\nchance is essential to understanding natural variability. Inter-individual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favorable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.\r\n\r\nSpecifically, three life-history complexes exist in a population of southern fulmar (defined as sets of life-history characteristics that occur together through the lifetime of an individual). They are reminiscent of the gradient of life- history strategy observed among species:\r\n\r\n1. Group 1 (14% of offspring at fledging) is a slow-paced life history where individuals tend to delay recruitment, recruit successfully, and extend their reproductive lifespan.\r\n2. Group 2 (67% of offspring at fledging) consists of individuals that are less likely to recruit, have high adult survival, and skip breeding often.\r\n3. Group 3 (19% of offspring at fledging) is a fast-paced life history where individuals recruit early and attempt to breed often but have a short lifespan.\r\n\r\nIndividuals in groups 1 and 3 are considered \u201chigh-quality\u201d individuals because they produce, on average, more offspring over their lives than do individuals in group 2. But group 2 is made-up of individuals that experience the highest levels of adult survival.\r\n \r\nDifferences between these groups, i.e. individual heterogeneity, only explains a small fraction of variance in life expectancy (5.9%) and lifetime reproduction (22%) when environmental conditions are ordinary. We expect that the environmental context experienced, especially when environmental conditions get extreme, is key to characterizing individual heterogeneity and its contribution to life history outcomes. Here, we build on previous studies to quantify the impact of extreme environmental conditions on the relative contributions of individual heterogeneity and stochasticity to variance in life history outcomes.\r\nWe found that the differences in vital rates and demographic outcomes among complexes depend on the sea ice conditions individuals experience. Importantly, differences across life history complexes are amplified when sea ice concentration get extremely low. Sea ice conditions did not only affect patterns of life history traits, but also the variance of life history outcomes and the relative proportion of individual unobserved heterogeneity to the total variance. These new results advance the current debate on the relative importance heterogeneity (i.e. potentially adaptive) and stochasticity (i.e. enhances genetic drift) in shaping potentially neutral vs. adaptive changes in life histories.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "locations": "Antarctica; East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change; Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010002", "repository": "USAP-DC", "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change"}, {"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "uid": "601585", "west": -180.0}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": ["POLYGON((163.7 -77.9,163.79 -77.9,163.88 -77.9,163.97 -77.9,164.06 -77.9,164.15 -77.9,164.24 -77.9,164.33 -77.9,164.42 -77.9,164.51 -77.9,164.6 -77.9,164.6 -77.91,164.6 -77.92,164.6 -77.93,164.6 -77.94,164.6 -77.95,164.6 -77.96,164.6 -77.97,164.6 -77.98,164.6 -77.99,164.6 -78,164.51 -78,164.42 -78,164.33 -78,164.24 -78,164.15 -78,164.06 -78,163.97 -78,163.88 -78,163.79 -78,163.7 -78,163.7 -77.99,163.7 -77.98,163.7 -77.97,163.7 -77.96,163.7 -77.95,163.7 -77.94,163.7 -77.93,163.7 -77.92,163.7 -77.91,163.7 -77.9))"], "date_created": "Wed, 20 Apr 2022 00:00:00 GMT", "description": "This dataset includes radiocarbon dates of benthic algal mats associated with last glacial maximum Ross Sea drift in Salmon Valley, Royal Society Range.", "east": 164.6, "geometry": ["POINT(164.15 -77.95)"], "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "locations": "Ross Sea Drift; Royal Society Range; McMurdo Sound; Antarctica", "north": -77.9, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hall, Brenda", "project_titles": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "projects": [{"proj_uid": "p0010302", "repository": "USAP-DC", "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Salmon Valley Radiocarbon Data", "uid": "601556", "west": 163.7}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": ["POLYGON((163.5 -77.3,163.65 -77.3,163.8 -77.3,163.95 -77.3,164.1 -77.3,164.25 -77.3,164.4 -77.3,164.55 -77.3,164.7 -77.3,164.85 -77.3,165 -77.3,165 -77.39,165 -77.48,165 -77.57,165 -77.66,165 -77.75,165 -77.84,165 -77.93,165 -78.02,165 -78.11,165 -78.2,164.85 -78.2,164.7 -78.2,164.55 -78.2,164.4 -78.2,164.25 -78.2,164.1 -78.2,163.95 -78.2,163.8 -78.2,163.65 -78.2,163.5 -78.2,163.5 -78.11,163.5 -78.02,163.5 -77.93,163.5 -77.84,163.5 -77.75,163.5 -77.66,163.5 -77.57,163.5 -77.48,163.5 -77.39,163.5 -77.3))"], "date_created": "Wed, 20 Apr 2022 00:00:00 GMT", "description": "This dataset contains radiocarbon dates of benthic algal (cyanobacterial) mats within moraines associated with Ross Sea drift on the headlands of the Royal Society Range and covers the time period ~12-20 ka.", "east": 165.0, "geometry": ["POINT(164.25 -77.75)"], "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "locations": "Royal Society Range; McMurdo Sound; Ross Sea Drift; Antarctica; Royal Society Range", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hall, Brenda", "project_titles": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "projects": [{"proj_uid": "p0010302", "repository": "USAP-DC", "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "uid": "601555", "west": 163.5}, {"awards": "1443397 Kreutz, Karl", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Dust; Ice Core; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "uid": "601553", "west": 0.0}, {"awards": "1643877 Friedlaender, Ari", "bounds_geometry": ["POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.4,-60 -62.8,-60 -63.2,-60 -63.6,-60 -64,-60 -64.4,-60 -64.8,-60 -65.2,-60 -65.6,-60 -66,-60.5 -66,-61 -66,-61.5 -66,-62 -66,-62.5 -66,-63 -66,-63.5 -66,-64 -66,-64.5 -66,-65 -66,-65 -65.6,-65 -65.2,-65 -64.8,-65 -64.4,-65 -64,-65 -63.6,-65 -63.2,-65 -62.8,-65 -62.4,-65 -62))"], "date_created": "Wed, 23 Mar 2022 00:00:00 GMT", "description": "This dataset contains motion-sensing and video recording data from CATS biologging tags deployed on Antarctic minke whales in 2018 and 2019. The data are used to determine underwater behavior and link foraging rates to environmental covariates to better understand the ecological role of this poorly known krill predator. Specifically, we are interested in how the presence and amount of ice affects the behavior of this species in the nearshore waters on the western side of the Antarctic Peninsula, a region experiencing rapid climate change.", "east": -60.0, "geometry": ["POINT(-62.5 -64)"], "keywords": "Antarctica; Antarctic Peninsula; Biologging; Foraging; Ice; Minke Whales", "locations": "Antarctica; Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Friedlaender, Ari", "project_titles": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)", "projects": [{"proj_uid": "p0010207", "repository": "USAP-DC", "title": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.0, "title": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "uid": "601542", "west": -65.0}, {"awards": "0944150 Hall, Brenda; 1643248 Hall, Brenda", "bounds_geometry": ["POLYGON((164 -78,164.04 -78,164.08 -78,164.12 -78,164.16 -78,164.2 -78,164.24 -78,164.28 -78,164.32 -78,164.36 -78,164.4 -78,164.4 -78.01,164.4 -78.02,164.4 -78.03,164.4 -78.04,164.4 -78.05,164.4 -78.06,164.4 -78.07,164.4 -78.08,164.4 -78.09,164.4 -78.1,164.36 -78.1,164.32 -78.1,164.28 -78.1,164.24 -78.1,164.2 -78.1,164.16 -78.1,164.12 -78.1,164.08 -78.1,164.04 -78.1,164 -78.1,164 -78.09,164 -78.08,164 -78.07,164 -78.06,164 -78.05,164 -78.04,164 -78.03,164 -78.02,164 -78.01,164 -78))"], "date_created": "Tue, 01 Mar 2022 00:00:00 GMT", "description": "This dataset contains raw and calibrated radiocarbon data for lacustrine algal layers from glacial lacustrine deposits associated with Ross Sea drift in Marshall Valley.", "east": 164.4, "geometry": ["POINT(164.2 -78.05)"], "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "locations": "Marshall Valley; Ross Sea Drift; Antarctica; Royal Society Range", "north": -78.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "persons": "Hall, Brenda", "project_titles": "Response of the Antarctic Ice Sheet to the last great global warming; Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "projects": [{"proj_uid": "p0010302", "repository": "USAP-DC", "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles"}, {"proj_uid": "p0010301", "repository": "USAP-DC", "title": "Response of the Antarctic Ice Sheet to the last great global warming"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.1, "title": "Marshall Valley Radiocarbon Data", "uid": "601529", "west": 164.0}, {"awards": "1643248 Hall, Brenda; 0944150 Hall, Brenda", "bounds_geometry": ["POLYGON((164 -78,164.04 -78,164.08 -78,164.12 -78,164.16 -78,164.2 -78,164.24 -78,164.28 -78,164.32 -78,164.36 -78,164.4 -78,164.4 -78.01,164.4 -78.02,164.4 -78.03,164.4 -78.04,164.4 -78.05,164.4 -78.06,164.4 -78.07,164.4 -78.08,164.4 -78.09,164.4 -78.1,164.36 -78.1,164.32 -78.1,164.28 -78.1,164.24 -78.1,164.2 -78.1,164.16 -78.1,164.12 -78.1,164.08 -78.1,164.04 -78.1,164 -78.1,164 -78.09,164 -78.08,164 -78.07,164 -78.06,164 -78.05,164 -78.04,164 -78.03,164 -78.02,164 -78.01,164 -78))"], "date_created": "Tue, 01 Mar 2022 00:00:00 GMT", "description": "This dataset includes 234U/230Th chronologic data for lacustrine carbonates associated with Marshall drift in Marshall Valley, Royal Society Range. These samples are from ice-dammed lake deposits associated with a grounded ice sheet that blocked the valley mouth. Sample chemistry was done at the University of Maine geochemistry laboratory. Processed samples were analyzed on a multicollector ICP-MS at the University of Oxford. Corrected ages reflect a detrital correction based on typical upper-crustal (230Th/232Th) values of 1.21 with a 50% assumed error.", "east": 164.4, "geometry": ["POINT(164.2 -78.05)"], "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "locations": "Royal Society Range; Antarctica; Marshall Valley", "north": -78.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "persons": "Hall, Brenda", "project_titles": "Response of the Antarctic Ice Sheet to the last great global warming; Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "projects": [{"proj_uid": "p0010301", "repository": "USAP-DC", "title": "Response of the Antarctic Ice Sheet to the last great global warming"}, {"proj_uid": "p0010302", "repository": "USAP-DC", "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.1, "title": "Marshall Valley U-Series Data", "uid": "601528", "west": 164.0}, {"awards": "1341464 Robinson, Rebecca", "bounds_geometry": ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"], "date_created": "Mon, 14 Feb 2022 00:00:00 GMT", "description": "Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as \u03b415N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (\u03b415NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that \u03b415NDB in Southern Ocean community cultures does not depend on species composition. We found the \u03b5DB (= biomass \u03b415N - \u03b415NDB) of the community growouts was -4.8 \u00b1 0.8\u2030, more than 10\u2030 different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66\u00b0 and 61\u00b0S, had distinct community compositions but indistinguishable \u03b5DB, suggesting species composition does not primarily set \u03b415NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, \u03b415NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate \u03b415N values and therefore nitrate supply and demand. ", "east": -170.0, "geometry": ["POINT(-170.2 -63.5)"], "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.8, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca ", "project_titles": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "projects": [{"proj_uid": "p0010083", "repository": "USAP-DC", "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.2, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "uid": "601522", "west": -170.4}, {"awards": "1443710 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Thu, 03 Feb 2022 00:00:00 GMT", "description": "We present measurements gas measurements from the South Pole Ice Core, including the isotopic composition of molecular nitrogen (\u03b415N) and argon (\u03b440Ar), and the argon-nitrogen ratio (\u03b4Ar/N2). The measurements were made between approximately 490 and 1310 m depth, which is between 5 and 30 kyr BP on the SP19 Gas Chronology.\r\nThe measurements allow us to reconstruct the past amounts of gravitational and thermal fractionation in the firn and thus reconstruct past firn thickness and temperature gradient. These reconstructions are also included.\r\n", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "locations": "Antarctica; South Pole; South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Morgan, Jacob; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole Ice Core Isotopes of N2 and Ar", "uid": "601517", "west": 0.0}, {"awards": "1744789 Padman, Laurence; 1744792 Little, Christopher", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 01 Feb 2022 00:00:00 GMT", "description": "This dataset contains NetCDF files of two-dimensional gridded fields of hydrographic properties, Conservative Temperature (CT) and Absolute Salinity (SA), around Antarctica, depth-averaged for the depth range 300 m to min([water depth, 1000]) m from 38 CMIP6 models, the World Ocean Atlas 2018, and our own product developed from the World Ocean Database. These fields are designed to represent the hydrography of deeper water masses on the Antarctic Continental Shelf (ACS), where typical water depths are 400-600 m, and the intermediate-depth water off the continental shelf. The dataset includes a high-resolution polar-stereographic grid (2 x 2 km) of Southern Ocean geometry, including water depth, elevation of the land and ice-sheet surface (including ice shelves), a mask (identifying water, land and grounded ice, and ice shelves), and offshore distance from the continental shelf break. An example MATLAB script for accessing the grids and plotting them is included. The primary purpose of this dataset is to provide simplified 2-D hydrographic fields that can be used to assess the performance of climate models for the ACS, focusing on the depth range that affects most basal melting of Antarctica\u2019s ice shelves.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Continental Shelf; CMIP6; Oceans; Physical Oceanography; Salinity; Southern Ocean; Temperature", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Little, Chris; Sun, Qiang; Padman, Laurence", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Gridded Values of Conservative Temperature and Absolute Salinity Around Antarctica averaged for the depth range 300 m to min([water depth, 1000]) m", "uid": "601516", "west": -180.0}, {"awards": "1744794 Jenouvrier, Stephanie", "bounds_geometry": null, "date_created": "Mon, 24 Jan 2022 00:00:00 GMT", "description": "In a fast-changing world, polar ecosystems are threatened by climate variability.\r\nUnderstanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world\u2019s longest dataset of emperor penguin (Aptenodytes forsteri) breeding parameters, we studied the effects of fine-scale variability of LFI andweather conditions on this species\u2019 reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive\r\nto LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change.\r\n\r\nThese files contain the code and data from this manuscript. ", "east": null, "geometry": null, "keywords": "Antarctica; Breeding Success; Emperor Penguin; Fast Sea Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie; Labrousse, Sara", "project_titles": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", "projects": [{"proj_uid": "p0010229", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}, {"proj_uid": "p0010447", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Landfast ice: a major driver of reproductive success in a polar seabird", "uid": "601513", "west": null}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"], "date_created": "Mon, 24 Jan 2022 00:00:00 GMT", "description": "This file includes the \u03b415N of N2, \u03b418O of O2 (\u03b418Oatm), \u03b4O2/N2, and \u03b4Ar/N2 in the S27 ice core drilled in Allan Hills Blue Ice Area.", "east": 159.25, "geometry": ["POINT(159.125 -76.25)"], "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "locations": "Allan Hills; Antarctica", "north": -75.67, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83, "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "uid": "601512", "west": 159.0}, {"awards": "2037561 Jenouvrier, Stephanie; 1744794 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. \r\n\r\nIn Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. \r\n\r\nThis data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. \r\n\r\nIn Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins; Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts", "projects": [{"proj_uid": "p0010282", "repository": "USAP-DC", "title": "Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts"}, {"proj_uid": "p0010447", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}, {"proj_uid": "p0010229", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Detecting climate signals in populations: case of emperor penguin", "uid": "601491", "west": -180.0}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Tue, 02 Nov 2021 00:00:00 GMT", "description": "This file includes the d15N, O2/N2 ratio, Ar/N2 ratio, and d18O of O2 (d18Oatm) in Allan Hills ice cores (ALHIC1502 and ALHIC1503). This dataset replaces an earlier version of the elemental and isotopic composition in Allan Hills ice cores (DOI: 10.15784/601204) by adding new data from 60 depths in ALHIC1502 core (26.26 m to 175.74 m). ", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "locations": "Antarctica; Allan Hills", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "uid": "601483", "west": 159.35507}, {"awards": "1542723 Alexander, Becky", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of nitrate oxygen (D17O) and nitrogen (d15N) isotopes from the WAIS Divide ice core (WDC06A). The time resolution is variable throughout the record. The data includes 15 discreet samples between 2900 - 67,000 years before 1950 and 305 continuous measurements between 36,000-52,000 years before 1950. The depth range is 700 - 3401 m. Each sample covered 1 m depth. The time resolution ranged from 5 years/m at the top to 200 years/m at the bottom.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Alexander, Becky", "project_titles": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "projects": [{"proj_uid": "p0010403", "repository": "USAP-DC", "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide ice core nitrate isotopes", "uid": "601456", "west": -112.05}, {"awards": "1060080 TBD", "bounds_geometry": ["POINT(144 -65)"], "date_created": "Mon, 14 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of terrigenous particle-size distributions on Pliocene sediment from Integrated Ocean Drilling Program Site U1359 on the Wilkes Land margin. Biogenic silica, carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate, and after supernatant was removed, digestion in 0.2 N NaOH at ~85 degrees for 1 hour. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 144.0, "geometry": ["POINT(144 -65)"], "keywords": "Antarctica; Ice-Rafting; Marine Geoscience; Paleoclimate; Particle Size; Sediment Core Data; Wilkes Land", "locations": "Wilkes Land; Antarctica", "north": -65.0, "nsf_funding_programs": null, "persons": "Passchier, Sandra; Hansen, Melissa A.; Rosenberg, Jessica", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -65.0, "title": "Particle-size distributions of Pliocene sediment from IODP Site U1359", "uid": "601450", "west": 144.0}, {"awards": "0342484 Harwood, David", "bounds_geometry": ["POINT(167 -78)"], "date_created": "Mon, 14 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 167.0, "geometry": ["POINT(167 -78)"], "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "locations": "McMurdo Sound; Antarctica", "north": -78.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Candice, Falk", "project_titles": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "projects": [{"proj_uid": "p0010297", "repository": "USAP-DC", "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.0, "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "uid": "601451", "west": 167.0}, {"awards": "1443347 Condron, Alan", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 08 Jun 2021 00:00:00 GMT", "description": "Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. This dataset contains the results from multi-century (present\u20132250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. These results were published in Sadai et al., Science Advances, 2020, Vol. 6, eaaz1169\r\n\r\nPlease note that ALL the raw model data generated for this project is archived at Woods Hole Oceanographic Institution and the University of Massachusetts Amherst and freely available on request. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meltwater", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "persons": "Condron, Alan", "project_titles": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010007", "repository": "USAP-DC", "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming", "uid": "601449", "west": -180.0}, {"awards": "0732946 Steffen, Konrad", "bounds_geometry": ["POLYGON((-65 -66,-64.5 -66,-64 -66,-63.5 -66,-63 -66,-62.5 -66,-62 -66,-61.5 -66,-61 -66,-60.5 -66,-60 -66,-60 -66.3,-60 -66.6,-60 -66.9,-60 -67.2,-60 -67.5,-60 -67.8,-60 -68.1,-60 -68.4,-60 -68.7,-60 -69,-60.5 -69,-61 -69,-61.5 -69,-62 -69,-62.5 -69,-63 -69,-63.5 -69,-64 -69,-64.5 -69,-65 -69,-65 -68.7,-65 -68.4,-65 -68.1,-65 -67.8,-65 -67.5,-65 -67.2,-65 -66.9,-65 -66.6,-65 -66.3,-65 -66))"], "date_created": "Wed, 19 May 2021 00:00:00 GMT", "description": "As part of IPY-0732946, three automatic weather stations (Larsen 1, 2, 3) were installed along a latitudinal gradient on the Larsen C ice shelf. The stations were installed in December 2008 (Larsen 3 AWS did not come online until 2009) and operated through the end of the project in November 2011.", "east": -60.0, "geometry": ["POINT(-62.5 -67.5)"], "keywords": "Antarctica; Atmosphere; AWS; Foehn Winds; Ice Shelf; Larsen C Ice Shelf; Larsen Ice Shelf; Meteorology; Weather Station Data", "locations": "Larsen Ice Shelf; Antarctica; Larsen C Ice Shelf", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McGrath, Daniel; Bayou, Nicolas; Steffen, Konrad", "project_titles": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate", "projects": [{"proj_uid": "p0000087", "repository": "USAP-DC", "title": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Larsen C automatic weather station data 2008\u20132011", "uid": "601445", "west": -65.0}, {"awards": "1935901 Dugger, Katie; 0439200 Dugger, Katie; 0439759 Ballard, Grant; 0944141 Ballard, Grant; 0944411 Ainley, David; 0440643 Ainley, David; 1543541 Ainley, David; 1543498 Ballard, Grant; 1543459 Dugger, Katie; 0944358 Dugger, Katie; 1935870 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "locations": "Antarctica; Ross Island", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea.; COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels; COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change; Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies", "projects": [{"proj_uid": "p0010179", "repository": "USAP-DC", "title": "Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies"}, {"proj_uid": "p0010177", "repository": "USAP-DC", "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea."}, {"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}, {"proj_uid": "p0000068", "repository": "USAP-DC", "title": "COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "601444", "west": 166.0}, {"awards": "1443347 Condron, Alan", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 04 May 2021 00:00:00 GMT", "description": "This dataset contains the MITgcm model output data presented in Ashley, K.E. et al., 2021. This dataset includes simulated spatial changes in sea surface salinity (SSS), time series data of salinity, and scatter plot data of SSS changes against meltwater discharge.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Computer Model; Freshwater; Glaciers/ice Sheet; Glaciers/Ice Sheet; Model Data; Ocean Model; Oceans; Salinity", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Condron, Alan", "project_titles": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010007", "repository": "USAP-DC", "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Simulated changes in Southern Ocean salinity", "uid": "601442", "west": -180.0}, {"awards": "1443448 Schaefer, Joerg; 1443144 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 03 Feb 2021 00:00:00 GMT", "description": "Experiments were conducted using ECHAM5-HAM atmospheric aerosol - climate model at horizontal resolution of T42 (~2.8\u00b0 latitude \u00d7 2.8\u00b0 longitude) with 19 vertical levels to examine the relationship between the production of 10Be in the atmosphere and its deposition at the surface. Five experiments were conducted, using a) constant 10Be production but varying, observed climate b) climatological climate of the last 50 years but varying 10Be production, c) constant 10Be production with 50-years of varying climate for 0 ka, (d) 6 ka, and (e) 21 ka, using the TraCE21 simulation to provide boundary conditions. The results will be useful for comparison with 10Be concentration records obtained from the South Pole ice core and other Antarctic and Greenland records.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; South Pole", "locations": "Antarctica; South Pole; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Ding, Qinghua; Schaefer, Joerg; Steig, Eric J.", "project_titles": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole", "projects": [{"proj_uid": "p0010158", "repository": "USAP-DC", "title": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Simulations of 10Be over Antarctica", "uid": "601431", "west": -180.0}, {"awards": "1443663 Cole-Dai, Jihong", "bounds_geometry": ["POLYGON((-180 -89.99,-152.184 -89.99,-124.368 -89.99,-96.552 -89.99,-68.736 -89.99,-40.92 -89.99,-13.104 -89.99,14.712 -89.99,42.528 -89.99,70.344 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,70.344 -89.99,42.528 -89.99,14.712 -89.99,-13.104 -89.99,-40.92 -89.99,-68.736 -89.99,-96.552 -89.99,-124.368 -89.99,-152.184 -89.99,180 -89.99,152.184 -89.99,124.368 -89.99,96.552 -89.99,68.736 -89.99,40.92 -89.99,13.104 -89.99,-14.712 -89.99,-42.528 -89.99,-70.344 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-70.344 -89.99,-42.528 -89.99,-14.712 -89.99,13.104 -89.99,40.92 -89.99,68.736 -89.99,96.552 -89.99,124.368 -89.99,152.184 -89.99,-180 -89.99))"], "date_created": "Sat, 30 Jan 2021 00:00:00 GMT", "description": "Major ion concentrations in SPICEcore samples from the section of 400-480 m were measured with ion chromatography. The ions are chloride, nitrate, sulfate, sodium, potassium, magnesium, and calcium.\r\nThis section was analyzed to replicate the measurement of the same section at Dartmouth College.", "east": -98.16, "geometry": ["POINT(-180 -89.99)"], "keywords": "Antarctica; Ions; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cole-Dai, Jihong; Larrick, Carleigh", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "SPICEcore 400-480 m Major Ions SDSU", "uid": "601430", "west": 98.16}, {"awards": "1443263 Higgins, John; 1443276 Brook, Edward J.", "bounds_geometry": ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"], "date_created": "Wed, 20 Jan 2021 00:00:00 GMT", "description": "This file includes the concentration of carbon dioxide (CO2) and methane (CH4) in the trapped air from the S27 ice core collected in Allan Hills Blue Ice Area.", "east": 159.25, "geometry": ["POINT(159.125 -76.25)"], "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "locations": "Antarctica; Antarctica; Allan Hills", "north": -75.67, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Yan, Yuzhen; Brook, Edward J.", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83, "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "uid": "601425", "west": 159.0}, {"awards": "1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.; 1245659 Petrenko, Vasilii", "bounds_geometry": null, "date_created": "Mon, 28 Dec 2020 00:00:00 GMT", "description": "Inert gas measurements on a large diameter (0.24m), shallow (20m) ice core from Taylor Glacier for mean ocean temperature reconstruction from 60 - 74 ka.\r\nFour samples were also measured on the WAIS Divide ice core to validate Taylor Glacier reconstruction. ", "east": null, "geometry": null, "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "locations": "Taylor Glacier; Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Shackleton, Sarah", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "uid": "601415", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1\u03b1 and HIF-1\u03b2 subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 \u00b1 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 \u00b1 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1\u03b1 were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1\u03b1 increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Hypoxia response of hearts of Antarctic fishes", "uid": "601406", "west": null}, {"awards": "1341663 O\u0027Brien, Kristin", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5\u00b0C for 6.0-9.5 weeks. When compared at the fish\u0027s respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5\u00b0C-acclimated than 0\u00b0C-acclimated fish. The 2.7-fold elevation in cardiac output in 5\u00b0C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0\u00b0C- and 5\u00b0C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12\u00b0C when cardiac output became significantly higher in 5\u00b0C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5\u00b0C) in both acclimation groups, the hearts of 5\u00b0C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0\u00b0C for 0\u00b0C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5\u00b0C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": null, "persons": "Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Acclimation of cardiovascular function in Notothenia coriiceps", "uid": "601408", "west": null}, {"awards": "1443105 Steig, Eric", "bounds_geometry": ["POINT(180 -90)"], "date_created": "Wed, 28 Oct 2020 00:00:00 GMT", "description": "This data set provides the input and output data used in Kahle et al. 2020 to reconstruct climate variables at the South Pole. The files below include high resolution water isotopes, water isotope diffusion length, and various reconstructions of temperature, accumulation rate, and thinning function for the SPC14 ice core. An inverse approach was used to combine information from water isotope diffusion length, Dage, and annual-layer thickness to solve for temperature, accumulation rate, and thinning function. Corrections were applied to account for the advection of ice from upstream to yield estimates for the South Pole site. Updated data for Hires_Water_Isotopes_halfcm.txt is available at www.usap-dc.org/view/dataset/601429.", "east": 180.0, "geometry": ["POINT(180 -90)"], "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Schauer, Andrew; Stevens, Max; Conway, Howard; Waddington, Edwin D.; Buizert, Christo; Epifanio, Jenna; White, James", "project_titles": "Collaborative Research: A 1500m Ice Core from South Pole; Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "projects": [{"proj_uid": "p0010060", "repository": "USAP-DC", "title": "Collaborative Research: A 1500m Ice Core from South Pole"}, {"proj_uid": "p0010065", "repository": "USAP-DC", "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "uid": "601396", "west": 180.0}, {"awards": "1804154 Sowers, Todd; 1443472 Brook, Edward J.; 1643394 Buizert, Christo; 1443336 Osterberg, Erich; 1141839 Steig, Eric; 1443710 Severinghaus, Jeffrey; 1443397 Kreutz, Karl; 1443464 Sowers, Todd; 1142517 Aydin, Murat; 1443470 Aydin, Murat", "bounds_geometry": ["POINT(-99.16 -89.99)"], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "We present the methane (CH4) concentration data for the South Pole ice core (SPC14). CH4 concentrations were measured jointly at Oregon State University and Pennsylvania State University. All depths are in meters below the surface. Methane data have been corrected for blank offsets, solubility, and gravitational fractionation. All ages are in years before 1950 C.E. on the SP19 gas chronology. ", "east": -99.16, "geometry": ["POINT(-99.16 -89.99)"], "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "locations": "Antarctica; South Pole; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "persons": "Severinghaus, Jeffrey P.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.; Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Winski, Dominic A.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.", "project_titles": "Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core; Collaborative Research: A 1500m Ice Core from South Pole; Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core; Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010089", "repository": "USAP-DC", "title": "Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core"}, {"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}, {"proj_uid": "p0010060", "repository": "USAP-DC", "title": "Collaborative Research: A 1500m Ice Core from South Pole"}, {"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "South Pole ice core (SPC14) discrete methane data", "uid": "601381", "west": -99.16}, {"awards": "1643394 Buizert, Christo; 1142517 Aydin, Murat; 1804154 Sowers, Todd; 1443464 Sowers, Todd; 1141839 Steig, Eric; 1443105 Steig, Eric; 1443710 Severinghaus, Jeffrey; 1443397 Kreutz, Karl; 1443472 Brook, Edward J.; 1443470 Aydin, Murat", "bounds_geometry": ["POINT(99.16 -89.99)"], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "We present the SP19 gas chronology for the South Pole ice core. The chronology is based on stratigraphic matching of abrupt methane (CH4) changes. To construct the chronology, abrupt changes in CH4 during the glacial period and small, 20-30ppb, centennial scale changes in CH4 were used with analogous data from the West Antarctic Ice Sheet Divide ice core. Stratigraphic matching was verified by an optimization algorithm. The ages cover the last 52,586 years. Absolute uncertainty increases with depth until \u00b1 540 years. ", "east": 99.16, "geometry": ["POINT(99.16 -89.99)"], "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "locations": "South Pole; Antarctica; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Epifanio, Jenna", "project_titles": "Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core; Collaborative Research: A 1500m Ice Core from South Pole; Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core; Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "projects": [{"proj_uid": "p0010065", "repository": "USAP-DC", "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole"}, {"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}, {"proj_uid": "p0010060", "repository": "USAP-DC", "title": "Collaborative Research: A 1500m Ice Core from South Pole"}, {"proj_uid": "p0010089", "repository": "USAP-DC", "title": "Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "SP19 Gas Chronology", "uid": "601380", "west": 99.16}, {"awards": "1443213 Kaplan, Michael", "bounds_geometry": null, "date_created": "Wed, 30 Sep 2020 00:00:00 GMT", "description": "Input and other information for 3He surface exposure data", "east": null, "geometry": null, "keywords": "Antarctica; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kaplan, Michael; Winckler, Gisela; Schaefer, Joerg", "project_titles": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "projects": [{"proj_uid": "p0010131", "repository": "USAP-DC", "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "3He input data", "uid": "601376", "west": null}, {"awards": "1443213 Kaplan, Michael", "bounds_geometry": ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"], "date_created": "Wed, 30 Sep 2020 00:00:00 GMT", "description": "Sample metadata or information for cosmogenic-nuclide exposure data from the Mt. Achernar area.", "east": -149.7, "geometry": ["POINT(-174.25 -85.75)"], "keywords": "Antarctica; Cosmogenic Dating; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -84.1, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela", "project_titles": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "projects": [{"proj_uid": "p0010131", "repository": "USAP-DC", "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "10Be and 26Al cosmogenic nuclide surface exposure data", "uid": "601375", "west": 161.2}, {"awards": "1341669 DeMaster, David; 0732711 Smith, Craig", "bounds_geometry": ["POLYGON((-61 -64,-60.5 -64,-60 -64,-59.5 -64,-59 -64,-58.5 -64,-58 -64,-57.5 -64,-57 -64,-56.5 -64,-56 -64,-56 -64.1,-56 -64.2,-56 -64.3,-56 -64.4,-56 -64.5,-56 -64.6,-56 -64.7,-56 -64.8,-56 -64.9,-56 -65,-56.5 -65,-57 -65,-57.5 -65,-58 -65,-58.5 -65,-59 -65,-59.5 -65,-60 -65,-60.5 -65,-61 -65,-61 -64.9,-61 -64.8,-61 -64.7,-61 -64.6,-61 -64.5,-61 -64.4,-61 -64.3,-61 -64.2,-61 -64.1,-61 -64))"], "date_created": "Fri, 19 Jun 2020 00:00:00 GMT", "description": "This file contains Pb-210 data from bulk sediments beneath the collapsed Larsen A Ice Shelf and C-14 data from the organic fraction of the same samples.", "east": -56.0, "geometry": ["POINT(-58.5 -64.5)"], "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "locations": "Antarctica; Larsen Ice Shelf", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "persons": "DeMaster, David; Taylor, Richard", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}, {"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "uid": "601336", "west": -61.0}, {"awards": "1643722 Brook, Edward J.", "bounds_geometry": ["POINT(180 -90)"], "date_created": "Wed, 03 Jun 2020 00:00:00 GMT", "description": "This data set contains measurements of atmospheric methane in the South Pole Ice core made at both Oregon State University and Penn State University, as well as a gas age time scale for the core. In both laboratories methane was measured using a melt-refreeze technique to liberate extracted air and using a gas chromatograph with flame ionization detection to quantify the methane concentration, by comparison to calibrated air standards. To construct the gas time scale abrupt changes in atmospheric methane during the glacial period and centennial methane variability during the Holocene were used to synchronize the South Pole gas record with analogous data from the West Antarctic Ice Sheet Divide ice core. Stratigraphic matching based on visual optimization was verified using an automated matching algorithm. The South Pole ice core recovers all expected changes in methane based on previous records. In combination with an existing ice age scale (Winski et al., 2019, Clim. Past, 15, 1793\u20131808) an independent estimate of the gas age-ice age difference is also provided. A full description of the data and gas age scale are provided in Epifanio et al., 2020 (Climate of the Past, 16, 2431-2444). ", "east": 180.0, "geometry": ["POINT(180 -90)"], "keywords": "Antarctica; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "A High Resolution Atmospheric Methane Record from the South Pole Ice Core", "projects": [{"proj_uid": "p0010102", "repository": "USAP-DC", "title": "A High Resolution Atmospheric Methane Record from the South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole Ice Core Methane Data and Gas Age Time Scale", "uid": "601329", "west": 180.0}, {"awards": "0636773 DeMaster, David; 1341669 DeMaster, David", "bounds_geometry": ["POLYGON((-71 -64,-70.4 -64,-69.8 -64,-69.2 -64,-68.6 -64,-68 -64,-67.4 -64,-66.8 -64,-66.2 -64,-65.6 -64,-65 -64,-65 -64.7,-65 -65.4,-65 -66.1,-65 -66.8,-65 -67.5,-65 -68.2,-65 -68.9,-65 -69.6,-65 -70.3,-65 -71,-65.6 -71,-66.2 -71,-66.8 -71,-67.4 -71,-68 -71,-68.6 -71,-69.2 -71,-69.8 -71,-70.4 -71,-71 -71,-71 -70.3,-71 -69.6,-71 -68.9,-71 -68.2,-71 -67.5,-71 -66.8,-71 -66.1,-71 -65.4,-71 -64.7,-71 -64))"], "date_created": "Mon, 11 May 2020 00:00:00 GMT", "description": "This data set is used to describe a new technique for assessing labile organic carbon (LOC) abundances and mean residence times in marine sediments. Radiocarbon is used to determine abundances of labile organic carbon and then a diagenetic organic carbon model, coupled with sediment biotrubation coefficients, is used to assess LOC mean residence times. ", "east": -65.0, "geometry": ["POINT(-68 -67.5)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "locations": "Marguerite Bay; Antarctic Peninsula; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "persons": "DeMaster, David; Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie", "project_titles": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000552", "repository": "USAP-DC", "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling"}, {"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "uid": "601319", "west": -71.0}, {"awards": "0732711 Smith, Craig; 1341669 DeMaster, David", "bounds_geometry": ["POLYGON((-61 -62,-60.4 -62,-59.8 -62,-59.2 -62,-58.6 -62,-58 -62,-57.4 -62,-56.8 -62,-56.2 -62,-55.6 -62,-55 -62,-55 -62.34,-55 -62.68,-55 -63.02,-55 -63.36,-55 -63.7,-55 -64.04,-55 -64.38,-55 -64.72,-55 -65.06,-55 -65.4,-55.6 -65.4,-56.2 -65.4,-56.8 -65.4,-57.4 -65.4,-58 -65.4,-58.6 -65.4,-59.2 -65.4,-59.8 -65.4,-60.4 -65.4,-61 -65.4,-61 -65.06,-61 -64.72,-61 -64.38,-61 -64.04,-61 -63.7,-61 -63.36,-61 -63.02,-61 -62.68,-61 -62.34,-61 -62))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems (LARISSA); and Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change.", "east": -55.0, "geometry": ["POINT(-58 -63.7)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "locations": "Larsen Ice Shelf; Antarctica; Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "persons": "Smith, Craig", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0010135", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems."}, {"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.4, "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "uid": "601304", "west": -61.0}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": ["POINT(62.99 -67.13)"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This data set was acquired with a Jumbo Piston Core Sediment Sampler during R/V Nathaniel B. Palmer expedition NBP0101 conducted in 2001. This data file is of Microsoft Excel format and includes Quantitative Diatom Assemblage data; counts completed on randomly settled slides (Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12 (1), 171-178, doi:10.1007/BF00678093). These counts were completed at closely spaced intervals in NBP0101 JPC41, a jumbo piston core from Iceberg Alley, Mac.Robertson Shelf, East Antarctica", "east": 62.99, "geometry": ["POINT(62.99 -67.13)"], "keywords": "Antarctica; Biota; Diatom; East Antarctica; Mac. Robertson Shelf; Marine Geoscience; Microscope; NBP0101; Paleoclimate; Piston Corer; R/v Nathaniel B. Palmer; Sediment Core; Species Abundance", "locations": "East Antarctica; Antarctica; Mac. Robertson Shelf; Mac. Robertson Shelf", "north": -67.13, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Leventer, Amy", "project_titles": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "projects": [{"proj_uid": "p0000609", "repository": "USAP-DC", "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.13, "title": "Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "uid": "601307", "west": 62.99}, {"awards": "0636806 Smith, Craig; 0636773 DeMaster, David", "bounds_geometry": ["POLYGON((-72 -59,-71 -59,-70 -59,-69 -59,-68 -59,-67 -59,-66 -59,-65 -59,-64 -59,-63 -59,-62 -59,-62 -59.95,-62 -60.9,-62 -61.85,-62 -62.8,-62 -63.75,-62 -64.7,-62 -65.65,-62 -66.6,-62 -67.55,-62 -68.5,-63 -68.5,-64 -68.5,-65 -68.5,-66 -68.5,-67 -68.5,-68 -68.5,-69 -68.5,-70 -68.5,-71 -68.5,-72 -68.5,-72 -67.55,-72 -66.6,-72 -65.65,-72 -64.7,-72 -63.75,-72 -62.8,-72 -61.85,-72 -60.9,-72 -59.95,-72 -59))"], "date_created": "Thu, 30 Apr 2020 00:00:00 GMT", "description": "This data set was acquired with a Box Core Sediment Sampler, Digital Camera, and Sediment Core Sampler during Laurence M. Gould expedition LMG0802 conducted in 2008. The data files are in Microsoft Excel format and include Species List, Species Abundance, and Sediment Geochemistry data that was processed after collection.", "east": -62.0, "geometry": ["POINT(-67 -63.75)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; Chlorophyll Concentration; LMG0802; Marcofauna; Megafauna; Oceans; R/v Laurence M. Gould; Seafloor Sampling; Species Abundance", "locations": "Antarctic Peninsula; Antarctica", "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "persons": "Smith, Craig; DeMaster, David", "project_titles": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling", "projects": [{"proj_uid": "p0000552", "repository": "USAP-DC", "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.5, "title": "Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "uid": "601303", "west": -72.0}, {"awards": "1443471 Koutnik, Michelle", "bounds_geometry": ["POINT(-98.16 -89.99)"], "date_created": "Wed, 25 Mar 2020 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008\u2030 m-1 for \u03b418O. Advection adds approximately 1\u2030 for \u03b418O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10\u00b0C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4\u00b0C smaller than if the flow from upstream is not considered. ", "east": -98.16, "geometry": ["POINT(-98.16 -89.99)"], "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "projects": [{"proj_uid": "p0000200", "repository": "USAP-DC", "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "SPICEcore Advection", "uid": "601266", "west": -98.16}, {"awards": "1443464 Sowers, Todd", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Wed, 11 Dec 2019 00:00:00 GMT", "description": "The total air content in ice core samples are a fundamental indication of the multitude of processes that impact densification of snow in polar regions. In addition, variations in the elevation of the ice sheet directly control the pressure in the bubble close off region and thereby the total gas content. Attempts to remove the physical factors (temperature, accumulation rate, dust content, seasonality) impacting the total air content could provide a means of assessing variations in the elevation of the South Pole over the last 50,000 years.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole ice core total air content", "uid": "601231", "west": 0.0}, {"awards": "1443464 Sowers, Todd", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Wed, 11 Dec 2019 00:00:00 GMT", "description": "The overiding goal for our collaborative project is to provide the necessary data to construct an accurate gas age scale all along the SPICE core. Downcore measurements of CH4 and other species would help to constrain the ice age - gas age difference all along the core that is a prerequisite for the construction of the gas age vs depth profile that is the backbone for all atmospheric reconstructions. ", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Atmospheric CH4; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Data; Methane; Methane Concentration; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole CH4 data for termination", "uid": "601230", "west": 0.0}, {"awards": "1043528 Alley, Richard; 0539578 Alley, Richard", "bounds_geometry": ["POINT(-112.3 -79.43333333)"], "date_created": "Tue, 12 Nov 2019 00:00:00 GMT", "description": "This data set includes the fully updated (2017) bubble number-density measured at depths from 120 meters down to 1600 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006) and Fegyveresi and others (2011). Data also includes tabs for bubble size and shape data.", "east": -112.3, "geometry": ["POINT(-112.3 -79.43333333)"], "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica; Antarctic", "north": -79.43333333, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "persons": "Fegyveresi, John; Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan; Voigt, Donald E.", "project_titles": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core; Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "projects": [{"proj_uid": "p0000038", "repository": "USAP-DC", "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core"}, {"proj_uid": "p0000027", "repository": "USAP-DC", "title": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.43333333, "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "uid": "601224", "west": -112.3}, {"awards": "1443566 Bay, Ryan", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Sun, 03 Nov 2019 00:00:00 GMT", "description": "We deployed an oriented laser dust logger in the SPICEcore borehole in order to study the particulate stratigraphy, volcanology, glaciology and climatology of South Pole. We obtained a detailed record of dust and ash, SPICEcore age versus depth, and measurements of the optical anisotropy indicated by IceCube analyses.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; SPICEcore", "locations": "Antarctica; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bay, Ryan", "project_titles": "Laser Dust Logging of a South Pole Ice Core", "projects": [{"proj_uid": "p0010061", "repository": "USAP-DC", "title": "Laser Dust Logging of a South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "uid": "601222", "west": 0.0}, {"awards": "1443420 Dodd, Justin", "bounds_geometry": ["POINT(167.083333 -77.888889)"], "date_created": "Sun, 27 Oct 2019 00:00:00 GMT", "description": "The Andrill-1B (AND-1B) sediment core from under the Ross Ice Shelf in McMurdo Sound, Antarctica, recovered a mid to late Pliocene (~4.68 to 3.44 Ma) age diatomite unit with d18Odiatom values that range from +32.6 to +37.6 \u2030 (n=50 ", "east": 167.083333, "geometry": ["POINT(167.083333 -77.888889)"], "keywords": "And-1B; Andrill; Antarctica; Chemistry:sediment; Chemistry:Sediment; Delta 18O; Diatom; Mass Spectrometer; Oxygen Isotope; Paleoclimate; Pliocene; Sediment; Wais Project; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -77.888889, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dodd, Justin; Abbott, Tirzah", "project_titles": "Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "projects": [{"proj_uid": "p0010042", "repository": "USAP-DC", "title": "Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.888889, "title": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "uid": "601220", "west": 167.083333}, {"awards": "1443336 Osterberg, Erich", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and \u03b415N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as \u03b415N of N2 and photolyzed chemical compounds.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "uid": "601206", "west": -180.0}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes the concentration methane (CH4) in Allan Hills ice cores (ALHIC1502 and ALHIC1503).", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "locations": "Allan Hills; Antarctica", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Methane concentration in Allan Hills ice cores", "uid": "601203", "west": 159.35507}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes the concentration of carbon dioxide (CO2) and methane (CH4) and the stable carbon isotope composition of CO2 in Allan Hills ice cores (ALHIC1502 and ALHIC1503).", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "locations": "Antarctica; Allan Hills", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "uid": "601202", "west": 159.35507}, {"awards": "1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 14 Aug 2019 00:00:00 GMT", "description": "This file includes argon isotope composition and xenon-to-krypton ratios measured in Allan Hills ice cores.", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "locations": "Antarctica; Allan Hills", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Yuzhen; Bender, Michael; Higgins, John; Ng, Jessica; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "uid": "601201", "west": 159.35507}, {"awards": "1245659 Petrenko, Vasilii; 1245821 Brook, Edward J.; 1246148 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Mon, 12 Aug 2019 00:00:00 GMT", "description": "New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (\u0394age) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that \u0394age did not exceed 3 ka. The difference in \u0394age between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "persons": "Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "uid": "601198", "west": 162.167}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": ["POLYGON((57 -66,57.3 -66,57.6 -66,57.9 -66,58.2 -66,58.5 -66,58.8 -66,59.1 -66,59.4 -66,59.7 -66,60 -66,60 -66.1,60 -66.2,60 -66.3,60 -66.4,60 -66.5,60 -66.6,60 -66.7,60 -66.8,60 -66.9,60 -67,59.7 -67,59.4 -67,59.1 -67,58.8 -67,58.5 -67,58.2 -67,57.9 -67,57.6 -67,57.3 -67,57 -67,57 -66.9,57 -66.8,57 -66.7,57 -66.6,57 -66.5,57 -66.4,57 -66.3,57 -66.2,57 -66.1,57 -66))"], "date_created": "Thu, 25 Apr 2019 00:00:00 GMT", "description": "This data set describes diatom assemblages and abundances from two sediment cores retrieved from Edward VIII Gulf. The assemblages are used to reconstruct paleoceanographic conditions throughout the Holocene.", "east": 60.0, "geometry": ["POINT(58.5 -66.5)"], "keywords": "Antarctica; Biota; Diatom; East Antarctica; Microscopy; NBP0101; Oceans; Paleoceanography; Paleoclimate; R/v Nathaniel B. Palmer; Sediment Corer", "locations": "East Antarctica; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Leventer, Amy", "project_titles": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "projects": [{"proj_uid": "p0000609", "repository": "USAP-DC", "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica", "uid": "601177", "west": 57.0}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 22 Apr 2019 00:00:00 GMT", "description": "GENESIS global circulation model (GCM) outputs from a middle Eocene simulation parameterized with 2000 ppm pCO2, high obliquity, and no Antarctic ice.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate Model; Computer Model; Eocene; Genesis; Global Circulation Model; Modeling; Model Output; Seasonality; Temperature", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Judd, Emily", "project_titles": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "projects": [{"proj_uid": "p0010025", "repository": "USAP-DC", "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model", "uid": "601175", "west": -180.0}, {"awards": "1743326 Kingslake, Jonathan", "bounds_geometry": null, "date_created": "Fri, 22 Mar 2019 00:00:00 GMT", "description": "In February 2018, we hosted a workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability at Lamont-Doherty Earth Observatory, Palisades, New York. Funding for the workshop was provided by the\r\nU.S. National Science Foundation (NSF) Antarctic Glaciology Program (award number: 1743326). The\r\naims of the workshop were to: (1) establish the state-of-the-science of Antarctic surface hydrology; (2)\r\nidentify key science questions raised by observations and theoretical studies of Antarctic surface\r\nhydrology, and (3) move the community toward answering these questions by bringing together scientists\r\nwith diverse expertise. The workshop was motivated by the premise that significant gains in our\r\nunderstanding can be made if researchers with interests in this field are provided with an opportunity to\r\ncommunicate and develop collaborations across disciplines.\r\n\r\nHere we report on the organisation, attendance, and structure of the workshop, before summarizing key\r\nscience outcomes, research questions, and future priorities that emerged during the workshop within the\r\nfollowing four themes:\r\n1. Surface melting: controls and observations\r\n2. Water ponding and flow\r\n3. Impact of meltwater on ice-shelf stability\r\n4. Ice-sheet/climate modeling\r\n\r\nFinally, building on the emergent science questions, we propose a framework for prioritizing future work,\r\naimed at understanding and predicting the impact that surface meltwater will have on future Antarctic Ice\r\nSheet mass balance.", "east": null, "geometry": null, "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Sheet Stability; Ice Shelf; Report; Workshop", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kingslake, Jonathan; Trusel, Luke; Banwell, Alison; Bell, Robin; Das, Indrani; DeConto, Robert; Tedesco, Marco; Lenaerts, Jan; Schoof, Christian", "project_titles": "Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability", "projects": [{"proj_uid": "p0010021", "repository": "USAP-DC", "title": "Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Report on Antarctic surface hydrology workshop, LDEO, 2018", "uid": "601170", "west": null}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": ["POLYGON((-66.5 -63,-65.95 -63,-65.4 -63,-64.85 -63,-64.3 -63,-63.75 -63,-63.2 -63,-62.65 -63,-62.1 -63,-61.55 -63,-61 -63,-61 -63.63,-61 -64.26,-61 -64.89,-61 -65.52,-61 -66.15,-61 -66.78,-61 -67.41,-61 -68.04,-61 -68.67,-61 -69.3,-61.55 -69.3,-62.1 -69.3,-62.65 -69.3,-63.2 -69.3,-63.75 -69.3,-64.3 -69.3,-64.85 -69.3,-65.4 -69.3,-65.95 -69.3,-66.5 -69.3,-66.5 -68.67,-66.5 -68.04,-66.5 -67.41,-66.5 -66.78,-66.5 -66.15,-66.5 -65.52,-66.5 -64.89,-66.5 -64.26,-66.5 -63.63,-66.5 -63))"], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "Station location information of trawl and CTD stations used for collecting coral samples and water for incubation during expedition NBP1509 in 2015 near the Antarctic Peninsula.", "east": -61.0, "geometry": ["POINT(-63.75 -66.15)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Waller, Rhian", "project_titles": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "projects": [{"proj_uid": "p0010017", "repository": "USAP-DC", "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.3, "title": "Log Sheets of coral samples for LMG1509", "uid": "601160", "west": -66.5}, {"awards": "1443394 Pollard, David", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "The dataset consists of two tar files for two distinct sets of simulations. Each tar file contains a number of Netcdf files with model output for one simulation each, and also contains a DIF file (Directory Interchange Format, in xml form) with information on that part of the dataset.\r\n\r\nSet 1:\r\n\r\nThere are 4 Netcdf files with output from the PSU 3D Antarctic ice sheet model including \r\n ice melange, showing role of melange in potentially providing buttressing and \r\n possibly slowing down ice retreat in strong climate warming scenarios.\r\n \r\nSet two:\r\n\r\nThere are 2 Netcdf files with output from the PSU 3D Antarctic ice sheet model, for two future warming scenarios RCP4.5 and RCP8.5, contributing to oceanic meltwater discharge fields for future climate and ocean model simulations performed at Univ. Massachusetts by other PIs on the NSF project.\r\n \r\nMore details on file names and model fields is provided in \"Data Section\" of the Readme file.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctic; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Model; Meltwater; Model Data; Modeling; Model Output", "locations": "Antarctic; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Pollard, David", "project_titles": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010007", "repository": "USAP-DC", "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios", "uid": "601154", "west": -180.0}, {"awards": "1443710 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctic Ice Sheet; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "uid": "601152", "west": 0.0}, {"awards": "1048343 Warny, Sophie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Feb 2019 00:00:00 GMT", "description": "Thanks to grant # U.S. National Science Foundation ANT-1048343, our group was selected to study about 700 of the recently-acquired sediment samples in Antarctica, covering ~9 regions and geological time frames ranging from the Paleocene to today. The samples were processed for palynological analyses and the slides are curated at the LSU CENEX center.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciology; Marine Geoscience; Marine Sediments; Microscope; Microscopy; Paleoclimate; Pollen", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Warny, Sophie", "project_titles": "CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program", "projects": [{"proj_uid": "p0000311", "repository": "USAP-DC", "title": "CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Palynological samples", "uid": "601151", "west": -180.0}, {"awards": "1341485 Woods, H. Arthur", "bounds_geometry": ["POINT(166.666 -77.8499966)"], "date_created": "Sun, 06 Jan 2019 00:00:00 GMT", "description": "Data used in Lane, SJ, CM Shishido, AL Moran, BW Tobalske, CP Arango, HA Woods (2017) Upper limits to body size imposed by respiratory-structural trade-offs in Antarctic pycnogonids. Proceedings of the Royal Society B 284, No. 1865, p. 20171779, DOI: 10.1098/rspb.2017.1779. File includes data on species identification, body mass, leg dimensions, oxygen gradients across the cuticle, and metabolic rate. ", "east": 166.666, "geometry": ["POINT(166.666 -77.8499966)"], "keywords": "Antarctica; Biota; Body Size; Cuticle; Metabolic Rate; Oxygen; Polar Gigantism; Respiration; Size Limits; Southern Ocean; Temperature", "locations": "Southern Ocean; Antarctica", "north": -77.8499966, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Lane, Steven J.; Moran, Amy; Shishido, Caitlin; Woods, H. Arthur", "project_titles": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "projects": [{"proj_uid": "p0000007", "repository": "USAP-DC", "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8499966, "title": "Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "uid": "601150", "west": 166.666}, {"awards": "1341485 Woods, H. Arthur", "bounds_geometry": ["POINT(166.666 -77.8499966)"], "date_created": "Sun, 06 Jan 2019 00:00:00 GMT", "description": "Data used in Lane, SJ, BW Tobalske, AL Moran, CM Shishido, HA Woods (2018) Costs of epibionts on Antarctic sea spiders. Marine Biology 165, 137 https://doi.org/10.1007/s00227-018-3389-9. Data sets include (1) measurements of drag on individual sea spiders with or without epibiotic barnacles and other fouling; (2) data on locomotion by fouled and unfouled sea spiders; (3) functional diffusion coefficients of oxygen through fouled and unfouled cuticle; and (4) levels of oxygen at the cuticle surface of fouled and unfouled individuals.", "east": 166.666, "geometry": ["POINT(166.666 -77.8499966)"], "keywords": "Antarctica; Barnacles; Biota; Cuticle; Epibionts; Fouling; Grooming; Locomotion; Oxygen; Respiration", "locations": "Antarctica", "north": -77.8499966, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Lane, Steven J.; Tobalske, Bret; Moran, Amy; Shishido, Caitlin; Woods, H. Arthur", "project_titles": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "projects": [{"proj_uid": "p0000007", "repository": "USAP-DC", "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8499966, "title": "Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts", "uid": "601149", "west": 166.666}, {"awards": "1341485 Woods, H. Arthur", "bounds_geometry": ["POLYGON((163.85 -77.6,164.134 -77.6,164.418 -77.6,164.702 -77.6,164.986 -77.6,165.27 -77.6,165.554 -77.6,165.838 -77.6,166.122 -77.6,166.406 -77.6,166.69 -77.6,166.69 -77.624,166.69 -77.648,166.69 -77.672,166.69 -77.696,166.69 -77.72,166.69 -77.744,166.69 -77.768,166.69 -77.792,166.69 -77.816,166.69 -77.84,166.406 -77.84,166.122 -77.84,165.838 -77.84,165.554 -77.84,165.27 -77.84,164.986 -77.84,164.702 -77.84,164.418 -77.84,164.134 -77.84,163.85 -77.84,163.85 -77.816,163.85 -77.792,163.85 -77.768,163.85 -77.744,163.85 -77.72,163.85 -77.696,163.85 -77.672,163.85 -77.648,163.85 -77.624,163.85 -77.6))"], "date_created": "Sat, 22 Dec 2018 00:00:00 GMT", "description": "Raw data from Lane, SJ, AL Moran, CM Shishido, BW Tobalske, HA Woods (2018) Cuticular gas exchange by Antarctic sea spiders. Journal of Experimental Biology. jeb.177568 doi: 10.1242/jeb.177568.\r\n\r\nThe file contains data on pore morphology, cuticle thickness, oxygen gradients across the cuticle, and estimated resistances of the cuticle to oxygen flux. Most of the sea spiders were collected near McMurdo Station, with a few extras collected at New Harbor, Antarctica.", "east": 166.69, "geometry": ["POINT(165.27 -77.72)"], "keywords": "Antarctica; Benthos; Biota; Body Size; Cuticle; McMurdo Sound; Microelectrodes; Microscope; Microscopy; Oxygen; Pore; Respiration; Sea Spider; Southern Ocean", "locations": "McMurdo Sound; Antarctica; Southern Ocean", "north": -77.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Woods, H. Arthur; Arthur Woods, H.", "project_titles": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "projects": [{"proj_uid": "p0000007", "repository": "USAP-DC", "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.84, "title": "Cuticle morphology and oxygen gradients of Antarctic sea spiders", "uid": "601145", "west": 163.85}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": ["POLYGON((-180 -20,-144 -20,-108 -20,-72 -20,-36 -20,0 -20,36 -20,72 -20,108 -20,144 -20,180 -20,180 -27,180 -34,180 -41,180 -48,180 -55,180 -62,180 -69,180 -76,180 -83,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -83,-180 -76,-180 -69,-180 -62,-180 -55,-180 -48,-180 -41,-180 -34,-180 -27,-180 -20))"], "date_created": "Fri, 14 Dec 2018 00:00:00 GMT", "description": "This dataset include the budget terms for heat, carbon and phosphate storage tendency in \r\npre-industrial simulation and climate change simulation forced with atmospheric CO2 increasing at a rate of 1% per year run following 120 years of the pre-industrial simulation. \r\nThe results are zonally integrated. The dataset also include the meridional overturning circulation in the control and climate simulations. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -20.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "persons": "Chen, Haidi", "project_titles": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "projects": [{"proj_uid": "p0000197", "repository": "USAP-DC", "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "uid": "601144", "west": -180.0}, {"awards": "1341485 Woods, H. Arthur; 1341476 Moran, Amy", "bounds_geometry": ["POINT(166.67 -77.85)"], "date_created": "Fri, 07 Dec 2018 00:00:00 GMT", "description": "This dataset contains morphometric (mass, surface area, cuticle thickness, cuticle morphometrics) and physiological (oxygen consumption) data for Antarctic pycnognonids collected in McMurdo Sound, Antarctica .", "east": 166.67, "geometry": ["POINT(166.67 -77.85)"], "keywords": "Antarctica; Biomechanics; Biota; Cold Adaptation; McMurdo Sound; Metabolism; Oceans; Oxygen; Pycnogonida; Southern Ocean", "locations": "Antarctica; McMurdo Sound; Southern Ocean", "north": -77.85, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Moran, Amy; Woods, H. Arthur; Tobalske, Bret", "project_titles": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "projects": [{"proj_uid": "p0000007", "repository": "USAP-DC", "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85, "title": "Physiological and biochemical measurements on Pycnogonida from McMurdo Sound", "uid": "601142", "west": 166.67}, {"awards": "1246407 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"], "date_created": "Mon, 03 Dec 2018 00:00:00 GMT", "description": "1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics.\r\n2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance.\r\n3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success.\r\n4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics.", "east": 70.75, "geometry": ["POINT(69.625 -49.25)"], "keywords": "Albatross; Animal Behavior Observation; Antarctica; Biota; Birds; Black-Browed Albatross (thalassarche Melanophris); Field Investigations; Foraging; Kerguelen Island; Ocean Island/plateau; Ocean Island/Plateau; Southern Ocean", "locations": "Antarctica; Southern Ocean; Kerguelen Island", "north": -48.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change", "projects": [{"proj_uid": "p0010002", "repository": "USAP-DC", "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -50.0, "title": "Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "uid": "601140", "west": 68.5}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": ["POLYGON((159.35343 -76.73165,159.360199 -76.73165,159.366968 -76.73165,159.373737 -76.73165,159.380506 -76.73165,159.387275 -76.73165,159.394044 -76.73165,159.400813 -76.73165,159.407582 -76.73165,159.414351 -76.73165,159.42112 -76.73165,159.42112 -76.731833,159.42112 -76.732016,159.42112 -76.732199,159.42112 -76.732382,159.42112 -76.732565,159.42112 -76.732748,159.42112 -76.732931,159.42112 -76.733114,159.42112 -76.733297,159.42112 -76.73348,159.414351 -76.73348,159.407582 -76.73348,159.400813 -76.73348,159.394044 -76.73348,159.387275 -76.73348,159.380506 -76.73348,159.373737 -76.73348,159.366968 -76.73348,159.360199 -76.73348,159.35343 -76.73348,159.35343 -76.733297,159.35343 -76.733114,159.35343 -76.732931,159.35343 -76.732748,159.35343 -76.732565,159.35343 -76.732382,159.35343 -76.732199,159.35343 -76.732016,159.35343 -76.731833,159.35343 -76.73165))"], "date_created": "Wed, 17 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the surface ice samples (listed as point numbers \u00ad coordinates provided) collected at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the\r\narea(76.73165 to 76.73348 S,\u00a0159.35343 to 159.42112 E).", "east": 159.42112, "geometry": ["POINT(159.387275 -76.732565)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "locations": "Antarctica; Allan Hills; Transantarctic Mountains", "north": -76.73165, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73348, "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "uid": "601130", "west": 159.35343}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 17 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains \r\nstable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1502 (76.73286 S, 159.35507 E) was drilled in 2015-16 field season to 197 meters below the surface.", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "locations": "Allan Hills; Antarctica; Transantarctic Mountains", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "uid": "601129", "west": 159.35507}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Tue, 16 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills\r Blue ice area have been generated under a collaborative effort by the\r University of Maine Climate Change Institute (NSF Award#1443263) and\r Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the\r ice core AH-1503 (76.73243 S,\u00a0159.3562 E). Ice core site AH-1503 used the same borehole as AH- BIT58 drilled down to 124 m during the 2011-12 field season. All drilling was conducted with a 3\" Eclipse drill (Ice Drilling Design and Operations (IDDO)).\r\n", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "locations": "Allan Hills; Antarctica", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "uid": "601128", "west": 159.3562}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": null, "date_created": "Fri, 27 Jul 2018 00:00:00 GMT", "description": "This data set includes measurements of the percent calcium, thickness, and microhardness of the exoskeleton in Paralomis birsteini, Cancer borealis, and Callinectes sapidus. Measurements were taken in the carapace, major chela, and minor chela of each crab. Paralomis birsteini were trapped at ~1350 m depth off Marguerite Bay, western Antarctic Peninsula in 2015. Cancer borealis were trapped in the Gulf of Maine, USA at ~50 m depth, and Callinectes sapidus were trapped in Florida, USA at depths shallower than 30 m. ", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Steffel, Brittan", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "uid": "601109", "west": null}, {"awards": "1542778 Alley, Richard", "bounds_geometry": ["POLYGON((-180 -89.9,-144 -89.9,-108 -89.9,-72 -89.9,-36 -89.9,0 -89.9,36 -89.9,72 -89.9,108 -89.9,144 -89.9,180 -89.9,180 -89.91,180 -89.92,180 -89.93,180 -89.94,180 -89.95,180 -89.96,180 -89.97,180 -89.98,180 -89.99,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.99,-180 -89.98,-180 -89.97,-180 -89.96,-180 -89.95,-180 -89.94,-180 -89.93,-180 -89.92,-180 -89.91,-180 -89.9))"], "date_created": "Mon, 05 Mar 2018 00:00:00 GMT", "description": "This dataset includes all visible observations made of the South Pole Ice core within a dark booth during core processing at the National Ice Core Laboratory. This dataset includes observations starting at 735 meters depth, down to the bottom of the drilled core at 1751 meters. All visible and cloudy layers are noted, as well as any other observed feature or cracks. In addition, all Volcanic layers measured on the ECM were noted.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; Visual Observations", "locations": "South Pole; Antarctica", "north": -89.9, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fegyveresi, John; Alley, Richard", "project_titles": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core", "projects": [{"proj_uid": "p0000141", "repository": "USAP-DC", "title": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole Ice Core (SPIcecore) Visual Observations", "uid": "601088", "west": -180.0}, {"awards": "1341669 DeMaster, David", "bounds_geometry": ["POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62))"], "date_created": "Sat, 03 Feb 2018 00:00:00 GMT", "description": "This file has C-14 data from the organic matter fraction of Antarctic marine sediments, collected from the collapsed Larsen Ice Shelf and the West Antarctic Peninsula", "east": -58.0, "geometry": ["POINT(-64 -65)"], "keywords": null, "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "DeMaster, David", "project_titles": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data", "uid": "601082", "west": -70.0}, {"awards": "1245899 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"], "date_created": "Tue, 16 Jan 2018 00:00:00 GMT", "description": "Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene.", "east": 240.0, "geometry": ["POINT(-160 -77.5)"], "keywords": "Antarctica; Climate Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; McMurdo; Paleoclimate; Ross Sea", "locations": "Antarctica; Ross Sea; McMurdo", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kowalewski, Douglas", "project_titles": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound", "projects": [{"proj_uid": "p0000391", "repository": "USAP-DC", "title": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Region Climate Model Output Plio-Pleistocene", "uid": "601080", "west": 160.0}, {"awards": "1246203 Gooseff, Michael", "bounds_geometry": ["POLYGON((163.1778 -77.6233,163.17792 -77.6233,163.17804 -77.6233,163.17816 -77.6233,163.17828 -77.6233,163.1784 -77.6233,163.17852 -77.6233,163.17864 -77.6233,163.17876 -77.6233,163.17888 -77.6233,163.179 -77.6233,163.179 -77.63331,163.179 -77.64332,163.179 -77.65333,163.179 -77.66334,163.179 -77.67335,163.179 -77.68336,163.179 -77.69337,163.179 -77.70338,163.179 -77.71339,163.179 -77.7234,163.17888 -77.7234,163.17876 -77.7234,163.17864 -77.7234,163.17852 -77.7234,163.1784 -77.7234,163.17828 -77.7234,163.17816 -77.7234,163.17804 -77.7234,163.17792 -77.7234,163.1778 -77.7234,163.1778 -77.71339,163.1778 -77.70338,163.1778 -77.69337,163.1778 -77.68336,163.1778 -77.67335,163.1778 -77.66334,163.1778 -77.65333,163.1778 -77.64332,163.1778 -77.63331,163.1778 -77.6233))"], "date_created": "Mon, 18 Dec 2017 00:00:00 GMT", "description": "As a part of the project titled \"Collaborative Research: The McMurdo Dry Valleys: A landscape on the threshold of change\", we measured ground temperatures from 0-20cm at three stream bank positions (base, mid-slope, and top) at 4 locations along Crescent Stream in Taylor Valley - 2 on the east bank, 2 on the west bank. The goal was to evaluate differences in thermal conduction and temperature dynamics of the active layers of these locations, in particular, in a stream that has undergone extensive bank erosion since 2012 due to permafrost degradation. One of the datalogging stations had significant technical problems and has very little data compared to the almost 2 years of temperature date from the other 3 stations (2015-2017). ", "east": 163.179, "geometry": ["POINT(163.1784 -77.67335)"], "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "locations": "Dry Valleys; Antarctica; Taylor Valley", "north": -77.6233, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Gooseff, Michael N.", "project_titles": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "projects": [{"proj_uid": "p0000076", "repository": "USAP-DC", "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7234, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "uid": "601075", "west": 163.1778}, {"awards": "1141939 Lubin, Dan", "bounds_geometry": ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"], "date_created": "Tue, 12 Dec 2017 00:00:00 GMT", "description": "In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014).\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eThere are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water.\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eAncillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response.", "east": 167.0365, "geometry": ["POINT(166.67325 -77.54515)"], "keywords": "Antarctica; Atmosphere; Meteorology; Radiosounding; Ross Island", "locations": "Ross Island; Antarctica", "north": -77.5203, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Lubin, Dan", "project_titles": "Antarctic Cloud Physics: Fundamental Observations from Ross Island", "projects": [{"proj_uid": "p0000327", "repository": "USAP-DC", "title": "Antarctic Cloud Physics: Fundamental Observations from Ross Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.57, "title": "Shortwave Spectroradiometer Data from Ross Island, Antarctica", "uid": "601074", "west": 166.31}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": ["POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))"], "date_created": "Wed, 25 Oct 2017 00:00:00 GMT", "description": "These are unpublished stable isotope data from a series of sediment cores collected during LMG12-11 and LMG13-11 down the axis of Anvers Trough. These records span the LMG to recent.", "east": -65.21, "geometry": ["POINT(-65.265 -64.33)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Trough; Chemistry:sediment; Chemistry:Sediment; Foraminifera; Geochemistry; Isotope; LMG1211; LMG1311; Marine Sediments; Oceans; Paleoclimate; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Anvers Trough; Southern Ocean; Antarctic Peninsula; Antarctica", "north": -64.15, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia", "project_titles": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "projects": [{"proj_uid": "p0000381", "repository": "USAP-DC", "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.51, "title": "Anvers Trough Foraminifer Stable Isotope data", "uid": "601064", "west": -65.32}, {"awards": "1542778 Alley, Richard", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Wed, 20 Sep 2017 00:00:00 GMT", "description": "Thin sections of the South Pole Ice Core, SPC14, were prepared from samples taken every ~20 meters starting at 100 meters depth. Samples from 140 meters to 1739 meters depth were analyzed to determine the c-axis fabric of the grains. The ice is generally fine-grained, with the samples at 100 and 120 meters depth too fine grained for successful analysis, but sufficient grain growth having occurred for analysis of all deeper samples.\r\r\nThe c-axis fabric was measured on the automated c-axis fabric analyzer located at Penn State University, designed and built by Larry Wilen. Raw data is in the form of multiple images of the ice thin section taken at defined angles under cross polarized light. The images are analyzed to determine position of the extinction minimum of each grain within the thin section, this being the orientation of the c-axis of that grain. During processing, the area of each analyzed grain is also measured.\r\r\nShallow samples show a fairly random distribution, although with a slight tendency for clustering of c-axes toward the vertical. With increasing depth, the c-axes rotate toward a vertical plane with a slight additional tendency of clustering toward the vertical within that plane. The core was not oriented during collection, so it is not possible to unambiguously tell how the vertical plane is related to ice flow, but physical understanding indicates that it is transverse to flow.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Voigt, Donald E.", "project_titles": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core", "projects": [{"proj_uid": "p0000141", "repository": "USAP-DC", "title": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "c-Axis Fabric of the South Pole Ice Core, SPC14", "uid": "601057", "west": -180.0}, {"awards": "1043522 Brook, Edward J.", "bounds_geometry": ["POLYGON((-112.085 -79.46,-112.0765 -79.46,-112.068 -79.46,-112.0595 -79.46,-112.051 -79.46,-112.0425 -79.46,-112.034 -79.46,-112.0255 -79.46,-112.017 -79.46,-112.0085 -79.46,-112 -79.46,-112 -79.4607,-112 -79.4614,-112 -79.4621,-112 -79.4628,-112 -79.4635,-112 -79.4642,-112 -79.4649,-112 -79.4656,-112 -79.4663,-112 -79.467,-112.0085 -79.467,-112.017 -79.467,-112.0255 -79.467,-112.034 -79.467,-112.0425 -79.467,-112.051 -79.467,-112.0595 -79.467,-112.068 -79.467,-112.0765 -79.467,-112.085 -79.467,-112.085 -79.4663,-112.085 -79.4656,-112.085 -79.4649,-112.085 -79.4642,-112.085 -79.4635,-112.085 -79.4628,-112.085 -79.4621,-112.085 -79.4614,-112.085 -79.4607,-112.085 -79.46))"], "date_created": "Fri, 15 Sep 2017 00:00:00 GMT", "description": "Data set contains stable isotope data set for methane in the WAIS Divide replicate core for the interval of 3009 to 2071 meters. These measurements were made by James Lee at the University of Bern as part of his PhD thesis and are the subject of a paper in preparation. ", "east": -112.0, "geometry": ["POINT(-112.0425 -79.4635)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.46, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest", "projects": [{"proj_uid": "p0000751", "repository": "USAP-DC", "title": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "WAIS Divide Replicate Core Methane Isotopic Data Set", "uid": "601059", "west": -112.085}, {"awards": "0732946 Steffen, Konrad", "bounds_geometry": ["POLYGON((-66 -66,-65.4 -66,-64.8 -66,-64.2 -66,-63.6 -66,-63 -66,-62.4 -66,-61.8 -66,-61.2 -66,-60.6 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.6 -70,-61.2 -70,-61.8 -70,-62.4 -70,-63 -70,-63.6 -70,-64.2 -70,-64.8 -70,-65.4 -70,-66 -70,-66 -69.6,-66 -69.2,-66 -68.8,-66 -68.4,-66 -68,-66 -67.6,-66 -67.2,-66 -66.8,-66 -66.4,-66 -66))"], "date_created": "Wed, 13 Sep 2017 00:00:00 GMT", "description": "We produce a reconstruction of surface mass balance (SMB) (in mm w.e. per year) by adjusting the 1979-2014 RACMO2 SMB to the spatial pattern of ground-penetrating radar observations and to observations of SMB from sonic height rangers.", "east": -60.0, "geometry": ["POINT(-63 -68)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Larsen C Ice Shelf; Radar", "locations": "Antarctica; Larsen C Ice Shelf; Antarctic Peninsula", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McGrath, Daniel; Steffen, Konrad; Kuipers Munneke, Peter", "project_titles": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate", "projects": [{"proj_uid": "p0000087", "repository": "USAP-DC", "title": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "uid": "601056", "west": -66.0}, {"awards": "1142007 Kurbatov, Andrei; 1142069 Dunbar, Nelia", "bounds_geometry": ["POLYGON((0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,216 -60,252 -60,288 -60,324 -60,360 -60,360 -63,360 -66,360 -69,360 -72,360 -75,360 -78,360 -81,360 -84,360 -87,360 -90,324 -90,288 -90,252 -90,216 -90,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,0 -87,0 -84,0 -81,0 -78,0 -75,0 -72,0 -69,0 -66,0 -63,0 -60))"], "date_created": "Wed, 13 Sep 2017 00:00:00 GMT", "description": "This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. AntT database is designed to assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources.", "east": 360.0, "geometry": ["POINT(180 -75)"], "keywords": "Antarctica; Geochemistry; Geochronology; Glaciology; Intracontinental Magmatism; IntraContinental Magmatism; Sample/collection Description; Sample/Collection Description; Tephra", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Kurbatov, Andrei V.; Dunbar, Nelia", "project_titles": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "projects": [{"proj_uid": "p0000328", "repository": "USAP-DC", "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Tephra Data Base AntT static web site ", "uid": "601052", "west": 0.0}, {"awards": "1043518 Brook, Edward J.", "bounds_geometry": ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"], "date_created": "Mon, 11 Sep 2017 00:00:00 GMT", "description": "Below we present the early Holocene discrete CH4 dataset from Siple Dome (SDMA), Antarctica, measured at Oregon State University (OSU) and Seoul National University (SNU) by discrete wet extraction technique. Analytical method is described in Grachev et al. (2009) and Mitchell et al. (2011) for OSU data, and Yang et al. (2017) for SNU data. SDMA CH4 composite record was constructed by combining OSU data for 7.6 - 9.0 ka and SNU data for 9.0 - 11.6 ka to maximize temporal resolution. SDMA gas chronology was synchronized to Greenland Ice Core Chronology 2005 (GICC05) scale. For detailed description on synchronization and age uncertainty please refer to Yang et al. (2017).", "east": -111.0, "geometry": ["POINT(-112 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yang, Ji-Woong; Ahn, Jinho", "project_titles": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core", "projects": [{"proj_uid": "p0000185", "repository": "USAP-DC", "title": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core; Siple Dome Ice Core", "south": -80.0, "title": "Early Holocene methane records from Siple Dome, Antarctica", "uid": "601055", "west": -113.0}, {"awards": "1142085 Alley, Richard", "bounds_geometry": ["POLYGON((0 -75,5.489 -75,10.978 -75,16.467 -75,21.956 -75,27.445 -75,32.934 -75,38.423 -75,43.912 -75,49.401 -75,54.89 -75,54.89 -75.763,54.89 -76.526,54.89 -77.289,54.89 -78.052,54.89 -78.815,54.89 -79.578,54.89 -80.341,54.89 -81.104,54.89 -81.867,54.89 -82.63,49.401 -82.63,43.912 -82.63,38.423 -82.63,32.934 -82.63,27.445 -82.63,21.956 -82.63,16.467 -82.63,10.978 -82.63,5.489 -82.63,0 -82.63,0 -81.867,0 -81.104,0 -80.341,0 -79.578,0 -78.815,0 -78.052,0 -77.289,0 -76.526,0 -75.763,0 -75))"], "date_created": "Tue, 05 Sep 2017 00:00:00 GMT", "description": "", "east": 54.89, "geometry": ["POINT(27.445 -78.815)"], "keywords": "Antarctica; Borehole Logging; Dronning Maud Land; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Physical Properties; Snow; Temperature", "locations": "Dronning Maud Land; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Muto, Atsu", "project_titles": "Revealing Late Holocence Climate Variability in Antarctica from Borehole Paleothermometry", "projects": [{"proj_uid": "p0000440", "repository": "USAP-DC", "title": "Revealing Late Holocence Climate Variability in Antarctica from Borehole Paleothermometry"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.63, "title": "Firn-temperature time series in Dronning Maud Land, East Antarctica", "uid": "601050", "west": 0.0}, {"awards": "1430550 Domack, Eugene", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. ", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biota; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "locations": "Antarctica; Southern Ocean; Totten Glacier; Sabrina Coast", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "uid": "601046", "west": 120.0}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica.", "east": 121.0, "geometry": ["POINT(120.5 -68)"], "keywords": "Antarctica; Biota; Continental Margin; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean; Totten Glacier", "locations": "Southern Ocean; Sabrina Coast; Totten Glacier; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Shevenell, Amelia; Leventer, Amy", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "uid": "601042", "west": 120.0}, {"awards": "1142007 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 03 Aug 2017 00:00:00 GMT", "description": "This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Tephra", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Kurbatov, Andrei V.", "project_titles": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "projects": [{"proj_uid": "p0000328", "repository": "USAP-DC", "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Antarctic Ice Core Tephra Analysis", "uid": "601038", "west": -180.0}, {"awards": "1246190 Yu, Zicheng", "bounds_geometry": ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"], "date_created": "Mon, 24 Jul 2017 00:00:00 GMT", "description": "We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future.", "east": -60.8, "geometry": ["POINT(-64.65 -65.8)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Moss; Paleoclimate; Sample/collection Description; Sample/Collection Description", "locations": "Antarctic Peninsula; Antarctica", "north": -64.0, "nsf_funding_programs": null, "persons": "Yu, Zicheng", "project_titles": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula", "projects": [{"proj_uid": "p0000341", "repository": "USAP-DC", "title": "Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.6, "title": "Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula", "uid": "601037", "west": -68.5}, {"awards": "0839093 McConnell, Joseph", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Mon, 19 Jun 2017 00:00:00 GMT", "description": "Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate.", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -77.73489, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Arienzo, Monica", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.86467, "title": "Holocene Black Carbon in Antarctica", "uid": "601034", "west": 161.41425}, {"awards": "0944266 Twickler, Mark; 0944348 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.08 -79.46)"], "date_created": "Thu, 01 Jun 2017 00:00:00 GMT", "description": "Qualitative assessment of ice-core quality versus depth for the deep WAIS Divide WDC06A ice core. The depths and core quality ratings presented here are from the field observations made at WAIS Divide, Antarctica, during the course of the drilling of the ice core. Depths are in meters. Core quality ratings were defined are as follows. Excellent: -1 breaks/no fractures; Very Good: -2 breaks/90% no fractures; Good: -3 breaks/50% no fractures; Fair: \u003e10 cm without fractures; Poor: \u003e10 cm without through fractures; Very Poor: \u003c10 cm without through fractures.", "east": -112.08, "geometry": ["POINT(-112.08 -79.46)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.46, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.; Souney, Joseph Jr.; Twickler, Mark", "project_titles": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "projects": [{"proj_uid": "p0000080", "repository": "USAP-DC", "title": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46, "title": "WAIS Divide WDC06A Core Quality Versus Depth", "uid": "601030", "west": -112.08}, {"awards": "1245659 Petrenko, Vasilii", "bounds_geometry": ["POINT(161.71353 -77.75855)"], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "This dataset contains measurements of paleoatmospheric 14C of methane (14CH4) for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica, as well as a range of supporting data. The supporting data include [CH4], [CO], [14CO], sample ages, CH4 emissions and analysis of uncertainties.", "east": 161.71353, "geometry": ["POINT(161.71353 -77.75855)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "locations": "Antarctica; Taylor Glacier; Transantarctic Mountains", "north": -77.75855, "nsf_funding_programs": null, "persons": "Petrenko, Vasilii; Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75855, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "uid": "601029", "west": 161.71353}, {"awards": "1246223 Hastings, Meredith", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Wed, 26 Apr 2017 00:00:00 GMT", "description": "This dataset contains nitrate concentration and isotopic composition (d15N, d18O, D17O) measurements on the WAIS Divide WDC06A ice core.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "Buffen, Aron; Hastings, Meredith", "project_titles": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice", "projects": [{"proj_uid": "p0000399", "repository": "USAP-DC", "title": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide WDC06A Nitrate Isotope Record", "uid": "601022", "west": -112.1115}, {"awards": "0944348 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Mon, 24 Apr 2017 00:00:00 GMT", "description": "This is a summary of results 2005-2016 from the NSF-funded WAIS Divide Ice Core project, compiled by the Science Coordination Office.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.", "project_titles": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "projects": [{"proj_uid": "p0000080", "repository": "USAP-DC", "title": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Summary of Results from the WAIS Divide Ice Core Project", "uid": "601021", "west": -112.1115}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \\\"bipolar seesaw\\\".\n\nWe present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "uid": "601015", "west": -112.1115}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Wed, 22 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze ~3 cm by ~3 cm longitudinal samples from ~1300 to ~3404 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000287", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "uid": "601008", "west": -112.1115}, {"awards": "1245580 Castro, M. Clara", "bounds_geometry": ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"], "date_created": "Mon, 30 Jan 2017 00:00:00 GMT", "description": null, "east": 163.1833, "geometry": ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Critical Zone; Geochemistry; Noble Gas; Paleoclimate; Ross Ice Shelf; Ross Sea; Taylor Valley", "locations": "Taylor Valley; Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.6767, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Castro, M. Clara", "project_titles": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases", "projects": [{"proj_uid": "p0000388", "repository": "USAP-DC", "title": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7166, "title": "Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases", "uid": "600389", "west": 162.3667}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": ["POLYGON((166.58793 -85.11733,166.595533 -85.11733,166.603136 -85.11733,166.610739 -85.11733,166.618342 -85.11733,166.625945 -85.11733,166.633548 -85.11733,166.641151 -85.11733,166.648754 -85.11733,166.656357 -85.11733,166.66396 -85.11733,166.66396 -85.117836,166.66396 -85.118342,166.66396 -85.118848,166.66396 -85.119354,166.66396 -85.11986,166.66396 -85.120366,166.66396 -85.120872,166.66396 -85.121378,166.66396 -85.121884,166.66396 -85.12239,166.656357 -85.12239,166.648754 -85.12239,166.641151 -85.12239,166.633548 -85.12239,166.625945 -85.12239,166.618342 -85.12239,166.610739 -85.12239,166.603136 -85.12239,166.595533 -85.12239,166.58793 -85.12239,166.58793 -85.121884,166.58793 -85.121378,166.58793 -85.120872,166.58793 -85.120366,166.58793 -85.11986,166.58793 -85.119354,166.58793 -85.118848,166.58793 -85.118342,166.58793 -85.117836,166.58793 -85.11733))"], "date_created": "Tue, 17 Jan 2017 00:00:00 GMT", "description": null, "east": 166.66396, "geometry": ["POINT(166.625945 -85.11986)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Beardmore Glacier; Oliver Bluffs; Transantarctic Mountains", "north": -85.11733, "nsf_funding_programs": null, "persons": "Ashworth, Allan", "project_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "projects": [{"proj_uid": "p0000424", "repository": "USAP-DC", "title": "Neogene Paleoecology of the Beardmore Glacier Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.12239, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "600387", "west": 166.58793}, {"awards": "0539232 Cuffey, Kurt", "bounds_geometry": ["POINT(-112.083 -79.467)"], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "This dataset contains the temperature reconstruction at the West Antarctic Ice Sheet (WAIS) Divide reported by Cuffey et al. (2016) in PNAS. Five files contain 1) the primary reconstruction (Eq. 2 of that publication), combining information from borehole temperatures, deuterium isotopic content of ice, and nitrogen-15 content of trapped diatomic nitrogen gas; 2) the primary reconstruction with higher-frequency content restored; 3) the lower limit of the primary reconstruction; 4) the upper limit of the primary reconstruction; and 5) and the primary reconstruction with added perturbations.", "east": -112.083, "geometry": ["POINT(-112.083 -79.467)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.467, "nsf_funding_programs": null, "persons": "Cuffey, Kurt M.", "project_titles": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "projects": [{"proj_uid": "p0000038", "repository": "USAP-DC", "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "uid": "600377", "west": -112.083}, {"awards": "1043580 Reusch, David", "bounds_geometry": null, "date_created": "Tue, 10 Jan 2017 00:00:00 GMT", "description": null, "east": null, "geometry": null, "keywords": "Antarctica; Atmosphere; Atmospheric Model; Climate Model; Meteorology; Paleoclimate", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Reusch, David", "project_titles": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "projects": [{"proj_uid": "p0000447", "repository": "USAP-DC", "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "600386", "west": null}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": null, "date_created": "Tue, 10 Jan 2017 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Anvers Island; Southern Ocean; Antarctica; Antarctic Peninsula; Marguerite Bay", "north": null, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600385", "west": null}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": ["POINT(161.5 -77.5)"], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\nThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": ["POINT(161.5 -77.5)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -77.5, "nsf_funding_programs": null, "persons": "Willenbring, Jane", "project_titles": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "projects": [{"proj_uid": "p0000429", "repository": "USAP-DC", "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "600379", "west": 161.5}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": ["POINT(-82.425 -64.21)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Antarctic Peninsula; Marguerite Bay; Anvers Island; Southern Ocean", "north": -49.98, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.44, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600171", "west": -111.18}, {"awards": "0839059 Powell, Ross", "bounds_geometry": ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -168.6, "geometry": ["POINT(-168.65 -82.35)"], "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "locations": "Lake Whillans; Southern Ocean; Antarctica; Ross Sea", "north": -82.3, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.4, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "600154", "west": -168.7}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": null, "persons": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "600169", "west": -112.08}, {"awards": "1043580 Reusch, David", "bounds_geometry": ["POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes.\nUsing contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change.\nThe previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate Model; Meteorology; Surface Melt", "locations": "Antarctica", "north": -47.0, "nsf_funding_programs": null, "persons": "Reusch, David", "project_titles": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "projects": [{"proj_uid": "p0000447", "repository": "USAP-DC", "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "600166", "west": -180.0}, {"awards": "0839031 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(161.71965 -77.76165)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \u0027clathrate hypothesis\u0027 that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \u0027horizontal ice core\u0027 would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.71965, "geometry": ["POINT(161.71965 -77.76165)"], "keywords": "Antarctica; Cosmogenic; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "locations": "Taylor Glacier; Transantarctic Mountains; Antarctica", "north": -77.76165, "nsf_funding_programs": null, "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "projects": [{"proj_uid": "p0000099", "repository": "USAP-DC", "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.76165, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "uid": "600165", "west": 161.71965}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Taylor Glacier", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "1142162 Stone, John", "bounds_geometry": ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public.", "east": -85.14, "geometry": ["POINT(-94.64 -81.755)"], "keywords": "Antarctica; Be-10; Chemistry:rock; Chemistry:Rock; Cosmogenic Dating; Glaciology; Nunataks; Sample/collection Description; Sample/Collection Description; Solid Earth; Whitmore Mountains", "locations": "Antarctica; Whitmore Mountains", "north": -81.07, "nsf_funding_programs": null, "persons": "Stone, John", "project_titles": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "projects": [{"proj_uid": "p0000335", "repository": "USAP-DC", "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.44, "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "uid": "600162", "west": -104.14}, {"awards": "1142018 Arrigo, Kevin", "bounds_geometry": ["POLYGON((-75.8 -61.08,-74.457 -61.08,-73.114 -61.08,-71.771 -61.08,-70.428 -61.08,-69.085 -61.08,-67.742 -61.08,-66.399 -61.08,-65.056 -61.08,-63.713 -61.08,-62.37 -61.08,-62.37 -61.684,-62.37 -62.288,-62.37 -62.892,-62.37 -63.496,-62.37 -64.1,-62.37 -64.704,-62.37 -65.308,-62.37 -65.912,-62.37 -66.516,-62.37 -67.12,-63.713 -67.12,-65.056 -67.12,-66.399 -67.12,-67.742 -67.12,-69.085 -67.12,-70.428 -67.12,-71.771 -67.12,-73.114 -67.12,-74.457 -67.12,-75.8 -67.12,-75.8 -66.516,-75.8 -65.912,-75.8 -65.308,-75.8 -64.704,-75.8 -64.1,-75.8 -63.496,-75.8 -62.892,-75.8 -62.288,-75.8 -61.684,-75.8 -61.08))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Global climate change is having significant effects on areas of the Southern Ocean, and a better understanding of this ecosystem will permit predictions about the large-scale implications of these shifts. The haptophyte Phaeocystis antarctica is an important component of the phytoplankton communities in this region, but little is known about the factors controlling its distribution. Preliminary data suggest that P. antarctica posses unique adaptations that allow it to thrive in regions with dynamic light regimes. This research will extend these results to identify the physiological and genetic mechanisms that affect the growth and distribution of P. antarctica. This work will use field and laboratory-based studies and a suite of modern molecular techniques to better understand the biogeography and physiology of this key organism. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of two graduate students and will foster an established international collaboration with Dutch scientists. Researchers on this project will participate in outreach programs targeting K12 teachers as well as high school students.", "east": -62.37, "geometry": ["POINT(-69.085 -64.1)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Chlorophyll; CTD Data; NBP1310; NBP1409; Oceans; Physical Oceanography; Phytoplankton; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Sea Surface; Antarctic Peninsula; Antarctica", "north": -61.08, "nsf_funding_programs": null, "persons": "Arrigo, Kevin", "project_titles": "Collaborative Research: Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "projects": [{"proj_uid": "p0000446", "repository": "USAP-DC", "title": "Collaborative Research: Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.12, "title": "Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems", "uid": "600161", "west": -75.8}, {"awards": "1141973 Tedesco, Marco", "bounds_geometry": ["POLYGON((-94.7374 -56.9464,-89.23679 -56.9464,-83.73618 -56.9464,-78.23557 -56.9464,-72.73496 -56.9464,-67.23435 -56.9464,-61.73374 -56.9464,-56.23313 -56.9464,-50.73252 -56.9464,-45.23191 -56.9464,-39.7313 -56.9464,-39.7313 -59.19838,-39.7313 -61.45036,-39.7313 -63.70234,-39.7313 -65.95432,-39.7313 -68.2063,-39.7313 -70.45828,-39.7313 -72.71026,-39.7313 -74.96224,-39.7313 -77.21422,-39.7313 -79.4662,-45.23191 -79.4662,-50.73252 -79.4662,-56.23313 -79.4662,-61.73374 -79.4662,-67.23435 -79.4662,-72.73496 -79.4662,-78.23557 -79.4662,-83.73618 -79.4662,-89.23679 -79.4662,-94.7374 -79.4662,-94.7374 -77.21422,-94.7374 -74.96224,-94.7374 -72.71026,-94.7374 -70.45828,-94.7374 -68.2063,-94.7374 -65.95432,-94.7374 -63.70234,-94.7374 -61.45036,-94.7374 -59.19838,-94.7374 -56.9464))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to generate first-time validated enhanced spatial resolution (5-10 km) maps of surface melting over the Antarctic Peninsula for the period 1958 - to date from the outputs of a regional climate model and different downscaling techniques. These maps will be assessed and validated through new high spatial resolution (2.25 km) surface melting maps obtained from the QuikSCAT satellite for the period 1999 - 2009. The intellectual merit of this work is that it would be the first time that the outputs of a regional climate model would be used to study surface melting over Antarctica at such high spatial resolution and the first time that such results are validated by means of an observational tool that has such a large spatial coverage and high spatial resolution. The results generated in this study would also provide a first-time opportunity to study the melt distribution over the Peninsula and its correlation with climate drivers, such as the Southern Annual Mode (SAM) and the El Nino-Southern Oscillation (ENSO) at these unprecedented spatial scales. The enhanced resolution melting maps will also offer a unique opportunity to study melting trends and patterns over specific regions of the Peninsula, such as the Wilkins and the Larsen A and B ice shelves and evaluate whether the extreme melting observed during the recent collapses was unprecedented over the + 50 years. The broader impacts of the project are that it will integrate research and education by fully supporting one female undergrad student, a PhD student and partially supporting a PostDoc. The work will be done at a minority-serving institution and the PhD student who worked on the development of the high-resolution melting data set from QuikSCAT will become the PostDoc who will work on this project. Teaching and learning will be supported by incorporating research results into graduate and undergrad level courses and will be disseminated over the web and through appropriate channels. Results from this project will also benefit the society at large as they will improve our understanding of the links between atmospheric patterns and surface melting and they will contribute to improving estimates of sea level rise from the Antarctica continent.", "east": -39.7313, "geometry": ["POINT(-67.23435 -68.2063)"], "keywords": "Antarctica; Atmosphere; Climate; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Model", "locations": "Antarctica", "north": -56.9464, "nsf_funding_programs": null, "persons": "Tedesco, Marco", "project_titles": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations", "projects": [{"proj_uid": "p0000313", "repository": "USAP-DC", "title": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.4662, "title": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations", "uid": "600160", "west": -94.7374}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Chen, Jianli", "project_titles": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "projects": [{"proj_uid": "p0000415", "repository": "USAP-DC", "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "600159", "west": -180.0}, {"awards": "1043145 Obbard, Rachel", "bounds_geometry": ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice.\nThe prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer.", "east": 166.7398, "geometry": ["POINT(165.42015 -77.49165)"], "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Critical Zone; Crystals; Glaciology; Oceans; Photo/video; Photo/Video; Ross Sea; Sea Ice; Sea Surface; Snow; Southern Ocean", "locations": "Ross Sea; Sea Surface; Southern Ocean", "north": -77.1188, "nsf_funding_programs": null, "persons": "Obbard, Rachel", "project_titles": "Bromide in Snow in the Sea Ice Zone", "projects": [{"proj_uid": "p0000414", "repository": "USAP-DC", "title": "Bromide in Snow in the Sea Ice Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8645, "title": "Bromide in Snow in the Sea Ice Zone", "uid": "600158", "west": 164.1005}, {"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": ["POINT(175 -86)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time?\nThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": ["POINT(175 -86)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Beardmore Glacier; Antarctica", "north": -86.0, "nsf_funding_programs": null, "persons": "Hasiotis, Stephen", "project_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000423", "repository": "USAP-DC", "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "600156", "west": 175.0}, {"awards": "0839107 Powell, Ross", "bounds_geometry": ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -163.5, "geometry": ["POINT(-163.6 -84.25)"], "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "locations": "Antarctica; Southern Ocean", "north": -84.0, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "uid": "600155", "west": -163.7}, {"awards": "0230316 White, James", "bounds_geometry": ["POINT(-134.43 -74.04)"], "date_created": "Tue, 24 Nov 2015 00:00:00 GMT", "description": "This data set consists of water isotope ratios from the Mt. Moulton ice-trench record, as well as data from the Taylor Dome, EPICA Dome C, Talos Dome, Vostok, and EPICA Dronning Maud Land ice cores.", "east": -134.43, "geometry": ["POINT(-134.43 -74.04)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "locations": "Antarctica; Talos Dome; Taylor Dome; Epica Dome C; Mount Moulton; Lake Vostok", "north": -74.04, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James; Popp, Trevor", "project_titles": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "projects": [{"proj_uid": "p0000755", "repository": "USAP-DC", "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.04, "title": "Mount Moulton Isotopes and Other Ice Core Data", "uid": "609640", "west": -134.43}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-38.5 -76.2)"], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the GISP2 ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21.", "east": -38.5, "geometry": ["POINT(-38.5 -76.2)"], "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "locations": "Arctic", "north": -76.2, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.2, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "uid": "609635", "west": -38.5}, {"awards": "1042883 Mayewski, Paul", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the Siple Dome A ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V.", "project_titles": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)", "projects": [{"proj_uid": "p0000193", "repository": "USAP-DC", "title": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives", "uid": "609636", "west": -148.82}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Tue, 20 Oct 2015 00:00:00 GMT", "description": "This data set is a low-resolution set of measurements of d15N of N2 and d18O of O2, along with dO2/N and dAr/N2 supporting data, in the WAIS Divide 3405 m long ice core recovered in 2011. Data are distributed via FTP.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "uid": "609660", "west": -112.08}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": ["POINT(-112.08 -79.46)"], "date_created": "Tue, 06 Oct 2015 00:00:00 GMT", "description": "The data are measurements of carbon dioxide (CO\u003csub\u003e2\u003c/sub\u003e) from the WAIS Divide Ice Core, WDC06A, Antarctica.", "east": -112.08, "geometry": ["POINT(-112.08 -79.46)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.46, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Marcott, Shaun", "project_titles": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "projects": [{"proj_uid": "p0000044", "repository": "USAP-DC", "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46, "title": "WAIS Divide Ice Core CO2", "uid": "609651", "west": -112.08}, {"awards": "1042883 Mayewski, Paul", "bounds_geometry": ["POINT(-161.53 -79.39)"], "date_created": "Tue, 29 Sep 2015 00:00:00 GMT", "description": "This data set includes three Roosevelt Island Climate Evolution (RICE) ice core samples drilled on Roosevelt Island, Ross Ice Shelf, Antarctica. The RICE elements analyzed were: Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Li, I, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg, Cu, Zn, and K verses depth.", "east": -161.53, "geometry": ["POINT(-161.53 -79.39)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Roosevelt Island; Ross Ice Shelf", "locations": "Antarctica; Roosevelt Island; Ross Ice Shelf", "north": -79.39, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.", "project_titles": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)", "projects": [{"proj_uid": "p0000193", "repository": "USAP-DC", "title": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.39, "title": "Roosevelt Island Climate Evolution Ice Core ICP-MS data", "uid": "609621", "west": -161.53}, {"awards": "1043518 Brook, Edward J.; 1142041 Brook, Edward J.; 0944552 Brook, Edward J.; 0839093 McConnell, Joseph; 1142166 McConnell, Joseph", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Thu, 23 Jul 2015 00:00:00 GMT", "description": "This data set contains methane concentrations from a West Antarctic Ice Sheet (WAIS) Divide ice core obtained by an online, continuous technique (Stowasser, et al. 2012). \u003cbr\u003e\u003c/br\u003e IMPORTANT NOTE: The experiment-time-integrated data are made available as a comprehensive archive of WAIS-Divide methane measurements. In the vast majority of cases the 2-yearly spline fit will be the most suitable for your application (Rhodes_Science_2015_WD_CH4_noaa-wdc-paleo (8).xlsx or Rhodes_Science_2015_WD_CH4_noaa-wdc-paleo.txt). \u003cbr\u003e \u003c/br\u003e For more detailed information on the 2 yearly cubic smoothing spline please refer to references listed, in particular, the Supplementary Material of Rhodes et al. (2015).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Brook, Edward J.; Rhodes, Rachel", "project_titles": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core", "projects": [{"proj_uid": "p0000185", "repository": "USAP-DC", "title": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP", "uid": "609628", "west": -112.05}, {"awards": "0636740 Kreutz, Karl", "bounds_geometry": ["POINT(-112.5 -79.28)"], "date_created": "Mon, 29 Jun 2015 00:00:00 GMT", "description": "This data set includes raw dust microparticle data for the WAIS Divide deep core, WDC06A, from the surface to 577 m. Data were collected in 2010 using a Klotz Abakus laser particle counter connected to a continuous ice core melter system at the University of Maine (Breton et al., 2012).", "east": -112.5, "geometry": ["POINT(-112.5 -79.28)"], "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Koffman, Bess; Kreutz, Karl", "project_titles": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "projects": [{"proj_uid": "p0000040", "repository": "USAP-DC", "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "uid": "609616", "west": -112.5}, {"awards": "1043092 Steig, Eric", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Tue, 28 Apr 2015 00:00:00 GMT", "description": "This data set contains complete low resolution (0.25 to 100 cm) oxygen isotope data from the WAIS Divide Ice Core WDC06A, 0 to 3404.7 m depth. Also included is the WDC2014 timescale.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000010", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide WDC06A Oxygen Isotope Record", "uid": "609629", "west": -112.05}, {"awards": "0944659 Kiene, Ronald", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "locations": "Ross Sea; Antarctica", "north": -68.0, "nsf_funding_programs": null, "persons": "Kiene, Ronald", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600150", "west": -160.0}, {"awards": "0944653 Forster, Richard", "bounds_geometry": ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student\u0027s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.\n", "east": -110.0, "geometry": ["POINT(-114.7 -79.05)"], "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -78.1, "nsf_funding_programs": null, "persons": "Forster, Richard", "project_titles": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "projects": [{"proj_uid": "p0000079", "repository": "USAP-DC", "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "uid": "600146", "west": -119.4}, {"awards": "0739575 Emslie, Steven", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor\u0027s theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Geochronology; Global; Penguin; Ross Sea; Sample/collection Description; Sample/Collection Description; Scotia Sea; Southern Ocean", "locations": "Antarctic Peninsula; Antarctica; Scotia Sea; Ross Sea; Global; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Patterson, William; Polito, Michael; Emslie, Steven D.", "project_titles": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "projects": [{"proj_uid": "p0000317", "repository": "USAP-DC", "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica", "uid": "600145", "west": -180.0}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction.\n\nThe PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student\u0027s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \u0027Explore Your World\u0027 website with images and findings from their field season.\n", "east": 172.4, "geometry": ["POINT(167.405 -84.685)"], "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "locations": "Antarctica; Transantarctic Mountains", "north": -84.27, "nsf_funding_programs": null, "persons": "Sidor, Christian", "project_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "projects": [{"proj_uid": "p0000418", "repository": "USAP-DC", "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "600144", "west": 162.41}, {"awards": "1332492 Lohmann, Rainer", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.\n\nThe broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Animal Tracking; Antarctica; Antarctic Peninsula; Atmosphere; Biota; Chemistry:fluid; Chemistry:Fluid; Human Dimensions; McMurdo Sound; Oceans; Palmer Station; Pollution; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean; Weddell Sea", "locations": "Southern Ocean; Weddell Sea; Antarctica; Ross Sea; Palmer Station; McMurdo Sound; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": null, "persons": "Lohmann, Rainer", "project_titles": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB", "projects": [{"proj_uid": "p0000344", "repository": "USAP-DC", "title": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "uid": "600138", "west": -180.0}, {"awards": "1321782 Costa, Daniel", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their \u0027hot-spots\u0027 and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Animal Tracking; Antarctica; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Costa, Daniel", "project_titles": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "projects": [{"proj_uid": "p0000346", "repository": "USAP-DC", "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "uid": "600137", "west": -180.0}, {"awards": "1141936 Foreman, Christine", "bounds_geometry": ["POINT(112.086 79.468)"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.\n", "east": 112.086, "geometry": ["POINT(112.086 79.468)"], "keywords": "Antarctica; Biota; Genetic Sequences; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": 79.468, "nsf_funding_programs": null, "persons": "Foreman, Christine", "project_titles": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "projects": [{"proj_uid": "p0000342", "repository": "USAP-DC", "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": 79.468, "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "uid": "600133", "west": 112.086}, {"awards": "1142010 Talghader, Joseph", "bounds_geometry": ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": -111.82, "geometry": ["POINT(-130.315 -80.535)"], "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.42, "nsf_funding_programs": null, "persons": "Talghader, Joseph", "project_titles": "Optical Fabric and Fiber Logging of Glacial Ice", "projects": [{"proj_uid": "p0000339", "repository": "USAP-DC", "title": "Optical Fabric and Fiber Logging of Glacial Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "uid": "600172", "west": -148.81}, {"awards": "1043485 Curtice, Josh", "bounds_geometry": ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.\n", "east": 169.248, "geometry": ["POINT(166.324 -77.908945)"], "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "locations": "WAIS; Ross Sea; Southern Ocean; Antarctica", "north": -77.47989, "nsf_funding_programs": null, "persons": "Kurz, Mark D.; Curtice, Josh", "project_titles": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "projects": [{"proj_uid": "p0000194", "repository": "USAP-DC", "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.338, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "600123", "west": 163.4}, {"awards": "0636731 Bender, Michael", "bounds_geometry": ["POINT(160.35 -77.87)"], "date_created": "Wed, 26 Nov 2014 00:00:00 GMT", "description": "These data describe the analyses of the elemental and isotopic composition of O2, N2, and Ar and total air content made on the trapped air from three shallow ice cores (\u003c34m depth) collected during the 2009 field campaign to Mullins Valley of the Dry Valleys, Antarctica.", "east": 160.35, "geometry": ["POINT(160.35 -77.87)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "locations": "Antarctica; Dry Valleys", "north": -77.87, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael; Yau, Audrey M.", "project_titles": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "projects": [{"proj_uid": "p0000039", "repository": "USAP-DC", "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "uid": "609597", "west": 160.35}, {"awards": "0539578 Alley, Richard", "bounds_geometry": ["POINT(-112.3 -79.433333)"], "date_created": "Thu, 14 Aug 2014 00:00:00 GMT", "description": "This data set includes bubble number-density measured at depths from 120 meters to 560 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006).", "east": -112.3, "geometry": ["POINT(-112.3 -79.433333)"], "keywords": "Air Bubbles; Antarctica; Camera; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "locations": "Antarctica", "north": -79.433333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Alley, Richard; Fegyveresi, John", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -79.433333, "title": "Bubble Number-density Data and Modeled Paleoclimates", "uid": "609538", "west": -112.3}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Wed, 25 Jun 2014 00:00:00 GMT", "description": "This data set provides a new CO2 record from the Siple Dome ice core, Antarctica, that covers 7.4-9.0 ka (thousand years) with 8- to 16-year resolution. A small, about 1-2 ppm, increase of atmospheric CO2 during the 8.2 ka event was observed. The increase is not significant when compared to other centennial variations in the Holocene that are not linked to large temperature changes. The results do not agree with leaf stomata records that suggest a CO2 decrease of up to ~25 ppm and imply that the sensitivity of atmospheric CO2 to the primarily northern hemisphere cooling of the 8.2 ka event was limited.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "locations": "Antarctica; South Pole; Siple Dome", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Atmospheric CO2 and Abrupt Climate Change", "projects": [{"proj_uid": "p0000179", "repository": "USAP-DC", "title": "Atmospheric CO2 and Abrupt Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "High-resolution Atmospheric CO2 during 7.4-9.0 ka", "uid": "609527", "west": -148.82}, {"awards": "0944584 Sowers, Todd; 0538578 Brook, Edward J.; 0538538 Sowers, Todd", "bounds_geometry": ["POINT(-38.5 72.6)", "POINT(-112.0865 -79.4676)"], "date_created": "Fri, 31 Jan 2014 00:00:00 GMT", "description": "This data set measures methane concentrations in ancient air trapped in the West Antarctic Ice Sheet (WAIS) Divide and Greenland Ice Sheet Project (GISP2) ice cores; presenting two, high-resolution ice core methane records of the past 2500 years, one from each pole. These measurements were used to reconstruct the methane Inter-Polar Difference (IPD) during the late Holocene. Also included are model results of methane emissions that were presented in the manuscript describing this data set.", "east": -38.5, "geometry": ["POINT(-38.5 72.6)", "POINT(-112.0865 -79.4676)"], "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide; Arctic", "north": 72.6, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mitchell, Logan E", "project_titles": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "projects": [{"proj_uid": "p0000025", "repository": "USAP-DC", "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4676, "title": "Late Holocene Methane Concentrations from WAIS Divide and GISP2", "uid": "609586", "west": -112.0865}, {"awards": "0838937 Costa, Daniel", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.\n", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Southern Ocean", "locations": "Antarctica; Southern Ocean; Ross Sea", "north": -75.0, "nsf_funding_programs": null, "persons": "Costa, Daniel", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600025", "west": 162.0}, {"awards": "1045215 Gooseff, Michael", "bounds_geometry": ["POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Until recently, wetted soils in the Dry Valleys were generally only found adjacent to streams and lakes. Since the warm austral summer of 2002, numerous \"wet spots\" have been observed far from shorelines on relatively flat valley floor locations and as downslope fingers of flow on valley walls. The source of the water to wet these soils is unclear, as is the spatial and temporal pattern of occurrence from year to year. Their significance is potentially great as enhanced soil moisture may change the thermodynamics, hydrology, and erosion rate of surface soils, and facilitate transport of materials that had previously been stable. These changes to the soil active layer could significantly modify permafrost and ground ice stability within the Dry Valleys. The PIs seek to investigate these changes to address two competing hypotheses: that the source of water to these ?wet spots? is ground ice melt and that the source of this water is snowmelt. The PIs will document the spatiotemporal dynamics of these wet areas using high frequency remote sensing data from QuickBird and WorldView satellites to document the occurrence, dimensions, and growth of wet spots during the 2010-\u00ad11 and 2011-\u00ad12 austral summers. They will test their hypotheses by determining whether wet spots recur in the same locations in each season, and they will compare present to past distribution using archived imagery. They will also determine whether spatial snow accumulation patterns and temporal ablation patterns are coincident with wet spot formation. Broader impacts: One graduate student will be trained on this project. Findings will be reported at scientific meetings and published in peer reviewed journals. They will also develop a teaching module on remote sensing applications to hydrology for the Modular Curriculum for Hydrologic Advancement and an innovative prototype project designed to leverage public participation in mapping wet spots and snow patches across the Dry Valleys through the use of social media and mobile computing applications.\n", "east": 165.0, "geometry": ["POINT(162.5 -77.875)"], "keywords": "Antarctica; Climate; Critical Zone; Dry Valleys; Radar; Soil Moisture", "locations": "Antarctica; Dry Valleys", "north": -77.25, "nsf_funding_programs": null, "persons": "Gooseff, Michael N.", "project_titles": "EAGER: Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape", "projects": [{"proj_uid": "p0000471", "repository": "USAP-DC", "title": "EAGER: Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape", "uid": "600131", "west": 160.0}, {"awards": "1139739 Hansen, Samantha", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent.\n\nBroader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Geology/Geophysics - Other; Lithosphere; Seismic Tomography; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "projects": [{"proj_uid": "p0000354", "repository": "USAP-DC", "title": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "uid": "600132", "west": -180.0}, {"awards": "1354231 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.\n", "east": -120.0, "geometry": ["POINT(-140 -77.5)"], "keywords": "Antarctica; Atmosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Model Data; Paleoclimate; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -70.0, "nsf_funding_programs": null, "persons": "Kowalewski, Douglas", "project_titles": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "projects": [{"proj_uid": "p0000463", "repository": "USAP-DC", "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "uid": "600140", "west": -160.0}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \u0027winter water\u0027 (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \u0027circumpolar deep water\u0027 (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \u0027grows in\u0027 during spring and summer after this water mass forms.\n\nThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.\n", "east": -64.0, "geometry": ["POINT(-71.5 -67)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -63.0, "nsf_funding_programs": null, "persons": "Hollibaugh, James T.", "project_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "projects": [{"proj_uid": "p0000359", "repository": "USAP-DC", "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "600105", "west": -79.0}, {"awards": "0944201 Hofmann, Gretchen", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This research examines the effects of ocean acidification on embryos and larvae of a contemporary calcifier in the coastal waters of Antarctica, the sea urchin Sterechinus neumayeri. The effect of future ocean acidification is projected to be particularly threatening to calcifying marine organisms in coldwater, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. Due to a high magnesium (Mg) content of their calcitic hard parts, echinoderms are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Thus, cold-water, high latitude species with a high Mg-content in their hard parts are considered to be the \u0027first responders\u0027 to chemical changes in the surface oceans. Studies in this proposal will use several metrics to examine the physiological plasticity of contemporary urchin embryos and larvae to CO2-acidified seawater, to mimic the scenarios defined by IPCC models and by analyses of future acidification predicted for the Southern Ocean. The research also will investigats the biological consequences of synergistic interactions of two converging climate change-related stressors - CO2- driven ocean acidification and ocean warming. Specifically the research will (1) assess the effect of CO2-acidified seawater on the development of early embryos and larvae, (2) using morphometrics, examine changes in the larval endoskeleton in response to development under the high-CO2 conditions of ocean acidification, (3) using a DNA microarray, profile changes in gene expression for genes involved in biomineralization and other important physiological processes, and (4) measure costs and physiological consequences of development under conditions of ocean acidification. The proposal will support the training of undergraduates, graduate students and a postdoctoral fellow. The PI also will collaborate with the UC Santa Barbara Gevirtz Graduate School of Education to link the biological effects of ocean acidification to the chemical changes expected for the Southern Ocean using the \u0027Science on a Sphere\u0027 technology. This display will be housed in an education and public outreach center, the Outreach Center for Teaching Ocean Science (OCTOS), a new state-of-the-art facility under construction at UC Santa Barbara.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Hofmann, Gretchen", "project_titles": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "projects": [{"proj_uid": "p0000352", "repository": "USAP-DC", "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "uid": "600112", "west": -160.0}, {"awards": "0944220 Ponganis, Paul", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Electrocardiogram; Penguin; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "projects": [{"proj_uid": "p0000349", "repository": "USAP-DC", "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "uid": "600113", "west": -160.0}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Grim, Jeffrey", "project_titles": "PostDoctoral Research Fellowship", "projects": [{"proj_uid": "p0000482", "repository": "USAP-DC", "title": "PostDoctoral Research Fellowship"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "uid": "600119", "west": null}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \u0027International Climate Park\u0027 in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.\n", "east": 159.41667, "geometry": ["POINT(159.29167 -76.7)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "locations": "Allan Hills; Antarctica", "north": -76.66667, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "projects": [{"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "600099", "west": 159.16667}, {"awards": "0732983 Vernet, Maria", "bounds_geometry": ["POLYGON((-66 -62,-65.3 -62,-64.6 -62,-63.9 -62,-63.2 -62,-62.5 -62,-61.8 -62,-61.1 -62,-60.4 -62,-59.7 -62,-59 -62,-59 -62.8,-59 -63.6,-59 -64.4,-59 -65.2,-59 -66,-59 -66.8,-59 -67.6,-59 -68.4,-59 -69.2,-59 -70,-59.7 -70,-60.4 -70,-61.1 -70,-61.8 -70,-62.5 -70,-63.2 -70,-63.9 -70,-64.6 -70,-65.3 -70,-66 -70,-66 -69.2,-66 -68.4,-66 -67.6,-66 -66.8,-66 -66,-66 -65.2,-66 -64.4,-66 -63.6,-66 -62.8,-66 -62))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.\n", "east": -59.0, "geometry": ["POINT(-62.5 -66)"], "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Larsen B Ice Shelf; Weddell Sea; Southern Ocean; Antarctic Peninsula; Antarctica", "north": -62.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -70.0, "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "uid": "600073", "west": -66.0}, {"awards": "1043690 Scherer, Reed", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material.\nBroader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Diatom; Marine Sediments; Oceans; Sediment Core; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Haji-Sheikh, Michael; Scherer, Reed Paul", "project_titles": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "projects": [{"proj_uid": "p0000360", "repository": "USAP-DC", "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export", "uid": "600127", "west": -180.0}, {"awards": "0636731 Bender, Michael", "bounds_geometry": ["POLYGON((-180 -72.6,-176.887 -72.6,-173.774 -72.6,-170.661 -72.6,-167.548 -72.6,-164.435 -72.6,-161.322 -72.6,-158.209 -72.6,-155.096 -72.6,-151.983 -72.6,-148.87 -72.6,-148.87 -73.533,-148.87 -74.466,-148.87 -75.399,-148.87 -76.332,-148.87 -77.265,-148.87 -78.198,-148.87 -79.131,-148.87 -80.064,-148.87 -80.997,-148.87 -81.93,-151.983 -81.93,-155.096 -81.93,-158.209 -81.93,-161.322 -81.93,-164.435 -81.93,-167.548 -81.93,-170.661 -81.93,-173.774 -81.93,-176.887 -81.93,180 -81.93,174.335 -81.93,168.67 -81.93,163.005 -81.93,157.34 -81.93,151.675 -81.93,146.01 -81.93,140.345 -81.93,134.68 -81.93,129.015 -81.93,123.35 -81.93,123.35 -80.997,123.35 -80.064,123.35 -79.131,123.35 -78.198,123.35 -77.265,123.35 -76.332,123.35 -75.399,123.35 -74.466,123.35 -73.533,123.35 -72.6,129.015 -72.6,134.68 -72.6,140.345 -72.6,146.01 -72.6,151.675 -72.6,157.34 -72.6,163.005 -72.6,168.67 -72.6,174.335 -72.6,-180 -72.6))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.\n", "east": 123.35, "geometry": ["POINT(167.24 -77.265)"], "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "locations": "Antarctica; Lake Vostok; Dry Valleys", "north": -72.6, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "projects": [{"proj_uid": "p0000039", "repository": "USAP-DC", "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.93, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "600069", "west": -148.87}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica\u0027s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time.\nBroader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": -149.7, "geometry": ["POINT(-174.25 -85.75)"], "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -84.1, "nsf_funding_programs": null, "persons": "Kaplan, Michael", "project_titles": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "projects": [{"proj_uid": "p0000459", "repository": "USAP-DC", "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "600115", "west": 161.2}, {"awards": "0944686 Kieber, David", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis\u0027 ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Biota; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Kieber, David John", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600117", "west": -160.0}, {"awards": "0838843 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"], "date_created": "Thu, 24 Oct 2013 00:00:00 GMT", "description": "This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice Area, and at 15 cm within a 225 m core drilled at the midpoint of the transect.", "east": 159.25, "geometry": ["POINT(159.125 -76.25)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "locations": "Antarctica; Allan Hills", "north": -75.67, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA); Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.83, "title": "Allan Hills Stable Water Isotopes", "uid": "609541", "west": 159.0}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": ["POINT(-148.82 -81.66)", "POINT(-119.83 -80.01)"], "date_created": "Thu, 08 Aug 2013 00:00:00 GMT", "description": "During the last glacial period atmospheric carbon dioxide and temperature in Antarctica varied in a similar fashion on millennial time scales, but previous work indicates that these changes were gradual. In a detailed analysis of one event, we now find that approximately half of the CO2 increase that occurred during the 1500 year cold period between Dansgaard-Oeschger (DO) Events 8 and 9 happened rapidly, over less than two centuries. This rise in CO2 was synchronous with, or slightly later than, a rapid increase of Antarctic temperature inferred from stable isotopes.", "east": -119.83, "geometry": ["POINT(-148.82 -81.66)", "POINT(-119.83 -80.01)"], "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome; Arctic", "north": -80.01, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Atmospheric CO2 and Abrupt Climate Change", "projects": [{"proj_uid": "p0000179", "repository": "USAP-DC", "title": "Atmospheric CO2 and Abrupt Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core; Taylor Dome Ice Core; Byrd Ice Core", "south": -81.66, "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "uid": "609539", "west": -148.82}, {"awards": "9725057 Mayewski, Paul; 0837883 Mayewski, Paul", "bounds_geometry": ["POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))"], "date_created": "Thu, 11 Jul 2013 00:00:00 GMT", "description": "This data set contains sub-annually resolved ice core chemistry data from various sites on the Antarctic Ice Sheet during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Researchers conducted experiments approximately every 30 - 300 km looking for clues representing climatic conditions over the past 200-1000+ years. Ice cores obtained for the glaciochemical component of the US ITASE research were analyzed for soluble major ion content and in some cases trace elements. Extreme events, such as volcanic eruptions, provide absolute age horizons within each core that are easily identified in chemical profiles. Our chemical analysis is also useful for quantifying anthropogenic impact, biogeochemical cycling, and for reconstructing past atmospheric circulation patterns.", "east": 152.37, "geometry": ["POINT(38.135 -83.84)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; WAIS", "locations": "Antarctica; WAIS", "north": -77.68, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dixon, Daniel A.; Mayewski, Paul A.", "project_titles": "Science Management for the United States Component of the International Trans-Antarctic Expedition", "projects": [{"proj_uid": "p0000221", "repository": "USAP-DC", "title": "Science Management for the United States Component of the International Trans-Antarctic Expedition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data", "uid": "609273", "west": -76.1}, {"awards": "0837988 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))"], "date_created": "Wed, 13 Mar 2013 00:00:00 GMT", "description": "This data set includes ice core water isotope data from Antarctic ice cores covering the last 200 to 2000 years.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "locations": "Antarctica; WAIS Divide", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "projects": [{"proj_uid": "p0000180", "repository": "USAP-DC", "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "West Antarctica Ice Core and Climate Model Data", "uid": "609536", "west": -180.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": ["POINT(-136.404633 -82.39955)"], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This data set is a collection of video data of basal ice taken in a borehole on the Kamb Ice Stream in West Antarctica. Ice streams are an expression of the inherent instability of the West Antarctic Ice Sheet, and their behavior is a key control on the overall ice-sheet mass balance. Understanding the response of the ice sheet in a warming climate requires a thorough understanding of the internal dynamics of ice streams, in addition to the relevant ice-atmosphere and ice-ocean interactions in the region. The basal environment of the ice streams and of many glaciers is a key scientific interest, including conditions, mainly basal sliding, that lead to fast flow of the ice. The purpose of this data set is to present a review of the full range of original video recordings from the basal ice of the Kamb Ice Stream. Direct observations at the ice-stream bed are a crucial complement to modeling efforts predicting future scenarios in a warming climate.", "east": -136.404633, "geometry": ["POINT(-136.404633 -82.39955)"], "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "locations": "Antarctica; Kamb Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Engelhardt, Hermann", "project_titles": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "projects": [{"proj_uid": "p0000181", "repository": "USAP-DC", "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "uid": "609528", "west": -136.404633}, {"awards": "0839053 Ackley, Stephen", "bounds_geometry": ["POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models. Researchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet. A series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed.\n", "east": 165.7, "geometry": ["POINT(-142.083 -72.3165)"], "keywords": "Ice Core Records; Oceans; Oden; OSO1011; Sea Ice; Sea Ice Salinity; Sea Ice Thickness; Southern Ocean", "locations": "Southern Ocean", "north": -67.05, "nsf_funding_programs": null, "persons": "Ackley, Stephen", "project_titles": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "projects": [{"proj_uid": "p0000676", "repository": "USAP-DC", "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.583, "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "uid": "600106", "west": -89.866}, {"awards": "0838892 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Biota; Oceans; Ross Sea; Seals; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -75.0, "nsf_funding_programs": null, "persons": "Burns, Jennifer", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600101", "west": 162.0}, {"awards": "0739783 Junge, Karen", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (\u003c54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Microbiology; Oceans; Sea Ice; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Junge, Karen", "project_titles": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "projects": [{"proj_uid": "p0000673", "repository": "USAP-DC", "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice", "uid": "600083", "west": -180.0}, {"awards": "1019838 Wendt, Dean", "bounds_geometry": null, "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Ad\u00e9lie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Ad\u00e9lie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Ad\u00e9lie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access\n", "east": null, "geometry": null, "keywords": "Biota; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Wendt, Dean; Moline, Mark", "project_titles": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "projects": [{"proj_uid": "p0000662", "repository": "USAP-DC", "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "uid": "600120", "west": null}, {"awards": "1043779 Mellish, Jo-Ann", "bounds_geometry": ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk.\n", "east": 166.73334, "geometry": ["POINT(166.283335 -77.69653)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Sea Ice; Seals; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Antarctica; Ross Sea; Sea Surface", "north": -77.51528, "nsf_funding_programs": null, "persons": "Mellish, Jo-Ann", "project_titles": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING", "projects": [{"proj_uid": "p0000343", "repository": "USAP-DC", "title": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87778, "title": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "uid": "600130", "west": 165.83333}, {"awards": "0732655 Mosley-Thompson, Ellen", "bounds_geometry": ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change.", "east": -59.0, "geometry": ["POINT(-61 -62.5)"], "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "locations": "Antarctica; Bruce Plateau; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": null, "persons": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans", "uid": "600167", "west": -63.0}, {"awards": "0538416 McConnell, Joseph", "bounds_geometry": ["POLYGON((-54.9 -73.7,-49.57 -73.7,-44.24 -73.7,-38.91 -73.7,-33.58 -73.7,-28.25 -73.7,-22.92 -73.7,-17.59 -73.7,-12.26 -73.7,-6.93 -73.7,-1.6 -73.7,-1.6 -74.61,-1.6 -75.52,-1.6 -76.43,-1.6 -77.34,-1.6 -78.25,-1.6 -79.16,-1.6 -80.07,-1.6 -80.98,-1.6 -81.89,-1.6 -82.8,-6.93 -82.8,-12.26 -82.8,-17.59 -82.8,-22.92 -82.8,-28.25 -82.8,-33.58 -82.8,-38.91 -82.8,-44.24 -82.8,-49.57 -82.8,-54.9 -82.8,-54.9 -81.89,-54.9 -80.98,-54.9 -80.07,-54.9 -79.16,-54.9 -78.25,-54.9 -77.34,-54.9 -76.43,-54.9 -75.52,-54.9 -74.61,-54.9 -73.7))"], "date_created": "Wed, 08 Aug 2012 00:00:00 GMT", "description": "This data set consists of sodium (Na) and magnesium (Mg) concentrations versus depth in seven ice cores that were obtained by the Norwegian-U.S. Scientific Traverse of East Antarctica during the International Polar Year (IPY) 2007-2009. Additional glaciochemical analyses and a final depth-age scale will be added as these data become available.\n\nData are available via FTP.", "east": -1.6, "geometry": ["POINT(-28.25 -78.25)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "locations": "Antarctica; East Antarctica", "north": -73.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph", "project_titles": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "projects": [{"proj_uid": "p0000095", "repository": "USAP-DC", "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.8, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "uid": "609520", "west": -54.9}, {"awards": "0739654 Catania, Ginny", "bounds_geometry": ["POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.2,-100 -74.4,-100 -74.6,-100 -74.8,-100 -75,-100 -75.2,-100 -75.4,-100 -75.6,-100 -75.8,-100 -76,-101 -76,-102 -76,-103 -76,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-110 -75.8,-110 -75.6,-110 -75.4,-110 -75.2,-110 -75,-110 -74.8,-110 -74.6,-110 -74.4,-110 -74.2,-110 -74))"], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "This data set provides a coastline history of the eastern Amundsen Sea Embayment and terminus histories of its outlet glaciers derived from those coastlines. These outlet glaciers include Smith, Haynes, Thwaites, and Pine Island Glaciers. The coastlines were derived from detailed tracing of Landsat imagery between late 1972 and late 2011 (at a scale of 1:50,000). The data set also uses some additional data from other sources. The terminus histories are calculated as the intersections between these coastlines and 1996 flowlines.\n\nData are available via FTP in ESRI shapefile and comma separated value (.csv) formats.", "east": -100.0, "geometry": ["POINT(-105 -75)"], "keywords": "Amundsen Sea; Antarctica; Climate Change; Coastline; GIS Data; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Satellite Data Interpretation", "locations": "Antarctica; Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Macgregor, Joseph A.; Catania, Ginny; Markowski, Michael; Andrews, Alan G.", "project_titles": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica", "projects": [{"proj_uid": "p0000143", "repository": "USAP-DC", "title": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011", "uid": "609522", "west": -110.0}, {"awards": "0538538 Sowers, Todd", "bounds_geometry": ["POINT(-112.086483 -79.46763)"], "date_created": "Thu, 19 Apr 2012 00:00:00 GMT", "description": "This data set contains a high-resolution history of atmospheric methane (CH4) concentrations in parts per billion (ppb) from approximately 60 to 11,300 years before present (ybp), obtained in 2010 from the West Antarctic Ice Sheet (WAIS) Divide Ice Core WDC06A. Gas age is derived from the WDC06A-5 ice age scale.\n\nData are available via FTP as a Microsoft Excel file (.xlsx).", "east": -112.086483, "geometry": ["POINT(-112.086483 -79.46763)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.46763, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "projects": [{"proj_uid": "p0000025", "repository": "USAP-DC", "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46763, "title": "Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp", "uid": "609509", "west": -112.086483}, {"awards": "1043669 Yuan, Xiaojun", "bounds_geometry": ["POLYGON((70 -64,71 -64,72 -64,73 -64,74 -64,75 -64,76 -64,77 -64,78 -64,79 -64,80 -64,80 -64.6,80 -65.2,80 -65.8,80 -66.4,80 -67,80 -67.6,80 -68.2,80 -68.8,80 -69.4,80 -70,79 -70,78 -70,77 -70,76 -70,75 -70,74 -70,73 -70,72 -70,71 -70,70 -70,70 -69.4,70 -68.8,70 -68.2,70 -67.6,70 -67,70 -66.4,70 -65.8,70 -65.2,70 -64.6,70 -64))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Processess governing the formation of Antarctic bottom water (AABW) in the Indian Ocean sector of the Southern Ocean remain poorly described. As with AABW formation in more well studied regions of the Antarctic continent, global climate impacts of the source regions of this dense, cold water that help drive the global ocean thermohaline circulation are uncertain. A combination of (annual) continental shelf and slope moorings, seasonal (summer) hydrographic surveys on board the Chinese icebreaker M/V Xuelong, together with synthesis of historic and satellite data will be used to better constrain shelf processes and the atmosphere-ocean-ice interactions in the Prydz Bay region. Despite the seeming remoteness of the study site, changes in the formation rate of AABW could potentially have impact on northern hemisphere climate via effects on the global heat budget and through sea-level rise in the coming decades. The project additionally seeks to promote international collaboration between Chinese and US researchers. The data collected will be broadly disseminated to the oceanographic community through the National Oceanography Data Center and Chinese Arctic and Antarctic Data Center.", "east": 80.0, "geometry": ["POINT(75 -67)"], "keywords": "Antarctica; CTD Data; Mooring; Oceans; Physical Oceanography; Prydz Bay; Southern Ocean", "locations": "Southern Ocean; Antarctica; Prydz Bay", "north": -64.0, "nsf_funding_programs": null, "persons": "Yuan, Xiaojun", "project_titles": "US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica", "projects": [{"proj_uid": "p0000439", "repository": "USAP-DC", "title": "US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica", "uid": "600126", "west": 70.0}, {"awards": "0739780 Taylor, Kendrick; 0538578 Brook, Edward J.; 0520523 Brook, Edward J.; 0538538 Sowers, Todd; 0538427 McConnell, Joseph", "bounds_geometry": ["POINT(112.09 -79.47)"], "date_created": "Fri, 27 May 2011 00:00:00 GMT", "description": "This data set provides a high-precision and high-resolution record of atmospheric methane from the West Antarctic Ice Sheet (WAIS) Divide ice core WDC05A, spanning the years 1000 to 1800 C.E. The data include methane (CH4) concentration measurements and ice age chronology. Methane concentration data include mean sample depth, gas age, mean concentration, and concentrations from individual measurements, at a temporal resolution of approximately nine years. Ice chronology data include depth and ice age.\n\nData are available via FTP, in Microsoft Excel (.xlsx) format.", "east": 112.09, "geometry": ["POINT(112.09 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Methane Concentration and Chronology from the WAIS Divide Ice Core (WDC05A)", "uid": "609493", "west": 112.09}, {"awards": "0540915 Scambos, Ted", "bounds_geometry": ["POLYGON((-60 -47,-55.5 -47,-51 -47,-46.5 -47,-42 -47,-37.5 -47,-33 -47,-28.5 -47,-24 -47,-19.5 -47,-15 -47,-15 -50.3,-15 -53.6,-15 -56.9,-15 -60.2,-15 -63.5,-15 -66.8,-15 -70.1,-15 -73.4,-15 -76.7,-15 -80,-19.5 -80,-24 -80,-28.5 -80,-33 -80,-37.5 -80,-42 -80,-46.5 -80,-51 -80,-55.5 -80,-60 -80,-60 -76.7,-60 -73.4,-60 -70.1,-60 -66.8,-60 -63.5,-60 -60.2,-60 -56.9,-60 -53.6,-60 -50.3,-60 -47))"], "date_created": "Mon, 31 Jan 2011 00:00:00 GMT", "description": "This data set includes a variety of station data from two Antarctic icebergs. In 2006, researchers installed specialized weather stations called Automated Meteorological Ice Geophysical Observing Stations (AMIGOS) on two icebergs, A22A and UK211 (nicknamed Amigosberg), near Marambio Station in Antarctica.The AMIGOS stations were outfitted with Global Positioning System (GPS) sensors, cameras, and an electronic thermometer. They collected data from their installation in March 2006 until the icebergs crumbled into the ocean, in 2006 (Amigosberg) and 2007 (A22A). Available data include GPS, temperature and ablation measurements, and photographs of the station base and of flag lines extending out to the edges of the icebergs. Snow pit data from iceberg A22A is also included.\n\nThis data set was collected as part of a National Science Foundation Office of Polar Programs Special Grant for Exploratory Research, to explore the possibility of using drfting icebergs to investigate ice shelf evolution caused by climate change. The expedition, nicknamed IceTrek, was conducted jointly with Argentine scientists. The data are available via FTP in ASCII text (.txt) and Joint Photographic Experts Group (.jpg) formats.", "east": -15.0, "geometry": ["POINT(-37.5 -63.5)"], "keywords": "Ablation; Atmosphere; Glaciology; GPS; Meteorology; Oceans; Photo/video; Photo/Video; Sea Ice; Southern Ocean; Temperature", "locations": "Southern Ocean", "north": -47.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan", "project_titles": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves", "projects": [{"proj_uid": "p0000003", "repository": "USAP-DC", "title": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007", "uid": "609466", "west": -60.0}, {"awards": "0902957 Robinson, Laura", "bounds_geometry": ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project\u0027s goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth\u0027s system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column.", "east": -35.0, "geometry": ["POINT(-52.75 -58)"], "keywords": "Biota; Corals; Drake Passage; Geochronology; NBP0805; Oceans; Paleoclimate; Radiocarbon; Southern Ocean", "locations": "Drake Passage; Southern Ocean", "north": -54.5, "nsf_funding_programs": null, "persons": "Robinson, Laura", "project_titles": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "projects": [{"proj_uid": "p0000519", "repository": "USAP-DC", "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "uid": "600111", "west": -70.5}, {"awards": "0839084 Ortland, David", "bounds_geometry": ["POLYGON((-63 -59,-62 -59,-61 -59,-60 -59,-59 -59,-58 -59,-57 -59,-56 -59,-55 -59,-54 -59,-53 -59,-53 -59.6,-53 -60.2,-53 -60.8,-53 -61.4,-53 -62,-53 -62.6,-53 -63.2,-53 -63.8,-53 -64.4,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.4,-63 -63.8,-63 -63.2,-63 -62.6,-63 -62,-63 -61.4,-63 -60.8,-63 -60.2,-63 -59.6,-63 -59))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The project will employ a sophisticated meteor radar at the Brazilian Antarctic station Comandante Ferraz on King George Island for a number of synergetic research efforts of high interest to the international aeronomical community. The location of the radar will be at the tip of the Antarctic Peninsula - at a critical southern latitude of 62 degrees - to fill a current measurement gap from 54 to 68 degrees south. The radar will play a key role in Antarctic and inter-hemispheric studies of neutral atmosphere dynamics, defining global mesosphere and lower thermosphere structure and variability (from 80 to 105 km) and guiding advances of models accounting for the dynamics of this high-altitude region, including general circulation models, and climate and numerical weather prediction models. The unique radar measurement sensitivity will enable studies of: (1) the large-scale circulation and planetary waves, (2) the tidal structure and variability, (3) the momentum transport by small-scale gravity waves, (4) important, but unquantified, gravity wave - tidal interactions, (5) polar mesosphere summer echoes, and (6) meteor fluxes, head echoes, and non-specular trails, a number of which exhibit high latitudinal gradients at these latitudes. This radar will support extensive collaborations with U.S. and other scientists making measurements at other Antarctic and Arctic conjugate sites, including Brazilian scientists at C. Ferraz and U.S. and international colleagues having other instrumentation in the Antarctic, Arctic, and within South America. Links to the University of Colorado in the U.S., Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil and Universidad Nacional de La Plata in Argentina will provide unique research opportunities for graduate and undergraduate students in the U.S. and South America.", "east": -53.0, "geometry": ["POINT(-58 -62)"], "keywords": "Antarctica; Atmosphere; Meteorology; Meteor Radar", "locations": "Antarctica", "north": -59.0, "nsf_funding_programs": null, "persons": "Fritts, David; Janches, Diego", "project_titles": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island", "projects": [{"proj_uid": "p0000670", "repository": "USAP-DC", "title": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island", "uid": "600107", "west": -63.0}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.117 -79.666)"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records.", "east": -112.117, "geometry": ["POINT(-112.117 -79.666)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.666, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.", "project_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "projects": [{"proj_uid": "p0000022", "repository": "USAP-DC", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "600142", "west": -112.117}, {"awards": "0632389 Murray, Alison", "bounds_geometry": ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey\u0027s ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.", "east": -62.889, "geometry": ["POINT(-64.13585 -64.6736)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean; Antarctic Peninsula", "north": -64.4213, "nsf_funding_programs": null, "persons": "Grzymski, Joseph; Murray, Alison", "project_titles": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "projects": [{"proj_uid": "p0000091", "repository": "USAP-DC", "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.9259, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "uid": "600061", "west": -65.3827}, {"awards": "0636319 Shaw, Timothy", "bounds_geometry": ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.6638, "geometry": ["POINT(-47.29195 -60.14805)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Sea Ice; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Southern Ocean; Sea Surface", "north": -57.5061, "nsf_funding_programs": null, "persons": "Shaw, Tim; Twining, Benjamin", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.79, "title": "Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600064", "west": -51.9201}, {"awards": "0739491 Sowers, Todd", "bounds_geometry": ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This data set contains depth profiles for delta carbon-13 (\u0026#948;13C) and delta deuterium (\u0026#948;D) of methane (CH\u003csub\u003e4\u003c/sub\u003e) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH\u003csub\u003e4\u003c/sub\u003e at South Pole Station (no depth-age model provided).\n\nData are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "Antarctica; South Pole", "north": 90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "projects": [{"proj_uid": "p0000162", "repository": "USAP-DC", "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Methane Isotopes in South Pole Firn Air, 2008", "uid": "609502", "west": -180.0}, {"awards": "0836061 Dennett, Mark", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "locations": "Antarctica; Southern Ocean; Amundsen Sea", "north": -69.0, "nsf_funding_programs": null, "persons": "Dennett, Mark", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600091", "west": -170.0}, {"awards": "0944474 Robinson, Laura", "bounds_geometry": ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award \"Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage\" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF\u0027s Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean\u0027s influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media.", "east": -35.0, "geometry": ["POINT(-52.75 -58)"], "keywords": "Biota; Corals; Cruise Report; Drake Passage; NBP1103; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Drake Passage; Southern Ocean", "north": -54.5, "nsf_funding_programs": null, "persons": "Robinson, Laura", "project_titles": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage", "projects": [{"proj_uid": "p0000514", "repository": "USAP-DC", "title": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage", "uid": "600114", "west": -70.5}, {"awards": "0538520 Thiemens, Mark", "bounds_geometry": ["POINT(-114.216667 -78.916667)"], "date_created": "Mon, 01 Nov 2010 00:00:00 GMT", "description": "This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project.\n\nData are available via FTP in Microsoft Excel (.xlsx) format.", "east": -114.216667, "geometry": ["POINT(-114.216667 -78.916667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -78.916667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.", "project_titles": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "projects": [{"proj_uid": "p0000020", "repository": "USAP-DC", "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.916667, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "609479", "west": -114.216667}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": ["POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))"], "date_created": "Thu, 29 Jul 2010 00:00:00 GMT", "description": "This data set contains measurments from co-registered samples from a horizontal trench in the Mt. Moulton Blue Ice Area (BIA) in Antarctica. All 3795 co-registered samples were analyzed for their soluble major anion content by Ion Chromatography (IC) and for trace elements by inductively coupled plasma sector field mass spectrometry . \n\nThe data are available via FTP in Microsoft Excel format (.xls) and Microsoft Word document (.doc).", "east": -134.7, "geometry": ["POINT(-136.2 -76.065)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mt Moulton; Paleoclimate", "locations": "Antarctica; Mt Moulton", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Korotkikh, Elena", "project_titles": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "projects": [{"proj_uid": "p0000209", "repository": "USAP-DC", "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.43, "title": "Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "uid": "609472", "west": -137.7}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": ["POINT(-144.39 -89.93)"], "date_created": "Thu, 01 Jul 2010 00:00:00 GMT", "description": "This data set contains ion measurements from co-registered samples from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) ice core. The core was drilled during the 2002-2003 field season as part of the International Trans-Antarctic Science Expedition (ITASE). Samples were collected for ion chromatography, inductively coupled plasma sector field mass spectrometry and stable water isotope analysis. Parameters include measurements of ion concentrations in ice core samples.\n\nThe data are available via FTP in Microsoft Excel format (.xls).", "east": -144.39, "geometry": ["POINT(-144.39 -89.93)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; South Pole; SPRESSO Ice Core", "locations": "South Pole; Antarctica", "north": -89.93, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Korotkikh, Elena", "project_titles": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "projects": [{"proj_uid": "p0000209", "repository": "USAP-DC", "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.93, "title": "Ion Concentrations from SPRESSO Ice Core, Antarctica", "uid": "609471", "west": -144.39}, {"awards": "0335330 Waddington, Edwin", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 15 Jun 2010 00:00:00 GMT", "description": "This data set consists of scripts and code designed for modeling the properties of boreholes in polar ice sheets, under a range of variations in the borehole geometry, firn layering, and camera pointing and position. The data set contains two folders. One includes two perl scripts and a piece of C code, along with directions for setting up and running a Monte Carlo model of photons traveling to and from a borehole in the firn. The second includes scripts for generating ray-tracing input files to be used with the POV-Ray package (a standard, free raytracing package) to generate simulated borehole video frames based on the results of the Monte Carlo model. The project was conducted between February 2005 and April 2010.\n\nThe codes to run the models are available via FTP, in Perlscript (.pl) and C code.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling Code", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hawley, Robert L.; Smith, Ben; Waddington, Edwin D.; Fudge, T. J.", "project_titles": "Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn", "projects": [{"proj_uid": "p0000016", "repository": "USAP-DC", "title": "Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Borehole Optical Stratigraphy Modeling, Antarctica", "uid": "609468", "west": -180.0}, {"awards": "9980379 Baker, Ian; 0440523 Baker, Ian", "bounds_geometry": ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"], "date_created": "Mon, 15 Feb 2010 00:00:00 GMT", "description": "This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) D core. Parameters include sample depth, grain size, ion concentration, and ice core impurity information. Measurements were made using Ion Chromatography (IC), optical microscopy, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM/EDS). \n\nData are available via FTP in Microsoft Excel (.xls)and Microsoft Word (.doc) formats.", "east": 106.8, "geometry": ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"], "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Lake Vostok; Byrd Glacier; Arctic; Antarctica", "north": 72.583333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Baker, Ian; Obbard, Rachel", "project_titles": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "projects": [{"proj_uid": "p0000289", "repository": "USAP-DC", "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.016667, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "uid": "609436", "west": -119.516667}, {"awards": "0440817 Taylor, Kendrick; 0230149 McGwire, Kenneth; 0637004 McGwire, Kenneth", "bounds_geometry": ["POINT(-112.083333 -79.466667)"], "date_created": "Wed, 10 Feb 2010 00:00:00 GMT", "description": "This data set is comprised of optical images of ice core sections, acquired with a digital line-scan camera in the cold room facility at the U.S. National Ice Core Laboratory (NICL). Ice core sections are archival cuts which have rough-out rounds of ice with a single plane cut along one side. Ice sections were illuminated with fiber optic light guides connected to a 1000 watt (W) xenon light source. Original scan resolution varies from about 0.05 mm to 0.1 mm, and is documented in the metadata for each image. Images are in uncompressed Tagged Image File (.tif) form, with resolutions of 1.0 mm and 0.1 mm. Depth of image in the ice core is documented in the metadata files for each image.\n\nData are available via FTP as .tif image files. Supporting information is available as ASCII text files (.txt), and other file formats readable with a freely available image processing program, IceImageJ.", "east": -112.083333, "geometry": ["POINT(-112.083333 -79.466667)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Optical Images; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.466667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McGwire, Kenneth C.", "project_titles": "Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "projects": [{"proj_uid": "p0000182", "repository": "USAP-DC", "title": "Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.466667, "title": "WAIS Divide Ice Core Images, Antarctica", "uid": "609375", "west": -112.083333}, {"awards": "0636543 Murray, Alison", "bounds_geometry": ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.57138, "geometry": ["POINT(-47.277705 -60.21953)"], "keywords": "Biota; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Ice; Southern Ocean; Weddell Sea", "locations": "Southern Ocean; Weddell Sea", "north": -57.58068, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.85838, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600065", "west": -51.98403}, {"awards": "0634619 Hammer, William", "bounds_geometry": ["POINT(166 -84)"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports preparation and study of fossil dinosaurs discovered on Mt. Kirkpatrick, Antarctica, during the 2003-04 field season. The 4,000 pounds of bone bearing matrix to be processed includes new pieces of Cryolophosaurus, a 22 foot long meat eating theropod, as well as a new unnamed sauropod dinosaur and other yet to be identified taxa. This project advances our understanding of dinosaur evolution and adaptation at the beginning of the reign of the dinosaurs, the Late Triassic and Early Jurassic. This period is poorly understood due to lack of fossils, which makes these fossils from Antarctica particularly unique. Also, since these fossils are from high paleolatitudes they will contribute to our understanding of past climates and the physiologic adaptations of dinosaurs to lengthy periods of darkness. The broader impacts include outreach to the general public through museum exhibits and presentations.", "east": 166.0, "geometry": ["POINT(166 -84)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Geochronology; Solid Earth", "locations": "Antarctica; Beardmore Glacier", "north": -84.0, "nsf_funding_programs": null, "persons": "Hammer, William R.", "project_titles": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "projects": [{"proj_uid": "p0000538", "repository": "USAP-DC", "title": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "uid": "600062", "west": 166.0}, {"awards": "0538479 Seibel, Brad", "bounds_geometry": ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project.", "east": 167.0, "geometry": ["POINT(166.5 -77.5)"], "keywords": "Biota; CO2; Mcmurdo Station; Oceans; Ross Island; Sample/collection Description; Sample/Collection Description; Shell Fish; Southern Ocean", "locations": "Southern Ocean; Ross Island", "north": -77.0, "nsf_funding_programs": null, "persons": "Seibel, Brad", "project_titles": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "projects": [{"proj_uid": "p0000694", "repository": "USAP-DC", "title": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "uid": "600055", "west": 166.0}, {"awards": "0439906 Koch, Paul", "bounds_geometry": ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.\n\nBecause of extreme isolation of the Antarctic continent since the \nEarly Oligocene, one expects a unique invertebrate benthic fauna with \na high degree of endemism. Yet some invertebrate taxa that constitute \nimportant ecological components of sedimentary benthic communities \ninclude more than 40 percent non-endemic species (e.g., benthic \npolychaetes). To account for non-endemic species, intermittent genetic \nexchange must occur between Antarctic and other (e.g. South American) \npopulations. The most likely mechanism for such gene flow, at least \nfor in-faunal and mobile macrobenthos, is dispersal of planktonic \nlarvae across the sub- Antarctic and Antarctic polar fronts. To test \nfor larval dispersal as a mechanism of maintaining genetic continuity \nacross polar fronts, the scientists propose to (1) take plankton \nsamples along transects across Drake passage during both the austral \nsummer and winter seasons while concurrently collecting the \nappropriate hydrographic data. Such data will help elucidate the \nhydrographic mechanisms that allow dispersal across Drake Passage. \nUsing a molecular phylogenetic approach, they will (2) compare \nseemingly identical adult forms from Antarctic and South America \ncontinents to identify genetic breaks, historical gene flow, and \ncontrol for the presence of cryptic species. (3) Similar molecular \ntools will be used to relate planktonic larvae to their adult forms. \nThrough this procedure, they propose to link the larval forms \nrespectively to their Antarctic or South America origins. The proposed \nwork builds on previous research that provides the basis for this \neffort to develop a synthetic understanding of historical gene flow \nand present day dispersal mechanism in South American/Drake Passage/ \nAntarctic Peninsular region. Furthermore, this work represents one of \nthe first attempts to examine recent gene flow in Antarctic benthic \ninvertebrates. Graduate students and a postdoctoral fellow will be \ntrained during this research\n", "east": 168.0, "geometry": ["POINT(165 -75)"], "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -72.0, "nsf_funding_programs": null, "persons": "Koch, Paul", "project_titles": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "projects": [{"proj_uid": "p0000533", "repository": "USAP-DC", "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "600041", "west": 162.0}, {"awards": "0338097 DiTullio, Giacomo", "bounds_geometry": ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": -165.03, "geometry": ["POINT(-167.485 -65.435)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -52.24, "nsf_funding_programs": null, "persons": "DiTullio, Giacomo", "project_titles": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "projects": [{"proj_uid": "p0000540", "repository": "USAP-DC", "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.63, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "600036", "west": -169.94}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.\n", "east": -54.0, "geometry": ["POINT(-59 -62)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel", "project_titles": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "projects": [{"proj_uid": "p0000082", "repository": "USAP-DC", "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "600044", "west": -64.0}, {"awards": "0836112 Smith, Walker", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.\n", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "locations": "Amundsen Sea; Sea Surface; Southern Ocean; Antarctica", "north": -69.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600092", "west": -170.0}, {"awards": "0801392 Swanson, Brian", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Microbiology; Oceans; Raman Spectroscopy; Sea Ice; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Sea Surface", "north": -60.0, "nsf_funding_programs": null, "persons": "Swanson, Brian", "project_titles": "Ice Nucleation by Marine Psychrophiles", "projects": [{"proj_uid": "p0000195", "repository": "USAP-DC", "title": "Ice Nucleation by Marine Psychrophiles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Ice Nucleation by Marine Psychrophiles", "uid": "600087", "west": -180.0}, {"awards": "0636730 Vernet, Maria", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.\n", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Sea Surface; Southern Ocean; Weddell Sea; Antarctica", "north": -52.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean.", "projects": [{"proj_uid": "p0000532", "repository": "USAP-DC", "title": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600068", "west": -55.0}, {"awards": "0636723 Helly, John", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; NBP0902; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Southern Ocean; Weddell Sea; Antarctica", "north": -52.0, "nsf_funding_programs": null, "persons": "Helly, John", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600067", "west": -55.0}, {"awards": "0520523 Brook, Edward J.", "bounds_geometry": ["POINT(-38.466667 73.583333)", "POINT(-148.81 -81.65)"], "date_created": "Wed, 09 Dec 2009 00:00:00 GMT", "description": "This data set contains methane measurements made in trapped air in the Holocene sections of two ice cores: the Siple Dome ice core in Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) ice core in Greenland. The measurements were made at Oregon State University between 2007 and 2009. Measurements were made relative to the NOAA04 methane concentration scale using a working standard internally calibrated to NOAA certified air standards. Concentrations are corrected for gravitational fractionation and solubility effects in the melt-refreeze extraction. Data are available via FTP in Microsoft Excel (.xls) format.", "east": -38.466667, "geometry": ["POINT(-38.466667 73.583333)", "POINT(-148.81 -81.65)"], "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Arctic; Antarctica; Siple Dome", "north": 73.583333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient", "projects": [{"proj_uid": "p0000131", "repository": "USAP-DC", "title": "Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methane Measurements from the GISP2 and Siple Dome Ice Cores", "uid": "609440", "west": -148.81}, {"awards": "0440759 Sowers, Todd", "bounds_geometry": ["POINT(112.09 -79.47)"], "date_created": "Tue, 01 Dec 2009 00:00:00 GMT", "description": "This data set includes methane (CH4) isotope data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC05A, in Antarctica. The data include depth, gas age, and the isotopic composition of methane (\u0026#8706;13C and \u0026#8706;D of CH4). The ice core was collected during the 2005-2006 Antarctic field season. The CH4 isotope data was generated in 2008 using wet extraction methodology. Samples span the last 1,000 years, at a resolution of about 15 years. Data for samples above 69 meters were from firn air, and data below 69 meters from ice. The dating of the ice was based on continuous chemical analyses above 69 meters and Electrical Conductivity/Dielectric Property (ECM/DEP) measurements from ice. Dating uncertainty is estimated to be better than five years.\n\nData are available via FTP in Microsoft Excel (.xls) tab delimited format", "east": 112.09, "geometry": ["POINT(112.09 -79.47)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Methane Isotopes from the WAIS Divide Ice Core", "uid": "609435", "west": 112.09}, {"awards": "0196105 Steig, Eric; 0440414 Steig, Eric", "bounds_geometry": ["POLYGON((-130 -65,-125.8 -65,-121.6 -65,-117.4 -65,-113.2 -65,-109 -65,-104.8 -65,-100.6 -65,-96.4 -65,-92.2 -65,-88 -65,-88 -67.5,-88 -70,-88 -72.5,-88 -75,-88 -77.5,-88 -80,-88 -82.5,-88 -85,-88 -87.5,-88 -90,-92.2 -90,-96.4 -90,-100.6 -90,-104.8 -90,-109 -90,-113.2 -90,-117.4 -90,-121.6 -90,-125.8 -90,-130 -90,-130 -87.5,-130 -85,-130 -82.5,-130 -80,-130 -77.5,-130 -75,-130 -72.5,-130 -70,-130 -67.5,-130 -65))"], "date_created": "Thu, 01 Oct 2009 00:00:00 GMT", "description": "This data set includes stable isotope measurements from snow pits, firn, and ice cores collected by the the US component of the International Trans-Antarctic Scientific Expedition ( ITASE). The ITASE program aims to collect and interpret a continental-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations.\n\nThese data were collected between 1999 and 2007. The data have been compiled into single files for each sampling site, though in some cases a file contains data from more than one ice core or snow pit. Each file in the data set includes deuterium/hydrogen (\u0026#948;D) and/or 18-oxygen/16-oxygen (\u0026#948;18O) ratios, depths, and in some cases ice age or other information. Further details regarding the data are provided in each data file. Data are available via FTP in ASCII text format (.txt). Data were collected during five Antarctic field seasons from 1999 to 2007. Data from 1999 to 2002 are currently available. Data from 2003 to 2007 will be added in the future.", "east": -88.0, "geometry": ["POINT(-109 -77.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; ITASE; Paleoclimate; WAIS", "locations": "Antarctica; WAIS", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at West Antarctic ITASE Sites", "projects": [{"proj_uid": "p0000013", "repository": "USAP-DC", "title": "Stable Isotope Studies at West Antarctic ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "US ITASE Stable Isotope Data, Antarctica", "uid": "609425", "west": -130.0}, {"awards": "0440602 Saltzman, Eric", "bounds_geometry": ["POINT(112.09 -79.47)"], "date_created": "Thu, 30 Jul 2009 00:00:00 GMT", "description": "This data set contains trace gas measurements of air extracted from ice core samples from the West Antarctic Ice Sheet Divide A core (WAIS-D 05A). The WAIS A core was dry-drilled at the WAIS site during the 2005-2006 Antarctic field season. Data include trace gas species including ethane (C2H6), propane (C3H8), n-butane (n-C4H10), carbonyl sulfide (COS), carbon disulfide (CS2), methyl chloride (CH3Cl), methyl bromide (CH3Br), acetonitrile (CH3CN), and chlorofluorocarbon-12 (CFC-12), for 57 ice core samples. The data are available via FTP in Microsoft Excel (.xls) file format.", "east": 112.09, "geometry": ["POINT(112.09 -79.47)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "uid": "609412", "west": 112.09}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-119.533333 -80.016667)"], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "This data set consists of Gas-isotopic data from the Siple Dome and and Greenland Ice Sheet Project 2 (GISP2) ice cores covering roughly the last 100,000 years (100 ka), consisting of d15N (15N/14N) of N2, d18O (18O/16O) of O2, dO2/N2, and dAr/N2. Derived parameters include d18Oatm, d15N, dO2/N2, and dAr/N2. \n\nData are available via FTP as ASCII text files (.txt) and Microsoft Excel files (.xls).", "east": -119.533333, "geometry": ["POINT(-119.533333 -80.016667)"], "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Arctic; Antarctica; Byrd Glacier", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "projects": [{"proj_uid": "p0000450", "repository": "USAP-DC", "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "uid": "609407", "west": -119.533333}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "This data set includes high-resolution ice core records from the Dry Valleys region of Antarctica, and provides interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). Intermediate-length ice cores (100 to 200 meters) were drilled at four sites along transects in the Taylor and Wright valleys, and analyzed for stable isotopes and major ions. The data set includes high-resolution ice core data for each study site. It also includes mass balance, borehole temperature, and snowpit data for each site, and Global Positioning System (GPS) velocity data for some of the sites. Snow pit data from three additional sites in the same region is also available. Data are available via FTP, in Microsoft Excel (.xls), ASCII text (.txt), and Microsoft Word (.doc) file formats.", "east": 163.03, "geometry": ["POINT(162.035 -77.69)"], "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "locations": "Dry Valleys; Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl; Mayewski, Paul A.", "project_titles": "Dry Valleys Late Holocene Climate Variability", "projects": [{"proj_uid": "p0000155", "repository": "USAP-DC", "title": "Dry Valleys Late Holocene Climate Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "uid": "609399", "west": 161.04}, {"awards": "9814810 Bales, Roger", "bounds_geometry": ["POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))"], "date_created": "Mon, 01 Jun 2009 00:00:00 GMT", "description": "This data set contains sub-annually resolved concentrations of hydrogen peroxide (H2O2), snow, firn and ice from 23 sites on the West Antarctic Ice Sheet (WAIS).", "east": -84.0, "geometry": ["POINT(-104 -83)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS", "locations": "WAIS; Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Bales, Roger; Frey, Markus", "project_titles": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse", "projects": [{"proj_uid": "p0000253", "repository": "USAP-DC", "title": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "uid": "609392", "west": -124.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin weighbridge data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600014", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Daily weather observations 1996-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600015", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin dive data 1999-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600013", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin banding data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600005", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin chick measurements 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600006", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Biota", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin chick counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600007", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin diet data 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600008", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin Geolocation Sensor data 2003-2007 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600009", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin satellite position data 2000-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600012", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Biota; Oceans", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Leopard Seal counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600010", "west": 166.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. ", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": null, "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ballard, Grant", "project_titles": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels", "projects": [{"proj_uid": "p0000318", "repository": "USAP-DC", "title": "COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Adelie penguin resighting data 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "uid": "600011", "west": 166.0}, {"awards": "0440414 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "projects": [{"proj_uid": "p0000202", "repository": "USAP-DC", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "600042", "west": -180.0}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. \n\nOther data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": ["POINT(55 -75)"], "keywords": "Antarctica; Biota; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "locations": "Southern Ocean; Antarctica; Ross Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven D.", "project_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "projects": [{"proj_uid": "p0000220", "repository": "USAP-DC", "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "600028", "west": -50.0}, {"awards": "0440954 Miller, Molly", "bounds_geometry": ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems.", "east": 159.5, "geometry": ["POINT(159.25 -76.683335)"], "keywords": "Allan Hills; Antarctica; Paleontology; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctica; Allan Hills", "north": -76.61667, "nsf_funding_programs": null, "persons": "Miller, Molly", "project_titles": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "projects": [{"proj_uid": "p0000207", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.75, "title": "Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "uid": "600045", "west": 159.0}, {"awards": "0538683 Lal, Devendra", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The principal aim of this research is to determine the precise manner in which solar activity has varied in the past 1000 years. During this period, four periods of very low solar activity have been identified: Wolf (1305-1345 AD), Spoerer (1418-1540 AD), Maunder (1645-1715), and one period of high solar activity (1100-1250 A.D.) have been deduced based on available historical records of sunspot numbers and aurora. Our proposal aims to study the solar activity during the past 1000 years in detail using a new method, based on studies of polar ice, as developed earlier (Earth and Planetary Science Letters, 234, 335-349, 2005). The method is based on the fact that greater solar activity leads to production of greater magnetic fields in the heliosphere, which reduces the primary cosmic ray flux in the near Earth environment, and vice-versa. Consequently if one can measure the primary cosmic ray flux in the near Earth space, it becomes a direct measure of the solar activity. Lal et al. (Earth and Planetary Science Letters, 234, 335-349, 2005) concluded that the best way of measuring the primary cosmic ray flux would be to measure the concentration of cosmogenic in-situ produced 14C in polar ice sheets, which was discovered by Lal et al. (Nature 346, 350-352, 1990). Following this idea Lal et al. (op. cit.) measured cosmogenic in-situ produced in 19 samples from the GISP 2 core covering time range of 375-31,250 yrs B.P. Their studies showed that there were two periods of very low solar activity in this time bracket (during 8500-9500 B.P and 27,000-32,000 B.P.), and one high solar activity period during 12,000-16,000 yrs B.P. In order to provide an independent check on the veracity of the new method, we decided to apply it to the historical period, \u003c 1000 yrs B.P. The inferred Solar activities based on the study of cosmogenic in-situ produced 14C in South Pole ice samples clearly establish that there was a period of high Solar activity during 1100-1250 A.D., and a period of very low solar activity during 1416-1534 A.D, designated as the Spoerer Minimum. These results however do not confirm the proposed dates for the Dalton and the Maunder Minimum periods, predicted to be 1795-1825 A.D. and 1654-1714 A.D. respectively. Instead, our studies show that there was a long duration period of low solar activity during 1750-1860 A.D. These results make it quite clear that we should carry out more studies to fully establish the temporal behavior of the Solar activity in the past 1000 yrs.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Carbon-14; Cosmos; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Solar Activity; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": null, "persons": "Lal, Devendra", "project_titles": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores", "projects": [{"proj_uid": "p0000555", "repository": "USAP-DC", "title": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "uid": "600058", "west": -180.0}, {"awards": "0636629 Kurz, Mark", "bounds_geometry": ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.", "east": 164.3, "geometry": ["POINT(162.5 -78.1)"], "keywords": "Antarctica; Cosmogenic Radionuclides; Dry Valleys; Geology/Geophysics - Other; Glaciology; LIDAR; Navigation; Sample/collection Description; Sample/Collection Description", "locations": "Dry Valleys; Antarctica", "north": -77.8, "nsf_funding_programs": null, "persons": "Soule, S. Adam; Kurz, Mark D.", "project_titles": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "projects": [{"proj_uid": "p0000559", "repository": "USAP-DC", "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "uid": "600066", "west": 160.7}, {"awards": "0739452 Mukhopadhyay, Sujoy", "bounds_geometry": ["POLYGON((161 -76,161.2 -76,161.4 -76,161.6 -76,161.8 -76,162 -76,162.2 -76,162.4 -76,162.6 -76,162.8 -76,163 -76,163 -76.2,163 -76.4,163 -76.6,163 -76.8,163 -77,163 -77.2,163 -77.4,163 -77.6,163 -77.8,163 -78,162.8 -78,162.6 -78,162.4 -78,162.2 -78,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project seeks to answer a simple question: how old are potholes and related geomorphic features found in the uplands of the McMurdo Dry Valleys, Antarctica? Some research suggests that they are over ten million years old and date the growth of the East Antarctic Ice Sheet, the world\u0027s largest. However, some evidence suggests that these are young, erosional features that continuing to evolve to this day. This project uses cosmogenic nuclide dating to determine the age of the pothole floors. The results are important for determining the ice sheet?s history and interpreting the O-isotope record from the marine sediment cores, key records of global climate. Broader impacts include K12 outreach and incorporation of outcomes into university courses.", "east": 163.0, "geometry": ["POINT(162 -77)"], "keywords": "Antarctica; Cosmogenic Dating; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Dry Valleys; Antarctica", "north": -76.0, "nsf_funding_programs": null, "persons": "Mukhopadhyay, Sujoy", "project_titles": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica", "projects": [{"proj_uid": "p0000461", "repository": "USAP-DC", "title": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica", "uid": "600074", "west": 161.0}, {"awards": "0739496 Miller, Molly", "bounds_geometry": ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 163.91667, "geometry": ["POINT(163.66667 -77.516665)"], "keywords": "Biota; Geochronology; Marine Sediments; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -77.33333, "nsf_funding_programs": null, "persons": "Furbish, David; Miller, Molly", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "projects": [{"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600076", "west": 163.41667}, {"awards": "0739512 Walker, Sally", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; McMurdo Sound; Oceans; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; McMurdo Sound", "north": -60.0, "nsf_funding_programs": null, "persons": "Walker, Sally", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}, {"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600077", "west": -180.0}, {"awards": "0739693 Ashworth, Allan", "bounds_geometry": ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": ["POINT(161 -77.5)"], "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ashworth, Allan; Lewis, Adam", "project_titles": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "projects": [{"proj_uid": "p0000188", "repository": "USAP-DC", "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "600081", "west": 160.0}, {"awards": "0741380 Smith, Walker", "bounds_geometry": ["POLYGON((-160 -65,-154 -65,-148 -65,-142 -65,-136 -65,-130 -65,-124 -65,-118 -65,-112 -65,-106 -65,-100 -65,-100 -66.1,-100 -67.2,-100 -68.3,-100 -69.4,-100 -70.5,-100 -71.6,-100 -72.7,-100 -73.8,-100 -74.9,-100 -76,-106 -76,-112 -76,-118 -76,-124 -76,-130 -76,-136 -76,-142 -76,-148 -76,-154 -76,-160 -76,-160 -74.9,-160 -73.8,-160 -72.7,-160 -71.6,-160 -70.5,-160 -69.4,-160 -68.3,-160 -67.2,-160 -66.1,-160 -65))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea.", "east": -100.0, "geometry": ["POINT(-130 -70.5)"], "keywords": "Amundsen Sea; Chemistry:fluid; Chemistry:Fluid; CTD Data; Geochemistry; Oceans; Oden; OSO2007; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Sea Surface; Amundsen Sea", "north": -65.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:", "projects": [{"proj_uid": "p0000217", "repository": "USAP-DC", "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "uid": "600085", "west": -160.0}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": ["POINT(-38.466667 72.5833333)"], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux.\n", "east": -38.466667, "geometry": ["POINT(-38.466667 72.5833333)"], "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Antarctica; Lake Vostok; Arctic", "north": 72.5833333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Kurz, Mark D.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 72.5833333, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "uid": "609361", "west": -38.466667}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": ["POINT(-38.466667 72.5833333)"], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This ice core data is archived at the World Data Center for Paleoclimatology and is available through the Ice Core Data Gateway. The data includes methane data from the Greenland Ice Sheet Project 2 (GISP2). GISP2 is an ice core project that drilled through the Greenland ice sheet and 1.55 meters into bedrock. The ice core is 3053.44 meters in depth, the deepest ice core recovered in the world at the time. The ice core was completed in 1993 after five years of drilling.\n\nMethane concentrations were determined by GC-FID using standards calibrated by NOAA CMDL. \t\t\t\t\t\nThe gas age time scales and analytical techniques are described in further detail in the publication.", "east": -38.466667, "geometry": ["POINT(-38.466667 72.5833333)"], "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "locations": "Antarctica; Taylor Dome; Arctic", "north": 72.5833333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 72.5833333, "title": "GISP2 (D Core) Methane Concentration Data", "uid": "609360", "west": -38.466667}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(168 -78)"], "date_created": "Fri, 28 Nov 2008 00:00:00 GMT", "description": "Since November of 2005, 12 thermistors were planted in the upper 2.5 meters of the firn on iceberg C16, Antarctica. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as an iceberg moves north into warmer climate.", "east": 168.0, "geometry": ["POINT(168 -78)"], "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "locations": "Ross Ice Shelf; Southern Ocean", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thom, Jonathan; Sergienko, Olga; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Iceberg Firn Temperatures, Antarctica", "uid": "609352", "west": 168.0}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "This data set is an analysis of methyl chloride concentration measured in air extracted from ice core samples from the Siple Dome A deep core in West Antarctica. In total, forty six (46) ice samples, approximately 10-15 cm in length, were analyzed in this study. Data are available in Microsoft Excel format and are available via FTP.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "project_titles": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "projects": [{"proj_uid": "p0000042", "repository": "USAP-DC", "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "uid": "609356", "west": -148.82}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(168 -77)"], "date_created": "Wed, 01 Oct 2008 00:00:00 GMT", "description": "Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to understand the relevance of IHT to iceberg calving, drift and break-up. The seismic observations reveal that the IHT signal consists of extended episodes of stick-slip icequakes (typically thousands per hour) generated when the ice-cliff edges of two tabular icebergs rub together during glancing, strike/slip type iceberg collisions (e.g., between C16 and B15A). With the source mechanism revealed, IHT may provide a promising signal useful for the study of iceberg behavior and iceberg-related processes such as climate-induced ice-shelf disintegration.\n\nHere, a single day of seismometer data for a single station on iceberg C16 is provided as an example of \"a day in the life of an iceberg\" for use by scientists and students wishing to know more about IHT. The station data is from C16 \"B\" site on C16\u0027s northeast corner, and the day is 27 December, 2003, a day when B15A struck C16 and caused an episode of tremor that was particularly easy to identify and understand. \n\nThis represents only a small fraction of the total data that exist for the seismic program on iceberg C16. The full data are archived at the IRIS data center (where seismic data is commonly archived). This one-day data set is to provide glaciologists with ready access to a good example of IHT that they can use for teaching and for demonstration purposes. Data are available in comma-delimited ASCII format and Matlab native mat files. Data are available via FTP.", "east": 168.0, "geometry": ["POINT(168 -77)"], "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "uid": "609349", "west": 168.0}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-144.39 -89.93)"], "date_created": "Sat, 10 Nov 2007 00:00:00 GMT", "description": "This data set is an analysis of methyl chloride (CH3Cl) and methyl bromide (CH3Br) in Antarctic ice core samples. Investigators reported mixing ratios of methyl chloride gas extracted from samples taken from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) core, drilled as part of the International Trans Antarctic Science Expedition (ITASE). This data covers an age range of 2159 - 140 years before present (Y.B.P.) where the year 2000 was used as present. Investigators analyzed trace gases in ice core samples from Siple Dome, West Antarctica (dry-drilled C core and deep, fluid-drilled A core) and from South Pole, Antarctica (300 m dry drilled SPRESSO core). Data are available in Microsoft Excel format and are available via FTP.", "east": -144.39, "geometry": ["POINT(-144.39 -89.93)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "locations": "Antarctica; South Pole", "north": -89.93, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.93, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "uid": "609313", "west": -144.39}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": ["POINT(158 -77.666667)"], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "Using new and existing ice core CO2 data from 65 - 30 ka BP a new chronology for Taylor Dome ice core CO2 is established and synchronized with Greenland ice core records to study how high latitude climate change and the carbon cycle were linked during the last glacial period. The new data and chronology should provide a better target for models attempting to explain CO2 variability and abrupt climate change.", "east": 158.0, "geometry": ["POINT(158 -77.666667)"], "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "projects": [{"proj_uid": "p0000268", "repository": "USAP-DC", "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "uid": "609315", "west": 158.0}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": ["POINT(-119.833611 -80.01)"], "date_created": "Fri, 26 Oct 2007 00:00:00 GMT", "description": "Reconstructions of ancient atmospheric CO2 variations help us better understand how the global carbon cycle and climate are linked. This data set compares CO2 variations on millennial time scales between 20,000 and 90,000 years with an Antarctic temperature proxy and records of abrupt climate change in the Northern hemisphere.", "east": -119.833611, "geometry": ["POINT(-119.833611 -80.01)"], "keywords": "Antarctica; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "locations": "Antarctica; Byrd Glacier", "north": -80.01, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "projects": [{"proj_uid": "p0000268", "repository": "USAP-DC", "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Byrd Ice Core", "south": -80.01, "title": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica", "uid": "609314", "west": -119.833611}, {"awards": "0230260 Bender, Michael", "bounds_geometry": ["POINT(106.8 -72.4667)"], "date_created": "Tue, 10 Jul 2007 00:00:00 GMT", "description": "This data set includes a time scale for the Vostok ice core, retrieved from Vostok Station on the East Antarctic Plateau. This chronology is derived by orbitally tuning to molecular oxygen to nitrogen (O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e) ratios in occluded air for depths deeper than 1550 m (greater than 112,000 years old), and by gas correlation to the Greenland Ice Sheet Project 2 (GISP2) chronology for the ice core section that is shallower than 1422 m (less than 102,000 years old). Because of poor gas preservation in air bubbles in shallower depths, investigators could only constrain the Vostok chronology for the section deeper than 1550 m by O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e. Thus for the shallower section of the core, they synchronized the Vostok delta oxygen-18 (\u0026delta;\u003csup\u003e18\u003c/sup\u003eO) and methane (CH\u003csub\u003e4\u003c/sub\u003e) measurements to those of the GISP2 to obtain the chronology (see Bender, et al. 2006). Note, CH\u003csub\u003e4\u003c/sub\u003e data are not included in this data set.\n\nInvestigators analyzed the O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e and the\u003cem\u003e\u003cstrong\u003e \u003c/strong\u003e\u003c/em\u003e\u0026delta;\u003csup\u003e18\u003c/sup\u003eO record ratios for approximately the past 115,000 to 400,000 years in the Vostok ice core. They combined new measurements for O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e and \u0026delta;\u003csup\u003e18\u003c/sup\u003eO with data from Bender (2002) and Petit, et al. (1999), respectively.\n\nData are in Microsoft Excel format and are available via FTP.", "east": 106.8, "geometry": ["POINT(106.8 -72.4667)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "locations": "Lake Vostok; Antarctica; Vostok", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael; Suwa, Makoto", "project_titles": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "projects": [{"proj_uid": "p0000257", "repository": "USAP-DC", "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.4667, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "uid": "609311", "west": 106.8}, {"awards": "0126343 Nishiizumi, Kunihiko", "bounds_geometry": ["POINT(-148.812 -81.6588)"], "date_created": "Thu, 31 May 2007 00:00:00 GMT", "description": "This data set includes a record of cosmogenic radionuclide concentrations in the Siple Dome A ice core collected as part of the West Antarctic ice core program. The investigators measured profiles of both \u003csup\u003e10\u003c/sup\u003eBe (half-life = 1.5x10\u003csup\u003e6\u003c/sup\u003e years) and \u003csup\u003e36\u003c/sup\u003eCl (half-life = 3.0x10\u003csup\u003e5\u003c/sup\u003e years) in the entire ice core, which spans the time period from the present to about 100,000 years before present. These data are being used for perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. \n\nData are distributed as a PDF file and are available via FTP.", "east": -148.812, "geometry": ["POINT(-148.812 -81.6588)"], "keywords": "Antarctica; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Antarctica", "north": -81.6588, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Finkel, R. C.; Nishiizumi, Kunihiko", "project_titles": "Cosmogenic Radionuclides in the Siple Dome Ice Core", "projects": [{"proj_uid": "p0000358", "repository": "USAP-DC", "title": "Cosmogenic Radionuclides in the Siple Dome Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.6588, "title": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "uid": "609307", "west": -148.812}, {"awards": "9526566 Bindschadler, Robert", "bounds_geometry": ["POINT(-119.4 -80.01)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(160.41 -74.21)"], "date_created": "Tue, 28 Nov 2006 00:00:00 GMT", "description": "This data set includes daily, monthly, and yearly mean surface air temperatures for four interior West Antarctic sites between 1978 and 1997. Data include air surface temperatures measured at the Byrd, Lettau, Lynn, and Siple Station automatic weather stations. In addition, because weather stations in Antarctica are difficult to maintain, and resulting multi-decade records are often incomplete, the investigators also calculated surface temperatures from satellite passive microwave brightness temperatures. Calibration of 37-GHz vertically polarized brightness temperature data during periods of known air temperature, using emissivity modeling, allowed the investigators to replace data gaps with calibrated brightness temperatures.\n\nMS Excel data files and GIF images derived from the data are available via ftp from the National Snow and Ice Data Center.", "east": 160.41, "geometry": ["POINT(-119.4 -80.01)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(160.41 -74.21)"], "keywords": "Antarctica; Atmosphere; Automated Weather Station; Meteorology; Temperature; West Antarctica", "locations": "West Antarctica; Antarctica", "north": -74.21, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shuman, Christopher A.; Stearns, Charles R.", "project_titles": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica", "projects": [{"proj_uid": "p0000191", "repository": "USAP-DC", "title": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.52, "title": "Decadal-Length Composite West Antarctic Air Temperature Records", "uid": "609097", "west": -174.45}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": ["POINT(139.2728 -89.9975)"], "date_created": "Wed, 01 Nov 2006 00:00:00 GMT", "description": "This data set contains snow pit measurements of oxygen isotopes, \u003csup\u003e17\u003c/sup\u003eO and \u003csup\u003e18\u003c/sup\u003eO, in nitrate and ion concentrations, and surface measurements of oxygen isotopes in nitrate and in nitrate aerosols from the Amundsen-Scott South Pole Station, Antarctica. The 6-meter snow pit provides investigators with a 25-year record of nitrate isotope variations and ion concentrations for a period spanning from 1979 to 2004. Monthly surface snow and weekly aerosol collections yield a year-long record of nitrate isotopic composition starting 01 December 2003 and ending 31 December 2004.\n\nLittle is known about the past denitrification of the stratosphere in high latitude regions. Such knowledge is important to understanding the chemical state of the ancient atmospheres and evaluating the present climate models. With this research, investigators aim to understand the denitrification of the Antarctic stratosphere and quantify the sources of nitrate aerosols over time.\n\nData are in Microsoft Excel format and are available via FTP.", "east": 139.2728, "geometry": ["POINT(139.2728 -89.9975)"], "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "locations": "South Pole Station; Antarctica", "north": -89.9975, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.; Savarino, Joel", "project_titles": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "projects": [{"proj_uid": "p0000242", "repository": "USAP-DC", "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.9975, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "uid": "609281", "west": 139.2728}, {"awards": "0225992 Fahnestock, Mark; 0125570 Scambos, Ted", "bounds_geometry": ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"], "date_created": "Thu, 05 Oct 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP.", "east": 124.52668, "geometry": ["POINT(124.48059 -80.78277)"], "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.77546, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.79008, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "609283", "west": 124.4345}, {"awards": "9725305 Severinghaus, Jeffrey; 0230260 Bender, Michael; 0230452 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-148.767 -80.667)", "POINT(0 -90)"], "date_created": "Thu, 17 Aug 2006 00:00:00 GMT", "description": "This data set includes gas ratios in polar firn air: O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e, \u003csup\u003e15\u003c/sup\u003eN/\u003csup\u003e14\u003c/sup\u003eN, \u003csup\u003e40\u003c/sup\u003eAr/N\u003csub\u003e2\u003c/sub\u003e, \u003csup\u003e40\u003c/sup\u003eAr/\u003csup\u003e36\u003c/sup\u003eAr, \u003csup\u003e40\u003c/sup\u003eAr/\u003csup\u003e38\u003c/sup\u003eAr, \u003csup\u003e84\u003c/sup\u003eKr/\u003csup\u003e36\u003c/sup\u003eAr, \u003csup\u003e132\u003c/sup\u003eXe/\u003csup\u003e36\u003c/sup\u003eAr, and \u003csup\u003e22\u003c/sup\u003eNe/\u003csup\u003e36\u003c/sup\u003eAr. Investigators sampled air from the permeable snowpack (firn) layer at two sites: Siple Dome, Antarctica in 1996 and at the South Pole in 2001. They observed and modeled the processes of gravitational settling, thermal fractionation, and preferential exclusion of small gas molecules from closed air bubbles. The purpose of this study was to understand these physical processes, which affect the composition of bubbles trapped in ice. By measuring these gas ratios in the ancient air preserved in bubbles trapped in ice, researchers can determine past atmospheric composition and local temperature changes along with the relative timing and magnitude of such events.\n\nThe data file is available in Microsoft Excel format. The research paper is available in PDF. Data and the research paper are available via FTP.", "east": 0.0, "geometry": ["POINT(-148.767 -80.667)", "POINT(0 -90)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "locations": "South Pole; Siple Dome; Antarctica", "north": -80.667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Battle, Mark; Bender, Michael", "project_titles": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "projects": [{"proj_uid": "p0000257", "repository": "USAP-DC", "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "uid": "609290", "west": -148.767}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Sat, 10 Jun 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km\u003csup\u003e2\u003c/sup\u003e. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609282", "west": 124.0218}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-148.81 -81.65)"], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. \n\nThis data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65\u00b0 S, 148.81\u00b0 W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 \u00b0C.\n\nData are available via FTP.", "east": -148.81, "geometry": ["POINT(-148.81 -81.65)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "uid": "609279", "west": -148.81}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": ["POINT(-116.333 -78.733)", "POINT(-119.562 -80.014)", "POINT(-118.045 -79.461)"], "date_created": "Mon, 09 May 2005 00:00:00 GMT", "description": "The Ross Ice Drainage System (RIDS) project provides a high-resolution record of atmospheric chemical deposition taken from several ice cores and snow pits located at sites within or immediately adjacent to the Ross Ice Drainage System. Three sites were visited during a 1995 traverse in inland West Antarctica. The traverse was 158 km, trending 26\u00b0 from Byrd Surface Camp. The core from site A (78\u00b044\u0027S, 116\u00b020\u0027W) is 148 m deep, the core from site B (79\u00b027.66\u0027S, 118\u00b002.68\u0027W) is 60 m deep, and the core from site C (80\u00b000.85\u0027S, 119\u00b033.73\u0027W) is 60 m deep. Glaciochemical analysis focuses on the major ions deposited from the antarctic atmosphere, including Na (sodium), NH4 (ammonium), K (potassium), Mg (magnesium), Ca (calcium), Cl (chloride), NO3 (nitrate), and SO4 (sulfate). Chemical analysis also includes methanesulfonic acid (MSA) and nssSO4 (non-sea salt sulfate). The data are available by FTP in ASCII text format and Excel files.", "east": -116.333, "geometry": ["POINT(-116.333 -78.733)", "POINT(-119.562 -80.014)", "POINT(-118.045 -79.461)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit", "locations": "Antarctica", "north": -78.733, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Meeker, Loren D.", "project_titles": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "projects": [{"proj_uid": "p0000145", "repository": "USAP-DC", "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.014, "title": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis", "uid": "609266", "west": -119.562}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(159.183333 -72.827778)"], "date_created": "Fri, 27 Aug 2004 00:00:00 GMT", "description": "This data set consists of deuterioum isotope data obtained from Talos Dome ice core. Talos Dome is located on the edge of the East Antarctic plateau \nadjacent to the Victoria Land mountain. The Talos Dome (TD) firn core is 89 m and was drilled during a traverse by an Italian team in 1996.", "east": 159.183333, "geometry": ["POINT(159.183333 -72.827778)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Talos Dome", "locations": "Antarctica; Talos Dome", "north": -72.827778, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jouzel, Jean; Stenni, Barbara", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -72.827778, "title": "Talos Dome Ice Core Deuterium Isotope Data", "uid": "609252", "west": 159.183333}, {"awards": "0126057 Brook, Edward J.", "bounds_geometry": null, "date_created": "Fri, 27 Aug 2004 00:00:00 GMT", "description": "This data set compares global atmospheric concentration of methane from ice cores taken on the ice sheets of Antarctica and Greenland. The data come from multiple ice cores on each continent, including Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project (GISP) ice cores and the Byrd and Vostok cores from Antarctica. (The orignal dataset is located at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/grip/synchronization/)", "east": null, "geometry": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Vostok Ice Core", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blunier, Thomas; Stauffer, Bernhard; Chappellaz, Jerome; Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Antarctic and Greenland Climate Change Comparison", "uid": "609253", "west": null}, {"awards": "9725918 Brook, Edward J.; 9714687 Brook, Edward J.", "bounds_geometry": ["POINT(-119.516667 -80.016667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set consists of microparticle and chemistry data from Byrd Ice Core, the first ice core to reach bedrock in Antarctica. The core was drilled with a cable-suspended electromechanical rotary drill at Byrd Station, Antarctica. The vertical thickness of the ice was 2164 meters and more than 99 percent of the core was recovered. Cores were sought for investigations of the physical properties of the ice sheet, the nature of the ice-rock contact, and the composition of the underlying bedrock.", "east": -119.516667, "geometry": ["POINT(-119.516667 -80.016667)"], "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "locations": "Antarctica", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "project_titles": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "projects": [{"proj_uid": "p0000168", "repository": "USAP-DC", "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Byrd Ice Core", "south": -80.016667, "title": "Byrd Ice Core Microparticle and Chemistry Data", "uid": "609247", "west": -119.516667}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(123.332196 -75.09978)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes isotope and depth age data, and CO2 and CH4 data from the Dome C Antarctica ice core. This core is a 906 meter core that spans approximately 32,000 years. It was a thermally drilled core and was retrieved during the 1977-78 Antarctic field season as part of the International Antarctic Glaciological project.", "east": 123.332196, "geometry": ["POINT(123.332196 -75.09978)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Depth-Age-Model; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "locations": "Antarctica", "north": -75.09978, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lal, Devendra; Lorius, Claude", "project_titles": "Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c", "projects": [{"proj_uid": "p0000152", "repository": "USAP-DC", "title": "Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -75.09978, "title": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "uid": "609243", "west": 123.332196}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(112.833333 -66.65)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes CO2 and CH4 records derived from three ice cores obtained at Law Dome, East Antarctica, from 1987 to 1993. Law Dome is a medium size, approximately circular, (200 km dia., 1390 m high) ice sheet situated at the edge of the main East Antarctic ice sheet. The data in this set include cores drilled between 1987 and 1993 to a depth of 1199.6.", "east": 112.833333, "geometry": ["POINT(112.833333 -66.65)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Law Dome; Paleoclimate", "locations": "Antarctica; Law Dome", "north": -66.65, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Barnola, J. M.; Etheridge, David; Morgan, Vin", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -66.65, "title": "Law Dome Ice Cores Chemistry Data", "uid": "609245", "west": 112.833333}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": ["POINT(148.7725 -81.6425)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes chemistry and ion data collected from a 150 m core recovered from Siple Dome, West Antarctica. The core was drilled during the 1994/1995 field season. Dating of the core was accomplished using annual signals preserved in several chemical species, beta activity profiles, and volcanic horizons. The resulting depth/age scale indicates an age of 1890 A.D. at 24 m, and 850 A.D. at 150 m depth.", "east": 148.7725, "geometry": ["POINT(148.7725 -81.6425)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.6425, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blunier, Thomas; Severinghaus, Jeffrey P.; Brook, Edward J.; Kreutz, Karl; Mayewski, Paul A.; Dunbar, Nelia", "project_titles": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "projects": [{"proj_uid": "p0000145", "repository": "NCEI", "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability"}], "repo": "NCEI", "repositories": "NCEI", "science_programs": "Siple Dome Ice Core", "south": -81.6425, "title": "Siple Dome Ice Core Chemistry and Ion Data", "uid": "609251", "west": 148.7725}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(0.09472 -74.9961)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set consists of chemistry data obtained from a shallow core in Dronning Maud Land, Antarctica. Major ion concentration values (Na, Mg, Ca, Cl, NO3, SO4, MSA) were analyzed from the 20 meter ice core, which was drilled during the austral summer 1991-1992.", "east": 0.09472, "geometry": ["POINT(0.09472 -74.9961)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dronning Maud Land; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "locations": "Dronning Maud Land; Antarctica", "north": -74.9961, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Whitlow, Sallie; Isaksson, Elisabeth", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -74.9961, "title": "Dronning Maud Land Ice Core Chemistry Data", "uid": "609250", "west": 0.09472}, {"awards": "8411018 Frisic, David; 8613786 Mayewski, Paul", "bounds_geometry": ["POINT(162.5 -77.61667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes beta profiles, chemistry, stratigraphy data, and density and temperature profiles collected from snow pits and two ice cores on the Newall Glacier. Snow pit and ice core data were collected between 1987 and 1989. Ice Core A was 175 meters long and core B was 150 meters long.", "east": 162.5, "geometry": ["POINT(162.5 -77.61667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; Statigraphy", "locations": "Newall Glacier; Antarctica", "north": -77.61667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Welch, Kathy A.; Mayewski, Paul A.", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.61667, "title": "Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy", "uid": "609249", "west": 162.5}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(106.8 -78.4666667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set contains ice core chemistry, timescale, isotope, and temperature data analyzed by several investigators. In January 1998, the collaborative ice-drilling project between Russia, \nthe United States, and France at the Russian Vostok station in East Antarctica \nyielded the deepest ice core ever recovered, reaching a depth of 3,623 m. Preliminary data indicate the Vostok ice-core record \nextends through four climate cycles, with ice slightly older than 400 kyr.", "east": 106.8, "geometry": ["POINT(106.8 -78.4666667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Physical Properties; Temperature; Vostok Ice Core", "locations": "Lake Vostok; Antarctica", "north": -78.4666667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lal, Devendra; Barnola, J. M.; Petit, Jean Robert; Jouzel, Jean; Sowers, Todd A.; Brook, Edward J.; Bender, Michael; Fishcer, Hubertus; Blunier, Thomas; Ruddiman, William; Raymo, Maureen; Lorius, Claude; Chappellaz, Jerome", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -78.4666667, "title": "Vostok Ice Core Chemistry, Timescale, Isotope, and Temperature Data", "uid": "609242", "west": 106.8}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": ["POINT(158 -77.6666667)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes chemistry, ion, and istotope data from Taylor Dome, part of the East Antarctic ice sheet. Deep drilling at Taylor Dome successfully reached bedrock at a depth of 554 meters during the 1993-1994 austral summer. The Taylor Dome ice core is only the second core (after Vostok) to provide a stratigraphically undisturbed record through the entire last glacial cycle (the last 130,000 years or more).", "east": 158.0, "geometry": ["POINT(158 -77.6666667)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.6666667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Smith, Jesse; Sowers, Todd A.; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.; Indermuhle, A.", "project_titles": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "projects": [{"proj_uid": "p0000153", "repository": "USAP-DC", "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.6666667, "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "uid": "609246", "west": 158.0}, {"awards": "8411018 Frisic, David; 8613786 Mayewski, Paul", "bounds_geometry": ["POINT(166.16667 -85.25)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. \n", "east": 166.16667, "geometry": ["POINT(166.16667 -85.25)"], "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Antarctica; Dominion Range", "north": -85.25, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.25, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "uid": "609248", "west": 166.16667}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(123.332196 -75.09978)"], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set is a collection of analyses done on the the European Project for Ice Coring in Antarctica (EPICA)Dome C ice cores. The data include deuterium and other chemistry, insoluble dust, ice grain radius, dielectric profiling, electrical conductivity, and timescales.\n\nEPICA has completed one core in the Dome Concordia region (Core EDC96, started in 1996, 788 m length). Drilling is ongoing on a second core EDC99 (started in 1999, reached a depth of 3200 m during the 2002/2003 field season. The ice at this depth is estimated to be about 700,000 years old.)", "east": 123.332196, "geometry": ["POINT(123.332196 -75.09978)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Epica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Antarctica", "north": -75.09978, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wolff, Eric W.; Monnin, Eric; Fluckiger, Jacqueline", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Dome C Ice Core", "south": -75.09978, "title": "European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data", "uid": "609244", "west": 123.332196}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 24 Jun 2004 00:00:00 GMT", "description": "Information from 6-meter snow pits dug close to the South Pole in\naustral summer 1988-1989 by the Glacier Research Group of the\nUniversity of New Hampshire (location - 38 km on grid 90 from South\nPole station - eastern margin of clean air sector) are available.\n\nMajor ion chemistry (Na, K, Mg, Ca, Cl, NO3, SO4), oxygen isotopes\n(I8O), H2O2, and beta from a 6-meter snow pit covering the period 1955\nto 1989 are included. Major ion chemistry for a series of surface snow\nsamples were also collected on the traverse to the pit.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Whitlow, Sallie", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "South Pole Snow Pit, 1988 and 1989", "uid": "609086", "west": -180.0}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": ["POINT(-148.8 -81.7)"], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This data set is a continuous, high-resolution record of biogenic sulfur (methanesulfonate, known as MSA and CH3SO3-) in the 1000 m deep Siple Dome A (SDMA) core, covering 100,000 to 20 years BP. The analysis was done on between August 2002 and November 2003 at the University of California, Irvine. Investigators used a mass spectrometer to measure methanesulfonate. Measurements are given as MSA concentration at various depths. Estimated age of the ice at each depth is also given.\n\nThis project was a part of the West Antarctic Ice Sheet Cores (WAISCORES) project for deep ice coring in West Antarctica. WAISCORES is supported by the Office of Polar Programs, National Science Foundation (NSF).", "east": -148.8, "geometry": ["POINT(-148.8 -81.7)"], "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "project_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "projects": [{"proj_uid": "p0000251", "repository": "USAP-DC", "title": "Biogenic Sulfur in the Siple Dome Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "609201", "west": -148.8}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "These data are CO2 concentrations of the air occulded in Siple Dome ice core, Antarctica. The study was conducted between January 2001 and March 2003 on a deep ice core from Siple Dome Core A, located at 81.66 S, 148.82 W.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Antarctica", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Ahn, Jinho; Wahlen, Martin; Deck, Bruce", "project_titles": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "projects": [{"proj_uid": "p0000166", "repository": "USAP-DC", "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "uid": "609202", "west": -148.82}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-120 -80,-118.5 -80,-117 -80,-115.5 -80,-114 -80,-112.5 -80,-111 -80,-109.5 -80,-108 -80,-106.5 -80,-105 -80,-105 -80.5,-105 -81,-105 -81.5,-105 -82,-105 -82.5,-105 -83,-105 -83.5,-105 -84,-105 -84.5,-105 -85,-106.5 -85,-108 -85,-109.5 -85,-111 -85,-112.5 -85,-114 -85,-115.5 -85,-117 -85,-118.5 -85,-120 -85,-120 -84.5,-120 -84,-120 -83.5,-120 -83,-120 -82.5,-120 -82,-120 -81.5,-120 -81,-120 -80.5,-120 -80))"], "date_created": "Thu, 16 Oct 2003 00:00:00 GMT", "description": "Glaciochemical and accumulation rate records developed from four ice cores in central West Antarctica are used to reconstruct former atmospheric circulation patterns in this region for the last 40 years with extended records (150-250 years) at two sites. The sites lie on a 200 km traverse from 82 degrees 22 minutes south, 119 degrees 17 minutes west to 81 degrees 22 minutes south, 107 degrees 17 minutes west, gaining elevation from 950 to 1930 m. The glaciochemical records represent the major ionic species present in Antarctic snow: sodium, potassium, magnesium, calcium, chloride, nitrate, and sulfate.", "east": -105.0, "geometry": ["POINT(-112.5 -82.5)"], "keywords": "Accumulation Rate; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; West Antarctica", "locations": "West Antarctica; Antarctica", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Reusch, David", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -85.0, "title": "Central West Antarctic Glaciochemistry from Ice Cores", "uid": "609093", "west": -120.0}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nNereson\u0027s \u0027Age Versus Depth\u0027 plot shows the results of the calculations published in her paper on predicted age-depth scales (Nereson, N.A., E.D. Waddington, C.F. Raymond, and H.P. Jacobson. 1996. Predicted Age-Depth Scales for Siple Dome and Inland WAIS Ice Cores in West Antarctica.Geophys. Res. Let., 23(22): 3163-3166.).", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Nereson, Nadine A.", "project_titles": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "projects": [{"proj_uid": "p0000058", "repository": "USAP-DC", "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Ice Core Age-Depth Scales", "uid": "609130", "west": -149.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set provides measurements of stable isotopes of water and deuterium excess for the Siple Dome ice cores. The shallow cores from Siple Dome were analyzed for isotopes with sub-annual temporal detail.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Highlights: Stable isotopes", "uid": "609134", "west": -149.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(158 -77)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "The collection site is Taylor Dome, an ice-accumulation area on the East Antarctic ice sheet. The dome is a ridge about 20 x 80 km, which lies inland of the Transantarctic Mountains. Deep drilling by the Polar Ice Coring Office (PICO) at Taylor Dome reached bedrock at a depth of 554 meters during the 1993-1994 austral summer season.\n\n\u003cp\u003eThis data set includes mesurements of:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eberyllium-10 (betd.txt)\u003c/li\u003e\n\u003cli\u003eoxygen isotopes (hi18o_td.txt and lo18o_td.txt)\u003c/li\u003e\n\u003cli\u003edeuterium isotopes (deld_20cm.txt and deld_td.txt).\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003eThese data were produced at the University of Washington from samples obtained in the field and via the University of New Hampshire automatic melting system. For beryllium, deuterium, and 20-cm oxygen isotope data, the st9810 ice age (kyB1950) timescale is used. For 0.5- to 1-m oxygen isotope data, the st9507 is used.\u003c/p\u003e", "east": 158.0, "geometry": ["POINT(158 -77)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.; White, James", "project_titles": null, "projects": null, "repositories": null, "science_programs": "Taylor Dome Ice Core", "south": -77.0, "title": "Taylor Dome Ice Core Data", "uid": "609132", "west": 158.0}, {"awards": "0512971 Brook, Edward J.", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nBrooks measured methane in approximately 196 samples between 55.6 and 738.5 m (0-20 ka) in the Siple Dome ice core, and then extended the Siple Dome methane record at medium resolution down to about 860m, corresponding to an age of about 45 ka. The team compared the results with data from the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP).", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Methane Record", "uid": "609124", "west": -149.0}, {"awards": "9527603 Stearns, Charles; 9419128 Stearns, Charles", "bounds_geometry": null, "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": "The Automatic Weather Station (AWS) Project, funded by the NSF Office of Polar Programs, involves collecting meteorological data from an array of automatic weather stations in Antarctica, Greenland, and Peru. Data collection in Antarctica began in 1980.\n\nData are available in tabular ASCII format via the University of Wisconsin\u0027s AWS Project Web site at http://uwamrc.ssec.wisc.edu/aws/. Both raw and \u0027corrected\u0027 versions of the data are available via ftp. Information about data processing and station characteristics is also provided.", "east": null, "geometry": null, "keywords": "Antarctica; Atmosphere; AWS; Weatherstation", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stearns, Charles R.; Keller, Linda M.; Weidner, George A.; Lazzara, Matthew", "project_titles": "Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998", "projects": [{"proj_uid": "p0000151", "repository": "USAP-DC", "title": "Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000", "uid": "609111", "west": null}, {"awards": "0512971 Brook, Edward J.", "bounds_geometry": ["POINT(-38.466667 72.5833333)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "The data include methane data from the Greenland Ice Sheet Project 2 (GISP2) B \u0026 D Cores. Gas ages were calculated according to the methods described in Brook et\nal. 1996, and are subject to change. Ice ages were calculated by by\nlinear interpolation from the Meese et al. timescale.\n", "east": -38.466667, "geometry": ["POINT(-38.466667 72.5833333)"], "keywords": "Arctic; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Core Records; Methane; Paleoclimate", "locations": "Greenland; Arctic", "north": 72.5833333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.", "project_titles": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "projects": [{"proj_uid": "p0000034", "repository": "USAP-DC", "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 72.5833333, "title": "GISP2 (B and D Core) Methane Concentrations", "uid": "609125", "west": -38.466667}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nLamorey measured the density of the shallow Siple Dome cores B - I. One-meter sections of the ice core were weighed on a balance beam in the field. The volume was determined by measuring the diameter and length of the core. The data consists of tab-delimited text files of density measurements and a sonic velocity profile, and a .gif format density-versus-depth plot. Data are available via FTP.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lamorey, Gregg W.", "project_titles": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "projects": [{"proj_uid": "p0000159", "repository": "USAP-DC", "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.0, "title": "Siple Shallow Core Density Data", "uid": "609129", "west": -149.0}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes annual layer data for Siple Dome ice cores A, B, and C, based on stratigraphy; thin-section images, and fabric data. The study included the analysis of more than 2500 crystallographic c-axes conducted on 50 thin sections from the main PICO core.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Gow, Tony; Meese, Deb", "project_titles": "Physical and Structural Properties of the Siple Dome Core", "projects": [{"proj_uid": "p0000064", "repository": "USAP-DC", "title": "Physical and Structural Properties of the Siple Dome Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "uid": "609128", "west": -149.0}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set comprises low-resolution (72 dpi) jpg images of thin sections from the Siple Dome ice core. The images were acquired during the 1997/1998 field season, from both the SDM-A, or main 13.2-cm, core and from the hot water core recovered by Hermann Englehardt. The data set includes both vertical and horizontal thin sections. With one exception, all images were recorded in cross-polarized light. Two examples of archived high-resolution (275 dpi) images are provided for direct comparison of the low- and high-resolution images.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fitzpatrick, Joan", "project_titles": "Digital Imaging for Ice Core Analysis", "projects": [{"proj_uid": "p0000011", "repository": "USAP-DC", "title": "Digital Imaging for Ice Core Analysis"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Digital Images of Thin Sections from Siple Dome", "uid": "609127", "west": -149.0}, {"awards": "9527373 Dunbar, Nelia", "bounds_geometry": ["POINT(-149 -81)", "POINT(158.7889 -77.95)"], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes backscattered electron images of tephra samples extracted from the Siple and Taylor Dome ice cores, as well as electron microprobe analyses of glass shards in cases where significant, compositionally-consistent glass populations were present. The data set also includes data on the amount of volcanically derived sulfate deposited on the West Antarctic Ice Sheet and recorded in the Siple Dome ice core.", "east": 158.7889, "geometry": ["POINT(-149 -81)", "POINT(158.7889 -77.95)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "locations": "Antarctica; WAIS", "north": -77.95, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Zielinski, Gregory; Dunbar, Nelia", "project_titles": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "projects": [{"proj_uid": "p0000065", "repository": "USAP-DC", "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.0, "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "uid": "609126", "west": -149.0}, {"awards": "9526420 Taylor, Kendrick", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Thu, 08 May 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nTaylor measured the electrical conductivity (ECM) and Complex Conductivity (CC), a measure of the total ions in the ice, in the main Siple Dome ice core. Measurements were taken along the core from a depth of 0 m to 800 m. The project also analyzed shallower cores for ECM and dielectric properties (DEP). (DEP is also a measure of the total ions in the ice, but with lower spatial resolution than the CC.) Albedo measurements where made on the shallow cores and the main core to a depth of 391 m. The data set includes images showing the electrical conductivity of a vertical section of the core.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Taylor, Kendrick C.", "project_titles": "Electrical and Optical Measurements on the Siple Dome Ice Core", "projects": [{"proj_uid": "p0000163", "repository": "USAP-DC", "title": "Electrical and Optical Measurements on the Siple Dome Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Cores Electrical Measurement Data", "uid": "609133", "west": -149.0}, {"awards": "9526572 Bales, Roger", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet Cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed snow pit and core samples from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes glaciochemical spatial variability data for six Siple Dome snow pits. Samples involved measuring hydrogen peroxide (H\u003csub\u003e2\u003c/sub\u003eO\u003csub\u003e2\u003c/sub\u003e) and formaldehyde (HCHO) in the air, snow, firn, and ice via suppressed ion chromatography. The data can be used to interpret changes in concentrations of these species recorded in ice cores. Data in this collection were obtained during two Antarctic field seasons in 1994 to 1995 and 1996 to 1997. Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McConnell, Joseph; Bales, Roger", "project_titles": "Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "projects": [{"proj_uid": "p0000060", "repository": "USAP-DC", "title": "Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.0, "title": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "uid": "609122", "west": -149.0}, {"awards": "9526449 Mayewski, Paul", "bounds_geometry": ["POLYGON((-149.11 -81.05,-149.05 -81.05,-148.99 -81.05,-148.93 -81.05,-148.87 -81.05,-148.81 -81.05,-148.75 -81.05,-148.69 -81.05,-148.63 -81.05,-148.57 -81.05,-148.51 -81.05,-148.51 -81.11,-148.51 -81.17,-148.51 -81.23,-148.51 -81.29,-148.51 -81.35,-148.51 -81.41,-148.51 -81.47,-148.51 -81.53,-148.51 -81.59,-148.51 -81.65,-148.57 -81.65,-148.63 -81.65,-148.69 -81.65,-148.75 -81.65,-148.81 -81.65,-148.87 -81.65,-148.93 -81.65,-148.99 -81.65,-149.05 -81.65,-149.11 -81.65,-149.11 -81.59,-149.11 -81.53,-149.11 -81.47,-149.11 -81.41,-149.11 -81.35,-149.11 -81.29,-149.11 -81.23,-149.11 -81.17,-149.11 -81.11,-149.11 -81.05))"], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed snow pit and core samples from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes glaciochemical spatial variability data for Siple Dome snow pits B, E, F, G, H, and 1 through 6. Samples were analyzed for soluble ion content via suppressed ion chromatography. Each pit was sampled at 2 cm resolution for ion chemistry using clean procedures, and sampled again at 3 cm resolution for density calculations. Snow pit names and locations correspond to the 1996 to 1997 season shallow core sites.\n\nData in this collection were obtained during two Antarctic field seasons in 1994 to 1995 and 1996 to 1997. Data are available via FTP in space-delimited ASCII text (.dat) file format.", "east": -148.51, "geometry": ["POINT(-148.81 -81.35)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit; WAIS; WAISCORES", "locations": "WAIS; Antarctica", "north": -81.05, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kreutz, Karl; Mayewski, Paul A.", "project_titles": "Siple Dome Deep Ice Core Glaciochemistry and Regional Survey - A Contribution to the WAIS Initiative", "projects": [{"proj_uid": "p0000012", "repository": "USAP-DC", "title": "Siple Dome Deep Ice Core Glaciochemistry and Regional Survey - A Contribution to the WAIS Initiative"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "WAISCORES Snow Pit Chemistry, Antarctica", "uid": "609420", "west": -149.11}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 10 Jul 2002 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Siple Dome ice cores were analyzed for methanesulfonate (MSA) and carbonyl sulfide (OCS). The methanesulfonate analysis was done on cores A-E and a hot water core, and the carbonyl sulfide analysis was done on 11 C cores. Methanesulfonate data include the sample identification number, depth, and methanesulfonate parts per billion (ppb) of each sample. Carbonyl sulfide data include the depth, OCS parts per trillion (ppt) of each sample, percent error, and gas age (years). Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "uid": "609131", "west": -149.0}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": ["POINT(158.71 -77.8)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "These data describe the concentration and carbon-isotopic composition (d13CO2) of atmospheric CO2 from air trapped in ice between 27,000 and 1,300 years before present from Taylor Dome, Antarctica. Data are used to investigate the causes of the CO2 concentration increase that occurred during the transition between the last glacial maximum (LGM) and the Holocene. Data are in tab-delimited ASCII and Excel formats, and are available via ftp.", "east": 158.71, "geometry": ["POINT(158.71 -77.8)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.8, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wahlen, Martin", "project_titles": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "projects": [{"proj_uid": "p0000153", "repository": "USAP-DC", "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "uid": "609108", "west": 158.71}, {"awards": "9318121 Anandakrishnan, Sridhar; 9222121 Dalziel, Ian", "bounds_geometry": ["POINT(106.48 -72.28)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "These data describe the d18O of O2, d15N of N2, d18Oatm, and O2/N2 ratios of trapped gases in the Vostok ice core from East Antarctica. The investigator used a mass spectrometer to measure gas concentrations and isotopic compositions. Data extend to approximately 420,000 years ago. Two different age models are included.\n\nData are available in tab-delimited ASCII format via ftp.", "east": 106.48, "geometry": ["POINT(106.48 -72.28)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "locations": "Lake Vostok; Antarctica", "north": -72.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael", "project_titles": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "projects": [{"proj_uid": "p0000150", "repository": "USAP-DC", "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.28, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "uid": "609107", "west": 106.48}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "The WAISCORES project is part of the National Science Foundation Office of Polar Programs\u0027 West Antarctic Ice Sheet (WAIS) initiative, which is aimed at understanding the influence of the West Antarctic ice sheet on climate and sea level change.\nWAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These cores allow researchers to distinguish local from regional influences on the climate records recovered from the cores. Drilling for the Siple Dome core began in November 1996 and finished in January 1999. The core site is located between ice streams C and D at approximately 81\u00b0 40\u0027 S and 148\u00b0 49\u0027 W. Preliminary studies indicate that the paleoclimate record preserved in the 1003-meter Siple Dome ice core extends back more than 90 thousand years. Data are available via ftp.\n\nThe following WAISCORES investigators have made contributions to WAISCORES research. NSIDC archives data for many of these investigators: Mary Albert, Richard Alley, Robin Bell, Michael Bender, Robert Bindscadler, Pierre Biscaye, Donald Blankenship, Ed Brook, Nelia Dunbar, Joan Fitzpatrick, Tony Gow, Gregg Lamorey, Paul Mayewski, Joseph McConnell, Deb Meese, Nadine Nereson, Charlie Raymond, Eric Saltzman, Eric Steig, Christopher Shuman, Ken Taylor, Lonnie Thompson, Edwin Waddington, Martin Wahlen, James White, and Gret Zielinksi.\n\nThis landing page has no data files!", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; WAIS; WAISCORES", "locations": "WAIS; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lamorey, Gregg W.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -81.0, "title": "WAISCORES: Deep Ice Coring in West Antarctica", "uid": "609120", "west": -149.0}, {"awards": "9318121 Anandakrishnan, Sridhar; 9222121 Dalziel, Ian", "bounds_geometry": ["POLYGON((-121.644 -82.2764,-121.4814 -82.2764,-121.3188 -82.2764,-121.1562 -82.2764,-120.9936 -82.2764,-120.831 -82.2764,-120.6684 -82.2764,-120.5058 -82.2764,-120.3432 -82.2764,-120.1806 -82.2764,-120.018 -82.2764,-120.018 -82.28496,-120.018 -82.29352,-120.018 -82.30208,-120.018 -82.31064,-120.018 -82.3192,-120.018 -82.32776,-120.018 -82.33632,-120.018 -82.34488,-120.018 -82.35344,-120.018 -82.362,-120.1806 -82.362,-120.3432 -82.362,-120.5058 -82.362,-120.6684 -82.362,-120.831 -82.362,-120.9936 -82.362,-121.1562 -82.362,-121.3188 -82.362,-121.4814 -82.362,-121.644 -82.362,-121.644 -82.35344,-121.644 -82.34488,-121.644 -82.33632,-121.644 -82.32776,-121.644 -82.3192,-121.644 -82.31064,-121.644 -82.30208,-121.644 -82.29352,-121.644 -82.28496,-121.644 -82.2764))", "POLYGON((-152.598 -81.8039,-149.8369 -81.8039,-147.0758 -81.8039,-144.3147 -81.8039,-141.5536 -81.8039,-138.7925 -81.8039,-136.0314 -81.8039,-133.2703 -81.8039,-130.5092 -81.8039,-127.7481 -81.8039,-124.987 -81.8039,-124.987 -81.90464,-124.987 -82.00538,-124.987 -82.10612,-124.987 -82.20686,-124.987 -82.3076,-124.987 -82.40834,-124.987 -82.50908,-124.987 -82.60982,-124.987 -82.71056,-124.987 -82.8113,-127.7481 -82.8113,-130.5092 -82.8113,-133.2703 -82.8113,-136.0314 -82.8113,-138.7925 -82.8113,-141.5536 -82.8113,-144.3147 -82.8113,-147.0758 -82.8113,-149.8369 -82.8113,-152.598 -82.8113,-152.598 -82.71056,-152.598 -82.60982,-152.598 -82.50908,-152.598 -82.40834,-152.598 -82.3076,-152.598 -82.20686,-152.598 -82.10612,-152.598 -82.00538,-152.598 -81.90464,-152.598 -81.8039))"], "date_created": "Sat, 01 Dec 2001 00:00:00 GMT", "description": "Ice velocity data from ice stream C, including the body of the ice stream and its area of onset, are available. The investigator calculated velocities from precise ice displacement measurements made with a geodetic-quality Global Positioning System (GPS). These ice displacement measurements accompanied seismic experiments aimed at understanding controls on the flow of ice streams in west Antarctica. An understanding of ice stream flow is essential to predicting the response of the West Antarctic Ice Sheet to future climate change.\n\nData are available in ASCII format via ftp.", "east": -120.018, "geometry": ["POINT(-120.831 -82.3192)", "POINT(-138.7925 -82.3076)"], "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; WAIS", "locations": "Antarctica; WAIS", "north": -81.8039, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Anandakrishnan, Sridhar", "project_titles": "Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots", "projects": [{"proj_uid": "p0000161", "repository": "USAP-DC", "title": "Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.8113, "title": "Ice Velocity Data from Ice Stream C, West Antarctica", "uid": "609106", "west": -152.598}, {"awards": "9980538 Lohmann, Kyger", "bounds_geometry": null, "date_created": "Mon, 11 Jun 2001 00:00:00 GMT", "description": "Geochemical composition of shells of the bivalve, Cucullaea from the La Meseta Formation, Seymour Island, Antarctica.", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Lohmann, Kyger", "project_titles": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene", "projects": [{"proj_uid": "p0000613", "repository": "USAP-DC", "title": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "uid": "600019", "west": null}, {"awards": "9725918 Brook, Edward J.; 9725305 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-102 -89.997)", "POINT(-148.767 -81.667)"], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "This data set includes d15N, d18O/2, dO2/N2/4, d40Ar/4, d38/Ar/2,\nd84Kr/48, and d132Xe/96 values for air drawn from the top 15 to 50 m\nof firn at the South Pole (summer and winter 1998) and a site at Siple\nDome (summers 1996 and 1998). Data also include related firn\ntemperature measurements.\n\nThe objective of this research was to better understand thermal\nfractionation processes affecting records of atmospheric history from\nfirn and ice core gases. Recent work (e.g., Severinghaus and Brook,\n1999) has exploited trapped air in ice and deep firn as a record of\npast atmospheric composition and climate change. Interpretation of these paleoclimate archives is complicated by artifacts of thermal\ndiffusion, a process in which heavier gases migrate down temperature\ngradients toward colder regions in the firn. Seasonal temperature\nchange at the snow surface creates strong temperature gradients in the\ntop few meters of the firn, which cause isotopic fractionation of firn\ngases. A specific goal of this research is to identify any long-term\neffects of seasonal temperature fluctuations on firn air isotopic\nanomalies.", "east": -102.0, "geometry": ["POINT(-102 -89.997)", "POINT(-148.767 -81.667)"], "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Isotope; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole; Temperature", "locations": "Siple Dome; Antarctica; South Pole", "north": -81.667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Battle, Mark; Grachev, Alexi", "project_titles": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change", "projects": [{"proj_uid": "p0000160", "repository": "USAP-DC", "title": "Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -89.997, "title": "Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole", "uid": "609098", "west": -148.767}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(162 -77)"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "Snow pit and ice core data from the Newall Glacier (location - 162 30\u0027\nEast, 77 35\u0027 South) were collected during 1987 and 1988. These include\ninformation on chemistry, Beta profiles and stratigraphy. Ice cores\nwere collected during the austral summer of 1988-1989 and contain\ninformation on chemistry, Pb- 210 profiles, density profiles and\ntemperature profiles. Core A was 175 meters long and core B was 150\nmeters long.\n\nThe snow pits were dug and sampled by the Glacier Research Group\n(GRG), using established protocols to prevent contamination. The\nsamples for major ion chemistry remained frozen until melted for\nanalysis in the GRG lab, located at the University of New Hampshire\n(UNH), and all core processing was done by GRG established protocols\nto prevent contamination. Major ions were analyzed using suppressed\nion chromatography.", "east": 162.0, "geometry": ["POINT(162 -77)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Newall Glacier; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Whitlow, Sallie", "project_titles": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000169", "repository": "USAP-DC", "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "uid": "609088", "west": 162.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(166 -85)"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "Information from snow pits and an ice core were collected at Dominion Range (location - 166 10\u0027 East, 85 15\u0027 South, elevation - 2,700m) in 1984-1985. The 6 meter snow pit was dug and sampled in 1984-1985 with a 3 cm sampling interval. Four 1 meter snow pits were dug and sampled in 1984-1985 with a 3 cm sampling interval. One core was drilled during the austral summer 1984-1985 with a depth of 160 meters.\n\nChemistry and density data were collected from the 1 meter pits. Chemistry, beta profile and density data were collected from the 6 meter snow pits. Chemistry (Na NH4, K, Mg, Ca, Cl, NO3, SO4, MSA), particles and a lead-210 profile were collected from the ice core.", "east": 166.0, "geometry": ["POINT(166 -85)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dominion Range; Geochemistry; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Antarctica; Dominion Range", "north": -85.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mayewski, Paul A.; Whitlow, Sallie", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -85.0, "title": "Dominion Range Snow Pit and Ice Core, 1984 and 1985", "uid": "609087", "west": 166.0}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior.\n\nThis project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar.\n\nData in this collection were obtained during two Antarctic field seasons in 1994\u201395 and 1996\u201397. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files.", "east": -145.0, "geometry": ["POINT(-150 -82)"], "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jacobel, Robert", "project_titles": "Siple Dome Glaciology and Ice Stream History", "projects": [{"proj_uid": "p0000190", "repository": "USAP-DC", "title": "Siple Dome Glaciology and Ice Stream History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.0, "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "uid": "609085", "west": -155.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(65 -75)"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "Major ion concentration values (Na, Mg, Ca, Cl, NO3, SO4, MSA) were\nanalyzed from a 20-meter ice core drilled in Dronning Maud Land,\nAntarctica (location - 65 01\u0027 East, 75 00\u0027 South, elevation - 2,900 m\na.s.l.). The core was drilled during the austral summer\n1991-1992. Major ion analysis was by ion chromatography. The anions\nwere analyzed on a Dionex AS4A column; the cations on a Dionex CS12\ncolumn and MSA on a Dionex AS4 column. All used suppressed chromatography. Using established protocols to prevent contamination,\nthe core was processed into 3-centimeter pieces by the Glacier\nResearch Group at the University of New Hampshire\u0027s Climate Change\nResearch Center. The 3-cm pieces were kept frozen until major ion\nanalysis.", "east": 65.0, "geometry": ["POINT(65 -75)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dronning Maud Land; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Antarctica; Dronning Maud Land", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Whitlow, Sallie; Mayewski, Paul A.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -75.0, "title": "Dronning Maud Land, Antarctica, Ice Core, 1991 and 1992", "uid": "609089", "west": 65.0}, {"awards": "9526374 Alley, Richard", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 01 Jan 1997 00:00:00 GMT", "description": "This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis data set includes melt layers and annual layer data for Siple Dome cores A through J, and upstream core C (UpC). Cores were examined on a light table after the core had been sectioned longitudinally and samples removed for isotopic, chemical, and other analyses, and after the surface had been smoothed using a planer. Major stratigraphic features were noted, such as coarse-grained and fine-grained firn at shallow depths, and coarse-bubbled and fine-bubbled ice at greater depth. Melt layers were identified as bubble-free or nearly-bubble-free zones. Core lengths ranged from 30 to 133 meters.\n\nData in this collection were obtained in the summer of 1997. The data set is available via FTP as ACSII data (.dat), metadata (.meta) and text (.txt) files.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Alley, Richard", "project_titles": "Physical Properties of the Siple Dome Deep Ice Core", "projects": [{"proj_uid": "p0000059", "repository": "USAP-DC", "title": "Physical Properties of the Siple Dome Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "uid": "609121", "west": -149.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Temporal and spatial variation in stress tolerance in Belgica antarctica populations from distinct islands
|
1850988 |
2025-03-24 | Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Teets, Nicholas |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
Environmental conditions are the major drivers of species distribution, and terrestrial Antarctica arguably presents the most dramatic challenges for its inhabitants. Many animals rely on acclimation to enhance their stress tolerance to face unfavorable conditions. Some animals can also rely on their phenotypic plasticity to respond to these unfavorable conditions without the need to slowly experience increasing levels of stress to enhance their stress tolerance (i.e., acclimate). <br/>Belgica antarctica can rely on both types of strategies, but since they evolved to live in a habitat with such dramatic environmental changes as Antarctica, they are very sensitive to any type of stress (e.g., a sudden drop in temperature, or a bout of high-speed wind). Studying the extent to which B. antarctica rely on each of these strategies to survive and how environmental variation can shape this species’ biology across distinct populations (i.e., that might experience distinct selective pressures) is important to help us better understand how polyextremophiles adapt and evolve while inhabiting extreme environments. This project focused on studying stress tolerance in B. antarctica populations of three distinct islands, Torgersen, Cormorant, and Outcast. In addition, we investigated how these responses to stress change between early- and late-summer (i.e., between larvae that recently finished overwintering - here referred as summer larvae, and larvae that are preparing to overwinter - here referred as winter larvae). | ["POLYGON((-64.067 -64.766,-64.05669999999999 -64.766,-64.04639999999999 -64.766,-64.03609999999999 -64.766,-64.02579999999999 -64.766,-64.0155 -64.766,-64.0052 -64.766,-63.994899999999994 -64.766,-63.9846 -64.766,-63.9743 -64.766,-63.964 -64.766,-63.964 -64.7688,-63.964 -64.7716,-63.964 -64.7744,-63.964 -64.77720000000001,-63.964 -64.78,-63.964 -64.7828,-63.964 -64.7856,-63.964 -64.7884,-63.964 -64.7912,-63.964 -64.794,-63.9743 -64.794,-63.9846 -64.794,-63.994899999999994 -64.794,-64.0052 -64.794,-64.0155 -64.794,-64.02579999999999 -64.794,-64.03609999999999 -64.794,-64.04639999999999 -64.794,-64.05669999999999 -64.794,-64.067 -64.794,-64.067 -64.7912,-64.067 -64.7884,-64.067 -64.7856,-64.067 -64.7828,-64.067 -64.78,-64.067 -64.77720000000001,-64.067 -64.7744,-64.067 -64.7716,-64.067 -64.7688,-64.067 -64.766))"] | ["POINT(-64.0155 -64.78)"] | false | false |
Thermogenic Methane Production in Antarctic Subglacial Hydrocarbon Seeps
|
2423761 2042495 |
2025-03-17 | Piccione, Gavin |
EAGER: Pedogenic Carbonates Record Insolation Driven Surface Melting in Antarctica Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates |
This dataset includes geochemical analyses of carbonate nodules collected at Elephant Moraine and the Pensacola Mountains, East Antarctica. Oxygen and uranium-series isotope analyses indicate that these carbonates precipitated from glacial meltwater during deglacial periods in the late Pleistocene. Carbonate δ13C values as low as -32.75 ‰ identify thermogenic methane as a primary carbon source, while clumped isotope measurements indicate formation temperatures of 12 - 20˚C, consistent with a geothermal origin. Lipid biomarker analyses further show that organic matter preserved in the nodules is highly thermally matured. These findings indicate that deep-sourced thermogenic methane migrated as hydrocarbon seeps to shallow pore spaces within basal sediments, demonstrating that geothermally active areas can be hotspots for methane accumulation below the Antarctic Ice Sheet. This material is based on services provided by the Polar Rock Repository with support from the National Science Foundation, under Cooperative Agreement OPP-2137467. | ["POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))"] | ["POINT(0 -89.999)"] | false | false |
Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming
|
2042495 |
2025-03-05 | Gagliardi, Jessica |
Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates |
This dataset contains U-series, d18O, d13C and 87Sr/86Sr data from 25 subglacial calcite precipitates from locations around the Antarctic ice sheet, primarily outlet glaciers near the ice sheet margins and nunataks in the Transantarctic mountains. Lat-lon data for each sample is given as well. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector
|
2114839 |
2025-02-24 | Hemming, Sidney R.; Passchier, Sandra |
West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus at International Ocean Discovery Program Sites U1532 and U1533 in the Amundsen Sea sector. The depositional age of the sediments is early Pliocene. | ["POLYGON((-109.05 -68.612,-108.8974 -68.612,-108.7448 -68.612,-108.59219999999999 -68.612,-108.4396 -68.612,-108.287 -68.612,-108.1344 -68.612,-107.98179999999999 -68.612,-107.8292 -68.612,-107.67660000000001 -68.612,-107.524 -68.612,-107.524 -68.62429999999999,-107.524 -68.6366,-107.524 -68.6489,-107.524 -68.6612,-107.524 -68.67349999999999,-107.524 -68.6858,-107.524 -68.6981,-107.524 -68.71039999999999,-107.524 -68.7227,-107.524 -68.735,-107.67660000000001 -68.735,-107.8292 -68.735,-107.98179999999999 -68.735,-108.1344 -68.735,-108.287 -68.735,-108.4396 -68.735,-108.59219999999999 -68.735,-108.7448 -68.735,-108.8974 -68.735,-109.05 -68.735,-109.05 -68.7227,-109.05 -68.71039999999999,-109.05 -68.6981,-109.05 -68.6858,-109.05 -68.67349999999999,-109.05 -68.6612,-109.05 -68.6489,-109.05 -68.6366,-109.05 -68.62429999999999,-109.05 -68.612))"] | ["POINT(-108.287 -68.67349999999999)"] | false | false |
MOT data (Xe/Kr) from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | ["POINT(159.356125 -76.732376)"] | ["POINT(159.356125 -76.732376)"] | false | false |
CO2 and CH4 from Allan Hills ice cores ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-12 | Higgins, John |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. <br/> | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
Heavy noble gases (Ar/Xe/Kr) from ALHIC1901, 1902, and 1903
|
1744993 |
2025-02-11 | Higgins, John |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | [] | [] | false | false |
Bird, Mammal, Plankton, Oceanographic data, South Georgia, July 2023
|
2011454 |
2025-02-10 | Manne, Lisa; Veit, Richard; Santora, Jarrod; Czapanskiy, Max |
Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter |
Birds and mammals sighted along transect surveys around South Georgia, and maps of their distributions. Associated plankton and oceanographic data. | ["POLYGON((-39 -53.5,-38.6 -53.5,-38.2 -53.5,-37.8 -53.5,-37.4 -53.5,-37 -53.5,-36.6 -53.5,-36.2 -53.5,-35.8 -53.5,-35.4 -53.5,-35 -53.5,-35 -53.65,-35 -53.8,-35 -53.95,-35 -54.1,-35 -54.25,-35 -54.4,-35 -54.55,-35 -54.7,-35 -54.85,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.85,-39 -54.7,-39 -54.55,-39 -54.4,-39 -54.25,-39 -54.1,-39 -53.95,-39 -53.8,-39 -53.65,-39 -53.5))"] | ["POINT(-37 -54.25)"] | false | false |
Temperature acclimation and acclimatization of sea spider larvae
|
1745130 |
2025-01-31 | Moran, Amy; Lobert, Graham; Toh, MIng Wei Aaron |
Thermal Sensitivity of Antarctic Embryos and Larvae: Effects of Temperature on Metabolism, Developmental Rate, and the Metabolic Cost of Development |
This dataset includes oxygen consumption rates of larvae of the sea spider Nymphon australe acclimated in the laboratory to two different temperatures, assessed across four different temperatures. The dataset also includes oxygen consumption measured at the same range of temperatures between larvae collected in the field in the late winter (cold) and mid spring (slightly warmer). | [] | [] | false | false |
South Pole Ice Core (SPC14) Bubble Number-Density Data
|
1542778 |
2025-01-15 | Fegyveresi, John |
Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core |
This data set includes the bubble number-density data measured in the SPC14 South Pole Ice Core from depths of 160 m to 1200 m. Traditional bubble-section data are included measured from 53 samples taken at 20 m intervals (tab 1). Additionally, we include new micro-CT data from 11 new samples taken at 100 m intervals (tab 2). The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006) and Fegyveresi and others (2011). This data set also includes a tab for bubble sizes measured in the traditional bubble-sections. | ["POLYGON((-180 -89,-144 -89,-108 -89,-72 -89,-36 -89,0 -89,36 -89,72 -89,108 -89,144 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.9,-180 -89.8,-180 -89.7,-180 -89.6,-180 -89.5,-180 -89.4,-180 -89.3,-180 -89.2,-180 -89.1,-180 -89))"] | ["POINT(0 -89.999)"] | false | false |
Crabeater seal tracking data 2022-2023
|
2042032 |
2025-01-13 | Huckstadt, Luis |
NSFGEO-NERC Collaborative Research: Effects of a Changing Climate on the Habitat Utilization, Foraging Ecology and Distribution of Crabeater Seals |
["POLYGON((-120 -60,-112 -60,-104 -60,-96 -60,-88 -60,-80 -60,-72 -60,-64 -60,-56 -60,-48 -60,-40 -60,-40 -62,-40 -64,-40 -66,-40 -68,-40 -70,-40 -72,-40 -74,-40 -76,-40 -78,-40 -80,-48 -80,-56 -80,-64 -80,-72 -80,-80 -80,-88 -80,-96 -80,-104 -80,-112 -80,-120 -80,-120 -78,-120 -76,-120 -74,-120 -72,-120 -70,-120 -68,-120 -66,-120 -64,-120 -62,-120 -60))"] | ["POINT(-80 -70)"] | false | false | |
Snapshot record of CO2 and CH4 from the Allan Hills, Antarctica, ranging from 400,000 to 3 million years old
|
1745006 2019719 |
2025-01-06 | Marks Peterson, Julia; Brook, Edward; Kalk, Michael; Hishamunda, Valens; Shackleton, Sarah; Severinghaus, Jeffrey P. |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
This dataset contains snapshots of carbon dioxide and methane concentrations, total air content, stable isotope measurements of carbon dioxide, as well as measurements of molecular oxygen and nitrogen and their stable isotopic signatures. Samples come from the ALHIC1901 ice core from the Allan Hills, Antarctica. Where possible, new ages have been assigned to previous measurements from the ALHIC1503 ice core. For samples containing excess CO2 from a secondary source, estimated atmospheric CO2 ranges are included. | ["POINT(159.356125 -76.732376)"] | ["POINT(159.356125 -76.732376)"] | false | false |
The effects of microhabitat temperature in phenotypic variation across B. antarctica populations
|
1850988 |
2025-01-03 | Sousa Lima, Cleverson; Michel, Andrew; Hayward, Scott; Teets, Nicholas; Lima, Cleverson de Sousa | No project link provided | Environmental conditions are the major drivers of species distribution, and terrestrial Antarctica arguably presents the most dramatic challenges for its inhabitants. Many animals rely on acclimation to enhance their stress tolerance to face unfavorable conditions. Some animals can also rely on their phenotypic plasticity to respond to these unfavorable conditions without the need to slowly experience increasing levels of stress to enhance their stress tolerance (i.e., acclimate). Belgica antarctica can rely on both types of strategies, but since they evolved to live in a habitat with such dramatic environmental changes as Antarctica, they are very sensitive to any type of stress (e.g., a sudden drop in temperature, or a bout of high-speed wind). Studying the extent to which B. antarctica rely on each of these strategies to survive and how environmental variation can shape this species’ biology across distinct populations (i.e., that might experience distinct selective pressures) is important to help us better understand how polyextremophiles adapt and evolve while inhabiting extreme environments. This project focused on studying freeze tolerance in B. antarctica populations populations within Cormorant Island that inhabited three distinct microhabitats over the course of the summer season (January-March). | ["POLYGON((-64.067 -64.766,-64.05669999999999 -64.766,-64.04639999999999 -64.766,-64.03609999999999 -64.766,-64.02579999999999 -64.766,-64.0155 -64.766,-64.0052 -64.766,-63.994899999999994 -64.766,-63.9846 -64.766,-63.9743 -64.766,-63.964 -64.766,-63.964 -64.7688,-63.964 -64.7716,-63.964 -64.7744,-63.964 -64.77720000000001,-63.964 -64.78,-63.964 -64.7828,-63.964 -64.7856,-63.964 -64.7884,-63.964 -64.7912,-63.964 -64.794,-63.9743 -64.794,-63.9846 -64.794,-63.994899999999994 -64.794,-64.0052 -64.794,-64.0155 -64.794,-64.02579999999999 -64.794,-64.03609999999999 -64.794,-64.04639999999999 -64.794,-64.05669999999999 -64.794,-64.067 -64.794,-64.067 -64.7912,-64.067 -64.7884,-64.067 -64.7856,-64.067 -64.7828,-64.067 -64.78,-64.067 -64.77720000000001,-64.067 -64.7744,-64.067 -64.7716,-64.067 -64.7688,-64.067 -64.766))"] | ["POINT(-64.0155 -64.78)"] | false | false |
Allan Hills ice water stable isotope record for dD, d18O
|
1744993 1443306 0838843 1745007 1744832 2019719 1745006 |
2024-12-16 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Severinghaus, Jeffrey P.; Higgins, John; Brook, Edward |
Center for Oldest Ice Exploration Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This project aimed to reconstruct paleoclimate conditions from old Antarctic ice using stable water isotope analysis. Through multi-year, multi-institutional collaboration, data from several sites have been analyzed. These findings will contribute to several studies, advancing our understanding of Earth's past climate and long-term climate changes. | [] | [] | false | false |
ALHIC2201 and ALHIC2302 3D ECM and Layer Orientations
|
2149518 2019719 |
2024-12-06 | Kirkpatrick, Liam; Carter, Austin; Marks Peterson, Julia; Shackleton, Sarah; Fudge, T. J. |
Center for Oldest Ice Exploration Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections |
This dataset includes three-dimensional multitrack electrical conductivity measurements (3D ECM) results from measurements in the upper sections of the ALHIC2201 and ALHIC2302 large (241mm) diameter ice cores drilled in the Allan Hills blue ice area (76.73°S,159.36°E) in Victoria Land, East Antarctica. The data extends from the surface to 23.0 m depth in ALHIC2201 and from 8.5 m to 46.3 m depth in ALHIC2302. We include the raw 3D ECM data (AC and DC multitrack ECM measurements on perpendicular faces of a quarter-core cut) in CSV format and basic plots of this data. We also provide dip and dip direction estimates of the layering observed in each core section in a CSV table. | ["POINT(159.36 -76.73)"] | ["POINT(159.36 -76.73)"] | false | false |
South Pole Ice Core Sea Salt and Major Ions
|
1443105 1141839 1443336 1443397 1443663 |
2024-11-20 | Winski, Dominic A. |
Collaborative Research: A 1500m Ice Core from South Pole Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
This dataset includes all major ion chemistry data from the South Pole Ice Core as well as sea salt sodium data resampled at annual resolution. The development of this dataset is discussed in Winski et al. 2021. The chloride, nitrate, sulfate, magnesium and calcium data have not yet been published, nor has any data prior to the Holocene. Please contact the dataset authors if you have questions. | ["POINT(-99 -90)"] | ["POINT(-99 -90)"] | false | false |
South Pole Ice Core Holocene Major Ion Dataset
|
1443336 1443397 1443663 1443105 1141839 |
2024-11-18 | Winski, Dominic A. |
Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements Collaborative Research: A 1500m Ice Core from South Pole |
This dataset includes major ion and seasonal sea salt chemistry data from the South Pole Ice Core. Included are the raw major ion data, annually resolved mean, maximum and minimum sea salt sodium concentrations and centennially resolved principal components (discussed in Winski et al. (2021). | ["POINT(-89.16 -89.99)"] | ["POINT(-89.16 -89.99)"] | false | false |
NBP1402 diatom data
|
1143836 |
2024-10-21 | Leventer, Amy; NBP1402 science party, |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Totten Glacier is the termination of the largest marine-based portion of the East Antarctic Ice Sheet, the Aurora Subglacial Basin. Yet little is known about the glacial evolution of the catchment and the factors influencing its present and past behavior. Due its remote location and heavy sea ice, the continental shelf in front of the Totten Glacier had not been comprehensively surveyed prior to this study. Satellite observations indicate that the Totten ice drainage system is thinning, and it has been hypothesized that this thinning is in response to undermelting by warm ocean waters over the continental shelf. While this process is observed elsewhere in Antarctica (e.g. the rapidly retreating Pine Island Glacier in West Antarctica), the Totten Glacier system is potentially Antarcticas most important glacial drainage system due to its large size; it is three times larger than any system in West Antarctica. </br>The main goals of this proposal were: </br>To generate multibeam bathymetric maps of the continental shelf proximal to the Totten Glacier system to understand the recent regional glacial history and to document the pathways, if any, for circumpolar deep water to move onto the shelf. </br>To conduct a physical oceanographic survey of the region proximal to the Totten Glacier system, to determine the presence, if any, of warm ocean waters over the continental shelf.</br>To conduct a seismic survey of the continental shelf to assess the long-term evolution of the glacial system in the Aurora Subglacial Basin.</br>To collect marine sediment cores to determine the regional deglacial to Holocene climate history and the influence of warm circumpolar deep water. | ["POLYGON((117 -66,119.9 -66,122.8 -66,125.7 -66,128.6 -66,131.5 -66,134.4 -66,137.3 -66,140.2 -66,143.1 -66,146 -66,146 -66.1,146 -66.2,146 -66.3,146 -66.4,146 -66.5,146 -66.6,146 -66.7,146 -66.8,146 -66.9,146 -67,143.1 -67,140.2 -67,137.3 -67,134.4 -67,131.5 -67,128.6 -67,125.7 -67,122.8 -67,119.9 -67,117 -67,117 -66.9,117 -66.8,117 -66.7,117 -66.6,117 -66.5,117 -66.4,117 -66.3,117 -66.2,117 -66.1,117 -66))"] | ["POINT(131.5 -66.5)"] | false | false |
Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/> <br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. <br/><br/>A similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. <br/><br/> <br/><br/> <br/><br/> | ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"] | ["POINT(-38.055 66.25)"] | false | false |
Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. <br/><br/><br/>A similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center. | ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"] | ["POINT(-62.75 -67.25999999999999)"] | false | false |
Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)
|
1840058 |
2024-09-16 | jenouvrier, stephanie |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated” mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. <br/> | ["POINT(140.017 -66.66)"] | ["POINT(140.017 -66.66)"] | false | false |
Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains Sr and Nd isotope compositions of ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains dust mass concentrations, coarse particle fraction, interpolated accumulation rate, and dust flux from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.
|
2035580 |
2024-08-15 | Carter, Austin |
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial |
This dataset contains rare earth elemental concentrations of leached ice core dust from ALHIC1903 spanning the transition from MIS 6 through 5e. | ["POINT(159.31 -76.7)"] | ["POINT(159.31 -76.7)"] | false | false |
Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica
|
None | 2024-07-23 | Riddell-Young, Benjamin; Iseli, Rene; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, James; Clark, Reid; Brook, Edward J. | No project link provided | This dataset includes measurements of the Deuterium isotopic Composition of Atmospheric Methane (δD-CH4) of gas bubbles from the Talos Dome Ice Core (TALDICE). All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data are displayed as a function of TALDICE depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation: Award #200020_172506, and #200020B_200328L. | [] | [] | false | false |
Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica
|
1745078 |
2024-07-23 | Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (δ13C-CH4 and δD-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L. | [] | [] | false | false |
Impulse HF radar data from Conway Ridge
|
0087144 |
2024-07-22 | Hoffman, Andrew; Conway, Howard; Christianson, Knut |
Glacial History of Ridge AB, West Antarctica |
Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\sim3000$ and $\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly. | ["POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))"] | ["POINT(-140 -84.25)"] | false | false |
U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica
|
2042495 1644171 |
2024-07-01 | Edwards, Graham; Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek |
U-Series Comminution Age Constraints on Taylor Valley Erosion Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates |
This dataset contains uranium and thorium isotopic compositions (U-234, U-235, U-238, Th-230, Th-232) and major element compositions (Al, K, Na, Ca, Fe, Mn, reported as oxides) for silicate sediments from glaciogenic drifts associated with advances of Taylor Glacier in Taylor Valley, Antarctica. Isotopic measurements were obtained by ID-TIMS in the Keck Isotope Facility at UC Santa Cruz and elemental measurements were obtained by ICP-OES in the Plasma Analytical Laboratory. All measurements include fully propagated analytical and systematic (e.g. isotopic tracer) uncertainties. Chemical index of alteration was calculated from major element data. Prior to measurements, sediments were sieved to ≤125 μm grain sizes, separated into quartz-feldspar-rich and clay-rich aliquots by hydraulic settling, and subjected to sequential chemical extractions ("leaching") prior to silicate digestion. | ["POLYGON((161.9 -77.65,161.96 -77.65,162.02 -77.65,162.08 -77.65,162.14000000000001 -77.65,162.2 -77.65,162.26 -77.65,162.32 -77.65,162.38 -77.65,162.44 -77.65,162.5 -77.65,162.5 -77.66000000000001,162.5 -77.67,162.5 -77.68,162.5 -77.69,162.5 -77.7,162.5 -77.71000000000001,162.5 -77.72,162.5 -77.73,162.5 -77.74,162.5 -77.75,162.44 -77.75,162.38 -77.75,162.32 -77.75,162.26 -77.75,162.2 -77.75,162.14000000000001 -77.75,162.08 -77.75,162.02 -77.75,161.96 -77.75,161.9 -77.75,161.9 -77.74,161.9 -77.73,161.9 -77.72,161.9 -77.71000000000001,161.9 -77.7,161.9 -77.69,161.9 -77.68,161.9 -77.67,161.9 -77.66000000000001,161.9 -77.65))"] | ["POINT(162.2 -77.7)"] | false | false |
Glacial Climate Intervention: A Research Vision
|
2213704 |
2024-06-13 | MacAyeal, Douglas; Mankoff, Kenneth; Minchew, Brent; Moore, John; Wolovick, Michael | No project link provided | This document represents a white paper that articulates a perspective on future research directions based on discussions of glacial climate intervention held at workshops at the University of Chicago (2–3 October 2023) and Stanford University (8–9 December 2023), and at an American Geophysical Union town hall (12 December 2023). Opinions expressed here are those of the authors only and do not necessarily reflect opinions held by all attendees of the workshops and town hall. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Winter marine communities of the Antarctic Peninsula
|
2011285 |
2024-05-28 | Santora, Jarrod; Reiss, Christian; Dietrich, Kim; Czapanskiy, Max |
Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter |
Winter survey data from the Antarctic Peninsula (including hydrography, zooplankton, and top predators) conducted from the R/V Nathaniel B. Palmer during the austral winter (August-September) of 2012-2016. Survey stations were selected from the U.S. Antarctic Marine Living Resources Program's standard grid, approximately 15-20 nm apart covering the region 60° to 64° S and 54° to 63° W. At each station, hydrography and chlorophyll measurements were collected with CTD profilers and Niskin bottles, and macrozooplankton samples were collected using an Isaacs-Kidd Midwater Trawl. Between stations, observers recorded abundance and behavior of top predators (seabirds and marine mammals). | ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"] | ["POINT(-58.5 -62)"] | false | false |
Hyperspectral reflectance values and biophysicochemical properties of biocrusts and soils in the Fryxell Basin, McMurdo Dry Valleys, Antarctica
|
2044924 |
2024-04-03 | Barrett, John | No project link provided | Microbial communities are the primary drivers of carbon cycling in the McMurdo Dry Valleys of Antarctica. Dense microbial mats, consisting mainly of photosynthetic cyanobacteria, occupy aquatic areas associated with streams and lakes. Other microbial communities also occur at lower densities as patchy surface biological soil crusts (biocrusts) across the terrestrial landscape. Multispectral satellite data have been used to model microbial mat abundance in high-density areas like stream and lake margins, but no previous studies had investigated the lower detection limits of biocrusts. Here, we describe remote sensing and field-based survey and sampling approaches to study the detectability and distribution of biocrusts in the McMurdo Dry Valleys. Using a combination of multi- and hyperspectral tools and spectral linear unmixing, we modeled the abundances of biocrust in eastern Taylor Valley. Our spectral approaches can detect low masses of biocrust material in laboratory microcosms down to biocrust concentrations of 1% by mass. These techniques also distinguish the spectra of biocrust from both surface rock and mineral signatures from orbit. We found that biocrusts are present throughout the soils of eastern Taylor Valley and are associated with diverse underlying soil communities. The densest biocrust communities identified in this study had total organic carbon 5x greater than the content of typical arid soils. The most productive biocrusts were located downslope of melting snowpacks in unique soil ecosystems that are distinct from the surrounding arid landscape. There are similarities between the snowpack and stream sediment communities (high diversity of soil invertebrates) as well as their ecosystem properties (e.g., persistence of liquid water, high transfer of available nutrients, lower salinity from flushing) compared to the typical arid terrestrial ecosystem of the dry valleys. Our approach extends the capability of orbital remote sensing of photosynthetic communities out of the aquatic margins and into the drier soils which comprise most of this landscape. This interdisciplinary work is critical for measuring and monitoring terrestrial carbon stocks and predicting future ecosystem dynamics in this currently water-limited but increasingly dynamic Antarctic landscape, which is particularly climate-sensitive and difficult to access. | ["POLYGON((161.70776367188 -77.519802097166,161.899475097661 -77.519802097166,162.091186523442 -77.519802097166,162.282897949223 -77.519802097166,162.474609375004 -77.519802097166,162.666320800785 -77.519802097166,162.858032226566 -77.519802097166,163.049743652347 -77.519802097166,163.241455078128 -77.519802097166,163.433166503909 -77.519802097166,163.62487792969 -77.519802097166,163.62487792969 -77.54867059480199,163.62487792969 -77.57753909243799,163.62487792969 -77.606407590074,163.62487792969 -77.63527608771,163.62487792969 -77.664144585346,163.62487792969 -77.69301308298199,163.62487792969 -77.72188158061799,163.62487792969 -77.750750078254,163.62487792969 -77.77961857589,163.62487792969 -77.808487073526,163.433166503909 -77.808487073526,163.241455078128 -77.808487073526,163.049743652347 -77.808487073526,162.858032226566 -77.808487073526,162.666320800785 -77.808487073526,162.474609375004 -77.808487073526,162.282897949223 -77.808487073526,162.091186523442 -77.808487073526,161.899475097661 -77.808487073526,161.70776367188 -77.808487073526,161.70776367188 -77.77961857589,161.70776367188 -77.750750078254,161.70776367188 -77.72188158061799,161.70776367188 -77.69301308298199,161.70776367188 -77.664144585346,161.70776367188 -77.63527608771,161.70776367188 -77.606407590074,161.70776367188 -77.57753909243799,161.70776367188 -77.54867059480199,161.70776367188 -77.519802097166))"] | ["POINT(162.666320800785 -77.664144585346)"] | false | false |
A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species
|
1744999 |
2024-02-07 | Todgham, Anne; Mandic, Milica; Frazier, Amanda; Naslund, Andrew |
Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes |
In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. | [] | [] | false | false |
Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii
|
1744999 |
2024-02-06 | Todgham, Anne; Naslund, Andrew; Zillig, Ken; Mandic, Milica; Frazier, Amanda |
Interacting Stressors: Metabolic Capacity to Acclimate under Ocean Warming and CO2- Acidification in Early Developmental Stages of Antarctic Fishes |
This dataset records temperature preference of two species of Antarctic nototheniod fishes, as described in the draft manuscript ‘Naslund et al. (Forthcoming 2024) Differential temperature preferences exhibited in the juvenile Antarctic notothenioids Trematomus bernacchii and Trematomus pennellii. | [] | [] | false | false |
EPICA Dome C Sulfate Data 7-3190m
|
1851022 |
2023-12-22 | Fudge, T. J.; Severi, Mirko |
Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation |
Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 ± 3 × 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10°C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point. | ["POINT(123.33 -75.09)"] | ["POINT(123.33 -75.09)"] | false | false |
Firn depth and bubble density for Siple Ice Core and other sites
|
0917509 |
2023-10-18 | Spencer, Matthew |
Collaborative Research: Combined Physical Property Measurements at Siple Dome |
This data set consists of bubble-number densities in glacier ice, in units of bubbles per cubic centimeter, based on firn densification and grain-growth modeling under steady-state climate conditions. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation
|
1745078 |
2023-10-02 | Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; Mühl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Simulations of ice-shelf rifting on Larsen C Ice Shelf
|
2139002 |
2023-08-24 | Huth, Alexander |
OPP-PRF Calving, Icebergs, and Climate |
This dataset contains a model (Elmer/Ice Fortran modules) to simulate rifting on ice shelves. The model combines the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. Additionally, it accounts for rift-flank boundary processes, including pressure on rift-flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. This dataset also contains the input data (Elmer restart files), input files (Elmer .sifs), and Slurm batch scripts to run five experiments. All experiments aim to simulate the final two years of rift propagation that led to the calving of tabular iceberg A68 from Larsen C ice shelf in 2017. However, each experiment differs in its treatment of rift-flank boundary processes, which affects the rift path. For more information, see the associated publication (Huth et al., 2023). | ["POLYGON((-67 -66,-66.3 -66,-65.6 -66,-64.9 -66,-64.2 -66,-63.5 -66,-62.8 -66,-62.1 -66,-61.4 -66,-60.7 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.7 -70,-61.4 -70,-62.1 -70,-62.8 -70,-63.5 -70,-64.2 -70,-64.9 -70,-65.6 -70,-66.3 -70,-67 -70,-67 -69.6,-67 -69.2,-67 -68.8,-67 -68.4,-67 -68,-67 -67.6,-67 -67.2,-67 -66.8,-67 -66.4,-67 -66))"] | ["POINT(-63.5 -68)"] | false | false |
Allan Hills 2022-23 Shallow Ice Core Field Report
|
1744993 |
2023-06-16 | Shackleton, Sarah; Brook, Edward J. |
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area Center for Oldest Ice Exploration |
Unpublished field report describing drilling, sampling, and temperature profiles for shallow ice cores and boreholes at Allan Hills in 2022-2023 field season | ["POLYGON((159.17 -76.67,159.195 -76.67,159.22 -76.67,159.24499999999998 -76.67,159.26999999999998 -76.67,159.295 -76.67,159.32 -76.67,159.345 -76.67,159.36999999999998 -76.67,159.39499999999998 -76.67,159.42 -76.67,159.42 -76.676,159.42 -76.682,159.42 -76.688,159.42 -76.694,159.42 -76.7,159.42 -76.706,159.42 -76.712,159.42 -76.718,159.42 -76.724,159.42 -76.73,159.39499999999998 -76.73,159.36999999999998 -76.73,159.345 -76.73,159.32 -76.73,159.295 -76.73,159.26999999999998 -76.73,159.24499999999998 -76.73,159.22 -76.73,159.195 -76.73,159.17 -76.73,159.17 -76.724,159.17 -76.718,159.17 -76.712,159.17 -76.706,159.17 -76.7,159.17 -76.694,159.17 -76.688,159.17 -76.682,159.17 -76.676,159.17 -76.67))"] | ["POINT(159.295 -76.7)"] | false | false |
Simulated winter warming negatively impacts survival of Antarctica's only endemic insect
|
1850988 |
2023-06-11 | Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas | No project link provided | Antarctic winters are challenging for terrestrial invertebrates, and species that live there have specialised adaptations to conserve energy and protect against cold injury in the winter. However, rapidly occurring climate change in these regions will increase the unpredictability of winter conditions, and there is currently a dearth of knowledge on how the highly adapted invertebrates of Antarctica will respond to changes in winter temperatures. 2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica, to simulated winters at three ecologically relevant mean temperature scenarios: warm (−1°C), normal (−3°C) and cold (−5°C). Within each scenario, larvae were placed into three distinct habitat types in which they are commonly observed (decaying organic matter, living moss, and Prasiola crispa algae). Following the simulated overwintering period, a range of physiological outcomes were measured, namely survival, locomotor activity, tissue damage, energy store levels and molecular stress responses. 3. Survival, energy stores and locomotor activity were significantly lower following the Warm overwintering environment than at lower temperatures, but tissue damage and heat shock protein expression (a proxy for protein damage) did not significantly differ between the three temperatures. Survival was also significantly lower in larvae overwintered in Prasiola crispa algae, although the underlying mechanism is unclear. Heat shock proteins were expressed least in larvae overwintering in living moss, suggesting it is less stressful to overwinter in this substrate, perhaps due to a more defined structure affording less direct contact with ice. 4. Our results demonstrate that a realistic 2°C increase in winter microhabitat temperature reduces survival and causes energy deficits that have implications for subsequent development and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters are expected to become more common in response to climate change. Conversely, if climate change reduces the length of winter, some of the negative consequences of winter warming may be attenuated, so it will be important to consider this factor in future studies. Nonetheless, our results indicate that winter warming could negatively impact cold-adapted insects such as the Antarctic midge. | ["POLYGON((-64.366767 -62.681,-63.991703599999994 -62.681,-63.6166402 -62.681,-63.2415768 -62.681,-62.866513399999995 -62.681,-62.49145 -62.681,-62.1163866 -62.681,-61.7413232 -62.681,-61.366259799999995 -62.681,-60.9911964 -62.681,-60.616133 -62.681,-60.616133 -62.9536677,-60.616133 -63.226335399999996,-60.616133 -63.4990031,-60.616133 -63.7716708,-60.616133 -64.04433850000001,-60.616133 -64.31700620000001,-60.616133 -64.58967390000001,-60.616133 -64.86234160000001,-60.616133 -65.13500930000001,-60.616133 -65.407677,-60.9911964 -65.407677,-61.366259799999995 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.866513399999995 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.991703599999994 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"] | ["POINT(-62.49145 -64.04433850000001)"] | false | false |
Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 – 54,300 years BP.
|
1443397 |
2023-03-16 | Kreutz, Karl |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
This dataset contains biologically relevant trace metal concentrations metrics for the SPICEcore intermediate core (SPC14), from the surface to 1751 m (~54 ka). The data set includes cleaned Fe and Mn biologically relevant concentrations (operationally defined pH 5) trace mental concentration measurements and dissolved concentrations (operationally defined as concentration <0.45µm and acidified to <pH 1). | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
I-165-M GPR Field Report 2019-2020
|
1744993 |
2023-03-03 | Nesbitt, Ian; Brook, Edward J. |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
This document details the ground-penetrating radar (GPR) collection activities carried out by I. Nesbitt in the Allan Hills during the 2019-2020 field season. This document is intended as an informal catalogue of the fild work and post-processing activities performed at the Allan Hills and later at McMurdo and elsewhere. It contains preliminary post-processing and analysis only. Any interpretation made and presented in this report based on the data herein is subject to change pending further examination. GPR was used to examine sub-ice bedrock topography and the stratigraphic relationship between two shallow ice core drill sites (CMC1 and CMC2), as well as to explore potential future drill sites. In accordance with. the project's objective to drill and analyze ancient ice at relatively shallow depths, the two main features of interest in this study are 1) bedrock topographic features in which ancient ice could be trapped, and 2) englacial stratigraphic layers, especially those which may represent large age discontinuities. | ["POLYGON((159.16667 -76.66667,159.19167000000002 -76.66667,159.21667000000002 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667000000002 -76.66667,159.34167000000002 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.67333599999999,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.69999999999999,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.71999799999999,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167000000002 -76.73333,159.31667000000002 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667000000002 -76.73333,159.19167000000002 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.71999799999999,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.69999999999999,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.67333599999999,159.16667 -76.66667))"] | ["POINT(159.29167 -76.69999999999999)"] | false | false |
Monthly Stratification Climatology (1978-2021) in Antarctic Coastal Polynyas
|
2021245 1643735 |
2022-12-12 | Li, Yun; Shunk, Nathan; Zhang, Weifeng |
Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability |
Coastal Antarctic polynyas are regions with concentrated phytoplankton blooms, and therefore have important implications for marine ecosystems and the associated carbon cycles. Seasonal water-column stratification, regulated by sea ice, can modulate the exposure of phytoplankton to light and nutrients, and is one of the most important factors that control the duration and strength of algal blooms. Polynyas differ greatly in their stratification, thus are not equally productive in terms of phytoplankton biomass, nor equally vulnerable to the changes in regional climate. To date, most studies have been focusing on individual polynyas, yet a systematic assessment of stratification patterns across polynyas is still lacking. Therefore, we examined the spatial and seasonal variability of stratification in circum-Antarctic coastal polynyas. Using >105 in situ hydrographic casts combined from the World Ocean Database (1970-2021) and the Marine Mammals Exploring the Oceans Pole to Pole Consortium Database (2004-2017), we constructed stratification seasonal climatology using 0-100 m Simpson Energy. Our results showed that stratification magnitude varies by a factor of 6 and its onset time displays 1-2 months difference across all the polynyas. In the presence of warmer water at depths, polynyas tend to develop stronger stratification than others. The spatial variations of stratification are negatively related to sea ice retreat rate and polynya size, indicative of distinct dynamics resulted from the interaction of sea ice melting, advection and water-column mixing. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -61.8,180 -63.6,180 -65.4,180 -67.2,180 -69,180 -70.8,180 -72.6,180 -74.4,180 -76.2,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.2,-180 -74.4,-180 -72.6,-180 -70.8,-180 -69,-180 -67.2,-180 -65.4,-180 -63.6,-180 -61.8,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 & 2022
|
1744832 |
2022-11-22 | Severinghaus, Jeffrey P. |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
These data cover the penultimate glacial period (MIS 6) and parts of MIS5, in Allan Hills ice. The d18Oatm data are useful for dating the core, and the 15N is useful for inferring firn thickness. Importantly, the data have only been corrected for gas loss using published methods (i.e. Baggenstos et al. 2017), but not for recently recognized (and unpublished) effects of declining contemporary atmospheric O2/N2 due to fossil fuel burning. These changes unfortunately affect the La Jolla Air standard gas O2/N2 ratio that is used in our lab to make the measurements. Users of this data are encouraged to contact Jeff Severinghaus for help in making these novel corrections to the standard gas. | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
Crane Glacier centerline observations and modeling results
|
1933764 |
2022-10-24 | Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994—2100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994—2019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in “.mat” format, which can be read using MATLAB’s “load” function or using Python with the Scipy “scipy.io.loadmat” function. | ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"] | ["POINT(-62.55 -65.4)"] | false | false |
Subglacial Precipitates Record Antarctic Ice Sheet Response to Pleistocene Millennial Climate Cycles
|
2042495 |
2022-08-10 | Piccione, Gavin; Blackburn, Terrence |
Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates |
This file includes U-series isotopic and 234U/230Th chronologic data from two chemical precipitates deposited beneath the Antarctic Ice Sheet. Precipitate mineral compositions consist of opal and calcite layers. Sample MA113 was found at Mount Achernar moraine (84.2°S, 161°E), and sample PRR50489 was found at Elephant Moraine (76.3°S, 157.3°E). | [] | [] | false | false |
Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.
|
1246407 1840058 |
2022-06-27 | Jenouvrier, Stephanie |
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, i.e., to chance. Quantifying the contributions of heterogeneity and chance is essential to understanding natural variability. Inter-individual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favorable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies. Specifically, three life-history complexes exist in a population of southern fulmar (defined as sets of life-history characteristics that occur together through the lifetime of an individual). They are reminiscent of the gradient of life- history strategy observed among species: 1. Group 1 (14% of offspring at fledging) is a slow-paced life history where individuals tend to delay recruitment, recruit successfully, and extend their reproductive lifespan. 2. Group 2 (67% of offspring at fledging) consists of individuals that are less likely to recruit, have high adult survival, and skip breeding often. 3. Group 3 (19% of offspring at fledging) is a fast-paced life history where individuals recruit early and attempt to breed often but have a short lifespan. Individuals in groups 1 and 3 are considered “high-quality” individuals because they produce, on average, more offspring over their lives than do individuals in group 2. But group 2 is made-up of individuals that experience the highest levels of adult survival. Differences between these groups, i.e. individual heterogeneity, only explains a small fraction of variance in life expectancy (5.9%) and lifetime reproduction (22%) when environmental conditions are ordinary. We expect that the environmental context experienced, especially when environmental conditions get extreme, is key to characterizing individual heterogeneity and its contribution to life history outcomes. Here, we build on previous studies to quantify the impact of extreme environmental conditions on the relative contributions of individual heterogeneity and stochasticity to variance in life history outcomes. We found that the differences in vital rates and demographic outcomes among complexes depend on the sea ice conditions individuals experience. Importantly, differences across life history complexes are amplified when sea ice concentration get extremely low. Sea ice conditions did not only affect patterns of life history traits, but also the variance of life history outcomes and the relative proportion of individual unobserved heterogeneity to the total variance. These new results advance the current debate on the relative importance heterogeneity (i.e. potentially adaptive) and stochasticity (i.e. enhances genetic drift) in shaping potentially neutral vs. adaptive changes in life histories. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Salmon Valley Radiocarbon Data
|
0944150 |
2022-04-20 | Hall, Brenda |
Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles |
This dataset includes radiocarbon dates of benthic algal mats associated with last glacial maximum Ross Sea drift in Salmon Valley, Royal Society Range. | ["POLYGON((163.7 -77.9,163.79 -77.9,163.88 -77.9,163.97 -77.9,164.06 -77.9,164.15 -77.9,164.24 -77.9,164.33 -77.9,164.42 -77.9,164.51 -77.9,164.6 -77.9,164.6 -77.91,164.6 -77.92,164.6 -77.93,164.6 -77.94,164.6 -77.95,164.6 -77.96,164.6 -77.97,164.6 -77.98,164.6 -77.99,164.6 -78,164.51 -78,164.42 -78,164.33 -78,164.24 -78,164.15 -78,164.06 -78,163.97 -78,163.88 -78,163.79 -78,163.7 -78,163.7 -77.99,163.7 -77.98,163.7 -77.97,163.7 -77.96,163.7 -77.95,163.7 -77.94,163.7 -77.93,163.7 -77.92,163.7 -77.91,163.7 -77.9))"] | ["POINT(164.15 -77.95)"] | false | false |
Royal Society Range Headland Moraine Belt Radiocarbon Data
|
0944150 |
2022-04-20 | Hall, Brenda |
Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles |
This dataset contains radiocarbon dates of benthic algal (cyanobacterial) mats within moraines associated with Ross Sea drift on the headlands of the Royal Society Range and covers the time period ~12-20 ka. | ["POLYGON((163.5 -77.3,163.65 -77.3,163.8 -77.3,163.95 -77.3,164.1 -77.3,164.25 -77.3,164.4 -77.3,164.55 -77.3,164.7 -77.3,164.85 -77.3,165 -77.3,165 -77.39,165 -77.48,165 -77.57,165 -77.66,165 -77.75,165 -77.84,165 -77.93,165 -78.02,165 -78.11,165 -78.2,164.85 -78.2,164.7 -78.2,164.55 -78.2,164.4 -78.2,164.25 -78.2,164.1 -78.2,163.95 -78.2,163.8 -78.2,163.65 -78.2,163.5 -78.2,163.5 -78.11,163.5 -78.02,163.5 -77.93,163.5 -77.84,163.5 -77.75,163.5 -77.66,163.5 -77.57,163.5 -77.48,163.5 -77.39,163.5 -77.3))"] | ["POINT(164.25 -77.75)"] | false | false |
South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements
|
1443397 |
2022-04-01 | Kreutz, Karl |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
This dataset contains particle metrics for the South Pole Ice Core (SPICEcore) intermediate core (SPC14), from the surface to 1751 m depth (~54,000 years before present [BP]). Data were collected via Klotz Abakus laser particle counter via continuous-flow-analysis (CFA), Beckman Coulter Multisizer 3 using Coulter Counter (CC) principles, and dynamic particle imaging using a FlowCAM instrument. CFA measurements were made at Dartmouth College, CC measurements were made at Colby College, and FlowCAM measurements were made at the University of Maine. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula
|
1643877 |
2022-03-23 | Friedlaender, Ari |
Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis) |
This dataset contains motion-sensing and video recording data from CATS biologging tags deployed on Antarctic minke whales in 2018 and 2019. The data are used to determine underwater behavior and link foraging rates to environmental covariates to better understand the ecological role of this poorly known krill predator. Specifically, we are interested in how the presence and amount of ice affects the behavior of this species in the nearshore waters on the western side of the Antarctic Peninsula, a region experiencing rapid climate change. | ["POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.4,-60 -62.8,-60 -63.2,-60 -63.6,-60 -64,-60 -64.4,-60 -64.8,-60 -65.2,-60 -65.6,-60 -66,-60.5 -66,-61 -66,-61.5 -66,-62 -66,-62.5 -66,-63 -66,-63.5 -66,-64 -66,-64.5 -66,-65 -66,-65 -65.6,-65 -65.2,-65 -64.8,-65 -64.4,-65 -64,-65 -63.6,-65 -63.2,-65 -62.8,-65 -62.4,-65 -62))"] | ["POINT(-62.5 -64)"] | false | false |
Marshall Valley Radiocarbon Data
|
0944150 1643248 |
2022-03-01 | Hall, Brenda |
Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles Response of the Antarctic Ice Sheet to the last great global warming |
This dataset contains raw and calibrated radiocarbon data for lacustrine algal layers from glacial lacustrine deposits associated with Ross Sea drift in Marshall Valley. | ["POLYGON((164 -78,164.04 -78,164.08 -78,164.12 -78,164.16 -78,164.2 -78,164.24 -78,164.28 -78,164.32 -78,164.36 -78,164.4 -78,164.4 -78.01,164.4 -78.02,164.4 -78.03,164.4 -78.04,164.4 -78.05,164.4 -78.06,164.4 -78.07,164.4 -78.08,164.4 -78.09,164.4 -78.1,164.36 -78.1,164.32 -78.1,164.28 -78.1,164.24 -78.1,164.2 -78.1,164.16 -78.1,164.12 -78.1,164.08 -78.1,164.04 -78.1,164 -78.1,164 -78.09,164 -78.08,164 -78.07,164 -78.06,164 -78.05,164 -78.04,164 -78.03,164 -78.02,164 -78.01,164 -78))"] | ["POINT(164.2 -78.05)"] | false | false |
Marshall Valley U-Series Data
|
1643248 0944150 |
2022-03-01 | Hall, Brenda |
Response of the Antarctic Ice Sheet to the last great global warming Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles |
This dataset includes 234U/230Th chronologic data for lacustrine carbonates associated with Marshall drift in Marshall Valley, Royal Society Range. These samples are from ice-dammed lake deposits associated with a grounded ice sheet that blocked the valley mouth. Sample chemistry was done at the University of Maine geochemistry laboratory. Processed samples were analyzed on a multicollector ICP-MS at the University of Oxford. Corrected ages reflect a detrital correction based on typical upper-crustal (230Th/232Th) values of 1.21 with a 50% assumed error. | ["POLYGON((164 -78,164.04 -78,164.08 -78,164.12 -78,164.16 -78,164.2 -78,164.24 -78,164.28 -78,164.32 -78,164.36 -78,164.4 -78,164.4 -78.01,164.4 -78.02,164.4 -78.03,164.4 -78.04,164.4 -78.05,164.4 -78.06,164.4 -78.07,164.4 -78.08,164.4 -78.09,164.4 -78.1,164.36 -78.1,164.32 -78.1,164.28 -78.1,164.24 -78.1,164.2 -78.1,164.16 -78.1,164.12 -78.1,164.08 -78.1,164.04 -78.1,164 -78.1,164 -78.09,164 -78.08,164 -78.07,164 -78.06,164 -78.05,164 -78.04,164 -78.03,164 -78.02,164 -78.01,164 -78))"] | ["POINT(164.2 -78.05)"] | false | false |
Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy
|
1341464 |
2022-02-14 | Jones, Colin; Robinson, Rebecca; Brzezinski, Mark; Riesselman, Christina; Closset, Ivia; Kelly, Roger; Robinson, Rebecca |
Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump |
Tracking variations in the surface ocean supply and demand of nitrate, a key marine nutrient, can help constrain the contribution of biological production in driving past climate shifts. The nitrogen isotopic composition (as δ15N) of organic matter in marine sediments is a proxy for surface ocean nitrate supply and demand over time but it may be subject to alteration during sinking and burial. The isotopic composition of nitrogen contained in the shells, or frustules, of diatoms (δ15NDB) is protected and is therefore a potentially more robust tracer of nitrate use in the past. Here we show that δ15NDB in Southern Ocean community cultures does not depend on species composition. We found the εDB (= biomass δ15N - δ15NDB) of the community growouts was -4.8 ± 0.8‰, more than 10‰ different from previous monospecific growouts, but statistically indistinguishable from previous Southern Ocean and North Pacific surface ocean observations. The two community growouts, seeded with populations from 66° and 61°S, had distinct community compositions but indistinguishable εDB, suggesting species composition does not primarily set δ15NDB values in the Southern Ocean. Our results demonstrate that under nitrate-replete conditions, δ15NDB values of frustules sinking from the surface ocean robustly track surface ocean nitrate δ15N values and therefore nitrate supply and demand. | ["POLYGON((-170.4 -60.8,-170.36 -60.8,-170.32 -60.8,-170.28 -60.8,-170.24 -60.8,-170.2 -60.8,-170.16 -60.8,-170.12 -60.8,-170.08 -60.8,-170.04 -60.8,-170 -60.8,-170 -61.34,-170 -61.88,-170 -62.42,-170 -62.96,-170 -63.5,-170 -64.04,-170 -64.58,-170 -65.12,-170 -65.66,-170 -66.2,-170.04 -66.2,-170.08 -66.2,-170.12 -66.2,-170.16 -66.2,-170.2 -66.2,-170.24 -66.2,-170.28 -66.2,-170.32 -66.2,-170.36 -66.2,-170.4 -66.2,-170.4 -65.66,-170.4 -65.12,-170.4 -64.58,-170.4 -64.04,-170.4 -63.5,-170.4 -62.96,-170.4 -62.42,-170.4 -61.88,-170.4 -61.34,-170.4 -60.8))"] | ["POINT(-170.2 -63.5)"] | false | false |
South Pole Ice Core Isotopes of N2 and Ar
|
1443710 |
2022-02-03 | Morgan, Jacob; Severinghaus, Jeffrey P. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
We present measurements gas measurements from the South Pole Ice Core, including the isotopic composition of molecular nitrogen (δ15N) and argon (δ40Ar), and the argon-nitrogen ratio (δAr/N2). The measurements were made between approximately 490 and 1310 m depth, which is between 5 and 30 kyr BP on the SP19 Gas Chronology. The measurements allow us to reconstruct the past amounts of gravitational and thermal fractionation in the firn and thus reconstruct past firn thickness and temperature gradient. These reconstructions are also included. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Gridded Values of Conservative Temperature and Absolute Salinity Around Antarctica averaged for the depth range 300 m to min([water depth, 1000]) m
|
1744789 1744792 |
2022-02-01 | Howard, Susan L.; Little, Chris; Sun, Qiang; Padman, Laurence | No project link provided | This dataset contains NetCDF files of two-dimensional gridded fields of hydrographic properties, Conservative Temperature (CT) and Absolute Salinity (SA), around Antarctica, depth-averaged for the depth range 300 m to min([water depth, 1000]) m from 38 CMIP6 models, the World Ocean Atlas 2018, and our own product developed from the World Ocean Database. These fields are designed to represent the hydrography of deeper water masses on the Antarctic Continental Shelf (ACS), where typical water depths are 400-600 m, and the intermediate-depth water off the continental shelf. The dataset includes a high-resolution polar-stereographic grid (2 x 2 km) of Southern Ocean geometry, including water depth, elevation of the land and ice-sheet surface (including ice shelves), a mask (identifying water, land and grounded ice, and ice shelves), and offshore distance from the continental shelf break. An example MATLAB script for accessing the grids and plotting them is included. The primary purpose of this dataset is to provide simplified 2-D hydrographic fields that can be used to assess the performance of climate models for the ACS, focusing on the depth range that affects most basal melting of Antarctica’s ice shelves. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Landfast ice: a major driver of reproductive success in a polar seabird
|
1744794 |
2022-01-24 | Jenouvrier, Stephanie; Labrousse, Sara |
A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins |
In a fast-changing world, polar ecosystems are threatened by climate variability. Understanding the roles of fine-scale processes, and linear and nonlinear effects of climate factors on the demography of polar species is crucial for anticipating the future state of these fragile ecosystems. While the effects of sea ice on polar marine top predators are increasingly being studied, little is known about the impacts of landfast ice (LFI) on this species community. Based on a unique 39-year time series of satellite imagery and in situ meteorological conditions and on the world’s longest dataset of emperor penguin (Aptenodytes forsteri) breeding parameters, we studied the effects of fine-scale variability of LFI andweather conditions on this species’ reproductive success. We found that longer distances to the LFI edge (i.e. foraging areas) negatively affected the overall breeding success but also the fledging success. Climate window analyses suggested that chick mortality was particularly sensitive to LFI variability between August and November. Snowfall in May also affected hatching success. Given the sensitivity of LFI to storms and changes in wind direction, important future repercussions on the breeding habitat of emperor penguins are to be expected in the context of climate change. These files contain the code and data from this manuscript. | [] | [] | false | false |
Stable isotope composition of the trapped air in the Allan Hills S27 ice core
|
1443263 |
2022-01-24 | Yan, Yuzhen; Bender, Michael; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the δ15N of N2, δ18O of O2 (δ18Oatm), δO2/N2, and δAr/N2 in the S27 ice core drilled in Allan Hills Blue Ice Area. | ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"] | ["POINT(159.125 -76.25)"] | false | false |
Detecting climate signals in populations: case of emperor penguin
|
2037561 1744794 |
2021-12-08 | Jenouvrier, Stephanie |
Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins |
Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. In Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. This data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. In Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores
|
1443263 |
2021-11-02 | Yan, Yuzhen; Bender, Michael; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the d15N, O2/N2 ratio, Ar/N2 ratio, and d18O of O2 (d18Oatm) in Allan Hills ice cores (ALHIC1502 and ALHIC1503). This dataset replaces an earlier version of the elemental and isotopic composition in Allan Hills ice cores (DOI: 10.15784/601204) by adding new data from 60 depths in ALHIC1502 core (26.26 m to 175.74 m). | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
WAIS Divide ice core nitrate isotopes
|
1542723 |
2021-06-22 | Alexander, Becky |
Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core |
This dataset contains measurements of nitrate oxygen (D17O) and nitrogen (d15N) isotopes from the WAIS Divide ice core (WDC06A). The time resolution is variable throughout the record. The data includes 15 discreet samples between 2900 - 67,000 years before 1950 and 305 continuous measurements between 36,000-52,000 years before 1950. The depth range is 700 - 3401 m. Each sample covered 1 m depth. The time resolution ranged from 5 years/m at the top to 200 years/m at the bottom. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Particle-size distributions of Pliocene sediment from IODP Site U1359
|
1060080 |
2021-06-14 | Passchier, Sandra; Hansen, Melissa A.; Rosenberg, Jessica | No project link provided | This dataset contains measurements of terrigenous particle-size distributions on Pliocene sediment from Integrated Ocean Drilling Program Site U1359 on the Wilkes Land margin. Biogenic silica, carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate, and after supernatant was removed, digestion in 0.2 N NaOH at ~85 degrees for 1 hour. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(144 -65)"] | ["POINT(144 -65)"] | false | false |
Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound
|
0342484 |
2021-06-14 | Passchier, Sandra; Candice, Falk |
Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change |
This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(167 -78)"] | ["POINT(167 -78)"] | false | false |
Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming
|
1443347 |
2021-06-08 | Condron, Alan |
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet |
Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. This dataset contains the results from multi-century (present–2250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. These results were published in Sadai et al., Science Advances, 2020, Vol. 6, eaaz1169 Please note that ALL the raw model data generated for this project is archived at Woods Hole Oceanographic Institution and the University of Massachusetts Amherst and freely available on request. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Larsen C automatic weather station data 2008–2011
|
0732946 |
2021-05-19 | McGrath, Daniel; Bayou, Nicolas; Steffen, Konrad |
IPY: Stability of Larsen C Ice Shelf in a Warming Climate |
As part of IPY-0732946, three automatic weather stations (Larsen 1, 2, 3) were installed along a latitudinal gradient on the Larsen C ice shelf. The stations were installed in December 2008 (Larsen 3 AWS did not come online until 2009) and operated through the end of the project in November 2011. | ["POLYGON((-65 -66,-64.5 -66,-64 -66,-63.5 -66,-63 -66,-62.5 -66,-62 -66,-61.5 -66,-61 -66,-60.5 -66,-60 -66,-60 -66.3,-60 -66.6,-60 -66.9,-60 -67.2,-60 -67.5,-60 -67.8,-60 -68.1,-60 -68.4,-60 -68.7,-60 -69,-60.5 -69,-61 -69,-61.5 -69,-62 -69,-62.5 -69,-63 -69,-63.5 -69,-64 -69,-64.5 -69,-65 -69,-65 -68.7,-65 -68.4,-65 -68.1,-65 -67.8,-65 -67.5,-65 -67.2,-65 -66.9,-65 -66.6,-65 -66.3,-65 -66))"] | ["POINT(-62.5 -67.5)"] | false | false |
Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
1935901 0439200 0439759 0944141 0944411 0440643 1543541 1543498 1543459 0944358 1935870 |
2021-05-12 | Ballard, Grant |
Population Growth at the Southern Extreme: Effects of Early Life Conditions on Adelie penguin Individuals and Colonies A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea. COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Simulated changes in Southern Ocean salinity
|
1443347 |
2021-05-04 | Condron, Alan |
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet |
This dataset contains the MITgcm model output data presented in Ashley, K.E. et al., 2021. This dataset includes simulated spatial changes in sea surface salinity (SSS), time series data of salinity, and scatter plot data of SSS changes against meltwater discharge. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Simulations of 10Be over Antarctica
|
1443448 1443144 |
2021-02-03 | Ding, Qinghua; Schaefer, Joerg; Steig, Eric J. |
Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole |
Experiments were conducted using ECHAM5-HAM atmospheric aerosol - climate model at horizontal resolution of T42 (~2.8° latitude × 2.8° longitude) with 19 vertical levels to examine the relationship between the production of 10Be in the atmosphere and its deposition at the surface. Five experiments were conducted, using a) constant 10Be production but varying, observed climate b) climatological climate of the last 50 years but varying 10Be production, c) constant 10Be production with 50-years of varying climate for 0 ka, (d) 6 ka, and (e) 21 ka, using the TraCE21 simulation to provide boundary conditions. The results will be useful for comparison with 10Be concentration records obtained from the South Pole ice core and other Antarctic and Greenland records. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
SPICEcore 400-480 m Major Ions SDSU
|
1443663 |
2021-01-30 | Cole-Dai, Jihong; Larrick, Carleigh |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
Major ion concentrations in SPICEcore samples from the section of 400-480 m were measured with ion chromatography. The ions are chloride, nitrate, sulfate, sodium, potassium, magnesium, and calcium. This section was analyzed to replicate the measurement of the same section at Dartmouth College. | ["POLYGON((-180 -89.99,-152.184 -89.99,-124.368 -89.99,-96.552 -89.99,-68.736 -89.99,-40.92 -89.99,-13.104 -89.99,14.712 -89.99,42.528 -89.99,70.344 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,98.16 -89.99,70.344 -89.99,42.528 -89.99,14.712 -89.99,-13.104 -89.99,-40.92 -89.99,-68.736 -89.99,-96.552 -89.99,-124.368 -89.99,-152.184 -89.99,180 -89.99,152.184 -89.99,124.368 -89.99,96.552 -89.99,68.736 -89.99,40.92 -89.99,13.104 -89.99,-14.712 -89.99,-42.528 -89.99,-70.344 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-98.16 -89.99,-70.344 -89.99,-42.528 -89.99,-14.712 -89.99,13.104 -89.99,40.92 -89.99,68.736 -89.99,96.552 -89.99,124.368 -89.99,152.184 -89.99,-180 -89.99))"] | ["POINT(-180 -89.99)"] | false | false |
Greenhouse gas composition in the Allan Hills S27 ice core
|
1443263 1443276 |
2021-01-20 | Yan, Yuzhen; Brook, Edward J. |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the concentration of carbon dioxide (CO2) and methane (CH4) in the trapped air from the S27 ice core collected in Allan Hills Blue Ice Area. | ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"] | ["POINT(159.125 -76.25)"] | false | false |
Mean Ocean Temperature in Marine Isotope Stage 4
|
1246148 1245821 1245659 |
2020-12-28 | Shackleton, Sarah |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
Inert gas measurements on a large diameter (0.24m), shallow (20m) ice core from Taylor Glacier for mean ocean temperature reconstruction from 60 - 74 ka. Four samples were also measured on the WAIS Divide ice core to validate Taylor Glacier reconstruction. | [] | [] | false | false |
Hypoxia response of hearts of Antarctic fishes
|
1341663 1341602 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1α and HIF-1β subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 ± 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 ± 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1α were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1α increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. | [] | [] | false | false |
Acclimation of cardiovascular function in Notothenia coriiceps
|
1341663 |
2020-12-18 | Joyce, William; Egginton, Stuart; Farrell, Anthony; Axelsson, Michael; Crockett, Elizabeth; O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5°C for 6.0-9.5 weeks. When compared at the fish's respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5°C-acclimated than 0°C-acclimated fish. The 2.7-fold elevation in cardiac output in 5°C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0°C- and 5°C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12°C when cardiac output became significantly higher in 5°C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5°C) in both acclimation groups, the hearts of 5°C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0°C for 0°C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5°C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate. | [] | [] | false | false |
Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)
|
1443105 |
2020-10-28 | Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Schauer, Andrew; Stevens, Max; Conway, Howard; Waddington, Edwin D.; Buizert, Christo; Epifanio, Jenna; White, James |
Collaborative Research: A 1500m Ice Core from South Pole Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole |
This data set provides the input and output data used in Kahle et al. 2020 to reconstruct climate variables at the South Pole. The files below include high resolution water isotopes, water isotope diffusion length, and various reconstructions of temperature, accumulation rate, and thinning function for the SPC14 ice core. An inverse approach was used to combine information from water isotope diffusion length, Dage, and annual-layer thickness to solve for temperature, accumulation rate, and thinning function. Corrections were applied to account for the advection of ice from upstream to yield estimates for the South Pole site. Updated data for Hires_Water_Isotopes_halfcm.txt is available at www.usap-dc.org/view/dataset/601429. | ["POINT(180 -90)"] | ["POINT(180 -90)"] | false | false |
South Pole ice core (SPC14) discrete methane data
|
1804154 1443472 1643394 1443336 1141839 1443710 1443397 1443464 1142517 1443470 |
2020-10-09 | Severinghaus, Jeffrey P.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.; Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Winski, Dominic A.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A. |
Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements Collaborative Research: A 1500m Ice Core from South Pole Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
We present the methane (CH4) concentration data for the South Pole ice core (SPC14). CH4 concentrations were measured jointly at Oregon State University and Pennsylvania State University. All depths are in meters below the surface. Methane data have been corrected for blank offsets, solubility, and gravitational fractionation. All ages are in years before 1950 C.E. on the SP19 gas chronology. | ["POINT(-99.16 -89.99)"] | ["POINT(-99.16 -89.99)"] | false | false |
SP19 Gas Chronology
|
1643394 1142517 1804154 1443464 1141839 1443105 1443710 1443397 1443472 1443470 |
2020-10-09 | Epifanio, Jenna |
Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core Collaborative Research: A 1500m Ice Core from South Pole Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core |
We present the SP19 gas chronology for the South Pole ice core. The chronology is based on stratigraphic matching of abrupt methane (CH4) changes. To construct the chronology, abrupt changes in CH4 during the glacial period and small, 20-30ppb, centennial scale changes in CH4 were used with analogous data from the West Antarctic Ice Sheet Divide ice core. Stratigraphic matching was verified by an optimization algorithm. The ages cover the last 52,586 years. Absolute uncertainty increases with depth until ± 540 years. | ["POINT(99.16 -89.99)"] | ["POINT(99.16 -89.99)"] | false | false |
3He input data
|
1443213 |
2020-09-30 | Kaplan, Michael; Winckler, Gisela; Schaefer, Joerg |
Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles |
Input and other information for 3He surface exposure data | [] | [] | false | false |
10Be and 26Al cosmogenic nuclide surface exposure data
|
1443213 |
2020-09-30 | Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela |
Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles |
Sample metadata or information for cosmogenic-nuclide exposure data from the Mt. Achernar area. | ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"] | ["POINT(-174.25 -85.75)"] | false | false |
Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf
|
1341669 0732711 |
2020-06-19 | DeMaster, David; Taylor, Richard |
Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This file contains Pb-210 data from bulk sediments beneath the collapsed Larsen A Ice Shelf and C-14 data from the organic fraction of the same samples. | ["POLYGON((-61 -64,-60.5 -64,-60 -64,-59.5 -64,-59 -64,-58.5 -64,-58 -64,-57.5 -64,-57 -64,-56.5 -64,-56 -64,-56 -64.1,-56 -64.2,-56 -64.3,-56 -64.4,-56 -64.5,-56 -64.6,-56 -64.7,-56 -64.8,-56 -64.9,-56 -65,-56.5 -65,-57 -65,-57.5 -65,-58 -65,-58.5 -65,-59 -65,-59.5 -65,-60 -65,-60.5 -65,-61 -65,-61 -64.9,-61 -64.8,-61 -64.7,-61 -64.6,-61 -64.5,-61 -64.4,-61 -64.3,-61 -64.2,-61 -64.1,-61 -64))"] | ["POINT(-58.5 -64.5)"] | false | false |
South Pole Ice Core Methane Data and Gas Age Time Scale
|
1643722 |
2020-06-03 | Brook, Edward J. |
A High Resolution Atmospheric Methane Record from the South Pole Ice Core |
This data set contains measurements of atmospheric methane in the South Pole Ice core made at both Oregon State University and Penn State University, as well as a gas age time scale for the core. In both laboratories methane was measured using a melt-refreeze technique to liberate extracted air and using a gas chromatograph with flame ionization detection to quantify the methane concentration, by comparison to calibrated air standards. To construct the gas time scale abrupt changes in atmospheric methane during the glacial period and centennial methane variability during the Holocene were used to synchronize the South Pole gas record with analogous data from the West Antarctic Ice Sheet Divide ice core. Stratigraphic matching based on visual optimization was verified using an automated matching algorithm. The South Pole ice core recovers all expected changes in methane based on previous records. In combination with an existing ice age scale (Winski et al., 2019, Clim. Past, 15, 1793–1808) an independent estimate of the gas age-ice age difference is also provided. A full description of the data and gas age scale are provided in Epifanio et al., 2020 (Climate of the Past, 16, 2431-2444). | ["POINT(180 -90)"] | ["POINT(180 -90)"] | false | false |
Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf
|
0636773 1341669 |
2020-05-11 | DeMaster, David; Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie |
Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
This data set is used to describe a new technique for assessing labile organic carbon (LOC) abundances and mean residence times in marine sediments. Radiocarbon is used to determine abundances of labile organic carbon and then a diagenetic organic carbon model, coupled with sediment biotrubation coefficients, is used to assess LOC mean residence times. | ["POLYGON((-71 -64,-70.4 -64,-69.8 -64,-69.2 -64,-68.6 -64,-68 -64,-67.4 -64,-66.8 -64,-66.2 -64,-65.6 -64,-65 -64,-65 -64.7,-65 -65.4,-65 -66.1,-65 -66.8,-65 -67.5,-65 -68.2,-65 -68.9,-65 -69.6,-65 -70.3,-65 -71,-65.6 -71,-66.2 -71,-66.8 -71,-67.4 -71,-68 -71,-68.6 -71,-69.2 -71,-69.8 -71,-70.4 -71,-71 -71,-71 -70.3,-71 -69.6,-71 -68.9,-71 -68.2,-71 -67.5,-71 -66.8,-71 -66.1,-71 -65.4,-71 -64.7,-71 -64))"] | ["POINT(-68 -67.5)"] | false | false |
Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203
|
0732711 1341669 |
2020-05-01 | Smith, Craig |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems (LARISSA); and Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change. | ["POLYGON((-61 -62,-60.4 -62,-59.8 -62,-59.2 -62,-58.6 -62,-58 -62,-57.4 -62,-56.8 -62,-56.2 -62,-55.6 -62,-55 -62,-55 -62.34,-55 -62.68,-55 -63.02,-55 -63.36,-55 -63.7,-55 -64.04,-55 -64.38,-55 -64.72,-55 -65.06,-55 -65.4,-55.6 -65.4,-56.2 -65.4,-56.8 -65.4,-57.4 -65.4,-58 -65.4,-58.6 -65.4,-59.2 -65.4,-59.8 -65.4,-60.4 -65.4,-61 -65.4,-61 -65.06,-61 -64.72,-61 -64.38,-61 -64.04,-61 -63.7,-61 -63.36,-61 -63.02,-61 -62.68,-61 -62.34,-61 -62))"] | ["POINT(-58 -63.7)"] | false | false |
Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101
|
9909367 |
2020-05-01 | Leventer, Amy |
Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin |
This data set was acquired with a Jumbo Piston Core Sediment Sampler during R/V Nathaniel B. Palmer expedition NBP0101 conducted in 2001. This data file is of Microsoft Excel format and includes Quantitative Diatom Assemblage data; counts completed on randomly settled slides (Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12 (1), 171-178, doi:10.1007/BF00678093). These counts were completed at closely spaced intervals in NBP0101 JPC41, a jumbo piston core from Iceberg Alley, Mac.Robertson Shelf, East Antarctica | ["POINT(62.99 -67.13)"] | ["POINT(62.99 -67.13)"] | false | false |
Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802
|
0636806 0636773 |
2020-04-30 | Smith, Craig; DeMaster, David |
Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling |
This data set was acquired with a Box Core Sediment Sampler, Digital Camera, and Sediment Core Sampler during Laurence M. Gould expedition LMG0802 conducted in 2008. The data files are in Microsoft Excel format and include Species List, Species Abundance, and Sediment Geochemistry data that was processed after collection. | ["POLYGON((-72 -59,-71 -59,-70 -59,-69 -59,-68 -59,-67 -59,-66 -59,-65 -59,-64 -59,-63 -59,-62 -59,-62 -59.95,-62 -60.9,-62 -61.85,-62 -62.8,-62 -63.75,-62 -64.7,-62 -65.65,-62 -66.6,-62 -67.55,-62 -68.5,-63 -68.5,-64 -68.5,-65 -68.5,-66 -68.5,-67 -68.5,-68 -68.5,-69 -68.5,-70 -68.5,-71 -68.5,-72 -68.5,-72 -67.55,-72 -66.6,-72 -65.65,-72 -64.7,-72 -63.75,-72 -62.8,-72 -61.85,-72 -60.9,-72 -59.95,-72 -59))"] | ["POINT(-67 -63.75)"] | false | false |
SPICEcore Advection
|
1443471 |
2020-03-25 | Fudge, T. J. |
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core |
The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008‰ m-1 for δ18O. Advection adds approximately 1‰ for δ18O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10°C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4°C smaller than if the flow from upstream is not considered. | ["POINT(-98.16 -89.99)"] | ["POINT(-98.16 -89.99)"] | false | false |
South Pole ice core total air content
|
1443464 |
2019-12-11 | Sowers, Todd A. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
The total air content in ice core samples are a fundamental indication of the multitude of processes that impact densification of snow in polar regions. In addition, variations in the elevation of the ice sheet directly control the pressure in the bubble close off region and thereby the total gas content. Attempts to remove the physical factors (temperature, accumulation rate, dust content, seasonality) impacting the total air content could provide a means of assessing variations in the elevation of the South Pole over the last 50,000 years. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
South Pole CH4 data for termination
|
1443464 |
2019-12-11 | Sowers, Todd A. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
The overiding goal for our collaborative project is to provide the necessary data to construct an accurate gas age scale all along the SPICE core. Downcore measurements of CH4 and other species would help to constrain the ice age - gas age difference all along the core that is a prerequisite for the construction of the gas age vs depth profile that is the backbone for all atmospheric reconstructions. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data
|
1043528 0539578 |
2019-11-12 | Fegyveresi, John; Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan; Voigt, Donald E. |
Collaborative Research: Physical Properties of the WAIS Divide Deep Core Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core |
This data set includes the fully updated (2017) bubble number-density measured at depths from 120 meters down to 1600 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006) and Fegyveresi and others (2011). Data also includes tabs for bubble size and shape data. | ["POINT(-112.3 -79.43333333)"] | ["POINT(-112.3 -79.43333333)"] | false | false |
Laser Dust Logging of the South Pole Ice Core (SPICE)
|
1443566 |
2019-11-03 | Bay, Ryan |
Laser Dust Logging of a South Pole Ice Core |
We deployed an oriented laser dust logger in the SPICEcore borehole in order to study the particulate stratigraphy, volcanology, glaciology and climatology of South Pole. We obtained a detailed record of dust and ash, SPICEcore age versus depth, and measurements of the optical anisotropy indicated by IceCube analyses. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography
|
1443420 |
2019-10-27 | Dodd, Justin; Abbott, Tirzah |
Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography |
The Andrill-1B (AND-1B) sediment core from under the Ross Ice Shelf in McMurdo Sound, Antarctica, recovered a mid to late Pliocene (~4.68 to 3.44 Ma) age diatomite unit with d18Odiatom values that range from +32.6 to +37.6 ‰ (n=50 | ["POINT(167.083333 -77.888889)"] | ["POINT(167.083333 -77.888889)"] | false | false |
The South Pole Ice Core (SPICEcore) chronology and supporting data
|
1443336 |
2019-08-29 | Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and δ15N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Methane concentration in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the concentration methane (CH4) in Allan Hills ice cores (ALHIC1502 and ALHIC1503). | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Brook, Edward J.; Higgins, John |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes the concentration of carbon dioxide (CO2) and methane (CH4) and the stable carbon isotope composition of CO2 in Allan Hills ice cores (ALHIC1502 and ALHIC1503). | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores
|
1443263 |
2019-08-14 | Yan, Yuzhen; Bender, Michael; Higgins, John; Ng, Jessica; Severinghaus, Jeffrey P. |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
This file includes argon isotope composition and xenon-to-krypton ratios measured in Allan Hills ice cores. | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores
|
1245659 1245821 1246148 |
2019-08-12 | Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; Severinghaus, Jeffrey P. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
New ice cores retrieved from the Taylor Glacier (Antarctica) blue ice area contain ice and air spanning the Marine Isotope Stage (MIS) 5-4 transition, a period of global cooling and ice sheet expansion. We determine chronologies for the ice and air bubbles in the new ice cores by visually matching variations in gas- and ice- phase tracers to preexisting ice core records. The chronologies reveal an ice age-gas age difference (Δage) approaching 10 ka during MIS 4, implying very low snow accumulation in the Taylor Glacier accumulation zone. A revised chronology for the analagous section of the Taylor Dome ice core (84 to 55 ka), located to the south of the Taylor Glacier accumulation zone, shows that Δage did not exceed 3 ka. The difference in Δage between the two records during MIS 4 is similar in magnitude but opposite in direction to what is observed at the Last Glacial Maximum. This relationship implies that a spatial gradient in snow accumulation existed across the Taylor Dome region during MIS 4 that was oriented in the opposite direction of the accumulation gradient during the Last Glacial Maximum. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica
|
9909367 |
2019-04-25 | Leventer, Amy |
Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin |
This data set describes diatom assemblages and abundances from two sediment cores retrieved from Edward VIII Gulf. The assemblages are used to reconstruct paleoceanographic conditions throughout the Holocene. | ["POLYGON((57 -66,57.3 -66,57.6 -66,57.9 -66,58.2 -66,58.5 -66,58.8 -66,59.1 -66,59.4 -66,59.7 -66,60 -66,60 -66.1,60 -66.2,60 -66.3,60 -66.4,60 -66.5,60 -66.6,60 -66.7,60 -66.8,60 -66.9,60 -67,59.7 -67,59.4 -67,59.1 -67,58.8 -67,58.5 -67,58.2 -67,57.9 -67,57.6 -67,57.3 -67,57 -67,57 -66.9,57 -66.8,57 -66.7,57 -66.6,57 -66.5,57 -66.4,57 -66.3,57 -66.2,57 -66.1,57 -66))"] | ["POINT(58.5 -66.5)"] | false | false |
NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model
|
1543031 |
2019-04-22 | Judd, Emily |
Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica |
GENESIS global circulation model (GCM) outputs from a middle Eocene simulation parameterized with 2000 ppm pCO2, high obliquity, and no Antarctic ice. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Report on Antarctic surface hydrology workshop, LDEO, 2018
|
1743326 |
2019-03-22 | Kingslake, Jonathan; Trusel, Luke; Banwell, Alison; Bell, Robin; Das, Indrani; DeConto, Robert; Tedesco, Marco; Lenaerts, Jan; Schoof, Christian |
Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability |
In February 2018, we hosted a workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability at Lamont-Doherty Earth Observatory, Palisades, New York. Funding for the workshop was provided by the U.S. National Science Foundation (NSF) Antarctic Glaciology Program (award number: 1743326). The aims of the workshop were to: (1) establish the state-of-the-science of Antarctic surface hydrology; (2) identify key science questions raised by observations and theoretical studies of Antarctic surface hydrology, and (3) move the community toward answering these questions by bringing together scientists with diverse expertise. The workshop was motivated by the premise that significant gains in our understanding can be made if researchers with interests in this field are provided with an opportunity to communicate and develop collaborations across disciplines. Here we report on the organisation, attendance, and structure of the workshop, before summarizing key science outcomes, research questions, and future priorities that emerged during the workshop within the following four themes: 1. Surface melting: controls and observations 2. Water ponding and flow 3. Impact of meltwater on ice-shelf stability 4. Ice-sheet/climate modeling Finally, building on the emergent science questions, we propose a framework for prioritizing future work, aimed at understanding and predicting the impact that surface meltwater will have on future Antarctic Ice Sheet mass balance. | [] | [] | false | false |
Log Sheets of coral samples for LMG1509
|
1245766 |
2019-03-07 | Waller, Rhian |
Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress |
Station location information of trawl and CTD stations used for collecting coral samples and water for incubation during expedition NBP1509 in 2015 near the Antarctic Peninsula. | ["POLYGON((-66.5 -63,-65.95 -63,-65.4 -63,-64.85 -63,-64.3 -63,-63.75 -63,-63.2 -63,-62.65 -63,-62.1 -63,-61.55 -63,-61 -63,-61 -63.63,-61 -64.26,-61 -64.89,-61 -65.52,-61 -66.15,-61 -66.78,-61 -67.41,-61 -68.04,-61 -68.67,-61 -69.3,-61.55 -69.3,-62.1 -69.3,-62.65 -69.3,-63.2 -69.3,-63.75 -69.3,-64.3 -69.3,-64.85 -69.3,-65.4 -69.3,-65.95 -69.3,-66.5 -69.3,-66.5 -68.67,-66.5 -68.04,-66.5 -67.41,-66.5 -66.78,-66.5 -66.15,-66.5 -65.52,-66.5 -64.89,-66.5 -64.26,-66.5 -63.63,-66.5 -63))"] | ["POINT(-63.75 -66.15)"] | false | false |
Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios
|
1443394 |
2019-02-04 | Pollard, David |
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet |
The dataset consists of two tar files for two distinct sets of simulations. Each tar file contains a number of Netcdf files with model output for one simulation each, and also contains a DIF file (Directory Interchange Format, in xml form) with information on that part of the dataset. Set 1: There are 4 Netcdf files with output from the PSU 3D Antarctic ice sheet model including ice melange, showing role of melange in potentially providing buttressing and possibly slowing down ice retreat in strong climate warming scenarios. Set two: There are 2 Netcdf files with output from the PSU 3D Antarctic ice sheet model, for two future warming scenarios RCP4.5 and RCP8.5, contributing to oceanic meltwater discharge fields for future climate and ocean model simulations performed at Univ. Massachusetts by other PIs on the NSF project. More details on file names and model fields is provided in "Data Section" of the Readme file. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2
|
1443710 |
2019-02-02 | Severinghaus, Jeffrey P. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Palynological samples
|
1048343 |
2019-02-01 | Warny, Sophie |
CAREER: Deciphering Antarctic Climate Variability during the Temperate/Polar Transition and Improving Climate Change Literacy in Louisiana through a Companion Outreach Program |
Thanks to grant # U.S. National Science Foundation ANT-1048343, our group was selected to study about 700 of the recently-acquired sediment samples in Antarctica, covering ~9 regions and geological time frames ranging from the Paleocene to today. The samples were processed for palynological analyses and the slides are curated at the LSU CENEX center. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders
|
1341485 |
2019-01-06 | Lane, Steven J.; Moran, Amy; Shishido, Caitlin; Woods, H. Arthur |
Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida |
Data used in Lane, SJ, CM Shishido, AL Moran, BW Tobalske, CP Arango, HA Woods (2017) Upper limits to body size imposed by respiratory-structural trade-offs in Antarctic pycnogonids. Proceedings of the Royal Society B 284, No. 1865, p. 20171779, DOI: 10.1098/rspb.2017.1779. File includes data on species identification, body mass, leg dimensions, oxygen gradients across the cuticle, and metabolic rate. | ["POINT(166.666 -77.8499966)"] | ["POINT(166.666 -77.8499966)"] | false | false |
Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts
|
1341485 |
2019-01-06 | Lane, Steven J.; Tobalske, Bret; Moran, Amy; Shishido, Caitlin; Woods, H. Arthur |
Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida |
Data used in Lane, SJ, BW Tobalske, AL Moran, CM Shishido, HA Woods (2018) Costs of epibionts on Antarctic sea spiders. Marine Biology 165, 137 https://doi.org/10.1007/s00227-018-3389-9. Data sets include (1) measurements of drag on individual sea spiders with or without epibiotic barnacles and other fouling; (2) data on locomotion by fouled and unfouled sea spiders; (3) functional diffusion coefficients of oxygen through fouled and unfouled cuticle; and (4) levels of oxygen at the cuticle surface of fouled and unfouled individuals. | ["POINT(166.666 -77.8499966)"] | ["POINT(166.666 -77.8499966)"] | false | false |
Cuticle morphology and oxygen gradients of Antarctic sea spiders
|
1341485 |
2018-12-22 | Woods, H. Arthur; Arthur Woods, H. |
Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida |
Raw data from Lane, SJ, AL Moran, CM Shishido, BW Tobalske, HA Woods (2018) Cuticular gas exchange by Antarctic sea spiders. Journal of Experimental Biology. jeb.177568 doi: 10.1242/jeb.177568. The file contains data on pore morphology, cuticle thickness, oxygen gradients across the cuticle, and estimated resistances of the cuticle to oxygen flux. Most of the sea spiders were collected near McMurdo Station, with a few extras collected at New Harbor, Antarctica. | ["POLYGON((163.85 -77.6,164.134 -77.6,164.418 -77.6,164.702 -77.6,164.986 -77.6,165.27 -77.6,165.554 -77.6,165.838 -77.6,166.122 -77.6,166.406 -77.6,166.69 -77.6,166.69 -77.624,166.69 -77.648,166.69 -77.672,166.69 -77.696,166.69 -77.72,166.69 -77.744,166.69 -77.768,166.69 -77.792,166.69 -77.816,166.69 -77.84,166.406 -77.84,166.122 -77.84,165.838 -77.84,165.554 -77.84,165.27 -77.84,164.986 -77.84,164.702 -77.84,164.418 -77.84,164.134 -77.84,163.85 -77.84,163.85 -77.816,163.85 -77.792,163.85 -77.768,163.85 -77.744,163.85 -77.72,163.85 -77.696,163.85 -77.672,163.85 -77.648,163.85 -77.624,163.85 -77.6))"] | ["POINT(165.27 -77.72)"] | false | false |
Model output NOAA GFDL CM2_6 Cant Hant storage
|
1425989 |
2018-12-14 | Chen, Haidi |
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) |
This dataset include the budget terms for heat, carbon and phosphate storage tendency in pre-industrial simulation and climate change simulation forced with atmospheric CO2 increasing at a rate of 1% per year run following 120 years of the pre-industrial simulation. The results are zonally integrated. The dataset also include the meridional overturning circulation in the control and climate simulations. | ["POLYGON((-180 -20,-144 -20,-108 -20,-72 -20,-36 -20,0 -20,36 -20,72 -20,108 -20,144 -20,180 -20,180 -27,180 -34,180 -41,180 -48,180 -55,180 -62,180 -69,180 -76,180 -83,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -83,-180 -76,-180 -69,-180 -62,-180 -55,-180 -48,-180 -41,-180 -34,-180 -27,-180 -20))"] | ["POINT(0 -89.999)"] | false | false |
Physiological and biochemical measurements on Pycnogonida from McMurdo Sound
|
1341485 1341476 |
2018-12-07 | Moran, Amy; Woods, H. Arthur; Tobalske, Bret |
Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida |
This dataset contains morphometric (mass, surface area, cuticle thickness, cuticle morphometrics) and physiological (oxygen consumption) data for Antarctic pycnognonids collected in McMurdo Sound, Antarctica . | ["POINT(166.67 -77.85)"] | ["POINT(166.67 -77.85)"] | false | false |
Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird
|
1246407 |
2018-12-03 | Jenouvrier, Stephanie |
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change |
1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics. 2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance. 3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success. 4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics. | ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"] | ["POINT(69.625 -49.25)"] | false | false |
Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area
|
1443263 1443306 |
2018-10-17 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the surface ice samples (listed as point numbers coordinates provided) collected at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the area(76.73165 to 76.73348 S, 159.35343 to 159.42112 E). | ["POLYGON((159.35343 -76.73165,159.360199 -76.73165,159.366968 -76.73165,159.373737 -76.73165,159.380506 -76.73165,159.387275 -76.73165,159.394044 -76.73165,159.400813 -76.73165,159.407582 -76.73165,159.414351 -76.73165,159.42112 -76.73165,159.42112 -76.731833,159.42112 -76.732016,159.42112 -76.732199,159.42112 -76.732382,159.42112 -76.732565,159.42112 -76.732748,159.42112 -76.732931,159.42112 -76.733114,159.42112 -76.733297,159.42112 -76.73348,159.414351 -76.73348,159.407582 -76.73348,159.400813 -76.73348,159.394044 -76.73348,159.387275 -76.73348,159.380506 -76.73348,159.373737 -76.73348,159.366968 -76.73348,159.360199 -76.73348,159.35343 -76.73348,159.35343 -76.733297,159.35343 -76.733114,159.35343 -76.732931,159.35343 -76.732748,159.35343 -76.732565,159.35343 -76.732382,159.35343 -76.732199,159.35343 -76.732016,159.35343 -76.731833,159.35343 -76.73165))"] | ["POINT(159.387275 -76.732565)"] | false | false |
Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area
|
1443306 1443263 |
2018-10-17 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1502 (76.73286 S, 159.35507 E) was drilled in 2015-16 field season to 197 meters below the surface. | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area
|
1443306 1443263 |
2018-10-16 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443263) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1503 (76.73243 S, 159.3562 E). Ice core site AH-1503 used the same borehole as AH- BIT58 drilled down to 124 m during the 2011-12 field season. All drilling was conducted with a 3" Eclipse drill (Ice Drilling Design and Operations (IDDO)). | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
Material properties of the exoskeleton of Paralomis birsteini
|
1141877 |
2018-07-27 | Steffel, Brittan |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
This data set includes measurements of the percent calcium, thickness, and microhardness of the exoskeleton in Paralomis birsteini, Cancer borealis, and Callinectes sapidus. Measurements were taken in the carapace, major chela, and minor chela of each crab. Paralomis birsteini were trapped at ~1350 m depth off Marguerite Bay, western Antarctic Peninsula in 2015. Cancer borealis were trapped in the Gulf of Maine, USA at ~50 m depth, and Callinectes sapidus were trapped in Florida, USA at depths shallower than 30 m. | [] | [] | false | false |
South Pole Ice Core (SPIcecore) Visual Observations
|
1542778 |
2018-03-05 | Fegyveresi, John; Alley, Richard |
Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core |
This dataset includes all visible observations made of the South Pole Ice core within a dark booth during core processing at the National Ice Core Laboratory. This dataset includes observations starting at 735 meters depth, down to the bottom of the drilled core at 1751 meters. All visible and cloudy layers are noted, as well as any other observed feature or cracks. In addition, all Volcanic layers measured on the ECM were noted. | ["POLYGON((-180 -89.9,-144 -89.9,-108 -89.9,-72 -89.9,-36 -89.9,0 -89.9,36 -89.9,72 -89.9,108 -89.9,144 -89.9,180 -89.9,180 -89.91,180 -89.92,180 -89.93,180 -89.94,180 -89.95,180 -89.96,180 -89.97,180 -89.98,180 -89.99,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.99,-180 -89.98,-180 -89.97,-180 -89.96,-180 -89.95,-180 -89.94,-180 -89.93,-180 -89.92,-180 -89.91,-180 -89.9))"] | ["POINT(0 -89.999)"] | false | false |
DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data
|
1341669 |
2018-02-03 | DeMaster, David |
Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
This file has C-14 data from the organic matter fraction of Antarctic marine sediments, collected from the collapsed Larsen Ice Shelf and the West Antarctic Peninsula | ["POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62))"] | ["POINT(-64 -65)"] | false | false |
Region Climate Model Output Plio-Pleistocene
|
1245899 |
2018-01-16 | Kowalewski, Douglas |
Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound |
Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene. | ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"] | ["POINT(-160 -77.5)"] | false | false |
Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica
|
1246203 |
2017-12-18 | Gooseff, Michael N. |
Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change |
As a part of the project titled "Collaborative Research: The McMurdo Dry Valleys: A landscape on the threshold of change", we measured ground temperatures from 0-20cm at three stream bank positions (base, mid-slope, and top) at 4 locations along Crescent Stream in Taylor Valley - 2 on the east bank, 2 on the west bank. The goal was to evaluate differences in thermal conduction and temperature dynamics of the active layers of these locations, in particular, in a stream that has undergone extensive bank erosion since 2012 due to permafrost degradation. One of the datalogging stations had significant technical problems and has very little data compared to the almost 2 years of temperature date from the other 3 stations (2015-2017). | ["POLYGON((163.1778 -77.6233,163.17792 -77.6233,163.17804 -77.6233,163.17816 -77.6233,163.17828 -77.6233,163.1784 -77.6233,163.17852 -77.6233,163.17864 -77.6233,163.17876 -77.6233,163.17888 -77.6233,163.179 -77.6233,163.179 -77.63331,163.179 -77.64332,163.179 -77.65333,163.179 -77.66334,163.179 -77.67335,163.179 -77.68336,163.179 -77.69337,163.179 -77.70338,163.179 -77.71339,163.179 -77.7234,163.17888 -77.7234,163.17876 -77.7234,163.17864 -77.7234,163.17852 -77.7234,163.1784 -77.7234,163.17828 -77.7234,163.17816 -77.7234,163.17804 -77.7234,163.17792 -77.7234,163.1778 -77.7234,163.1778 -77.71339,163.1778 -77.70338,163.1778 -77.69337,163.1778 -77.68336,163.1778 -77.67335,163.1778 -77.66334,163.1778 -77.65333,163.1778 -77.64332,163.1778 -77.63331,163.1778 -77.6233))"] | ["POINT(163.1784 -77.67335)"] | false | false |
Shortwave Spectroradiometer Data from Ross Island, Antarctica
|
1141939 |
2017-12-12 | Lubin, Dan |
Antarctic Cloud Physics: Fundamental Observations from Ross Island |
In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014). <br><br>There are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water. <br><br>Ancillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response. | ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"] | ["POINT(166.67325 -77.54515)"] | false | false |
Anvers Trough Foraminifer Stable Isotope data
|
1246378 |
2017-10-25 | Shevenell, Amelia |
Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica |
These are unpublished stable isotope data from a series of sediment cores collected during LMG12-11 and LMG13-11 down the axis of Anvers Trough. These records span the LMG to recent. | ["POLYGON((-65.32 -64.15,-65.309 -64.15,-65.298 -64.15,-65.287 -64.15,-65.276 -64.15,-65.265 -64.15,-65.254 -64.15,-65.243 -64.15,-65.232 -64.15,-65.221 -64.15,-65.21 -64.15,-65.21 -64.186,-65.21 -64.222,-65.21 -64.258,-65.21 -64.294,-65.21 -64.33,-65.21 -64.366,-65.21 -64.402,-65.21 -64.438,-65.21 -64.474,-65.21 -64.51,-65.221 -64.51,-65.232 -64.51,-65.243 -64.51,-65.254 -64.51,-65.265 -64.51,-65.276 -64.51,-65.287 -64.51,-65.298 -64.51,-65.309 -64.51,-65.32 -64.51,-65.32 -64.474,-65.32 -64.438,-65.32 -64.402,-65.32 -64.366,-65.32 -64.33,-65.32 -64.294,-65.32 -64.258,-65.32 -64.222,-65.32 -64.186,-65.32 -64.15))"] | ["POINT(-65.265 -64.33)"] | false | false |
c-Axis Fabric of the South Pole Ice Core, SPC14
|
1542778 |
2017-09-20 | Voigt, Donald E. |
Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core |
Thin sections of the South Pole Ice Core, SPC14, were prepared from samples taken every ~20 meters starting at 100 meters depth. Samples from 140 meters to 1739 meters depth were analyzed to determine the c-axis fabric of the grains. The ice is generally fine-grained, with the samples at 100 and 120 meters depth too fine grained for successful analysis, but sufficient grain growth having occurred for analysis of all deeper samples. The c-axis fabric was measured on the automated c-axis fabric analyzer located at Penn State University, designed and built by Larry Wilen. Raw data is in the form of multiple images of the ice thin section taken at defined angles under cross polarized light. The images are analyzed to determine position of the extinction minimum of each grain within the thin section, this being the orientation of the c-axis of that grain. During processing, the area of each analyzed grain is also measured. Shallow samples show a fairly random distribution, although with a slight tendency for clustering of c-axes toward the vertical. With increasing depth, the c-axes rotate toward a vertical plane with a slight additional tendency of clustering toward the vertical within that plane. The core was not oriented during collection, so it is not possible to unambiguously tell how the vertical plane is related to ice flow, but physical understanding indicates that it is transverse to flow. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
WAIS Divide Replicate Core Methane Isotopic Data Set
|
1043522 |
2017-09-15 | Brook, Edward J. |
Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest |
Data set contains stable isotope data set for methane in the WAIS Divide replicate core for the interval of 3009 to 2071 meters. These measurements were made by James Lee at the University of Bern as part of his PhD thesis and are the subject of a paper in preparation. | ["POLYGON((-112.085 -79.46,-112.0765 -79.46,-112.068 -79.46,-112.0595 -79.46,-112.051 -79.46,-112.0425 -79.46,-112.034 -79.46,-112.0255 -79.46,-112.017 -79.46,-112.0085 -79.46,-112 -79.46,-112 -79.4607,-112 -79.4614,-112 -79.4621,-112 -79.4628,-112 -79.4635,-112 -79.4642,-112 -79.4649,-112 -79.4656,-112 -79.4663,-112 -79.467,-112.0085 -79.467,-112.017 -79.467,-112.0255 -79.467,-112.034 -79.467,-112.0425 -79.467,-112.051 -79.467,-112.0595 -79.467,-112.068 -79.467,-112.0765 -79.467,-112.085 -79.467,-112.085 -79.4663,-112.085 -79.4656,-112.085 -79.4649,-112.085 -79.4642,-112.085 -79.4635,-112.085 -79.4628,-112.085 -79.4621,-112.085 -79.4614,-112.085 -79.4607,-112.085 -79.46))"] | ["POINT(-112.0425 -79.4635)"] | false | false |
Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data
|
0732946 |
2017-09-13 | McGrath, Daniel; Steffen, Konrad; Kuipers Munneke, Peter |
IPY: Stability of Larsen C Ice Shelf in a Warming Climate |
We produce a reconstruction of surface mass balance (SMB) (in mm w.e. per year) by adjusting the 1979-2014 RACMO2 SMB to the spatial pattern of ground-penetrating radar observations and to observations of SMB from sonic height rangers. | ["POLYGON((-66 -66,-65.4 -66,-64.8 -66,-64.2 -66,-63.6 -66,-63 -66,-62.4 -66,-61.8 -66,-61.2 -66,-60.6 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.6 -70,-61.2 -70,-61.8 -70,-62.4 -70,-63 -70,-63.6 -70,-64.2 -70,-64.8 -70,-65.4 -70,-66 -70,-66 -69.6,-66 -69.2,-66 -68.8,-66 -68.4,-66 -68,-66 -67.6,-66 -67.2,-66 -66.8,-66 -66.4,-66 -66))"] | ["POINT(-63 -68)"] | false | false |
Antarctic Tephra Data Base AntT static web site
|
1142007 1142069 |
2017-09-13 | Kurbatov, Andrei V.; Dunbar, Nelia |
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT) |
This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. AntT database is designed to assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources. | ["POLYGON((0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,216 -60,252 -60,288 -60,324 -60,360 -60,360 -63,360 -66,360 -69,360 -72,360 -75,360 -78,360 -81,360 -84,360 -87,360 -90,324 -90,288 -90,252 -90,216 -90,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,0 -87,0 -84,0 -81,0 -78,0 -75,0 -72,0 -69,0 -66,0 -63,0 -60))"] | ["POINT(180 -75)"] | false | false |
Early Holocene methane records from Siple Dome, Antarctica
|
1043518 |
2017-09-11 | Yang, Ji-Woong; Ahn, Jinho |
Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core |
Below we present the early Holocene discrete CH4 dataset from Siple Dome (SDMA), Antarctica, measured at Oregon State University (OSU) and Seoul National University (SNU) by discrete wet extraction technique. Analytical method is described in Grachev et al. (2009) and Mitchell et al. (2011) for OSU data, and Yang et al. (2017) for SNU data. SDMA CH4 composite record was constructed by combining OSU data for 7.6 - 9.0 ka and SNU data for 9.0 - 11.6 ka to maximize temporal resolution. SDMA gas chronology was synchronized to Greenland Ice Core Chronology 2005 (GICC05) scale. For detailed description on synchronization and age uncertainty please refer to Yang et al. (2017). | ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"] | ["POINT(-112 -79.5)"] | false | false |
Firn-temperature time series in Dronning Maud Land, East Antarctica
|
1142085 |
2017-09-05 | Muto, Atsu |
Revealing Late Holocence Climate Variability in Antarctica from Borehole Paleothermometry |
["POLYGON((0 -75,5.489 -75,10.978 -75,16.467 -75,21.956 -75,27.445 -75,32.934 -75,38.423 -75,43.912 -75,49.401 -75,54.89 -75,54.89 -75.763,54.89 -76.526,54.89 -77.289,54.89 -78.052,54.89 -78.815,54.89 -79.578,54.89 -80.341,54.89 -81.104,54.89 -81.867,54.89 -82.63,49.401 -82.63,43.912 -82.63,38.423 -82.63,32.934 -82.63,27.445 -82.63,21.956 -82.63,16.467 -82.63,10.978 -82.63,5.489 -82.63,0 -82.63,0 -81.867,0 -81.104,0 -80.341,0 -79.578,0 -78.815,0 -78.052,0 -77.289,0 -76.526,0 -75.763,0 -75))"] | ["POINT(27.445 -78.815)"] | false | false | |
NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data
|
1430550 |
2017-08-18 | Shevenell, Amelia; Smith, Catherine; Domack, Eugene Walter |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Pollen assemblage data for Paleocene to early to middle Eocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
NBP14-02 JPC-55 foraminifer assemblage data
|
1143836 |
2017-08-18 | Shevenell, Amelia; Leventer, Amy |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
Foraminifer assemblage data for Paleocene sediments collected on Totten continental shelf, East Antarctica. | ["POLYGON((120 -66,120.1 -66,120.2 -66,120.3 -66,120.4 -66,120.5 -66,120.6 -66,120.7 -66,120.8 -66,120.9 -66,121 -66,121 -66.4,121 -66.8,121 -67.2,121 -67.6,121 -68,121 -68.4,121 -68.8,121 -69.2,121 -69.6,121 -70,120.9 -70,120.8 -70,120.7 -70,120.6 -70,120.5 -70,120.4 -70,120.3 -70,120.2 -70,120.1 -70,120 -70,120 -69.6,120 -69.2,120 -68.8,120 -68.4,120 -68,120 -67.6,120 -67.2,120 -66.8,120 -66.4,120 -66))"] | ["POINT(120.5 -68)"] | false | false |
Antarctic Ice Core Tephra Analysis
|
1142007 |
2017-08-03 | Kurbatov, Andrei V. |
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT) |
This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Late Holocene paleoecological and paleoclimatic data from moss peatbanks in the western Antarctic Peninsula
|
1246190 |
2017-07-24 | Yu, Zicheng |
Collaborative Research: Response of Carbon Accumulation in Moss Peatbanks to Past Warm Climates in the Antarctic Peninsula |
We used subfossil mosses and peats to document changes in regional climate, cryosphere, and terrestrial ecosystems in the western Antarctic Peninsula at ~65S latitude. We find that most peat-forming ecosystems have initiated since 2800 cal BP, in response to warmer summers and increasing summer insolation. The period at 900-600 cal BP was coldest as indicated by ice advance, abundance of kill ages from ice-entombed mosses exposed recently from retreating glacial ice, and apparent gap in peatbank initiation. Furthermore, the discovery of a novel Antarctic hairgrass (Deschampsia antarctica) peatland at 2300-1200 cal BP from the mainland Antarctic Peninsula suggests a much warmer climate than the present. A warming and wetting climate in the 1980s caused very high carbon accumulation in a Polytrichum strictum moss peatbank. Our results document dramatic transformations of landscape and ecosystems in response to past warmer climate, providing a telltale sign for what may come in the future. | ["POLYGON((-68.5 -64,-67.73 -64,-66.96 -64,-66.19 -64,-65.42 -64,-64.65 -64,-63.88 -64,-63.11 -64,-62.34 -64,-61.57 -64,-60.8 -64,-60.8 -64.36,-60.8 -64.72,-60.8 -65.08,-60.8 -65.44,-60.8 -65.8,-60.8 -66.16,-60.8 -66.52,-60.8 -66.88,-60.8 -67.24,-60.8 -67.6,-61.57 -67.6,-62.34 -67.6,-63.11 -67.6,-63.88 -67.6,-64.65 -67.6,-65.42 -67.6,-66.19 -67.6,-66.96 -67.6,-67.73 -67.6,-68.5 -67.6,-68.5 -67.24,-68.5 -66.88,-68.5 -66.52,-68.5 -66.16,-68.5 -65.8,-68.5 -65.44,-68.5 -65.08,-68.5 -64.72,-68.5 -64.36,-68.5 -64))"] | ["POINT(-64.65 -65.8)"] | false | false |
Holocene Black Carbon in Antarctica
|
0839093 |
2017-06-19 | McConnell, Joseph; Arienzo, Monica |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
WAIS Divide WDC06A Core Quality Versus Depth
|
0944266 0944348 |
2017-06-01 | Taylor, Kendrick C.; Souney, Joseph Jr.; Twickler, Mark |
Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide |
Qualitative assessment of ice-core quality versus depth for the deep WAIS Divide WDC06A ice core. The depths and core quality ratings presented here are from the field observations made at WAIS Divide, Antarctica, during the course of the drilling of the ice core. Depths are in meters. Core quality ratings were defined are as follows. Excellent: -1 breaks/no fractures; Very Good: -2 breaks/90% no fractures; Good: -3 breaks/50% no fractures; Fair: >10 cm without fractures; Poor: >10 cm without through fractures; Very Poor: <10 cm without through fractures. | ["POINT(-112.08 -79.46)"] | ["POINT(-112.08 -79.46)"] | false | false |
Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica
|
1245659 |
2017-05-24 | Petrenko, Vasilii; Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
This dataset contains measurements of paleoatmospheric 14C of methane (14CH4) for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica, as well as a range of supporting data. The supporting data include [CH4], [CO], [14CO], sample ages, CH4 emissions and analysis of uncertainties. | ["POINT(161.71353 -77.75855)"] | ["POINT(161.71353 -77.75855)"] | false | false |
WAIS Divide WDC06A Nitrate Isotope Record
|
1246223 |
2017-04-26 | Buffen, Aron; Hastings, Meredith |
Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice |
This dataset contains nitrate concentration and isotopic composition (d15N, d18O, D17O) measurements on the WAIS Divide WDC06A ice core. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Summary of Results from the WAIS Divide Ice Core Project
|
0944348 |
2017-04-24 | Taylor, Kendrick C. |
Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide |
This is a summary of results 2005-2016 from the NSF-funded WAIS Divide Ice Core project, compiled by the Science Coordination Office. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)
|
0944197 |
2017-03-28 | Fudge, T. J. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \"bipolar seesaw\". We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m
|
1142166 |
2017-03-22 | McConnell, Joseph |
Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze ~3 cm by ~3 cm longitudinal samples from ~1300 to ~3404 m depth in the recently collected WAIS Divide deep ice core from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases
|
1245580 |
2017-01-30 | Castro, M. Clara |
Developing a New Paleoclimate Proxy for Polar and Alpine Glacial Regions Based on Noble Gases |
None | ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"] | ["POINT(163.1833 -77.6767)", "POINT(162.3667 -77.7166)"] | false | false |
Neogene Paleoecology of the Beardmore Glacier Region
|
0947821 |
2017-01-17 | Ashworth, Allan |
Neogene Paleoecology of the Beardmore Glacier Region |
None | ["POLYGON((166.58793 -85.11733,166.595533 -85.11733,166.603136 -85.11733,166.610739 -85.11733,166.618342 -85.11733,166.625945 -85.11733,166.633548 -85.11733,166.641151 -85.11733,166.648754 -85.11733,166.656357 -85.11733,166.66396 -85.11733,166.66396 -85.117836,166.66396 -85.118342,166.66396 -85.118848,166.66396 -85.119354,166.66396 -85.11986,166.66396 -85.120366,166.66396 -85.120872,166.66396 -85.121378,166.66396 -85.121884,166.66396 -85.12239,166.656357 -85.12239,166.648754 -85.12239,166.641151 -85.12239,166.633548 -85.12239,166.625945 -85.12239,166.618342 -85.12239,166.610739 -85.12239,166.603136 -85.12239,166.595533 -85.12239,166.58793 -85.12239,166.58793 -85.121884,166.58793 -85.121378,166.58793 -85.120872,166.58793 -85.120366,166.58793 -85.11986,166.58793 -85.119354,166.58793 -85.118848,166.58793 -85.118342,166.58793 -85.117836,166.58793 -85.11733))"] | ["POINT(166.625945 -85.11986)"] | false | false |
Temperature Reconstruction at the West Antarctic Ice Sheet Divide
|
0539232 |
2017-01-12 | Cuffey, Kurt M. |
Collaborative Research: Physical Properties of the WAIS Divide Deep Core |
This dataset contains the temperature reconstruction at the West Antarctic Ice Sheet (WAIS) Divide reported by Cuffey et al. (2016) in PNAS. Five files contain 1) the primary reconstruction (Eq. 2 of that publication), combining information from borehole temperatures, deuterium isotopic content of ice, and nitrogen-15 content of trapped diatomic nitrogen gas; 2) the primary reconstruction with higher-frequency content restored; 3) the lower limit of the primary reconstruction; 4) the upper limit of the primary reconstruction; and 5) and the primary reconstruction with added perturbations. | ["POINT(-112.083 -79.467)"] | ["POINT(-112.083 -79.467)"] | false | false |
Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
|
1043580 |
2017-01-10 | Reusch, David |
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs |
None | [] | [] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2017-01-10 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | [] | [] | false | false |
Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins
|
1043554 |
2016-11-09 | Willenbring, Jane |
Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins |
The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete. | ["POINT(161.5 -77.5)"] | ["POINT(161.5 -77.5)"] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2016-01-01 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"] | ["POINT(-82.425 -64.21)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0839059 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"] | ["POINT(-168.65 -82.35)"] | false | false |
Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 |
2016-01-01 | White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
|
1043580 |
2016-01-01 | Reusch, David |
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs |
The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. Using contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. The previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here. | ["POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))"] | ["POINT(0 -89.999)"] | false | false |
Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica
|
0839031 |
2016-01-01 | Severinghaus, Jeffrey P. |
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica |
This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the 'clathrate hypothesis' that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a 'horizontal ice core' would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica. | ["POINT(161.71965 -77.76165)"] | ["POINT(161.71965 -77.76165)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling
|
1142162 |
2016-01-01 | Stone, John |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling |
This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public. | ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"] | ["POINT(-94.64 -81.755)"] | false | false |
Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems
|
1142018 |
2016-01-01 | Arrigo, Kevin |
Collaborative Research: Adaptive Responses of Phaeocystis Populations in Antarctic Ecosystems |
Global climate change is having significant effects on areas of the Southern Ocean, and a better understanding of this ecosystem will permit predictions about the large-scale implications of these shifts. The haptophyte Phaeocystis antarctica is an important component of the phytoplankton communities in this region, but little is known about the factors controlling its distribution. Preliminary data suggest that P. antarctica posses unique adaptations that allow it to thrive in regions with dynamic light regimes. This research will extend these results to identify the physiological and genetic mechanisms that affect the growth and distribution of P. antarctica. This work will use field and laboratory-based studies and a suite of modern molecular techniques to better understand the biogeography and physiology of this key organism. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of two graduate students and will foster an established international collaboration with Dutch scientists. Researchers on this project will participate in outreach programs targeting K12 teachers as well as high school students. | ["POLYGON((-75.8 -61.08,-74.457 -61.08,-73.114 -61.08,-71.771 -61.08,-70.428 -61.08,-69.085 -61.08,-67.742 -61.08,-66.399 -61.08,-65.056 -61.08,-63.713 -61.08,-62.37 -61.08,-62.37 -61.684,-62.37 -62.288,-62.37 -62.892,-62.37 -63.496,-62.37 -64.1,-62.37 -64.704,-62.37 -65.308,-62.37 -65.912,-62.37 -66.516,-62.37 -67.12,-63.713 -67.12,-65.056 -67.12,-66.399 -67.12,-67.742 -67.12,-69.085 -67.12,-70.428 -67.12,-71.771 -67.12,-73.114 -67.12,-74.457 -67.12,-75.8 -67.12,-75.8 -66.516,-75.8 -65.912,-75.8 -65.308,-75.8 -64.704,-75.8 -64.1,-75.8 -63.496,-75.8 -62.892,-75.8 -62.288,-75.8 -61.684,-75.8 -61.08))"] | ["POINT(-69.085 -64.1)"] | false | false |
Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations
|
1141973 |
2016-01-01 | Tedesco, Marco |
Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations |
This award supports a project to generate first-time validated enhanced spatial resolution (5-10 km) maps of surface melting over the Antarctic Peninsula for the period 1958 - to date from the outputs of a regional climate model and different downscaling techniques. These maps will be assessed and validated through new high spatial resolution (2.25 km) surface melting maps obtained from the QuikSCAT satellite for the period 1999 - 2009. The intellectual merit of this work is that it would be the first time that the outputs of a regional climate model would be used to study surface melting over Antarctica at such high spatial resolution and the first time that such results are validated by means of an observational tool that has such a large spatial coverage and high spatial resolution. The results generated in this study would also provide a first-time opportunity to study the melt distribution over the Peninsula and its correlation with climate drivers, such as the Southern Annual Mode (SAM) and the El Nino-Southern Oscillation (ENSO) at these unprecedented spatial scales. The enhanced resolution melting maps will also offer a unique opportunity to study melting trends and patterns over specific regions of the Peninsula, such as the Wilkins and the Larsen A and B ice shelves and evaluate whether the extreme melting observed during the recent collapses was unprecedented over the + 50 years. The broader impacts of the project are that it will integrate research and education by fully supporting one female undergrad student, a PhD student and partially supporting a PostDoc. The work will be done at a minority-serving institution and the PhD student who worked on the development of the high-resolution melting data set from QuikSCAT will become the PostDoc who will work on this project. Teaching and learning will be supported by incorporating research results into graduate and undergrad level courses and will be disseminated over the web and through appropriate channels. Results from this project will also benefit the society at large as they will improve our understanding of the links between atmospheric patterns and surface melting and they will contribute to improving estimates of sea level rise from the Antarctica continent. | ["POLYGON((-94.7374 -56.9464,-89.23679 -56.9464,-83.73618 -56.9464,-78.23557 -56.9464,-72.73496 -56.9464,-67.23435 -56.9464,-61.73374 -56.9464,-56.23313 -56.9464,-50.73252 -56.9464,-45.23191 -56.9464,-39.7313 -56.9464,-39.7313 -59.19838,-39.7313 -61.45036,-39.7313 -63.70234,-39.7313 -65.95432,-39.7313 -68.2063,-39.7313 -70.45828,-39.7313 -72.71026,-39.7313 -74.96224,-39.7313 -77.21422,-39.7313 -79.4662,-45.23191 -79.4662,-50.73252 -79.4662,-56.23313 -79.4662,-61.73374 -79.4662,-67.23435 -79.4662,-72.73496 -79.4662,-78.23557 -79.4662,-83.73618 -79.4662,-89.23679 -79.4662,-94.7374 -79.4662,-94.7374 -77.21422,-94.7374 -74.96224,-94.7374 -72.71026,-94.7374 -70.45828,-94.7374 -68.2063,-94.7374 -65.95432,-94.7374 -63.70234,-94.7374 -61.45036,-94.7374 -59.19838,-94.7374 -56.9464))"] | ["POINT(-67.23435 -68.2063)"] | false | false |
Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements
|
1043750 |
2016-01-01 | Chen, Jianli |
Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements |
This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Bromide in Snow in the Sea Ice Zone
|
1043145 |
2016-01-01 | Obbard, Rachel |
Bromide in Snow in the Sea Ice Zone |
A range of chemical and microphysical pathways in polar latitudes, including spring time (tropospheric) ozone depletion, oxidative pathways for mercury, and cloud condensation nuclei (CCN) production leading to changes in the cloud cover and attendant surface energy budgets, have been invoked as being dependent upon the emission of halogen gases formed in sea-ice. The prospects for climate warming induced reductions in sea ice extent causing alteration of these incompletely known surface-atmospheric feedbacks and interactions requires confirmation of mechanistic details in both laboratory studies and field campaigns. One such mechanistic question is how bromine (BrO and Br) enriched snow migrates or is formed through processes in sea-ice, prior to its subsequent mobilization as an aerosol fraction into the atmosphere by strong winds. Once aloft, it may react with ozone and other atmospheric species. Dartmouth researchers will collect snow from the surface of sea ice, from freely blowing snow and in sea-ice cores from Cape Byrd, Ross Sea. A range of spectroscopic, microanalytic and and microstructural approaches will be subsequently used to determine the Br distribution gradients through sea-ice, in order to shed light on how sea-ice first forms and then releases bromine species into the polar atmospheric boundary layer. | ["POLYGON((164.1005 -77.1188,164.36443 -77.1188,164.62836 -77.1188,164.89229 -77.1188,165.15622 -77.1188,165.42015 -77.1188,165.68408 -77.1188,165.94801 -77.1188,166.21194 -77.1188,166.47587 -77.1188,166.7398 -77.1188,166.7398 -77.19337,166.7398 -77.26794,166.7398 -77.34251,166.7398 -77.41708,166.7398 -77.49165,166.7398 -77.56622,166.7398 -77.64079,166.7398 -77.71536,166.7398 -77.78993,166.7398 -77.8645,166.47587 -77.8645,166.21194 -77.8645,165.94801 -77.8645,165.68408 -77.8645,165.42015 -77.8645,165.15622 -77.8645,164.89229 -77.8645,164.62836 -77.8645,164.36443 -77.8645,164.1005 -77.8645,164.1005 -77.78993,164.1005 -77.71536,164.1005 -77.64079,164.1005 -77.56622,164.1005 -77.49165,164.1005 -77.41708,164.1005 -77.34251,164.1005 -77.26794,164.1005 -77.19337,164.1005 -77.1188))"] | ["POINT(165.42015 -77.49165)"] | false | false |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica
|
0944282 |
2016-01-01 | Hasiotis, Stephen |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica |
This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? This study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal. | ["POINT(175 -86)"] | ["POINT(175 -86)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)
|
0839107 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"] | ["POINT(-163.6 -84.25)"] | false | false |
Mount Moulton Isotopes and Other Ice Core Data
|
0230316 |
2015-11-24 | Steig, Eric J.; White, James; Popp, Trevor |
Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica |
This data set consists of water isotope ratios from the Mt. Moulton ice-trench record, as well as data from the Taylor Dome, EPICA Dome C, Talos Dome, Vostok, and EPICA Dronning Maud Land ice cores. | ["POINT(-134.43 -74.04)"] | ["POINT(-134.43 -74.04)"] | false | false |
Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event
|
0538657 |
2015-10-27 | Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the GISP2 ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21. | ["POINT(-38.5 -76.2)"] | ["POINT(-38.5 -76.2)"] | false | false |
LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives
|
1042883 |
2015-10-27 | Haines, Skylar; Mayewski, Paul A.; Kurbatov, Andrei V. |
Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014) |
This data set contains the results of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) performed on an archive of the Siple Dome A ice core containing the rapid climate warming of Dansgaard-Oeschger Event 21. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core
|
0538657 |
2015-10-20 | Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set is a low-resolution set of measurements of d15N of N2 and d18O of O2, along with dO2/N and dAr/N2 supporting data, in the WAIS Divide 3405 m long ice core recovered in 2011. Data are distributed via FTP. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
WAIS Divide Ice Core CO2
|
0739766 |
2015-10-06 | Brook, Edward J.; Marcott, Shaun |
Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record |
The data are measurements of carbon dioxide (CO<sub>2</sub>) from the WAIS Divide Ice Core, WDC06A, Antarctica. | ["POINT(-112.08 -79.46)"] | ["POINT(-112.08 -79.46)"] | false | false |
Roosevelt Island Climate Evolution Ice Core ICP-MS data
|
1042883 |
2015-09-29 | Mayewski, Paul A.; Kurbatov, Andrei V. |
Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014) |
This data set includes three Roosevelt Island Climate Evolution (RICE) ice core samples drilled on Roosevelt Island, Ross Ice Shelf, Antarctica. The RICE elements analyzed were: Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Li, I, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co, Na, Mg, Cu, Zn, and K verses depth. | ["POINT(-161.53 -79.39)"] | ["POINT(-161.53 -79.39)"] | false | false |
Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP
|
1043518 1142041 0944552 0839093 1142166 |
2015-07-23 | McConnell, Joseph; Brook, Edward J.; Rhodes, Rachel |
Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core |
This data set contains methane concentrations from a West Antarctic Ice Sheet (WAIS) Divide ice core obtained by an online, continuous technique (Stowasser, et al. 2012). <br></br> IMPORTANT NOTE: The experiment-time-integrated data are made available as a comprehensive archive of WAIS-Divide methane measurements. In the vast majority of cases the 2-yearly spline fit will be the most suitable for your application (Rhodes_Science_2015_WD_CH4_noaa-wdc-paleo (8).xlsx or Rhodes_Science_2015_WD_CH4_noaa-wdc-paleo.txt). <br> </br> For more detailed information on the 2 yearly cubic smoothing spline please refer to references listed, in particular, the Supplementary Material of Rhodes et al. (2015). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka
|
0636740 |
2015-06-29 | Koffman, Bess; Kreutz, Karl |
Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core |
This data set includes raw dust microparticle data for the WAIS Divide deep core, WDC06A, from the surface to 577 m. Data were collected in 2010 using a Klotz Abakus laser particle counter connected to a continuous ice core melter system at the University of Maine (Breton et al., 2012). | ["POINT(-112.5 -79.28)"] | ["POINT(-112.5 -79.28)"] | false | false |
WAIS Divide WDC06A Oxygen Isotope Record
|
1043092 |
2015-04-28 | Steig, Eric J. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This data set contains complete low resolution (0.25 to 100 cm) oxygen isotope data from the WAIS Divide Ice Core WDC06A, 0 to 3404.7 m depth. Also included is the WDC2014 timescale. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944659 |
2015-01-01 | Kiene, Ronald |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites
|
0944653 |
2015-01-01 | Forster, Richard |
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites |
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student's backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"] | ["POINT(-114.7 -79.05)"] | false | false |
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica
|
0739575 |
2015-01-01 | Patterson, William; Polito, Michael; Emslie, Steven D. |
Stable Isotope Analyses of Pygoscelid Penguin remains from Active and Abandoned Colonies in Antarctica |
The research combines interdisciplinary study in geology, paleontology, and biology, using stable isotope and radiocarbon analyses, to examine how climate change and resource utilization have influenced population distribution, movement, and diet in penguins during the mid-to-late Holocene. Previous investigations have demonstrated that abandoned colonies contain well-preserved remains that can be used to examine differential responses of penguins to climate change in various sectors of Antarctica. As such, the research team will investigate abandoned and active pygoscelid penguin (Adelie, Chinstrap, and Gentoo) colonies in the Antarctic Peninsula and Ross Sea regions, and possibly Prydz Bay, in collaboration with Chinese scientists during four field seasons. Stable isotope analyses will be conducted on recovered penguin tissues and prey remains in guano to address hypotheses on penguin occupation history, population movement, and diet in relation to climate change since the late Pleistocene. The study will include one Ph.D., two Masters and 16 undergraduate students in advanced research over the project period. Students will be exposed to a variety of fields, the scientific method, and international scientific research. They will complete field and lab research for individual projects or Honor's theses for academic credit. The project also will include web-based outreach, lectures to middle school students, and the development of interactive exercises that highlight hypothesis-driven research and the ecology of Antarctica. Two undergraduate students in French and Spanish languages at UNCW will be hired to assist in translating the Web page postings for broader access to this information. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Preparation of Vertebrate Fossils from the Triassic of Antarctica
|
1146399 |
2015-01-01 | Sidor, Christian |
Preparation of Vertebrate Fossils from the Triassic of Antarctica |
The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student's experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM 'Explore Your World' website with images and findings from their field season. | ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"] | ["POINT(167.405 -84.685)"] | false | false |
Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web
|
1332492 |
2015-01-01 | Lohmann, Rainer |
RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB |
Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants. The broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets
|
1321782 |
2015-01-01 | Costa, Daniel |
Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets |
Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their 'hot-spots' and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core
|
1141936 |
2015-01-01 | Foreman, Christine |
Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core |
This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana. | ["POINT(112.086 79.468)"] | ["POINT(112.086 79.468)"] | false | false |
Optical Fabric and Fiber Logging of Glacial Ice (1142010)
|
1142010 |
2015-01-01 | Talghader, Joseph |
Optical Fabric and Fiber Logging of Glacial Ice |
This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum. | ["POLYGON((-148.81 -79.42,-145.111 -79.42,-141.412 -79.42,-137.713 -79.42,-134.014 -79.42,-130.315 -79.42,-126.616 -79.42,-122.917 -79.42,-119.218 -79.42,-115.519 -79.42,-111.82 -79.42,-111.82 -79.643,-111.82 -79.866,-111.82 -80.089,-111.82 -80.312,-111.82 -80.535,-111.82 -80.758,-111.82 -80.981,-111.82 -81.204,-111.82 -81.427,-111.82 -81.65,-115.519 -81.65,-119.218 -81.65,-122.917 -81.65,-126.616 -81.65,-130.315 -81.65,-134.014 -81.65,-137.713 -81.65,-141.412 -81.65,-145.111 -81.65,-148.81 -81.65,-148.81 -81.427,-148.81 -81.204,-148.81 -80.981,-148.81 -80.758,-148.81 -80.535,-148.81 -80.312,-148.81 -80.089,-148.81 -79.866,-148.81 -79.643,-148.81 -79.42))"] | ["POINT(-130.315 -80.535)"] | false | false |
A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
|
1043485 |
2015-01-01 | Kurz, Mark D.; Curtice, Josh |
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea |
This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. | ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"] | ["POINT(166.324 -77.908945)"] | false | false |
Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica
|
0636731 |
2014-11-26 | Bender, Michael; Yau, Audrey M. |
Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica |
These data describe the analyses of the elemental and isotopic composition of O2, N2, and Ar and total air content made on the trapped air from three shallow ice cores (<34m depth) collected during the 2009 field campaign to Mullins Valley of the Dry Valleys, Antarctica. | ["POINT(160.35 -77.87)"] | ["POINT(160.35 -77.87)"] | false | false |
Bubble Number-density Data and Modeled Paleoclimates
|
0539578 |
2014-08-14 | Alley, Richard; Fegyveresi, John | No project link provided | This data set includes bubble number-density measured at depths from 120 meters to 560 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006). | ["POINT(-112.3 -79.433333)"] | ["POINT(-112.3 -79.433333)"] | false | false |
High-resolution Atmospheric CO2 during 7.4-9.0 ka
|
0944764 |
2014-06-25 | Brook, Edward J.; Ahn, Jinho |
Atmospheric CO2 and Abrupt Climate Change |
This data set provides a new CO2 record from the Siple Dome ice core, Antarctica, that covers 7.4-9.0 ka (thousand years) with 8- to 16-year resolution. A small, about 1-2 ppm, increase of atmospheric CO2 during the 8.2 ka event was observed. The increase is not significant when compared to other centennial variations in the Holocene that are not linked to large temperature changes. The results do not agree with leaf stomata records that suggest a CO2 decrease of up to ~25 ppm and imply that the sensitivity of atmospheric CO2 to the primarily northern hemisphere cooling of the 8.2 ka event was limited. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Late Holocene Methane Concentrations from WAIS Divide and GISP2
|
0944584 0538578 0538538 |
2014-01-31 | Mitchell, Logan E |
Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core. |
This data set measures methane concentrations in ancient air trapped in the West Antarctic Ice Sheet (WAIS) Divide and Greenland Ice Sheet Project (GISP2) ice cores; presenting two, high-resolution ice core methane records of the past 2500 years, one from each pole. These measurements were used to reconstruct the methane Inter-Polar Difference (IPD) during the late Holocene. Also included are model results of methane emissions that were presented in the manuscript describing this data set. | ["POINT(-38.5 72.6)", "POINT(-112.0865 -79.4676)"] | ["POINT(-38.5 72.6)", "POINT(-112.0865 -79.4676)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838937 |
2014-01-01 | Costa, Daniel |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape
|
1045215 |
2014-01-01 | Gooseff, Michael N. |
EAGER: Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape |
Intellectual Merit: Until recently, wetted soils in the Dry Valleys were generally only found adjacent to streams and lakes. Since the warm austral summer of 2002, numerous "wet spots" have been observed far from shorelines on relatively flat valley floor locations and as downslope fingers of flow on valley walls. The source of the water to wet these soils is unclear, as is the spatial and temporal pattern of occurrence from year to year. Their significance is potentially great as enhanced soil moisture may change the thermodynamics, hydrology, and erosion rate of surface soils, and facilitate transport of materials that had previously been stable. These changes to the soil active layer could significantly modify permafrost and ground ice stability within the Dry Valleys. The PIs seek to investigate these changes to address two competing hypotheses: that the source of water to these ?wet spots? is ground ice melt and that the source of this water is snowmelt. The PIs will document the spatiotemporal dynamics of these wet areas using high frequency remote sensing data from QuickBird and WorldView satellites to document the occurrence, dimensions, and growth of wet spots during the 2010-11 and 2011-12 austral summers. They will test their hypotheses by determining whether wet spots recur in the same locations in each season, and they will compare present to past distribution using archived imagery. They will also determine whether spatial snow accumulation patterns and temporal ablation patterns are coincident with wet spot formation. Broader impacts: One graduate student will be trained on this project. Findings will be reported at scientific meetings and published in peer reviewed journals. They will also develop a teaching module on remote sensing applications to hydrology for the Modular Curriculum for Hydrologic Advancement and an innovative prototype project designed to leverage public participation in mapping wet spots and snow patches across the Dry Valleys through the use of social media and mobile computing applications. | ["POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))"] | ["POINT(162.5 -77.875)"] | false | false |
A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica
|
1139739 |
2014-01-01 | Hansen, Samantha |
New Approach to Investigate the Seismic Velocity Structure beneath Antarctica |
Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent. Broader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains
|
1354231 |
2014-01-01 | Kowalewski, Douglas |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains |
Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award. | ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"] | ["POINT(-140 -77.5)"] | false | false |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula
|
0838996 |
2014-01-01 | Hollibaugh, James T. |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula |
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the 'winter water' (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the 'circumpolar deep water' (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP 'grows in' during spring and summer after this water mass forms. The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer. | ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"] | ["POINT(-71.5 -67)"] | false | false |
Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri
|
0944201 |
2014-01-01 | Hofmann, Gretchen |
Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri |
This research examines the effects of ocean acidification on embryos and larvae of a contemporary calcifier in the coastal waters of Antarctica, the sea urchin Sterechinus neumayeri. The effect of future ocean acidification is projected to be particularly threatening to calcifying marine organisms in coldwater, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. Due to a high magnesium (Mg) content of their calcitic hard parts, echinoderms are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Thus, cold-water, high latitude species with a high Mg-content in their hard parts are considered to be the 'first responders' to chemical changes in the surface oceans. Studies in this proposal will use several metrics to examine the physiological plasticity of contemporary urchin embryos and larvae to CO2-acidified seawater, to mimic the scenarios defined by IPCC models and by analyses of future acidification predicted for the Southern Ocean. The research also will investigats the biological consequences of synergistic interactions of two converging climate change-related stressors - CO2- driven ocean acidification and ocean warming. Specifically the research will (1) assess the effect of CO2-acidified seawater on the development of early embryos and larvae, (2) using morphometrics, examine changes in the larval endoskeleton in response to development under the high-CO2 conditions of ocean acidification, (3) using a DNA microarray, profile changes in gene expression for genes involved in biomineralization and other important physiological processes, and (4) measure costs and physiological consequences of development under conditions of ocean acidification. The proposal will support the training of undergraduates, graduate students and a postdoctoral fellow. The PI also will collaborate with the UC Santa Barbara Gevirtz Graduate School of Education to link the biological effects of ocean acidification to the chemical changes expected for the Southern Ocean using the 'Science on a Sphere' technology. This display will be housed in an education and public outreach center, the Outreach Center for Teaching Ocean Science (OCTOS), a new state-of-the-art facility under construction at UC Santa Barbara. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals
|
0944220 |
2014-01-01 | Ponganis, Paul |
The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals |
Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes
|
1019305 |
2014-01-01 | Grim, Jeffrey |
PostDoctoral Research Fellowship |
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | [] | [] | false | false |
Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 |
2014-01-01 | Bender, Michael |
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an 'International Climate Park' in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"] | ["POINT(159.29167 -76.7)"] | false | false |
Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems
|
0732983 |
2014-01-01 | Vernet, Maria |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts. | ["POLYGON((-66 -62,-65.3 -62,-64.6 -62,-63.9 -62,-63.2 -62,-62.5 -62,-61.8 -62,-61.1 -62,-60.4 -62,-59.7 -62,-59 -62,-59 -62.8,-59 -63.6,-59 -64.4,-59 -65.2,-59 -66,-59 -66.8,-59 -67.6,-59 -68.4,-59 -69.2,-59 -70,-59.7 -70,-60.4 -70,-61.1 -70,-61.8 -70,-62.5 -70,-63.2 -70,-63.9 -70,-64.6 -70,-65.3 -70,-66 -70,-66 -69.2,-66 -68.4,-66 -67.6,-66 -66.8,-66 -66,-66 -65.2,-66 -64.4,-66 -63.6,-66 -62.8,-66 -62))"] | ["POINT(-62.5 -66)"] | false | false |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export
|
1043690 |
2014-01-01 | Haji-Sheikh, Michael; Scherer, Reed Paul |
Southern Ocean Diatom Taphonomy and Paleoproductivity: A Laboratory Study of Silica Degradation and Export |
Intellectual Merit: Diatom abundance in sediment cores is typically used as a proxy for paleo primary productivity. This record is complicated by variable preservation, with most loss occurring in the water column via dissolution and zooplankton grazing. This study will investigate preservational biases via a series of controlled experiments to create proxies of original productivity based on morphological changes associated with diatom dissolution and fracture. The PIs will utilize fresh diatoms from culture. Specific objectives include: (1) Linking changes in diatom morphology to availability of dissolved silica and other physical and chemical parameters; (2) Documenting the dissolution process under controlled conditions; (3) Assessment of changes in morphology and diatom surface roughness with increased dissolution; (4) Documenting the physical effects of grazing and fecal pellet formation on diatom fragmentation and dissolution; and (5) Analyzing the impact of diatom dissolution on silica and carbon export. These objectives will be achieved by growing Southern Ocean diatom species in the laboratory under differing physical and chemical conditions; controlled serial dissolution experiments on cultured diatoms; analysis of the dissolution process by imaging frustules under scanning electron microscopy (SEM) and with micro-analysis of surface texture by atomic force microscopy (AFM); making the cultures available to krill and other live zooplankton crustaceans in order to analyze the specific effects of grazing and pelletization on diatom morphology; and comparing experimental results with natural plankton, sediment trap material, and selected Holocene, Pleistocene and Pliocene sediment core material. Broader impacts: This work will contribute to understanding of the use of diatom abundance as an indicator of paleoproductivity. The proposed experiments are multi-disciplinary in nature. Importantly, the project was designed, and the proposal largely written, by a Ph.D. candidate. The research proposed here will lead to peer-reviewed publications and provide a base for future studies over the course of an extremely promising scientific career. The project will also support an undergraduate research student at NIU. The PI is heavily involved in science outreach, including classroom visits, museum events and webinars related to evolution and climate change, and is active with NSF-funded outreach activities linked to the ANDRILL and WISSARD programs. He will continue these efforts with this project. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica
|
0636731 |
2014-01-01 | Bender, Michael |
Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica |
This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth's atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society's understanding of global climate change and sea level rise. | ["POLYGON((-180 -72.6,-176.887 -72.6,-173.774 -72.6,-170.661 -72.6,-167.548 -72.6,-164.435 -72.6,-161.322 -72.6,-158.209 -72.6,-155.096 -72.6,-151.983 -72.6,-148.87 -72.6,-148.87 -73.533,-148.87 -74.466,-148.87 -75.399,-148.87 -76.332,-148.87 -77.265,-148.87 -78.198,-148.87 -79.131,-148.87 -80.064,-148.87 -80.997,-148.87 -81.93,-151.983 -81.93,-155.096 -81.93,-158.209 -81.93,-161.322 -81.93,-164.435 -81.93,-167.548 -81.93,-170.661 -81.93,-173.774 -81.93,-176.887 -81.93,180 -81.93,174.335 -81.93,168.67 -81.93,163.005 -81.93,157.34 -81.93,151.675 -81.93,146.01 -81.93,140.345 -81.93,134.68 -81.93,129.015 -81.93,123.35 -81.93,123.35 -80.997,123.35 -80.064,123.35 -79.131,123.35 -78.198,123.35 -77.265,123.35 -76.332,123.35 -75.399,123.35 -74.466,123.35 -73.533,123.35 -72.6,129.015 -72.6,134.68 -72.6,140.345 -72.6,146.01 -72.6,151.675 -72.6,157.34 -72.6,163.005 -72.6,168.67 -72.6,174.335 -72.6,-180 -72.6))"] | ["POINT(167.24 -77.265)"] | false | false |
Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines
|
0944475 |
2014-01-01 | Kaplan, Michael |
Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines |
Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica's inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. Broader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences. | ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"] | ["POINT(-174.25 -85.75)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944686 |
2014-01-01 | Kieber, David John |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis' ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Allan Hills Stable Water Isotopes
|
0838843 |
2013-10-24 | Kurbatov, Andrei V.; Spaulding, Nicole; Mayewski, Paul A.; Introne, Douglas |
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
This data set includes stable water isotope values at 10 m resolution along an approximately 5 km transect through the main icefield of the Allan Hills Blue Ice Area, and at 15 cm within a 225 m core drilled at the midpoint of the transect. | ["POLYGON((159 -75.67,159.025 -75.67,159.05 -75.67,159.075 -75.67,159.1 -75.67,159.125 -75.67,159.15 -75.67,159.175 -75.67,159.2 -75.67,159.225 -75.67,159.25 -75.67,159.25 -75.786,159.25 -75.902,159.25 -76.018,159.25 -76.134,159.25 -76.25,159.25 -76.366,159.25 -76.482,159.25 -76.598,159.25 -76.714,159.25 -76.83,159.225 -76.83,159.2 -76.83,159.175 -76.83,159.15 -76.83,159.125 -76.83,159.1 -76.83,159.075 -76.83,159.05 -76.83,159.025 -76.83,159 -76.83,159 -76.714,159 -76.598,159 -76.482,159 -76.366,159 -76.25,159 -76.134,159 -76.018,159 -75.902,159 -75.786,159 -75.67))"] | ["POINT(159.125 -76.25)"] | false | false |
Abrupt Change in Atmospheric CO2 During the Last Ice Age
|
0944764 |
2013-08-08 | Brook, Edward J.; Ahn, Jinho |
Atmospheric CO2 and Abrupt Climate Change |
During the last glacial period atmospheric carbon dioxide and temperature in Antarctica varied in a similar fashion on millennial time scales, but previous work indicates that these changes were gradual. In a detailed analysis of one event, we now find that approximately half of the CO2 increase that occurred during the 1500 year cold period between Dansgaard-Oeschger (DO) Events 8 and 9 happened rapidly, over less than two centuries. This rise in CO2 was synchronous with, or slightly later than, a rapid increase of Antarctic temperature inferred from stable isotopes. | ["POINT(-148.82 -81.66)", "POINT(-119.83 -80.01)"] | ["POINT(-148.82 -81.66)", "POINT(-119.83 -80.01)"] | false | false |
US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data
|
9725057 0837883 |
2013-07-11 | Dixon, Daniel A.; Mayewski, Paul A. |
Science Management for the United States Component of the International Trans-Antarctic Expedition |
This data set contains sub-annually resolved ice core chemistry data from various sites on the Antarctic Ice Sheet during the US International Trans-Antarctic Scientific Expedition (US ITASE) deployments. Researchers conducted experiments approximately every 30 - 300 km looking for clues representing climatic conditions over the past 200-1000+ years. Ice cores obtained for the glaciochemical component of the US ITASE research were analyzed for soluble major ion content and in some cases trace elements. Extreme events, such as volcanic eruptions, provide absolute age horizons within each core that are easily identified in chemical profiles. Our chemical analysis is also useful for quantifying anthropogenic impact, biogeochemical cycling, and for reconstructing past atmospheric circulation patterns. | ["POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))"] | ["POINT(38.135 -83.84)"] | false | false |
West Antarctica Ice Core and Climate Model Data
|
0837988 |
2013-03-13 | Steig, Eric J. |
Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012) |
This data set includes ice core water isotope data from Antarctic ice cores covering the last 200 to 2000 years. | ["POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))"] | ["POINT(0 -89.999)"] | false | false |
Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica
|
9615420 |
2013-02-14 | Engelhardt, Hermann |
Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics |
This data set is a collection of video data of basal ice taken in a borehole on the Kamb Ice Stream in West Antarctica. Ice streams are an expression of the inherent instability of the West Antarctic Ice Sheet, and their behavior is a key control on the overall ice-sheet mass balance. Understanding the response of the ice sheet in a warming climate requires a thorough understanding of the internal dynamics of ice streams, in addition to the relevant ice-atmosphere and ice-ocean interactions in the region. The basal environment of the ice streams and of many glaciers is a key scientific interest, including conditions, mainly basal sliding, that lead to fast flow of the ice. The purpose of this data set is to present a review of the full range of original video recordings from the basal ice of the Kamb Ice Stream. Direct observations at the ice-stream bed are a crucial complement to modeling efforts predicting future scenarios in a warming climate. | ["POINT(-136.404633 -82.39955)"] | ["POINT(-136.404633 -82.39955)"] | false | false |
The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)
|
0839053 |
2013-01-01 | Ackley, Stephen |
The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11) |
Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models. Researchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet. A series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed. | ["POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))"] | ["POINT(-142.083 -72.3165)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838892 |
2013-01-01 | Burns, Jennifer |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice
|
0739783 |
2013-01-01 | Junge, Karen |
Metabolic Activities and Gene Expression of Marine Psychrophiles in Cold Ice |
The mechanisms enabling bacteria to be metabolically active at very low temperatures are of considerable importance to polar microbial ecology, astrobiology, climate and cryopreservation. This research program has two main objectives. The first is to investigate metabolic activities and gene expression of polar marine psychrophilic bacteria when confronted with freezing conditions at temperatures above the eutectic of seawater (<54C) to unveil cold adaptation mechanisms with relevance to wintertime sea-ice ecology. The second objective is to discern if psychrophilic processes of leucine incorporation into proteins, shown to occur to -196C, amount to metabolic activity providing for the survival of cells or are merely biochemical reactions still possible in flash-frozen samples without any effect on survival. We will examine extracellular and intracellular processes of psychrophilic activity above and below the eutectic by (i) determining the temperature range of metabolic activities such as DNA synthesis, carbon utilization, respiration and ATP generation using radioactive tracer technology, including a control at liquid helium temperature (-268.9C), (ii) analyzing gene expression in ice using whole genome and microarray analyses and iii) examining the role of exopolymeric substances (EPS) and ice micro-physics for the observed activity using an in-situ microscopy technique. Results of the proposed research can be expected to aid in the determination of cellular and genetic strategies that allow cells to maintain activity at extremely low temperatures within an icy matrix and/or to resume activity again when more growth-permissive conditions are encountered. The research is an interdisciplinary collaboration involving three different institutions with participants in Oceanography, Genomics, and Geophysical Sciences. The proposed activity will support the beginning professional career of a female researcher and will serve as the basis for several undergraduate student laboratory projects. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle
|
1019838 |
2013-01-01 | Wendt, Dean; Moline, Mark |
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle |
The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Adélie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Adélie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Adélie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access | [] | [] | false | false |
Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling
|
1043779 |
2013-01-01 | Mellish, Jo-Ann |
Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING |
Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk. | ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"] | ["POINT(166.283335 -77.69653)"] | false | false |
Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans
|
0732655 |
2013-01-01 | Thompson, Lonnie G.; Mosley-Thompson, Ellen |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change. | ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"] | ["POINT(-61 -62.5)"] | false | false |
Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009
|
0538416 |
2012-08-08 | McConnell, Joseph |
Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica |
This data set consists of sodium (Na) and magnesium (Mg) concentrations versus depth in seven ice cores that were obtained by the Norwegian-U.S. Scientific Traverse of East Antarctica during the International Polar Year (IPY) 2007-2009. Additional glaciochemical analyses and a final depth-age scale will be added as these data become available. Data are available via FTP. | ["POLYGON((-54.9 -73.7,-49.57 -73.7,-44.24 -73.7,-38.91 -73.7,-33.58 -73.7,-28.25 -73.7,-22.92 -73.7,-17.59 -73.7,-12.26 -73.7,-6.93 -73.7,-1.6 -73.7,-1.6 -74.61,-1.6 -75.52,-1.6 -76.43,-1.6 -77.34,-1.6 -78.25,-1.6 -79.16,-1.6 -80.07,-1.6 -80.98,-1.6 -81.89,-1.6 -82.8,-6.93 -82.8,-12.26 -82.8,-17.59 -82.8,-22.92 -82.8,-28.25 -82.8,-33.58 -82.8,-38.91 -82.8,-44.24 -82.8,-49.57 -82.8,-54.9 -82.8,-54.9 -81.89,-54.9 -80.98,-54.9 -80.07,-54.9 -79.16,-54.9 -78.25,-54.9 -77.34,-54.9 -76.43,-54.9 -75.52,-54.9 -74.61,-54.9 -73.7))"] | ["POINT(-28.25 -78.25)"] | false | false |
Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011
|
0739654 |
2012-05-30 | Macgregor, Joseph A.; Catania, Ginny; Markowski, Michael; Andrews, Alan G. |
Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica |
This data set provides a coastline history of the eastern Amundsen Sea Embayment and terminus histories of its outlet glaciers derived from those coastlines. These outlet glaciers include Smith, Haynes, Thwaites, and Pine Island Glaciers. The coastlines were derived from detailed tracing of Landsat imagery between late 1972 and late 2011 (at a scale of 1:50,000). The data set also uses some additional data from other sources. The terminus histories are calculated as the intersections between these coastlines and 1996 flowlines. Data are available via FTP in ESRI shapefile and comma separated value (.csv) formats. | ["POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.2,-100 -74.4,-100 -74.6,-100 -74.8,-100 -75,-100 -75.2,-100 -75.4,-100 -75.6,-100 -75.8,-100 -76,-101 -76,-102 -76,-103 -76,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-110 -75.8,-110 -75.6,-110 -75.4,-110 -75.2,-110 -75,-110 -74.8,-110 -74.6,-110 -74.4,-110 -74.2,-110 -74))"] | ["POINT(-105 -75)"] | false | false |
Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp
|
0538538 |
2012-04-19 | Sowers, Todd A. |
Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core. |
This data set contains a high-resolution history of atmospheric methane (CH4) concentrations in parts per billion (ppb) from approximately 60 to 11,300 years before present (ybp), obtained in 2010 from the West Antarctic Ice Sheet (WAIS) Divide Ice Core WDC06A. Gas age is derived from the WDC06A-5 ice age scale. Data are available via FTP as a Microsoft Excel file (.xlsx). | ["POINT(-112.086483 -79.46763)"] | ["POINT(-112.086483 -79.46763)"] | false | false |
US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica
|
1043669 |
2012-01-01 | Yuan, Xiaojun |
US/Chinese Collaborative Study: Investigation of Bottom Water Formation in Prydz Bay, Antarctica |
Processess governing the formation of Antarctic bottom water (AABW) in the Indian Ocean sector of the Southern Ocean remain poorly described. As with AABW formation in more well studied regions of the Antarctic continent, global climate impacts of the source regions of this dense, cold water that help drive the global ocean thermohaline circulation are uncertain. A combination of (annual) continental shelf and slope moorings, seasonal (summer) hydrographic surveys on board the Chinese icebreaker M/V Xuelong, together with synthesis of historic and satellite data will be used to better constrain shelf processes and the atmosphere-ocean-ice interactions in the Prydz Bay region. Despite the seeming remoteness of the study site, changes in the formation rate of AABW could potentially have impact on northern hemisphere climate via effects on the global heat budget and through sea-level rise in the coming decades. The project additionally seeks to promote international collaboration between Chinese and US researchers. The data collected will be broadly disseminated to the oceanographic community through the National Oceanography Data Center and Chinese Arctic and Antarctic Data Center. | ["POLYGON((70 -64,71 -64,72 -64,73 -64,74 -64,75 -64,76 -64,77 -64,78 -64,79 -64,80 -64,80 -64.6,80 -65.2,80 -65.8,80 -66.4,80 -67,80 -67.6,80 -68.2,80 -68.8,80 -69.4,80 -70,79 -70,78 -70,77 -70,76 -70,75 -70,74 -70,73 -70,72 -70,71 -70,70 -70,70 -69.4,70 -68.8,70 -68.2,70 -67.6,70 -67,70 -66.4,70 -65.8,70 -65.2,70 -64.6,70 -64))"] | ["POINT(75 -67)"] | false | false |
Methane Concentration and Chronology from the WAIS Divide Ice Core (WDC05A)
|
0739780 0538578 0520523 0538538 0538427 |
2011-05-27 | McConnell, Joseph; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C. |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set provides a high-precision and high-resolution record of atmospheric methane from the West Antarctic Ice Sheet (WAIS) Divide ice core WDC05A, spanning the years 1000 to 1800 C.E. The data include methane (CH4) concentration measurements and ice age chronology. Methane concentration data include mean sample depth, gas age, mean concentration, and concentrations from individual measurements, at a temporal resolution of approximately nine years. Ice chronology data include depth and ice age. Data are available via FTP, in Microsoft Excel (.xlsx) format. | ["POINT(112.09 -79.47)"] | ["POINT(112.09 -79.47)"] | false | false |
Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007
|
0540915 |
2011-01-31 | Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan |
Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves |
This data set includes a variety of station data from two Antarctic icebergs. In 2006, researchers installed specialized weather stations called Automated Meteorological Ice Geophysical Observing Stations (AMIGOS) on two icebergs, A22A and UK211 (nicknamed Amigosberg), near Marambio Station in Antarctica.The AMIGOS stations were outfitted with Global Positioning System (GPS) sensors, cameras, and an electronic thermometer. They collected data from their installation in March 2006 until the icebergs crumbled into the ocean, in 2006 (Amigosberg) and 2007 (A22A). Available data include GPS, temperature and ablation measurements, and photographs of the station base and of flag lines extending out to the edges of the icebergs. Snow pit data from iceberg A22A is also included. This data set was collected as part of a National Science Foundation Office of Polar Programs Special Grant for Exploratory Research, to explore the possibility of using drfting icebergs to investigate ice shelf evolution caused by climate change. The expedition, nicknamed IceTrek, was conducted jointly with Argentine scientists. The data are available via FTP in ASCII text (.txt) and Joint Photographic Experts Group (.jpg) formats. | ["POLYGON((-60 -47,-55.5 -47,-51 -47,-46.5 -47,-42 -47,-37.5 -47,-33 -47,-28.5 -47,-24 -47,-19.5 -47,-15 -47,-15 -50.3,-15 -53.6,-15 -56.9,-15 -60.2,-15 -63.5,-15 -66.8,-15 -70.1,-15 -73.4,-15 -76.7,-15 -80,-19.5 -80,-24 -80,-28.5 -80,-33 -80,-37.5 -80,-42 -80,-46.5 -80,-51 -80,-55.5 -80,-60 -80,-60 -76.7,-60 -73.4,-60 -70.1,-60 -66.8,-60 -63.5,-60 -60.2,-60 -56.9,-60 -53.6,-60 -50.3,-60 -47))"] | ["POINT(-37.5 -63.5)"] | false | false |
LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals
|
0902957 |
2011-01-01 | Robinson, Laura |
LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals |
The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project's goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth's system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column. | ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"] | ["POINT(-52.75 -58)"] | false | false |
Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island
|
0839084 |
2011-01-01 | Fritts, David; Janches, Diego |
Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island |
The project will employ a sophisticated meteor radar at the Brazilian Antarctic station Comandante Ferraz on King George Island for a number of synergetic research efforts of high interest to the international aeronomical community. The location of the radar will be at the tip of the Antarctic Peninsula - at a critical southern latitude of 62 degrees - to fill a current measurement gap from 54 to 68 degrees south. The radar will play a key role in Antarctic and inter-hemispheric studies of neutral atmosphere dynamics, defining global mesosphere and lower thermosphere structure and variability (from 80 to 105 km) and guiding advances of models accounting for the dynamics of this high-altitude region, including general circulation models, and climate and numerical weather prediction models. The unique radar measurement sensitivity will enable studies of: (1) the large-scale circulation and planetary waves, (2) the tidal structure and variability, (3) the momentum transport by small-scale gravity waves, (4) important, but unquantified, gravity wave - tidal interactions, (5) polar mesosphere summer echoes, and (6) meteor fluxes, head echoes, and non-specular trails, a number of which exhibit high latitudinal gradients at these latitudes. This radar will support extensive collaborations with U.S. and other scientists making measurements at other Antarctic and Arctic conjugate sites, including Brazilian scientists at C. Ferraz and U.S. and international colleagues having other instrumentation in the Antarctic, Arctic, and within South America. Links to the University of Colorado in the U.S., Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil and Universidad Nacional de La Plata in Argentina will provide unique research opportunities for graduate and undergraduate students in the U.S. and South America. | ["POLYGON((-63 -59,-62 -59,-61 -59,-60 -59,-59 -59,-58 -59,-57 -59,-56 -59,-55 -59,-54 -59,-53 -59,-53 -59.6,-53 -60.2,-53 -60.8,-53 -61.4,-53 -62,-53 -62.6,-53 -63.2,-53 -63.8,-53 -64.4,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.4,-63 -63.8,-63 -63.2,-63 -62.6,-63 -62,-63 -61.4,-63 -60.8,-63 -60.2,-63 -59.6,-63 -59))"] | ["POINT(-58 -62)"] | false | false |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning
|
0739780 |
2011-01-01 | Taylor, Kendrick C. |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning |
This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. | ["POINT(-112.117 -79.666)"] | ["POINT(-112.117 -79.666)"] | false | false |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter
|
0632389 |
2011-01-01 | Grzymski, Joseph; Murray, Alison |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter |
The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey's ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases. | ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"] | ["POINT(-64.13585 -64.6736)"] | false | false |
Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636319 |
2011-01-01 | Shaw, Tim; Twining, Benjamin |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"] | ["POINT(-47.29195 -60.14805)"] | false | false |
Methane Isotopes in South Pole Firn Air, 2008
|
0739491 |
2011-01-01 | Sowers, Todd A. |
Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air |
This data set contains depth profiles for delta carbon-13 (δ13C) and delta deuterium (δD) of methane (CH<sub>4</sub>) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH<sub>4</sub> at South Pole Station (no depth-age model provided). Data are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx). | ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"] | ["POINT(0 -89.999)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836061 |
2011-01-01 | Dennett, Mark |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage
|
0944474 |
2011-01-01 | Robinson, Laura |
Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage |
Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award "Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF's Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean's influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media. | ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"] | ["POINT(-52.75 -58)"] | false | false |
Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core
|
0538520 |
2010-11-01 | Thiemens, Mark H. |
Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core |
This data set contains measurements of multiple sulfur and oxygen isotopes from sulfates, from an ice core drilled at the West Antarctic Ice Sheet (WAIS) Divide site in 2005. The initial sulfate measurements, analyzed in 2008 from the 70 meter WAIS 2005A core, are 12 meter averages and span the pre-industrial to industrial transition, from the late 1700s to 2005. This data set is part of the West Antarctic Ice Sheet Divide Ice Core (WAISCORES) project. Data are available via FTP in Microsoft Excel (.xlsx) format. | ["POINT(-114.216667 -78.916667)"] | ["POINT(-114.216667 -78.916667)"] | false | false |
Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica
|
0636506 |
2010-07-29 | Mayewski, Paul A.; Korotkikh, Elena |
Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context |
This data set contains measurments from co-registered samples from a horizontal trench in the Mt. Moulton Blue Ice Area (BIA) in Antarctica. All 3795 co-registered samples were analyzed for their soluble major anion content by Ion Chromatography (IC) and for trace elements by inductively coupled plasma sector field mass spectrometry . The data are available via FTP in Microsoft Excel format (.xls) and Microsoft Word document (.doc). | ["POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))"] | ["POINT(-136.2 -76.065)"] | false | false |
Ion Concentrations from SPRESSO Ice Core, Antarctica
|
0636506 |
2010-07-01 | Mayewski, Paul A.; Korotkikh, Elena |
Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context |
This data set contains ion measurements from co-registered samples from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) ice core. The core was drilled during the 2002-2003 field season as part of the International Trans-Antarctic Science Expedition (ITASE). Samples were collected for ion chromatography, inductively coupled plasma sector field mass spectrometry and stable water isotope analysis. Parameters include measurements of ion concentrations in ice core samples. The data are available via FTP in Microsoft Excel format (.xls). | ["POINT(-144.39 -89.93)"] | ["POINT(-144.39 -89.93)"] | false | false |
Borehole Optical Stratigraphy Modeling, Antarctica
|
0335330 |
2010-06-15 | Hawley, Robert L.; Smith, Ben; Waddington, Edwin D.; Fudge, T. J. |
Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn |
This data set consists of scripts and code designed for modeling the properties of boreholes in polar ice sheets, under a range of variations in the borehole geometry, firn layering, and camera pointing and position. The data set contains two folders. One includes two perl scripts and a piece of C code, along with directions for setting up and running a Monte Carlo model of photons traveling to and from a borehole in the firn. The second includes scripts for generating ray-tracing input files to be used with the POV-Ray package (a standard, free raytracing package) to generate simulated borehole video frames based on the results of the Monte Carlo model. The project was conducted between February 2005 and April 2010. The codes to run the models are available via FTP, in Perlscript (.pl) and C code. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Microstructural Location and Composition of Impurities in Polar Ice Cores
|
9980379 0440523 |
2010-02-15 | Baker, Ian; Obbard, Rachel |
The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome |
This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) D core. Parameters include sample depth, grain size, ion concentration, and ice core impurity information. Measurements were made using Ion Chromatography (IC), optical microscopy, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM/EDS). Data are available via FTP in Microsoft Excel (.xls)and Microsoft Word (.doc) formats. | ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"] | ["POINT(-119.516667 -80.016667)", "POINT(-38.466667 72.583333)", "POINT(106.8 -72.466667)"] | false | false |
WAIS Divide Ice Core Images, Antarctica
|
0440817 0230149 0637004 |
2010-02-10 | McGwire, Kenneth C. |
Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide |
This data set is comprised of optical images of ice core sections, acquired with a digital line-scan camera in the cold room facility at the U.S. National Ice Core Laboratory (NICL). Ice core sections are archival cuts which have rough-out rounds of ice with a single plane cut along one side. Ice sections were illuminated with fiber optic light guides connected to a 1000 watt (W) xenon light source. Original scan resolution varies from about 0.05 mm to 0.1 mm, and is documented in the metadata for each image. Images are in uncompressed Tagged Image File (.tif) form, with resolutions of 1.0 mm and 0.1 mm. Depth of image in the ice core is documented in the metadata files for each image. Data are available via FTP as .tif image files. Supporting information is available as ASCII text files (.txt), and other file formats readable with a freely available image processing program, IceImageJ. | ["POINT(-112.083333 -79.466667)"] | ["POINT(-112.083333 -79.466667)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636543 |
2010-01-01 | Murray, Alison |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"] | ["POINT(-47.277705 -60.21953)"] | false | false |
Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica
|
0634619 |
2010-01-01 | Hammer, William R. |
Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica |
This award supports preparation and study of fossil dinosaurs discovered on Mt. Kirkpatrick, Antarctica, during the 2003-04 field season. The 4,000 pounds of bone bearing matrix to be processed includes new pieces of Cryolophosaurus, a 22 foot long meat eating theropod, as well as a new unnamed sauropod dinosaur and other yet to be identified taxa. This project advances our understanding of dinosaur evolution and adaptation at the beginning of the reign of the dinosaurs, the Late Triassic and Early Jurassic. This period is poorly understood due to lack of fossils, which makes these fossils from Antarctica particularly unique. Also, since these fossils are from high paleolatitudes they will contribute to our understanding of past climates and the physiologic adaptations of dinosaurs to lengthy periods of darkness. The broader impacts include outreach to the general public through museum exhibits and presentations. | ["POINT(166 -84)"] | ["POINT(166 -84)"] | false | false |
Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea
|
0538479 |
2010-01-01 | Seibel, Brad |
Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea |
Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project. | ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"] | ["POINT(166.5 -77.5)"] | false | false |
Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change
|
0439906 |
2010-01-01 | Koch, Paul |
Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change |
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses. Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/ Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research | ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"] | ["POINT(165 -75)"] | false | false |
Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea
|
0338097 |
2010-01-01 | DiTullio, Giacomo |
Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea |
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"] | ["POINT(-167.485 -65.435)"] | false | false |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection
|
0440687 |
2010-01-01 | Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection |
As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute. | ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"] | ["POINT(-59 -62)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836112 |
2010-01-01 | Smith, Walker |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Ice Nucleation by Marine Psychrophiles
|
0801392 |
2010-01-01 | Swanson, Brian |
Ice Nucleation by Marine Psychrophiles |
The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636730 |
2010-01-01 | Vernet, Maria |
Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean. |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636723 |
2010-01-01 | Helly, John |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
Methane Measurements from the GISP2 and Siple Dome Ice Cores
|
0520523 |
2009-12-09 | Brook, Edward J. |
Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient |
This data set contains methane measurements made in trapped air in the Holocene sections of two ice cores: the Siple Dome ice core in Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) ice core in Greenland. The measurements were made at Oregon State University between 2007 and 2009. Measurements were made relative to the NOAA04 methane concentration scale using a working standard internally calibrated to NOAA certified air standards. Concentrations are corrected for gravitational fractionation and solubility effects in the melt-refreeze extraction. Data are available via FTP in Microsoft Excel (.xls) format. | ["POINT(-38.466667 73.583333)", "POINT(-148.81 -81.65)"] | ["POINT(-38.466667 73.583333)", "POINT(-148.81 -81.65)"] | false | false |
Methane Isotopes from the WAIS Divide Ice Core
|
0440759 |
2009-12-01 | Sowers, Todd A. |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set includes methane (CH4) isotope data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC05A, in Antarctica. The data include depth, gas age, and the isotopic composition of methane (∂13C and ∂D of CH4). The ice core was collected during the 2005-2006 Antarctic field season. The CH4 isotope data was generated in 2008 using wet extraction methodology. Samples span the last 1,000 years, at a resolution of about 15 years. Data for samples above 69 meters were from firn air, and data below 69 meters from ice. The dating of the ice was based on continuous chemical analyses above 69 meters and Electrical Conductivity/Dielectric Property (ECM/DEP) measurements from ice. Dating uncertainty is estimated to be better than five years. Data are available via FTP in Microsoft Excel (.xls) tab delimited format | ["POINT(112.09 -79.47)"] | ["POINT(112.09 -79.47)"] | false | false |
US ITASE Stable Isotope Data, Antarctica
|
0196105 0440414 |
2009-10-01 | Steig, Eric J. |
Stable Isotope Studies at West Antarctic ITASE Sites |
This data set includes stable isotope measurements from snow pits, firn, and ice cores collected by the the US component of the International Trans-Antarctic Scientific Expedition ( ITASE). The ITASE program aims to collect and interpret a continental-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations. These data were collected between 1999 and 2007. The data have been compiled into single files for each sampling site, though in some cases a file contains data from more than one ice core or snow pit. Each file in the data set includes deuterium/hydrogen (δD) and/or 18-oxygen/16-oxygen (δ18O) ratios, depths, and in some cases ice age or other information. Further details regarding the data are provided in each data file. Data are available via FTP in ASCII text format (.txt). Data were collected during five Antarctic field seasons from 1999 to 2007. Data from 1999 to 2002 are currently available. Data from 2003 to 2007 will be added in the future. | ["POLYGON((-130 -65,-125.8 -65,-121.6 -65,-117.4 -65,-113.2 -65,-109 -65,-104.8 -65,-100.6 -65,-96.4 -65,-92.2 -65,-88 -65,-88 -67.5,-88 -70,-88 -72.5,-88 -75,-88 -77.5,-88 -80,-88 -82.5,-88 -85,-88 -87.5,-88 -90,-92.2 -90,-96.4 -90,-100.6 -90,-104.8 -90,-109 -90,-113.2 -90,-117.4 -90,-121.6 -90,-125.8 -90,-130 -90,-130 -87.5,-130 -85,-130 -82.5,-130 -80,-130 -77.5,-130 -75,-130 -72.5,-130 -70,-130 -67.5,-130 -65))"] | ["POINT(-109 -77.5)"] | false | false |
Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica
|
0440602 |
2009-07-30 | Saltzman, Eric |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set contains trace gas measurements of air extracted from ice core samples from the West Antarctic Ice Sheet Divide A core (WAIS-D 05A). The WAIS A core was dry-drilled at the WAIS site during the 2005-2006 Antarctic field season. Data include trace gas species including ethane (C2H6), propane (C3H8), n-butane (n-C4H10), carbonyl sulfide (COS), carbon disulfide (CS2), methyl chloride (CH3Cl), methyl bromide (CH3Br), acetonitrile (CH3CN), and chlorofluorocarbon-12 (CFC-12), for 57 ice core samples. The data are available via FTP in Microsoft Excel (.xls) file format. | ["POINT(112.09 -79.47)"] | ["POINT(112.09 -79.47)"] | false | false |
Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica
|
0440975 |
2009-07-17 | Severinghaus, Jeffrey P. |
Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores |
This data set consists of Gas-isotopic data from the Siple Dome and and Greenland Ice Sheet Project 2 (GISP2) ice cores covering roughly the last 100,000 years (100 ka), consisting of d15N (15N/14N) of N2, d18O (18O/16O) of O2, dO2/N2, and dAr/N2. Derived parameters include d18Oatm, d15N, dO2/N2, and dAr/N2. Data are available via FTP as ASCII text files (.txt) and Microsoft Excel files (.xls). | ["POINT(-119.533333 -80.016667)"] | ["POINT(-119.533333 -80.016667)"] | false | false |
Late Holocene Climate Variability, Dry Valleys, Antarctica
|
0228052 |
2009-07-01 | Kreutz, Karl; Mayewski, Paul A. |
Dry Valleys Late Holocene Climate Variability |
This data set includes high-resolution ice core records from the Dry Valleys region of Antarctica, and provides interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). Intermediate-length ice cores (100 to 200 meters) were drilled at four sites along transects in the Taylor and Wright valleys, and analyzed for stable isotopes and major ions. The data set includes high-resolution ice core data for each study site. It also includes mass balance, borehole temperature, and snowpit data for each site, and Global Positioning System (GPS) velocity data for some of the sites. Snow pit data from three additional sites in the same region is also available. Data are available via FTP, in Microsoft Excel (.xls), ASCII text (.txt), and Microsoft Word (.doc) file formats. | ["POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))"] | ["POINT(162.035 -77.69)"] | false | false |
Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica
|
9814810 |
2009-06-01 | McConnell, Joseph; Bales, Roger; Frey, Markus |
Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse |
This data set contains sub-annually resolved concentrations of hydrogen peroxide (H2O2), snow, firn and ice from 23 sites on the West Antarctic Ice Sheet (WAIS). | ["POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))"] | ["POINT(-104 -83)"] | false | false |
Adelie penguin weighbridge data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Daily weather observations 1996-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin dive data 1999-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin banding data 1994-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin chick measurements 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin chick counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin diet data 1996 - 2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin Geolocation Sensor data 2003-2007 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin satellite position data 2000-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Leopard Seal counts 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Adelie penguin resighting data 1997-2009 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science
|
0439759 |
2009-05-19 | Ballard, Grant |
COLLABORATIVE: Adelie Penguin Response to Climate Change at the Individual, Colony and Metapopulation Levels |
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Stable Isotope Studies at East Antarctic US ITASE Sites
|
0440414 |
2009-01-01 | Steig, Eric J. |
Stable Isotope Studies at East Antarctic US ITASE Sites |
This award supports a project to obtain stable isotope profiles from shallow (<100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the "ITASE" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region
|
0125098 |
2009-01-01 | Emslie, Steven D. |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region |
This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC. | ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"] | ["POINT(55 -75)"] | false | false |
Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica
|
0440954 |
2009-01-01 | Miller, Molly |
Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica |
This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems. | ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"] | ["POINT(159.25 -76.683335)"] | false | false |
Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores
|
0538683 |
2009-01-01 | Lal, Devendra |
Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores |
The principal aim of this research is to determine the precise manner in which solar activity has varied in the past 1000 years. During this period, four periods of very low solar activity have been identified: Wolf (1305-1345 AD), Spoerer (1418-1540 AD), Maunder (1645-1715), and one period of high solar activity (1100-1250 A.D.) have been deduced based on available historical records of sunspot numbers and aurora. Our proposal aims to study the solar activity during the past 1000 years in detail using a new method, based on studies of polar ice, as developed earlier (Earth and Planetary Science Letters, 234, 335-349, 2005). The method is based on the fact that greater solar activity leads to production of greater magnetic fields in the heliosphere, which reduces the primary cosmic ray flux in the near Earth environment, and vice-versa. Consequently if one can measure the primary cosmic ray flux in the near Earth space, it becomes a direct measure of the solar activity. Lal et al. (Earth and Planetary Science Letters, 234, 335-349, 2005) concluded that the best way of measuring the primary cosmic ray flux would be to measure the concentration of cosmogenic in-situ produced 14C in polar ice sheets, which was discovered by Lal et al. (Nature 346, 350-352, 1990). Following this idea Lal et al. (op. cit.) measured cosmogenic in-situ produced in 19 samples from the GISP 2 core covering time range of 375-31,250 yrs B.P. Their studies showed that there were two periods of very low solar activity in this time bracket (during 8500-9500 B.P and 27,000-32,000 B.P.), and one high solar activity period during 12,000-16,000 yrs B.P. In order to provide an independent check on the veracity of the new method, we decided to apply it to the historical period, < 1000 yrs B.P. The inferred Solar activities based on the study of cosmogenic in-situ produced 14C in South Pole ice samples clearly establish that there was a period of high Solar activity during 1100-1250 A.D., and a period of very low solar activity during 1416-1534 A.D, designated as the Spoerer Minimum. These results however do not confirm the proposed dates for the Dalton and the Maunder Minimum periods, predicted to be 1795-1825 A.D. and 1654-1714 A.D. respectively. Instead, our studies show that there was a long duration period of low solar activity during 1750-1860 A.D. These results make it quite clear that we should carry out more studies to fully establish the temporal behavior of the Solar activity in the past 1000 yrs. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills
|
0636629 |
2009-01-01 | Soule, S. Adam; Kurz, Mark D. |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills |
This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change. | ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"] | ["POINT(162.5 -78.1)"] | false | false |
Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica
|
0739452 |
2009-01-01 | Mukhopadhyay, Sujoy |
Landform Evolution in the Dry Valleys and its implications for Miocene-Pliocene Climate Change in Antarctica |
This project seeks to answer a simple question: how old are potholes and related geomorphic features found in the uplands of the McMurdo Dry Valleys, Antarctica? Some research suggests that they are over ten million years old and date the growth of the East Antarctic Ice Sheet, the world's largest. However, some evidence suggests that these are young, erosional features that continuing to evolve to this day. This project uses cosmogenic nuclide dating to determine the age of the pothole floors. The results are important for determining the ice sheet?s history and interpreting the O-isotope record from the marine sediment cores, key records of global climate. Broader impacts include K12 outreach and incorporation of outcomes into university courses. | ["POLYGON((161 -76,161.2 -76,161.4 -76,161.6 -76,161.8 -76,162 -76,162.2 -76,162.4 -76,162.6 -76,162.8 -76,163 -76,163 -76.2,163 -76.4,163 -76.6,163 -76.8,163 -77,163 -77.2,163 -77.4,163 -77.6,163 -77.8,163 -78,162.8 -78,162.6 -78,162.4 -78,162.2 -78,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,161 -77.8,161 -77.6,161 -77.4,161 -77.2,161 -77,161 -76.8,161 -76.6,161 -76.4,161 -76.2,161 -76))"] | ["POINT(162 -77)"] | false | false |
Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores
|
0739496 |
2009-01-01 | Furbish, David; Miller, Molly |
Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores |
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica's continental shelf? Antarctica's benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change. | ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"] | ["POINT(163.66667 -77.516665)"] | false | false |
Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores
|
0739512 |
2009-01-01 | Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores |
This project answers a simple question: why are there so few fossils in sediment cores from Antarctica's continental shelf? Antarctica's benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains
|
0739693 |
2009-01-01 | Ashworth, Allan; Lewis, Adam |
Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains |
This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica's ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise. | ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"] | ["POINT(161 -77.5)"] | false | false |
Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas
|
0741380 |
2009-01-01 | Smith, Walker |
Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas: |
The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea. | ["POLYGON((-160 -65,-154 -65,-148 -65,-142 -65,-136 -65,-130 -65,-124 -65,-118 -65,-112 -65,-106 -65,-100 -65,-100 -66.1,-100 -67.2,-100 -68.3,-100 -69.4,-100 -70.5,-100 -71.6,-100 -72.7,-100 -73.8,-100 -74.9,-100 -76,-106 -76,-112 -76,-118 -76,-124 -76,-130 -76,-136 -76,-142 -76,-148 -76,-154 -76,-160 -76,-160 -74.9,-160 -73.8,-160 -72.7,-160 -71.6,-160 -70.5,-160 -69.4,-160 -68.3,-160 -67.2,-160 -66.1,-160 -65))"] | ["POINT(-130 -70.5)"] | false | false |
GISP2 (D Core) Helium Isotopes from Interplanetary Dust
|
0126057 |
2008-12-16 | Brook, Edward J.; Kurz, Mark D. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
Ice Core Interplanetary Dust Helium Isotope Data Helium isotope data from Ice Cores at GISP2 (Greenland) and Vostok (Antarctica) as a proxy for extraterrestrial dust flux. | ["POINT(-38.466667 72.5833333)"] | ["POINT(-38.466667 72.5833333)"] | false | false |
GISP2 (D Core) Methane Concentration Data
|
0126057 |
2008-12-16 | Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
This ice core data is archived at the World Data Center for Paleoclimatology and is available through the Ice Core Data Gateway. The data includes methane data from the Greenland Ice Sheet Project 2 (GISP2). GISP2 is an ice core project that drilled through the Greenland ice sheet and 1.55 meters into bedrock. The ice core is 3053.44 meters in depth, the deepest ice core recovered in the world at the time. The ice core was completed in 1993 after five years of drilling. Methane concentrations were determined by GC-FID using standards calibrated by NOAA CMDL. The gas age time scales and analytical techniques are described in further detail in the publication. | ["POINT(-38.466667 72.5833333)"] | ["POINT(-38.466667 72.5833333)"] | false | false |
Iceberg Firn Temperatures, Antarctica
|
0229546 |
2008-11-28 | Thom, Jonathan; Sergienko, Olga; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Since November of 2005, 12 thermistors were planted in the upper 2.5 meters of the firn on iceberg C16, Antarctica. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as an iceberg moves north into warmer climate. | ["POINT(168 -78)"] | ["POINT(168 -78)"] | false | false |
Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica
|
0636953 |
2008-10-22 | Saltzman, Eric; Aydin, Murat; Williams, Margaret |
Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores |
This data set is an analysis of methyl chloride concentration measured in air extracted from ice core samples from the Siple Dome A deep core in West Antarctica. In total, forty six (46) ice samples, approximately 10-15 cm in length, were analyzed in this study. Data are available in Microsoft Excel format and are available via FTP. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Iceberg Harmonic Tremor, Seismometer Data, Antarctica
|
0229546 |
2008-10-01 | Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to understand the relevance of IHT to iceberg calving, drift and break-up. The seismic observations reveal that the IHT signal consists of extended episodes of stick-slip icequakes (typically thousands per hour) generated when the ice-cliff edges of two tabular icebergs rub together during glancing, strike/slip type iceberg collisions (e.g., between C16 and B15A). With the source mechanism revealed, IHT may provide a promising signal useful for the study of iceberg behavior and iceberg-related processes such as climate-induced ice-shelf disintegration. Here, a single day of seismometer data for a single station on iceberg C16 is provided as an example of "a day in the life of an iceberg" for use by scientists and students wishing to know more about IHT. The station data is from C16 "B" site on C16's northeast corner, and the day is 27 December, 2003, a day when B15A struck C16 and caused an episode of tremor that was particularly easy to identify and understand. This represents only a small fraction of the total data that exist for the seismic program on iceberg C16. The full data are archived at the IRIS data center (where seismic data is commonly archived). This one-day data set is to provide glaciologists with ready access to a good example of IHT that they can use for teaching and for demonstration purposes. Data are available in comma-delimited ASCII format and Matlab native mat files. Data are available via FTP. | ["POINT(168 -77)"] | ["POINT(168 -77)"] | false | false |
Antarctic Ice Cores: Methyl Chloride and Methyl Bromide
|
0338359 |
2007-11-10 | Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is an analysis of methyl chloride (CH3Cl) and methyl bromide (CH3Br) in Antarctic ice core samples. Investigators reported mixing ratios of methyl chloride gas extracted from samples taken from the South Pole Remote Earth Science and Seismological Observatory (SPRESSO) core, drilled as part of the International Trans Antarctic Science Expedition (ITASE). This data covers an age range of 2159 - 140 years before present (Y.B.P.) where the year 2000 was used as present. Investigators analyzed trace gases in ice core samples from Siple Dome, West Antarctica (dry-drilled C core and deep, fluid-drilled A core) and from South Pole, Antarctica (300 m dry drilled SPRESSO core). Data are available in Microsoft Excel format and are available via FTP. | ["POINT(-144.39 -89.93)"] | ["POINT(-144.39 -89.93)"] | false | false |
Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica
|
0337891 |
2007-11-05 | Brook, Edward J.; Ahn, Jinho |
Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2 |
Using new and existing ice core CO2 data from 65 - 30 ka BP a new chronology for Taylor Dome ice core CO2 is established and synchronized with Greenland ice core records to study how high latitude climate change and the carbon cycle were linked during the last glacial period. The new data and chronology should provide a better target for models attempting to explain CO2 variability and abrupt climate change. | ["POINT(158 -77.666667)"] | ["POINT(158 -77.666667)"] | false | false |
Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica
|
0337891 |
2007-10-26 | Brook, Edward J.; Ahn, Jinho |
Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2 |
Reconstructions of ancient atmospheric CO2 variations help us better understand how the global carbon cycle and climate are linked. This data set compares CO2 variations on millennial time scales between 20,000 and 90,000 years with an Antarctic temperature proxy and records of abrupt climate change in the Northern hemisphere. | ["POINT(-119.833611 -80.01)"] | ["POINT(-119.833611 -80.01)"] | false | false |
Trapped Gas Composition and Chronology of the Vostok Ice Core
|
0230260 |
2007-07-10 | Bender, Michael; Suwa, Makoto |
Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core |
This data set includes a time scale for the Vostok ice core, retrieved from Vostok Station on the East Antarctic Plateau. This chronology is derived by orbitally tuning to molecular oxygen to nitrogen (O<sub>2</sub>/N<sub>2</sub>) ratios in occluded air for depths deeper than 1550 m (greater than 112,000 years old), and by gas correlation to the Greenland Ice Sheet Project 2 (GISP2) chronology for the ice core section that is shallower than 1422 m (less than 102,000 years old). Because of poor gas preservation in air bubbles in shallower depths, investigators could only constrain the Vostok chronology for the section deeper than 1550 m by O<sub>2</sub>/N<sub>2</sub>. Thus for the shallower section of the core, they synchronized the Vostok delta oxygen-18 (δ<sup>18</sup>O) and methane (CH<sub>4</sub>) measurements to those of the GISP2 to obtain the chronology (see Bender, et al. 2006). Note, CH<sub>4</sub> data are not included in this data set. Investigators analyzed the O<sub>2</sub>/N<sub>2</sub> and the<em><strong> </strong></em>δ<sup>18</sup>O record ratios for approximately the past 115,000 to 400,000 years in the Vostok ice core. They combined new measurements for O<sub>2</sub>/N<sub>2</sub> and δ<sup>18</sup>O with data from Bender (2002) and Petit, et al. (1999), respectively. Data are in Microsoft Excel format and are available via FTP. | ["POINT(106.8 -72.4667)"] | ["POINT(106.8 -72.4667)"] | false | false |
Cosmogenic Radionuclides in the Siple Dome A Ice Core
|
0126343 |
2007-05-31 | Finkel, R. C.; Nishiizumi, Kunihiko |
Cosmogenic Radionuclides in the Siple Dome Ice Core |
This data set includes a record of cosmogenic radionuclide concentrations in the Siple Dome A ice core collected as part of the West Antarctic ice core program. The investigators measured profiles of both <sup>10</sup>Be (half-life = 1.5x10<sup>6</sup> years) and <sup>36</sup>Cl (half-life = 3.0x10<sup>5</sup> years) in the entire ice core, which spans the time period from the present to about 100,000 years before present. These data are being used for perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Data are distributed as a PDF file and are available via FTP. | ["POINT(-148.812 -81.6588)"] | ["POINT(-148.812 -81.6588)"] | false | false |
Decadal-Length Composite West Antarctic Air Temperature Records
|
9526566 |
2006-11-28 | Shuman, Christopher A.; Stearns, Charles R. |
Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica |
This data set includes daily, monthly, and yearly mean surface air temperatures for four interior West Antarctic sites between 1978 and 1997. Data include air surface temperatures measured at the Byrd, Lettau, Lynn, and Siple Station automatic weather stations. In addition, because weather stations in Antarctica are difficult to maintain, and resulting multi-decade records are often incomplete, the investigators also calculated surface temperatures from satellite passive microwave brightness temperatures. Calibration of 37-GHz vertically polarized brightness temperature data during periods of known air temperature, using emissivity modeling, allowed the investigators to replace data gaps with calibrated brightness temperatures. MS Excel data files and GIF images derived from the data are available via ftp from the National Snow and Ice Data Center. | ["POINT(-119.4 -80.01)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(160.41 -74.21)"] | ["POINT(-119.4 -80.01)", "POINT(-174.45 -82.52)", "POINT(-84 -75.9)", "POINT(160.41 -74.21)"] | false | false |
Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record
|
0125761 |
2006-11-01 | Thiemens, Mark H.; Savarino, Joel |
South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA) |
This data set contains snow pit measurements of oxygen isotopes, <sup>17</sup>O and <sup>18</sup>O, in nitrate and ion concentrations, and surface measurements of oxygen isotopes in nitrate and in nitrate aerosols from the Amundsen-Scott South Pole Station, Antarctica. The 6-meter snow pit provides investigators with a 25-year record of nitrate isotope variations and ion concentrations for a period spanning from 1979 to 2004. Monthly surface snow and weekly aerosol collections yield a year-long record of nitrate isotopic composition starting 01 December 2003 and ending 31 December 2004. Little is known about the past denitrification of the stratosphere in high latitude regions. Such knowledge is important to understanding the chemical state of the ancient atmospheres and evaluating the present climate models. With this research, investigators aim to understand the denitrification of the Antarctic stratosphere and quantify the sources of nitrate aerosols over time. Data are in Microsoft Excel format and are available via FTP. | ["POINT(139.2728 -89.9975)"] | ["POINT(139.2728 -89.9975)"] | false | false |
AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0225992 0125570 |
2006-10-05 | Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP. | ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"] | ["POINT(124.48059 -80.78277)"] | false | false |
Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001
|
9725305 0230260 0230452 |
2006-08-17 | Severinghaus, Jeffrey P.; Battle, Mark; Bender, Michael |
Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core |
This data set includes gas ratios in polar firn air: O<sub>2</sub>/N<sub>2</sub>, <sup>15</sup>N/<sup>14</sup>N, <sup>40</sup>Ar/N<sub>2</sub>, <sup>40</sup>Ar/<sup>36</sup>Ar, <sup>40</sup>Ar/<sup>38</sup>Ar, <sup>84</sup>Kr/<sup>36</sup>Ar, <sup>132</sup>Xe/<sup>36</sup>Ar, and <sup>22</sup>Ne/<sup>36</sup>Ar. Investigators sampled air from the permeable snowpack (firn) layer at two sites: Siple Dome, Antarctica in 1996 and at the South Pole in 2001. They observed and modeled the processes of gravitational settling, thermal fractionation, and preferential exclusion of small gas molecules from closed air bubbles. The purpose of this study was to understand these physical processes, which affect the composition of bubbles trapped in ice. By measuring these gas ratios in the ancient air preserved in bubbles trapped in ice, researchers can determine past atmospheric composition and local temperature changes along with the relative timing and magnitude of such events. The data file is available in Microsoft Excel format. The research paper is available in PDF. Data and the research paper are available via FTP. | ["POINT(-148.767 -80.667)", "POINT(0 -90)"] | ["POINT(-148.767 -80.667)", "POINT(0 -90)"] | false | false |
GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation
|
0125276 |
2006-06-10 | Scambos, Ted; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km<sup>2</sup>. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP. | ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"] | ["POINT(125.026 -80.6553)"] | false | false |
Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)
|
0338359 |
2005-11-16 | Saltzman, Eric; Aydin, Murat |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. This data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65° S, 148.81° W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 °C. Data are available via FTP. | ["POINT(-148.81 -81.65)"] | ["POINT(-148.81 -81.65)"] | false | false |
Ross Ice Drainage System (RIDS) Glaciochemical Analysis
|
9316564 |
2005-05-09 | Mayewski, Paul A.; Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Meeker, Loren D. |
Ross Ice Drainage System (RIDS) Late Holocene Climate Variability |
The Ross Ice Drainage System (RIDS) project provides a high-resolution record of atmospheric chemical deposition taken from several ice cores and snow pits located at sites within or immediately adjacent to the Ross Ice Drainage System. Three sites were visited during a 1995 traverse in inland West Antarctica. The traverse was 158 km, trending 26° from Byrd Surface Camp. The core from site A (78°44'S, 116°20'W) is 148 m deep, the core from site B (79°27.66'S, 118°02.68'W) is 60 m deep, and the core from site C (80°00.85'S, 119°33.73'W) is 60 m deep. Glaciochemical analysis focuses on the major ions deposited from the antarctic atmosphere, including Na (sodium), NH4 (ammonium), K (potassium), Mg (magnesium), Ca (calcium), Cl (chloride), NO3 (nitrate), and SO4 (sulfate). Chemical analysis also includes methanesulfonic acid (MSA) and nssSO4 (non-sea salt sulfate). The data are available by FTP in ASCII text format and Excel files. | ["POINT(-116.333 -78.733)", "POINT(-119.562 -80.014)", "POINT(-118.045 -79.461)"] | ["POINT(-116.333 -78.733)", "POINT(-119.562 -80.014)", "POINT(-118.045 -79.461)"] | false | false |
Talos Dome Ice Core Deuterium Isotope Data
|
None | 2004-08-27 | Jouzel, Jean; Stenni, Barbara | No project link provided | This data set consists of deuterioum isotope data obtained from Talos Dome ice core. Talos Dome is located on the edge of the East Antarctic plateau adjacent to the Victoria Land mountain. The Talos Dome (TD) firn core is 89 m and was drilled during a traverse by an Italian team in 1996. | ["POINT(159.183333 -72.827778)"] | ["POINT(159.183333 -72.827778)"] | false | false |
Antarctic and Greenland Climate Change Comparison
|
0126057 |
2004-08-27 | Blunier, Thomas; Stauffer, Bernhard; Chappellaz, Jerome; Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
This data set compares global atmospheric concentration of methane from ice cores taken on the ice sheets of Antarctica and Greenland. The data come from multiple ice cores on each continent, including Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project (GISP) ice cores and the Byrd and Vostok cores from Antarctica. (The orignal dataset is located at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/grip/synchronization/) | [] | [] | false | false |
Byrd Ice Core Microparticle and Chemistry Data
|
9725918 9714687 |
2004-08-26 | Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J. |
Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores |
This data set consists of microparticle and chemistry data from Byrd Ice Core, the first ice core to reach bedrock in Antarctica. The core was drilled with a cable-suspended electromechanical rotary drill at Byrd Station, Antarctica. The vertical thickness of the ice was 2164 meters and more than 99 percent of the core was recovered. Cores were sought for investigations of the physical properties of the ice sheet, the nature of the ice-rock contact, and the composition of the underlying bedrock. | ["POINT(-119.516667 -80.016667)"] | ["POINT(-119.516667 -80.016667)"] | false | false |
Dome C Ice Core Chemistry and Depth and Age Scale Data
|
None | 2004-08-26 | Lal, Devendra; Lorius, Claude |
Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c |
This data set includes isotope and depth age data, and CO2 and CH4 data from the Dome C Antarctica ice core. This core is a 906 meter core that spans approximately 32,000 years. It was a thermally drilled core and was retrieved during the 1977-78 Antarctic field season as part of the International Antarctic Glaciological project. | ["POINT(123.332196 -75.09978)"] | ["POINT(123.332196 -75.09978)"] | false | false |
Law Dome Ice Cores Chemistry Data
|
None | 2004-08-26 | Barnola, J. M.; Etheridge, David; Morgan, Vin | No project link provided | This data set includes CO2 and CH4 records derived from three ice cores obtained at Law Dome, East Antarctica, from 1987 to 1993. Law Dome is a medium size, approximately circular, (200 km dia., 1390 m high) ice sheet situated at the edge of the main East Antarctic ice sheet. The data in this set include cores drilled between 1987 and 1993 to a depth of 1199.6. | ["POINT(112.833333 -66.65)"] | ["POINT(112.833333 -66.65)"] | false | false |
Siple Dome Ice Core Chemistry and Ion Data
|
9316564 |
2004-08-26 | Blunier, Thomas; Severinghaus, Jeffrey P.; Brook, Edward J.; Kreutz, Karl; Mayewski, Paul A.; Dunbar, Nelia |
Ross Ice Drainage System (RIDS) Late Holocene Climate Variability |
This data set includes chemistry and ion data collected from a 150 m core recovered from Siple Dome, West Antarctica. The core was drilled during the 1994/1995 field season. Dating of the core was accomplished using annual signals preserved in several chemical species, beta activity profiles, and volcanic horizons. The resulting depth/age scale indicates an age of 1890 A.D. at 24 m, and 850 A.D. at 150 m depth. | ["POINT(148.7725 -81.6425)"] | ["POINT(148.7725 -81.6425)"] | false | false |
Dronning Maud Land Ice Core Chemistry Data
|
None | 2004-08-26 | Mayewski, Paul A.; Whitlow, Sallie; Isaksson, Elisabeth | No project link provided | This data set consists of chemistry data obtained from a shallow core in Dronning Maud Land, Antarctica. Major ion concentration values (Na, Mg, Ca, Cl, NO3, SO4, MSA) were analyzed from the 20 meter ice core, which was drilled during the austral summer 1991-1992. | ["POINT(0.09472 -74.9961)"] | ["POINT(0.09472 -74.9961)"] | false | false |
Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy
|
8411018 8613786 |
2004-08-26 | Welch, Kathy A.; Mayewski, Paul A. |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
This data set includes beta profiles, chemistry, stratigraphy data, and density and temperature profiles collected from snow pits and two ice cores on the Newall Glacier. Snow pit and ice core data were collected between 1987 and 1989. Ice Core A was 175 meters long and core B was 150 meters long. | ["POINT(162.5 -77.61667)"] | ["POINT(162.5 -77.61667)"] | false | false |
Vostok Ice Core Chemistry, Timescale, Isotope, and Temperature Data
|
None | 2004-08-26 | Lal, Devendra; Barnola, J. M.; Petit, Jean Robert; Jouzel, Jean; Sowers, Todd A.; Brook, Edward J.; Bender, Michael; Fishcer, Hubertus; Blunier, Thomas; Ruddiman, William; Raymo, Maureen; Lorius, Claude; Chappellaz, Jerome | No project link provided | This data set contains ice core chemistry, timescale, isotope, and temperature data analyzed by several investigators. In January 1998, the collaborative ice-drilling project between Russia, the United States, and France at the Russian Vostok station in East Antarctica yielded the deepest ice core ever recovered, reaching a depth of 3,623 m. Preliminary data indicate the Vostok ice-core record extends through four climate cycles, with ice slightly older than 400 kyr. | ["POINT(106.8 -78.4666667)"] | ["POINT(106.8 -78.4666667)"] | false | false |
Taylor Dome Ice Core Chemistry, Ion, and Isotope Data
|
9615292 |
2004-08-26 | Smith, Jesse; Sowers, Todd A.; Brook, Edward J.; Mayewski, Paul A.; Steig, Eric J.; Indermuhle, A. |
Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores |
This data set includes chemistry, ion, and istotope data from Taylor Dome, part of the East Antarctic ice sheet. Deep drilling at Taylor Dome successfully reached bedrock at a depth of 554 meters during the 1993-1994 austral summer. The Taylor Dome ice core is only the second core (after Vostok) to provide a stratigraphically undisturbed record through the entire last glacial cycle (the last 130,000 years or more). | ["POINT(158 -77.6666667)"] | ["POINT(158 -77.6666667)"] | false | false |
Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data
|
8411018 8613786 |
2004-08-26 | Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb; Gow, Tony |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
This data set includes beta profiles, chemistry, and density data obtained from Dominion Range ice cores. The Dominion Range is on the East Antarctic Ice Sheet. The chemistry data consists of the composition of oxygen-isotopes and trapped gasses. Other information includes ice thickness, mean annual net accumulation, and crystal size. The core samples were collected in the austral summer of 1984-85. | ["POINT(166.16667 -85.25)"] | ["POINT(166.16667 -85.25)"] | false | false |
European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data
|
None | 2004-08-26 | Wolff, Eric W.; Monnin, Eric; Fluckiger, Jacqueline | No project link provided | This data set is a collection of analyses done on the the European Project for Ice Coring in Antarctica (EPICA)Dome C ice cores. The data include deuterium and other chemistry, insoluble dust, ice grain radius, dielectric profiling, electrical conductivity, and timescales. EPICA has completed one core in the Dome Concordia region (Core EDC96, started in 1996, 788 m length). Drilling is ongoing on a second core EDC99 (started in 1999, reached a depth of 3200 m during the 2002/2003 field season. The ice at this depth is estimated to be about 700,000 years old.) | ["POINT(123.332196 -75.09978)"] | ["POINT(123.332196 -75.09978)"] | false | false |
South Pole Snow Pit, 1988 and 1989
|
None | 2004-06-24 | Mayewski, Paul A.; Whitlow, Sallie | No project link provided | Information from 6-meter snow pits dug close to the South Pole in austral summer 1988-1989 by the Glacier Research Group of the University of New Hampshire (location - 38 km on grid 90 from South Pole station - eastern margin of clean air sector) are available. Major ion chemistry (Na, K, Mg, Ca, Cl, NO3, SO4), oxygen isotopes (I8O), H2O2, and beta from a 6-meter snow pit covering the period 1955 to 1989 are included. Major ion chemistry for a series of surface snow samples were also collected on the traverse to the pit. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Biogenic Sulfur in the Siple Dome Ice Core
|
9615333 |
2004-03-09 | Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon |
Biogenic Sulfur in the Siple Dome Ice Core |
This data set is a continuous, high-resolution record of biogenic sulfur (methanesulfonate, known as MSA and CH3SO3-) in the 1000 m deep Siple Dome A (SDMA) core, covering 100,000 to 20 years BP. The analysis was done on between August 2002 and November 2003 at the University of California, Irvine. Investigators used a mass spectrometer to measure methanesulfonate. Measurements are given as MSA concentration at various depths. Estimated age of the ice at each depth is also given. This project was a part of the West Antarctic Ice Sheet Cores (WAISCORES) project for deep ice coring in West Antarctica. WAISCORES is supported by the Office of Polar Programs, National Science Foundation (NSF). | ["POINT(-148.8 -81.7)"] | ["POINT(-148.8 -81.7)"] | false | false |
Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica
|
9980691 |
2003-12-11 | Ahn, Jinho; Wahlen, Martin; Deck, Bruce |
CO2 and Delta 13CO2 in Antarctic Ice Cores |
These data are CO2 concentrations of the air occulded in Siple Dome ice core, Antarctica. The study was conducted between January 2001 and March 2003 on a deep ice core from Siple Dome Core A, located at 81.66 S, 148.82 W. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |
Central West Antarctic Glaciochemistry from Ice Cores
|
None | 2003-10-16 | Reusch, David | No project link provided | Glaciochemical and accumulation rate records developed from four ice cores in central West Antarctica are used to reconstruct former atmospheric circulation patterns in this region for the last 40 years with extended records (150-250 years) at two sites. The sites lie on a 200 km traverse from 82 degrees 22 minutes south, 119 degrees 17 minutes west to 81 degrees 22 minutes south, 107 degrees 17 minutes west, gaining elevation from 950 to 1930 m. The glaciochemical records represent the major ionic species present in Antarctic snow: sodium, potassium, magnesium, calcium, chloride, nitrate, and sulfate. | ["POLYGON((-120 -80,-118.5 -80,-117 -80,-115.5 -80,-114 -80,-112.5 -80,-111 -80,-109.5 -80,-108 -80,-106.5 -80,-105 -80,-105 -80.5,-105 -81,-105 -81.5,-105 -82,-105 -82.5,-105 -83,-105 -83.5,-105 -84,-105 -84.5,-105 -85,-106.5 -85,-108 -85,-109.5 -85,-111 -85,-112.5 -85,-114 -85,-115.5 -85,-117 -85,-118.5 -85,-120 -85,-120 -84.5,-120 -84,-120 -83.5,-120 -83,-120 -82.5,-120 -82,-120 -81.5,-120 -81,-120 -80.5,-120 -80))"] | ["POINT(-112.5 -82.5)"] | false | false |
Siple Dome Ice Core Age-Depth Scales
|
9420648 |
2003-09-09 | Nereson, Nadine A. |
Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Nereson's 'Age Versus Depth' plot shows the results of the calculations published in her paper on predicted age-depth scales (Nereson, N.A., E.D. Waddington, C.F. Raymond, and H.P. Jacobson. 1996. Predicted Age-Depth Scales for Siple Dome and Inland WAIS Ice Cores in West Antarctica.Geophys. Res. Let., 23(22): 3163-3166.). | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Siple Dome Highlights: Stable isotopes
|
None | 2003-08-18 | Steig, Eric J.; White, James | No project link provided | This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set provides measurements of stable isotopes of water and deuterium excess for the Siple Dome ice cores. The shallow cores from Siple Dome were analyzed for isotopes with sub-annual temporal detail. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Taylor Dome Ice Core Data
|
None | 2003-08-18 | Steig, Eric J.; White, James | No project link provided | The collection site is Taylor Dome, an ice-accumulation area on the East Antarctic ice sheet. The dome is a ridge about 20 x 80 km, which lies inland of the Transantarctic Mountains. Deep drilling by the Polar Ice Coring Office (PICO) at Taylor Dome reached bedrock at a depth of 554 meters during the 1993-1994 austral summer season. <p>This data set includes mesurements of:</p> <ul> <li>beryllium-10 (betd.txt)</li> <li>oxygen isotopes (hi18o_td.txt and lo18o_td.txt)</li> <li>deuterium isotopes (deld_20cm.txt and deld_td.txt).</li> </ul> <p>These data were produced at the University of Washington from samples obtained in the field and via the University of New Hampshire automatic melting system. For beryllium, deuterium, and 20-cm oxygen isotope data, the st9810 ice age (kyB1950) timescale is used. For 0.5- to 1-m oxygen isotope data, the st9507 is used.</p> | ["POINT(158 -77)"] | ["POINT(158 -77)"] | false | false |
Siple Dome Methane Record
|
0512971 |
2003-08-18 | Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Brooks measured methane in approximately 196 samples between 55.6 and 738.5 m (0-20 ka) in the Siple Dome ice core, and then extended the Siple Dome methane record at medium resolution down to about 860m, corresponding to an age of about 45 ka. The team compared the results with data from the Greenland Ice Sheet Project 2 (GISP2) and the Greenland Ice Core Project (GRIP). | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Three-Hourly Antarctic Automatic Weather Station Data, 1980-2000
|
9527603 9419128 |
2003-08-18 | Stearns, Charles R.; Keller, Linda M.; Weidner, George A.; Lazzara, Matthew |
Continuation for the Antarctic Automatic Weather Station Climate Program 1995-1998 |
The Automatic Weather Station (AWS) Project, funded by the NSF Office of Polar Programs, involves collecting meteorological data from an array of automatic weather stations in Antarctica, Greenland, and Peru. Data collection in Antarctica began in 1980. Data are available in tabular ASCII format via the University of Wisconsin's AWS Project Web site at http://uwamrc.ssec.wisc.edu/aws/. Both raw and 'corrected' versions of the data are available via ftp. Information about data processing and station characteristics is also provided. | [] | [] | false | false |
GISP2 (B and D Core) Methane Concentrations
|
0512971 |
2003-05-14 | Brook, Edward J. |
High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change |
The data include methane data from the Greenland Ice Sheet Project 2 (GISP2) B & D Cores. Gas ages were calculated according to the methods described in Brook et al. 1996, and are subject to change. Ice ages were calculated by by linear interpolation from the Meese et al. timescale. | ["POINT(-38.466667 72.5833333)"] | ["POINT(-38.466667 72.5833333)"] | false | false |
Siple Shallow Core Density Data
|
0126286 |
2003-05-14 | Lamorey, Gregg W. |
Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Lamorey measured the density of the shallow Siple Dome cores B - I. One-meter sections of the ice core were weighed on a balance beam in the field. The volume was determined by measuring the diameter and length of the core. The data consists of tab-delimited text files of density measurements and a sonic velocity profile, and a .gif format density-versus-depth plot. Data are available via FTP. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Physical and Structural Properties of the Siple Dome Ice Cores
|
9527262 |
2003-05-14 | Gow, Tony; Meese, Deb |
Physical and Structural Properties of the Siple Dome Core |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes annual layer data for Siple Dome ice cores A, B, and C, based on stratigraphy; thin-section images, and fabric data. The study included the analysis of more than 2500 crystallographic c-axes conducted on 50 thin sections from the main PICO core. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Digital Images of Thin Sections from Siple Dome
|
9615554 |
2003-05-14 | Fitzpatrick, Joan |
Digital Imaging for Ice Core Analysis |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set comprises low-resolution (72 dpi) jpg images of thin sections from the Siple Dome ice core. The images were acquired during the 1997/1998 field season, from both the SDM-A, or main 13.2-cm, core and from the hot water core recovered by Hermann Englehardt. The data set includes both vertical and horizontal thin sections. With one exception, all images were recorded in cross-polarized light. Two examples of archived high-resolution (275 dpi) images are provided for direct comparison of the low- and high-resolution images. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Volcanic Records in the Siple and Taylor Dome Ice Cores
|
9527373 |
2003-05-14 | Zielinski, Gregory; Dunbar, Nelia |
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes backscattered electron images of tephra samples extracted from the Siple and Taylor Dome ice cores, as well as electron microprobe analyses of glass shards in cases where significant, compositionally-consistent glass populations were present. The data set also includes data on the amount of volcanically derived sulfate deposited on the West Antarctic Ice Sheet and recorded in the Siple Dome ice core. | ["POINT(-149 -81)", "POINT(158.7889 -77.95)"] | ["POINT(-149 -81)", "POINT(158.7889 -77.95)"] | false | false |
Siple Dome Cores Electrical Measurement Data
|
9526420 |
2003-05-08 | Taylor, Kendrick C. |
Electrical and Optical Measurements on the Siple Dome Ice Core |
This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Taylor measured the electrical conductivity (ECM) and Complex Conductivity (CC), a measure of the total ions in the ice, in the main Siple Dome ice core. Measurements were taken along the core from a depth of 0 m to 800 m. The project also analyzed shallower cores for ECM and dielectric properties (DEP). (DEP is also a measure of the total ions in the ice, but with lower spatial resolution than the CC.) Albedo measurements where made on the shallow cores and the main core to a depth of 391 m. The data set includes images showing the electrical conductivity of a vertical section of the core. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica
|
9526572 |
2002-07-11 | McConnell, Joseph; Bales, Roger |
Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica |
This data set is part of the West Antarctic Ice Sheet Cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed snow pit and core samples from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes glaciochemical spatial variability data for six Siple Dome snow pits. Samples involved measuring hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and formaldehyde (HCHO) in the air, snow, firn, and ice via suppressed ion chromatography. The data can be used to interpret changes in concentrations of these species recorded in ice cores. Data in this collection were obtained during two Antarctic field seasons in 1994 to 1995 and 1996 to 1997. Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
WAISCORES Snow Pit Chemistry, Antarctica
|
9526449 |
2002-07-11 | Kreutz, Karl; Mayewski, Paul A. |
Siple Dome Deep Ice Core Glaciochemistry and Regional Survey - A Contribution to the WAIS Initiative |
This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed snow pit and core samples from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes glaciochemical spatial variability data for Siple Dome snow pits B, E, F, G, H, and 1 through 6. Samples were analyzed for soluble ion content via suppressed ion chromatography. Each pit was sampled at 2 cm resolution for ion chemistry using clean procedures, and sampled again at 3 cm resolution for density calculations. Snow pit names and locations correspond to the 1996 to 1997 season shallow core sites. Data in this collection were obtained during two Antarctic field seasons in 1994 to 1995 and 1996 to 1997. Data are available via FTP in space-delimited ASCII text (.dat) file format. | ["POLYGON((-149.11 -81.05,-149.05 -81.05,-148.99 -81.05,-148.93 -81.05,-148.87 -81.05,-148.81 -81.05,-148.75 -81.05,-148.69 -81.05,-148.63 -81.05,-148.57 -81.05,-148.51 -81.05,-148.51 -81.11,-148.51 -81.17,-148.51 -81.23,-148.51 -81.29,-148.51 -81.35,-148.51 -81.41,-148.51 -81.47,-148.51 -81.53,-148.51 -81.59,-148.51 -81.65,-148.57 -81.65,-148.63 -81.65,-148.69 -81.65,-148.75 -81.65,-148.81 -81.65,-148.87 -81.65,-148.93 -81.65,-148.99 -81.65,-149.05 -81.65,-149.11 -81.65,-149.11 -81.59,-149.11 -81.53,-149.11 -81.47,-149.11 -81.41,-149.11 -81.35,-149.11 -81.29,-149.11 -81.23,-149.11 -81.17,-149.11 -81.11,-149.11 -81.05))"] | ["POINT(-148.81 -81.35)"] | false | false |
Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples
|
0338359 |
2002-07-10 | Saltzman, Eric; Aydin, Murat |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. Siple Dome ice cores were analyzed for methanesulfonate (MSA) and carbonyl sulfide (OCS). The methanesulfonate analysis was done on cores A-E and a hot water core, and the carbonyl sulfide analysis was done on 11 C cores. Methanesulfonate data include the sample identification number, depth, and methanesulfonate parts per billion (ppb) of each sample. Carbonyl sulfide data include the depth, OCS parts per trillion (ppt) of each sample, percent error, and gas age (years). Data are available via FTP in tab-delimited ASCII text (.dat, .txt) file format. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum
|
9615292 |
2002-01-01 | Wahlen, Martin |
Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores |
These data describe the concentration and carbon-isotopic composition (d13CO2) of atmospheric CO2 from air trapped in ice between 27,000 and 1,300 years before present from Taylor Dome, Antarctica. Data are used to investigate the causes of the CO2 concentration increase that occurred during the transition between the last glacial maximum (LGM) and the Holocene. Data are in tab-delimited ASCII and Excel formats, and are available via ftp. | ["POINT(158.71 -77.8)"] | ["POINT(158.71 -77.8)"] | false | false |
Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core
|
9318121 9222121 |
2002-01-01 | Bender, Michael |
Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test |
These data describe the d18O of O2, d15N of N2, d18Oatm, and O2/N2 ratios of trapped gases in the Vostok ice core from East Antarctica. The investigator used a mass spectrometer to measure gas concentrations and isotopic compositions. Data extend to approximately 420,000 years ago. Two different age models are included. Data are available in tab-delimited ASCII format via ftp. | ["POINT(106.48 -72.28)"] | ["POINT(106.48 -72.28)"] | false | false |
WAISCORES: Deep Ice Coring in West Antarctica
|
None | 2002-01-01 | Lamorey, Gregg W. | No project link provided | The WAISCORES project is part of the National Science Foundation Office of Polar Programs' West Antarctic Ice Sheet (WAIS) initiative, which is aimed at understanding the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These cores allow researchers to distinguish local from regional influences on the climate records recovered from the cores. Drilling for the Siple Dome core began in November 1996 and finished in January 1999. The core site is located between ice streams C and D at approximately 81° 40' S and 148° 49' W. Preliminary studies indicate that the paleoclimate record preserved in the 1003-meter Siple Dome ice core extends back more than 90 thousand years. Data are available via ftp. The following WAISCORES investigators have made contributions to WAISCORES research. NSIDC archives data for many of these investigators: Mary Albert, Richard Alley, Robin Bell, Michael Bender, Robert Bindscadler, Pierre Biscaye, Donald Blankenship, Ed Brook, Nelia Dunbar, Joan Fitzpatrick, Tony Gow, Gregg Lamorey, Paul Mayewski, Joseph McConnell, Deb Meese, Nadine Nereson, Charlie Raymond, Eric Saltzman, Eric Steig, Christopher Shuman, Ken Taylor, Lonnie Thompson, Edwin Waddington, Martin Wahlen, James White, and Gret Zielinksi. This landing page has no data files! | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Ice Velocity Data from Ice Stream C, West Antarctica
|
9318121 9222121 |
2001-12-01 | Anandakrishnan, Sridhar |
Microearthquake Monitoring of Ice Stream C, West Antarctica: A Sensor for Sticky Spots |
Ice velocity data from ice stream C, including the body of the ice stream and its area of onset, are available. The investigator calculated velocities from precise ice displacement measurements made with a geodetic-quality Global Positioning System (GPS). These ice displacement measurements accompanied seismic experiments aimed at understanding controls on the flow of ice streams in west Antarctica. An understanding of ice stream flow is essential to predicting the response of the West Antarctic Ice Sheet to future climate change. Data are available in ASCII format via ftp. | ["POLYGON((-121.644 -82.2764,-121.4814 -82.2764,-121.3188 -82.2764,-121.1562 -82.2764,-120.9936 -82.2764,-120.831 -82.2764,-120.6684 -82.2764,-120.5058 -82.2764,-120.3432 -82.2764,-120.1806 -82.2764,-120.018 -82.2764,-120.018 -82.28496,-120.018 -82.29352,-120.018 -82.30208,-120.018 -82.31064,-120.018 -82.3192,-120.018 -82.32776,-120.018 -82.33632,-120.018 -82.34488,-120.018 -82.35344,-120.018 -82.362,-120.1806 -82.362,-120.3432 -82.362,-120.5058 -82.362,-120.6684 -82.362,-120.831 -82.362,-120.9936 -82.362,-121.1562 -82.362,-121.3188 -82.362,-121.4814 -82.362,-121.644 -82.362,-121.644 -82.35344,-121.644 -82.34488,-121.644 -82.33632,-121.644 -82.32776,-121.644 -82.3192,-121.644 -82.31064,-121.644 -82.30208,-121.644 -82.29352,-121.644 -82.28496,-121.644 -82.2764))", "POLYGON((-152.598 -81.8039,-149.8369 -81.8039,-147.0758 -81.8039,-144.3147 -81.8039,-141.5536 -81.8039,-138.7925 -81.8039,-136.0314 -81.8039,-133.2703 -81.8039,-130.5092 -81.8039,-127.7481 -81.8039,-124.987 -81.8039,-124.987 -81.90464,-124.987 -82.00538,-124.987 -82.10612,-124.987 -82.20686,-124.987 -82.3076,-124.987 -82.40834,-124.987 -82.50908,-124.987 -82.60982,-124.987 -82.71056,-124.987 -82.8113,-127.7481 -82.8113,-130.5092 -82.8113,-133.2703 -82.8113,-136.0314 -82.8113,-138.7925 -82.8113,-141.5536 -82.8113,-144.3147 -82.8113,-147.0758 -82.8113,-149.8369 -82.8113,-152.598 -82.8113,-152.598 -82.71056,-152.598 -82.60982,-152.598 -82.50908,-152.598 -82.40834,-152.598 -82.3076,-152.598 -82.20686,-152.598 -82.10612,-152.598 -82.00538,-152.598 -81.90464,-152.598 -81.8039))"] | ["POINT(-120.831 -82.3192)", "POINT(-138.7925 -82.3076)"] | false | false |
Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica
|
9980538 |
2001-06-11 | Lohmann, Kyger |
Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene |
Geochemical composition of shells of the bivalve, Cucullaea from the La Meseta Formation, Seymour Island, Antarctica. | [] | [] | false | false |
Firn Air Isotope and Temperature Measurements from Siple Dome and South Pole
|
9725918 9725305 |
2001-01-01 | Severinghaus, Jeffrey P.; Battle, Mark; Grachev, Alexi |
Thermal Fractionation of Firn Air and the Ice Core Record of Abrupt Interstadial Climate Change |
This data set includes d15N, d18O/2, dO2/N2/4, d40Ar/4, d38/Ar/2, d84Kr/48, and d132Xe/96 values for air drawn from the top 15 to 50 m of firn at the South Pole (summer and winter 1998) and a site at Siple Dome (summers 1996 and 1998). Data also include related firn temperature measurements. The objective of this research was to better understand thermal fractionation processes affecting records of atmospheric history from firn and ice core gases. Recent work (e.g., Severinghaus and Brook, 1999) has exploited trapped air in ice and deep firn as a record of past atmospheric composition and climate change. Interpretation of these paleoclimate archives is complicated by artifacts of thermal diffusion, a process in which heavier gases migrate down temperature gradients toward colder regions in the firn. Seasonal temperature change at the snow surface creates strong temperature gradients in the top few meters of the firn, which cause isotopic fractionation of firn gases. A specific goal of this research is to identify any long-term effects of seasonal temperature fluctuations on firn air isotopic anomalies. | ["POINT(-102 -89.997)", "POINT(-148.767 -81.667)"] | ["POINT(-102 -89.997)", "POINT(-148.767 -81.667)"] | false | false |
Newall Glacier Snow Pit and Ice Core, 1987 to 1989
|
None | 1999-01-01 | Mayewski, Paul A.; Whitlow, Sallie |
Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica |
Snow pit and ice core data from the Newall Glacier (location - 162 30' East, 77 35' South) were collected during 1987 and 1988. These include information on chemistry, Beta profiles and stratigraphy. Ice cores were collected during the austral summer of 1988-1989 and contain information on chemistry, Pb- 210 profiles, density profiles and temperature profiles. Core A was 175 meters long and core B was 150 meters long. The snow pits were dug and sampled by the Glacier Research Group (GRG), using established protocols to prevent contamination. The samples for major ion chemistry remained frozen until melted for analysis in the GRG lab, located at the University of New Hampshire (UNH), and all core processing was done by GRG established protocols to prevent contamination. Major ions were analyzed using suppressed ion chromatography. | ["POINT(162 -77)"] | ["POINT(162 -77)"] | false | false |
Dominion Range Snow Pit and Ice Core, 1984 and 1985
|
None | 1999-01-01 | Mayewski, Paul A.; Whitlow, Sallie | No project link provided | Information from snow pits and an ice core were collected at Dominion Range (location - 166 10' East, 85 15' South, elevation - 2,700m) in 1984-1985. The 6 meter snow pit was dug and sampled in 1984-1985 with a 3 cm sampling interval. Four 1 meter snow pits were dug and sampled in 1984-1985 with a 3 cm sampling interval. One core was drilled during the austral summer 1984-1985 with a depth of 160 meters. Chemistry and density data were collected from the 1 meter pits. Chemistry, beta profile and density data were collected from the 6 meter snow pits. Chemistry (Na NH4, K, Mg, Ca, Cl, NO3, SO4, MSA), particles and a lead-210 profile were collected from the ice core. | ["POINT(166 -85)"] | ["POINT(166 -85)"] | false | false |
Siple Dome Glaciology and Ice Stream History 1994, 1996
|
9316338 |
1999-01-01 | Jacobel, Robert |
Siple Dome Glaciology and Ice Stream History |
The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior. This project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar. Data in this collection were obtained during two Antarctic field seasons in 1994–95 and 1996–97. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files. | ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"] | ["POINT(-150 -82)"] | false | false |
Dronning Maud Land, Antarctica, Ice Core, 1991 and 1992
|
None | 1999-01-01 | Whitlow, Sallie; Mayewski, Paul A. | No project link provided | Major ion concentration values (Na, Mg, Ca, Cl, NO3, SO4, MSA) were analyzed from a 20-meter ice core drilled in Dronning Maud Land, Antarctica (location - 65 01' East, 75 00' South, elevation - 2,900 m a.s.l.). The core was drilled during the austral summer 1991-1992. Major ion analysis was by ion chromatography. The anions were analyzed on a Dionex AS4A column; the cations on a Dionex CS12 column and MSA on a Dionex AS4 column. All used suppressed chromatography. Using established protocols to prevent contamination, the core was processed into 3-centimeter pieces by the Glacier Research Group at the University of New Hampshire's Climate Change Research Center. The 3-cm pieces were kept frozen until major ion analysis. | ["POINT(65 -75)"] | ["POINT(65 -75)"] | false | false |
Visible Stratigraphic Dating, Siple Dome and Upstream C Cores
|
9526374 |
1997-01-01 | Alley, Richard |
Physical Properties of the Siple Dome Deep Ice Core |
This data set is part of the West Antarctic Ice Sheet cores (WAISCORES) project, an NSF-funded project to understand the influence of the West Antarctic Ice Sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This data set includes melt layers and annual layer data for Siple Dome cores A through J, and upstream core C (UpC). Cores were examined on a light table after the core had been sectioned longitudinally and samples removed for isotopic, chemical, and other analyses, and after the surface had been smoothed using a planer. Major stratigraphic features were noted, such as coarse-grained and fine-grained firn at shallow depths, and coarse-bubbled and fine-bubbled ice at greater depth. Melt layers were identified as bubble-free or nearly-bubble-free zones. Core lengths ranged from 30 to 133 meters. Data in this collection were obtained in the summer of 1997. The data set is available via FTP as ACSII data (.dat), metadata (.meta) and text (.txt) files. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |