[{"awards": "1744651 Wilcock, William", "bounds_geometry": "POLYGON((-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-59.5 -62,-59 -62,-58.5 -62,-58 -62,-57.5 -62,-57 -62,-57 -62.2,-57 -62.4,-57 -62.6,-57 -62.8,-57 -63,-57 -63.2,-57 -63.4,-57 -63.6,-57 -63.8,-57 -64,-57.5 -64,-58 -64,-58.5 -64,-59 -64,-59.5 -64,-60 -64,-60.5 -64,-61 -64,-61.5 -64,-62 -64,-62 -63.8,-62 -63.6,-62 -63.4,-62 -63.2,-62 -63,-62 -62.8,-62 -62.6,-62 -62.4,-62 -62.2,-62 -62))", "dataset_titles": "3D P-wave velocity models of Orca Volcano, Bransfield Basin, Antarctica from the\r\nBRAVOSEIS experiment; Bransfield OBSIC OBS network 2019-20 (network code ZX, 2019); BRAVOSEIS Onshore Seismic Array (Network code 5M)", "datasets": [{"dataset_uid": "200441", "doi": "10.14470/0Z7563857972", "keywords": null, "people": null, "repository": "GEOFON", "science_program": null, "title": "BRAVOSEIS Onshore Seismic Array (Network code 5M)", "url": "https://doi.org/10.14470/0Z7563857972"}, {"dataset_uid": "200440", "doi": "", "keywords": null, "people": null, "repository": "NSF SAGE Facility DMC", "science_program": null, "title": "Bransfield OBSIC OBS network 2019-20 (network code ZX, 2019)", "url": " https://ds.iris.edu/mda/18-017/"}, {"dataset_uid": "200442", "doi": "in progress", "keywords": null, "people": null, "repository": "Marine Geoscience Data System", "science_program": null, "title": "3D P-wave velocity models of Orca Volcano, Bransfield Basin, Antarctica from the\r\nBRAVOSEIS experiment", "url": ""}], "date_created": "Fri, 14 Feb 2025 00:00:00 GMT", "description": "One of the fundamental processes in plate tectonics is the rifting or separating of continental crust creating new seafloors which can widen and ultimately form new ocean basins, the latter is a process known as seafloor spreading. The Bransfield Strait, separating the West Antarctic Peninsula from the South Shetland Islands, formed and is presently widening as a result of the separation of continental crust. What is unique is that the system appears to be approaching the transition to seafloor spreading making this an ideal site to study the transitional process. Previous seafloor mapping and field surveys provide the regional structure of the basin; however, there exists a paucity of regional seismic studies documenting the tectonic and volcanic activity in the basin as a result of the rifting. This would be the first local-scale study of the seismicity and structure of the volcanoes in the center of the basin where crustal separation is most active. The new seismic data will enable scientists to compare current patterns of crustal separation and volcanism at the Bransfield Strait to other well-studied seafloor spreading centers. This collaborative international project, led by the Spanish and involving scientists from the U.S., Germany and other European countries, will monitor seismicity for one year on land and on the seafloor. An active seismic study conducted by the Spanish will image fault and volcanic structures that can be related to the distribution of earthquakes. Back-arc basins are found in subduction settings and form in two stages, an initial interval of continental rifting that transitions to a later stage of seafloor spreading. Studying the transitional process is important for understanding the dynamics and evolution of subduction zones, and in locations where back-arc rifting breaks continental crust, it is relevant to understanding the formation of passive continental margins. The Central Bransfield Basin is unusual in that the South Shetland Islands have lacked recent arc volcanism and it appears subduction is ceasing, but this system has broad significant because it appears to be nearing the transition from rifting to seafloor spreading. This award will support the U.S. component of an international initiative led by the Spanish Polar Committee to conduct a study of the seismicity and volcanic structure of the Central Bransfield Basin. The objective is to characterize the distribution of active extension across the basin and determine whether the volcanic structure and deformation of the rift are consistent with a back-arc basin that is transitioning from rifting to seafloor spreading. The U.S. component of the experiment will contribute a network of six hydroacoustic moorings to monitor regional seismicity and 15 short-period seismometers to study the distribution of tectonic and volcanic seismicity on Orca volcano, one of the most active volcanoes in the basin. An active seismic study across closely spaced multichannel seismic lines across the rift will provide the data necessary to link earthquakes with fault structures enabling a tomography study of Orca volcano and provide insight into how the volcano\u0027s structure relates to rifting. This research will constrain the distribution of active rifting across the Central Bransfield Basin and determine whether the patterns of faulting and the structure of volcanic portion of the rift are consistent with a diffuse zone of rifting or a single spreading center that is transitioning to the production of oceanic crust. The Bransfield Basin is an ideal site for a comparative study of seismic and hydroacoustic earthquake locations that will improve the understanding of the generation and propagation of T-wave signals and contribute to efforts to compare the result of T-wave studies with data from traditional solid-earth seismic studies. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -57.0, "geometry": "POINT(-59.5 -63)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e PASSIVE ACOUSTIC RECORDER", "is_usap_dc": true, "keywords": "Back Arc Basin; SHIPS; TECTONICS; PLATE TECTONICS; South Shetland Islands; Bransfield Strait; MARINE GEOPHYSICS; Antarctic Peninsula", "locations": "Bransfield Strait; South Shetland Islands; Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "NOT APPLICABLE", "persons": "William, Wilcock; Dax, Soule; Robert, Dziak", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "GEOFON", "repositories": "GEOFON; Marine Geoscience Data System; NSF SAGE Facility DMC", "science_programs": null, "south": -64.0, "title": "Collaborative Research: The Tectonic and Magmatic Structure and Dynamics of Back-arc Rifting in Bransfield Strait: An International Seismic Experiment", "uid": "p0010498", "west": -62.0}, {"awards": "2042032 Huckstadt, Luis", "bounds_geometry": null, "dataset_titles": "Crabeater seal tracking data 2022-2023", "datasets": [{"dataset_uid": "601861", "doi": "10.15784/601861", "keywords": "Antarctica; Cryosphere", "people": "Huckstadt, Luis", "repository": "USAP-DC", "science_program": null, "title": "Crabeater seal tracking data 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601861"}], "date_created": "Wed, 27 Nov 2024 00:00:00 GMT", "description": "Part I: Non-technical description: The crabeater seal is the most important predator of Antarctic krill in the western Antarctic Peninsula oceanic waters after the disappearance of large whales due to human hunting 100 years ago. The crabeater seals are expected to consume large quantities of krill due to their high abundance (about 7 million individuals), large body size (about 700 pounds in body weight), high metabolism and a diet specializing in krill. This species depends on sea ice presence all year long, living, reproducing, and diving to feed from that environment, making this marine mammal species a good indicator, or sentinel, of how the Antarctic ecosystem responds to a changing climate. As sea ice has been decreasing in the northern Antarctic Peninsula, this project aims to understand if the species food availability has changed in the last decades in response to environmental changes. In particular, the proposed work will concentrate on known populations of crabeater seals in northern (i.e., warmer, sub-polar) and southern (i.e., colder, polar) Antarctic Peninsula, 450 miles apart, making measurements on the abundance, physiology, metabolic needs and movement of the crabeater populations in both locations. The data will be combined to build models that will quantify the existing differences between northern and southern populations, as well as predict their future change, and compare present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom, benefitting NSF goals to facilitate collaborative geoscience research projects involving these two countries as well as aligning directly with U.S. Global Change Research Program (USGCRP) to better understand the forces shaping the global environment, both human and natural, and their impacts on society. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Part II: Technical description: Crabeater seals (Lobodon carcinophaga) are considered an excellent sentinel species through which to examine the effects of a changing climate on the extended Antarctic krill-dependent predator community and the structure of the entire ecosystem of the western Antarctic Peninsula. Over the last forty years, there have been significant changes in the temporal and spatial patterns of primary productivity, and shifts in the population dynamics of Antarctic krill, the dominant mid-trophic level species. The impact of such changes on year-round resident species of crabeater seals (the most important predator of Antarctic krill) is more difficult to understand as they are not associated with breeding colonies where their population fluctuations could be more readily observed. The proposed research is conceived under the premise that environmental change has accentuated the differences between the northern and southern western Antarctic Peninsula crabeater seal populations due to differential reductions in sea-ice and its possible effect on prey availability. To address this question, this research will combine measurements on animal movement, stable isotope analyses, whole-animal physiology, and novel survey technologies (small Unmanned Aircraft Systems, satellite imagery) to build models. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom. These studies will be essential to detect past, and project future, changes in the ecology of this species in response to changes in sea ice when comparing present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Students involved with this project will gain invaluable research experience in the lab and will have a unique opportunity to participate in Antarctic fieldwork. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; MARINE ECOSYSTEMS; Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Huckstadt, Luis", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC Collaborative Research: Effects of a Changing Climate on the Habitat Utilization, Foraging Ecology and Distribution of Crabeater Seals", "uid": "p0010490", "west": null}, {"awards": "2422677 Hall, Brenda", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 29 Oct 2024 00:00:00 GMT", "description": "Non-Technical The future response of the East Antarctic Ice Sheet (EAIS) to climate change and its consequent effect on global sea level remains a pressing problem, with implications for societal well-being, the economy, and national security. Projections of future ice-sheet behavior rely in part on understanding gained from ice-sheet response to past climate change, which can be found in geologic records. This project uses geologic features produced at the base of the ice sheet to examine a large change in EAIS behavior and to place ages on when this change occurred. By comparison to climate records from the same time, the project results will allow assessment of ice-sheet response to a climate that likely was warmer than at present. Such information will improve understanding of possible ice-sheet responses to a warming climate, as well as the underlying mechanisms. A better assessment of the likely EAIS response to future warming climate will aid in setting national and international policy and improve public welfare, by promoting more accurate predictions of the amounts and rates of sea-level rise. This project will contribute to the education of young scientists, thereby increasing the STEM workforce, which is in the national interest. A general-audience book will be produced to explain the importance of Antarctica to the public. Technical Accurate, well-dated reconstructions of the behavior of the East Antarctic Ice Sheet (EAIS) afford insight into its response to future climate change. This project uses new insights in subglacial hydrology and erosion to identify and date a major missing piece of Antarctic glacial history, involving massive expansion of the EAIS over the Transantarctic Mountains. This expansion led to formation of an extensive erosional landscape that was characterized by subglacial meltwater and represents a significant shift in ice-sheet behavior. Understanding the age and reasons for such an expansion are important in part, because the subglacial meltwater must have been linked to the Wilkes Subglacial Basin \u2013 an area thought to be susceptible to large-scale ice collapse under warm climates. The project will constrain the extent and age of this surface through 1) detailed geomorphological mapping from imagery, 2) reassessment of existing chronologic data, and 3) new surface exposure dating of existing samples. Results will test the hypothesis that the scoured surface and the ice-sheet behavior that it represents is much younger than its traditionally assigned age of \u226514 Ma and thus relevant to current investigations into ice-sheet behavior under warmer-than-present climates. The work affords mentoring opportunities for students of all ages and will include the production of a book on the landscapes of the Transantarctic Mountains designed to introduce the public to the importance of Antarctica. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica; GLACIAL LANDFORMS", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Erosional landscapes of the Transantarctic Mountains produced by East Antarctic subglacial water?", "uid": "p0010488", "west": null}, {"awards": "2209726 Lindzey, Laura", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "QIceRadar Antarctic Index of Radar Depth Sounding Data", "datasets": [{"dataset_uid": "200413", "doi": " 10.5281/zenodo.12123013", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "QIceRadar Antarctic Index of Radar Depth Sounding Data", "url": "https://zenodo.org/records/12123013"}], "date_created": "Wed, 19 Jun 2024 00:00:00 GMT", "description": "Ice penetrating radar is one of the primary tools that researchers use to study ice sheets and glaciers. With radar, it is possible to see a cross-section of the ice, revealing internal layers and the shape of the rocks under the ice. Among other things, this is important for calculating how much potential sea level change is locked up in the polar ice sheets, and how stable the ice sheets are likely to be in a warming world. This type of data is logistically challenging and expensive to collect. Historically, individual research groups have obtained funding to collect these data sets, and then the data largely stayed within that institution. There has been a recent push to make more and more data openly available, enabling the same datasets to be used by multiple research groups. However, it is still difficult to figure out what data is available because there is no centralized index. Additionally, each group releases data in a different format, which creates an additional hurdle to its use. This project addresses both of those challenges to data reuse by providing a unified tool for discovering where ice penetrating radar data already exists, then allowing the researcher to download and visualize the data. It is integrated into open-source mapping software that many in the research community already use, and makes it possible for non-experts to explore these datasets. This is particularly valuable for early-career researchers and for enabling interdisciplinary work. The US alone has spent many tens of millions of dollars on direct grants to enable the acquisition and analysis of polar ice penetrating radar data, and even more on the associated infrastructure and support costs. Unfortunately, much of these data is not publicly released, and even the data that has been released is not easily accessible. There is significant technical work involved in figuring out how to locate, download and view the data. This project is developing a tool that will both lower the barrier to entry for using this data and improve the workflows of existing users. Quantarctica and QGreenland have rapidly become indispensable tools for the polar research community, making diverse data sets readily available to researchers. However, ice penetrating radar is a major category of data that is not currently supported \u2013 it is possible to see the locations of existing survey lines, and the ice thickness maps that have been interpreted from their data, but it is not readily possible to see the radargrams themselves in context with all of the other information. This capability is important because there is far more visual information contained in a radargram than simply its interpreted basal elevation or ice thickness. This project is developing software that will enable researchers to to view radargram images and interpreted surface and basal horizons in context with the existing map-view datasets in Quantarctica and QGreenland. A data layer shows the locations of all known ice penetrating radar surveys, color-coded based on availability. This layer enables data discovery and browsing. The plugin itself interacts with the data layer, first to download selected data, then to visualize the radargrams along with a cursor that moves simultaneously along the radargram and along the map view, making it straightforward to determine the precise geolocation of radar features. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "AIRCRAFT; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure", "paleo_time": null, "persons": "Lindzey, Laura", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e AIRCRAFT", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Elements: Making Ice Penetrating Radar More Accessible: A tool for finding, downloading and visualizing georeferenced radargrams within the QGIS ecosystem", "uid": "p0010464", "west": -180.0}, {"awards": "1444690 Bell, Robin; 0958658 Bell, Robin", "bounds_geometry": null, "dataset_titles": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Dong, LingLing; Packard, Sarah; Spergel, Julian; Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Wearing, Martin; Keeshin, Skye; Bell, Robin; Das, Indrani", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}, {"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin; Cordero, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}], "date_created": "Fri, 17 May 2024 00:00:00 GMT", "description": "The Lamont-Doherty Earth Observatory of Columbia University was awarded a multi-year grant (May 1, 2010- April 30, 2015) to develop an ice imaging system, or \"IcePod,\" for use in measuring the surface and subsurface topography of ice sheets. IcePod will enable research on the effects of global climate change on ice sheets and the effects of sub-glacial water on potential sea-level rise. IcePod sensors are contained in a Common Science Support Pod and operated on NYANG LC-130 aircraft during routine and targeted missions over Greenland and Antarctica. The IcePod instrument package consists of ice-penetrating radar, infrared and visible cameras, laser altimeter, inertial measurement unit, GPS receiver and data acquisition system. IcePod will also enable other instruments to be used in the modular Common Science Support Pod, and will become a shared community research facility providing data to the science community. Funding will support activities in both Greenland and Antarctica needed to commission IcePod, to develop a data reduction flow and data delivery system for IcePod data, and to engineer a UPS to provide IcePod with clean, reliable power for system operation.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Greenland; C-130; Remote Sensing; RADAR; GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica; Greenland", "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Instrumentation and Support; Antarctic Astrophysics and Geospace Sciences; Antarctic Integrated System Science; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Zappa, Christopher; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130", "uid": "p0010462", "west": null}, {"awards": "1939139 Scherer, Reed; 1939146 Siddoway, Christine", "bounds_geometry": "POLYGON((-120 -66,-117.5 -66,-115 -66,-112.5 -66,-110 -66,-107.5 -66,-105 -66,-102.5 -66,-100 -66,-97.5 -66,-95 -66,-95 -67.1,-95 -68.2,-95 -69.3,-95 -70.4,-95 -71.5,-95 -72.6,-95 -73.7,-95 -74.8,-95 -75.9,-95 -77,-97.5 -77,-100 -77,-102.5 -77,-105 -77,-107.5 -77,-110 -77,-112.5 -77,-115 -77,-117.5 -77,-120 -77,-120 -75.9,-120 -74.8,-120 -73.7,-120 -72.6,-120 -71.5,-120 -70.4,-120 -69.3,-120 -68.2,-120 -67.1,-120 -66))", "dataset_titles": "Pliocene diatom abundance, IODP 379-U1532; Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature; U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "datasets": [{"dataset_uid": "601769", "doi": null, "keywords": "Antarctica; Biogenic Silica; Diatom", "people": "Furlong, Heather; Scherer, Reed Paul", "repository": "USAP-DC", "science_program": null, "title": "Pliocene diatom abundance, IODP 379-U1532", "url": "https://www.usap-dc.org/view/dataset/601769"}, {"dataset_uid": "601828", "doi": "10.15784/601828", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Geochronology; Marie Byrd Land; Subglacial Bedrock; Thermochronology", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "U-Pb zircon and apatite fission track dates for IRD (ice-rafted cobbles and mineral grains) from IODP379 drill sites", "url": "https://www.usap-dc.org/view/dataset/601828"}, {"dataset_uid": "601804", "doi": "10.15784/601804", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Oceanography; Sabrina Coast; Sea Surface Temperature; Southern Ocean", "people": "Ruggiero, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Population morphometrics of the Southern Ocean diatom Fragilariopsis kerguelensis related to Sea Surface Temperature", "url": "https://www.usap-dc.org/view/dataset/601804"}], "date_created": "Tue, 20 Feb 2024 00:00:00 GMT", "description": "Part I, Non-technical Abstract Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts. Part 2, Technical Abstract New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -71.5)", "instruments": null, "is_usap_dc": true, "keywords": "ICEBERGS; SEA SURFACE TEMPERATURE; Amundsen Sea; MICROFOSSILS", "locations": "Amundsen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE \u003e PLIOCENE", "persons": "Scherer, Reed Paul; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Collaborative Research: Testing the Linchpin of WAIS Collapse with Diatoms and IRD in Pleistocene and Late Pliocene Strata of the Resolution Drift, Amundsen Sea, Antarctica", "uid": "p0010451", "west": -120.0}, {"awards": "1841607 Banwell, Alison; 1841467 MacAyeal, Douglas", "bounds_geometry": "POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1))", "dataset_titles": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "datasets": [{"dataset_uid": "601771", "doi": "10.15784/601771", "keywords": "Antarctica; Antarctic Peninsula; AWS; Cryosphere; GNSS; GPS Data; Ice-Shelf Flexure; Ice Shelf Fracture; Ice-Shelf Melt; Timelaps Images", "people": "Banwell, Alison; Willis, Ian; Stevens, Laura; Dell, Rebecca; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "url": "https://www.usap-dc.org/view/dataset/601771"}], "date_created": "Thu, 15 Feb 2024 00:00:00 GMT", "description": "The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. Over a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey\u0027s Fossil Bluff Station. Field data will be used to validate and extend the team\u0027s approach to modelling ice-shelf flexure and stress, and possible \"Larsen-B style\" ice-shelf instability and break-up. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -67.5, "geometry": "POINT(-67.89 -71.35)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; ICE MOTION; Ice-Shelf Flexure; GPS Data", "locations": "Antarctica", "north": -71.1, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Banwell, Alison; Macayeal, Douglas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.6, "title": "NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture", "uid": "p0010449", "west": -68.28}, {"awards": "1744989 LaRue, Michelle", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Detecting climate signals in populations: case of emperor penguin; Emperor penguin population trends (2009-2018); Landfast ice: a major driver of reproductive success in a polar seabird", "datasets": [{"dataset_uid": "601491", "doi": "10.15784/601491", "keywords": "Antarctica", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Detecting climate signals in populations: case of emperor penguin", "url": "https://www.usap-dc.org/view/dataset/601491"}, {"dataset_uid": "200410", "doi": "10.5061/dryad.m63xsj48v", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Emperor penguin population trends (2009-2018)", "url": "https://doi.org/10.5061/dryad.m63xsj48v"}, {"dataset_uid": "601513", "doi": "10.15784/601513", "keywords": "Antarctica; Breeding Success; Emperor Penguin; Fast Sea Ice", "people": "Jenouvrier, Stephanie; Labrousse, Sara", "repository": "USAP-DC", "science_program": null, "title": "Landfast ice: a major driver of reproductive success in a polar seabird", "url": "https://www.usap-dc.org/view/dataset/601513"}], "date_created": "Thu, 08 Feb 2024 00:00:00 GMT", "description": "This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; USA/NSF; Amd/Us; USAP-DC; Antarctica; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Ito, Emi; Jenouvrier, Stephanie", "platforms": null, "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -90.0, "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", "uid": "p0010447", "west": -180.0}, {"awards": "1443522 Wannamaker, Philip", "bounds_geometry": "POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.22500000000001,169.4 -77.30000000000001,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.60000000000001,169.4 -77.67500000000001,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.67500000000001,166 -77.60000000000001,166 -77.525,166 -77.45,166 -77.375,166 -77.30000000000001,166 -77.22500000000001,166 -77.15))", "dataset_titles": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "datasets": [{"dataset_uid": "601493", "doi": "10.15784/601493", "keywords": "Antarctica; Mantle Melting; Mount Erebus", "people": "Hill, Graham; Wannamaker, Philip", "repository": "USAP-DC", "science_program": null, "title": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "url": "https://www.usap-dc.org/view/dataset/601493"}], "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth\u0027s interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.", "east": 169.4, "geometry": "POINT(167.7 -77.525)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS", "is_usap_dc": true, "keywords": "MAGNETIC FIELD; FIELD SURVEYS; Ross Island; Magnetotelluric; Mount Erebus", "locations": "Ross Island; Mount Erebus", "north": -77.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wannamaker, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure", "uid": "p0010444", "west": 166.0}, {"awards": "0637004 McGwire, Kenneth", "bounds_geometry": null, "dataset_titles": "Ice core image analyses by McGwire site 91 and site 93", "datasets": [{"dataset_uid": "601745", "doi": "10.15784/601745", "repository": "USAP-DC", "science_program": null, "title": "Ice core image analyses by McGwire site 91 and site 93", "url": "http://www.usap-dc.org/view/dataset/601745"}], "date_created": "Mon, 16 Oct 2023 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Distribution of blue ice areas in Antarctica derived from Landsat ETM+ and Modis images", "datasets": [{"dataset_uid": "601742", "doi": "10.15784/601742", "repository": "USAP-DC", "science_program": null, "title": "Distribution of blue ice areas in Antarctica derived from Landsat ETM+ and Modis images", "url": "http://www.usap-dc.org/view/dataset/601742"}], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Blue Ice; GIS; Glaciology; LANDSAT; MODIS; Remote Sensing; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Scambos, Ted; Hui, Fengming", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "2317263 Cross, Andrew", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Aug 2023 00:00:00 GMT", "description": "The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these \u2014 viscous flow \u2014 is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a \"crystal orientation fabric\" (COF). Historically, ice flow has been modeled using an equation, termed \u201cGlen\u2019s law\u201d, that describes ice-flow rate as a function of temperature and stress. Glen\u2019s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, \u201csuperplastic\u201d conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 \u00b5m to 1000 \u00b5m will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30\u00b0C to -10\u00b0C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; Rheology; ROCKS/MINERALS/CRYSTALS; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cross, Andrew", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Microstructural Evolution during Superplastic Ice Creep", "uid": "p0010430", "west": null}, {"awards": "2203176 Cimino, Megan; 2203177 Steinberg, Deborah", "bounds_geometry": "POLYGON((-80 -60,-77 -60,-74 -60,-71 -60,-68 -60,-65 -60,-62 -60,-59 -60,-56 -60,-53 -60,-50 -60,-50 -61,-50 -62,-50 -63,-50 -64,-50 -65,-50 -66,-50 -67,-50 -68,-50 -69,-50 -70,-53 -70,-56 -70,-59 -70,-62 -70,-65 -70,-68 -70,-71 -70,-74 -70,-77 -70,-80 -70,-80 -69,-80 -68,-80 -67,-80 -66,-80 -65,-80 -64,-80 -63,-80 -62,-80 -61,-80 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 10 Aug 2023 00:00:00 GMT", "description": "This project is co-funded by a collaboration between the Directorate for Geosciences and Office of Advanced Cyberinfrastructure to support Artificial Intelligence/Machine Learning and open science activities in the geosciences. Machine learning model will be used in this project to predict the distributions of five zooplankton species in the western Antarctic Peninsula (wAP) based on oceanographic properties. The project will take advantage of a long-term series collected by the Palmer Long-Term Ecological Research (LTER) program that collects annual data on physics, chemistry, phytoplankton (or food), zooplankton and predators (seabirds, whales and seals). By analyzing this dataset and combining it with other data collected by national and international programs, this project will provide understanding and prediction of zooplankton distribution and abundance in the wAP. The machine learning models will be based on environmental properties extracted from remote sensing images thus providing ecosystem knowledge as it decreases human footprint in Antarctica. The relationship between species distribution and habitat are key for distinguishing natural variability from climate impacts on zooplankton and their predators. This research benefits NSF mission by expanding fundamental knowledge of Antarctic systems, biota, and processes as well as aligning with data and sample reuse strategies in Polar Research. The project will benefit society by supporting two female early-career scientists, a post-doctoral fellow and a graduate student. Polar literacy will be promoted through an existing partnership with Out Of School activities that target Science, Technology, Engineering and Mathematics (STEM) education, expected to reach 120,000 students from under-represented minorities in STEM annually. The project will also contribute to evaluate the ecosystem in the proposed Marine Protected Area in the wAP, subject to krill fishery. Results will be made available publicly through an interactive web application. The Principal Investigators propose to address three main questions: 1) Can geomorphic features, winter preconditioning and summer ocean conditions be used to predict the austral summer distribution of zooplankton species along the wAP? 2) What are the spatial and temporal patterns in modeled zooplankton species distribution along the wAP? And 3) What are the patterns of overlap in zooplankton and predator species? The model will generate functional relationships between zooplankton distribution and environmental variables and provide Zooplankton Distribution Models (ZDMs) along the Antarctic Peninsula. The Palmer LTER database will be combined with the NOAA AMLR data for the northern wAP, and KRILLBASE, made public by the British Antarctic Survey\u2019s Polar Data Center. This project will generate 1) annual environmental spatial layers on the Palmer LTER resolution grid within the study region, 2) annual species-specific standardized zooplankton net data from different surveys, 3) annual species-specific predator sightings on a standardized grid, and 4) ecological model output. Ecological model output will include annual predictions of zooplankton species distributions, consisting of 3-dimensional fields (x,y,t) for the 5 main zooplankton groups, including Antarctic krill, salps and pteropods. Predictions will be derived from merging in situ survey data with environmental data, collected in situ or by remote sensing. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -50.0, "geometry": "POINT(-65 -65)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; PELAGIC; BIRDS; SPECIES/POPULATION INTERACTIONS; ANIMALS/INVERTEBRATES; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cimino, Megan; Steinberg, Deborah", "platforms": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "Collaborative Research: Harvesting Long-term Survey Data to Develop Zooplankton Distribution Models for the Antarctic Peninsula", "uid": "p0010429", "west": -80.0}, {"awards": "2317927 Hills, Benjamin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Radar Reflectivity at Whillans Ice Plain", "datasets": [{"dataset_uid": "200401", "doi": "10.5281/zenodo.11201199", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Radar Reflectivity at Whillans Ice Plain", "url": "https://doi.org/10.5281/zenodo.11201199"}], "date_created": "Mon, 07 Aug 2023 00:00:00 GMT", "description": "Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection\u2014the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching. The researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING", "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; DHC-6; ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Post Doc/Travel", "paleo_time": null, "persons": "Hills, Benjamin", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67; AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure", "uid": "p0010428", "west": -180.0}, {"awards": "2021699 Trusel, Luke", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic ice sheet daily surface melt detection from ASCAT (2007-2022); ASCAT-ERA5 Antarctic Peninsula Daily Surface Meltwater Production (2007-2022); Trusel et al 2022, Geophysical Research Letters: Publication data and code", "datasets": [{"dataset_uid": "200362", "doi": "10.5281/zenodo.7995543", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "ASCAT-ERA5 Antarctic Peninsula Daily Surface Meltwater Production (2007-2022)", "url": "https://zenodo.org/record/7995543"}, {"dataset_uid": "200363", "doi": "10.5281/zenodo.6374343", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Trusel et al 2022, Geophysical Research Letters: Publication data and code", "url": "https://zenodo.org/record/6374343"}, {"dataset_uid": "200364", "doi": "10.5281/zenodo.7995998", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Antarctic ice sheet daily surface melt detection from ASCAT (2007-2022)", "url": "https://zenodo.org/record/7995998"}], "date_created": "Fri, 02 Jun 2023 00:00:00 GMT", "description": "Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Antarctica; Surface Hydrology", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Trusel, Luke; Moussavi, Mahsa", "platforms": null, "repo": "Zenodo", "repositories": "Zenodo", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes", "uid": "p0010422", "west": -180.0}, {"awards": "1543533 Johnson, Jesse; 1543530 van der Veen, Cornelis", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Van der Veen/1543530 The objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. To adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Sheet Dynamics; MODELS; Iceberg Calving; GLACIERS/ICE SHEETS; Numerical Glacier Modeling; Basal Sliding; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "van der Veen, Cornelis; Stearns, Leigh; Paden, John", "platforms": "OTHER \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Stability and Dynamics of Antarctic Marine Outlet Glaciers", "uid": "p0010387", "west": -180.0}, {"awards": "2135185 Resing, Joseph; 2135184 Arrigo, Kevin; 2135186 Baumberger, Tamara", "bounds_geometry": "POLYGON((155 -61,156.5 -61,158 -61,159.5 -61,161 -61,162.5 -61,164 -61,165.5 -61,167 -61,168.5 -61,170 -61,170 -61.2,170 -61.4,170 -61.6,170 -61.8,170 -62,170 -62.2,170 -62.4,170 -62.6,170 -62.8,170 -63,168.5 -63,167 -63,165.5 -63,164 -63,162.5 -63,161 -63,159.5 -63,158 -63,156.5 -63,155 -63,155 -62.8,155 -62.6,155 -62.4,155 -62.2,155 -62,155 -61.8,155 -61.6,155 -61.4,155 -61.2,155 -61))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 30 Sep 2022 00:00:00 GMT", "description": "Phytoplankton blooms throughout the world\u2019s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University\u2019s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford\u2019s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford\u2019s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford\u2019s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial \u201cradiator\u201d pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship\u2019s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(162.5 -62)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; Antarctica; TRACE ELEMENTS; Hydrothermal Vent; Phytoplankton; Primary Production", "locations": "Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph", "platforms": null, "repositories": null, "science_programs": null, "south": -63.0, "title": "Collaborative Research: Understanding the Massive Phytoplankton Blooms over the Australian-Antarctic Ridge", "uid": "p0010381", "west": 155.0}, {"awards": "1744649 Christianson, Knut", "bounds_geometry": "POLYGON((-120 -85.5,-117.5 -85.5,-115 -85.5,-112.5 -85.5,-110 -85.5,-107.5 -85.5,-105 -85.5,-102.5 -85.5,-100 -85.5,-97.5 -85.5,-95 -85.5,-95 -85.62,-95 -85.74,-95 -85.86,-95 -85.98,-95 -86.1,-95 -86.22,-95 -86.34,-95 -86.46000000000001,-95 -86.58,-95 -86.7,-97.5 -86.7,-100 -86.7,-102.5 -86.7,-105 -86.7,-107.5 -86.7,-110 -86.7,-112.5 -86.7,-115 -86.7,-117.5 -86.7,-120 -86.7,-120 -86.58,-120 -86.46000000000001,-120 -86.34,-120 -86.22,-120 -86.1,-120 -85.98,-120 -85.86,-120 -85.74,-120 -85.62,-120 -85.5))", "dataset_titles": "Hercules Dome ApRES Data; Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data; Hercules Dome Ice-Penetrating Radar Swath Topographies; Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets; ITASE Impulse Radar Hercules Dome to South Pole", "datasets": [{"dataset_uid": "601739", "doi": "10.15784/601739", "keywords": "Antarctica; Apres; Crystal Orientation Fabric; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hercules Dome; Ice Dynamic; Ice Penetrating Radar; Radar Interferometry; Radar Polarimetry", "people": "Christianson, Knut; Hills, Benjamin; Holschuh, Nicholas; Hoffman, Andrew; Fudge, Tyler J; Horlings, Annika; Erwin, Emma; Steig, Eric J.", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome ApRES Data", "url": "https://www.usap-dc.org/view/dataset/601739"}, {"dataset_uid": "601606", "doi": "10.15784/601606", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Christianson, Knut", "repository": "USAP-DC", "science_program": null, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "url": "https://www.usap-dc.org/view/dataset/601606"}, {"dataset_uid": "601710", "doi": "10.15784/601710", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Hills, Benjamin; Hoffman, Andrew; Christianson, Knut; Christian, John; Holschuh, Nicholas; Horlings, Annika; O\u0027Connor, Gemma", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome High-Frequency Impulse Ice-Penetrating Radar Data", "url": "https://www.usap-dc.org/view/dataset/601710"}, {"dataset_uid": "601711", "doi": "10.15784/601711", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Holschuh, Nicholas; Hoffman, Andrew; Christianson, Knut; Paden, John", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Hercules Dome Ice-Penetrating Radar Swath Topographies", "url": "https://www.usap-dc.org/view/dataset/601711"}, {"dataset_uid": "601712", "doi": "10.15784/601712", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hercules Dome; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Welch, Brian; Jacobel, Robert; Christianson, Knut; Hoffman, Andrew", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "ITASE Impulse Radar Hercules Dome to South Pole", "url": "https://www.usap-dc.org/view/dataset/601712"}], "date_created": "Tue, 02 Aug 2022 00:00:00 GMT", "description": "The response of the Antarctic ice sheet to climate change is a central issue in projecting global sea-level rise. While much attention is focused on the ongoing rapid changes at the coastal margin of the West Antarctic Ice Sheet, obtaining records of past ice-sheet and climate change is the only way to constrain how an ice sheet changes over millennial timescales. Whether the West Antarctic Ice Sheet collapsed during the last interglacial period (~130,000 to 116,000 years ago), when temperatures were slightly warmer than today, remains a major unsolved problem in Antarctic glaciology. Hercules Dome is an ice divide located at the intersection of the East Antarctic and West Antarctic ice sheets. It is ideally situated to record the glaciological and climatic effects of changes in the West Antarctic Ice Sheet. This project will establish whether Hercules Dome experienced major changes in flow due to changes in the elevation of the two ice sheets. The project will also ascertain whether Hercules Domes is a suitable site from which to recover climate records from the last interglacial period. These records could be used to determine whether the West Antarctic Ice Sheet collapsed during that period. The project will support two early-career researchers and train students at the University of Washington. Results will be communicated through outreach programs in coordination the Ice Drilling Project Office, the University of Washington\u0027s annual Polar Science Weekend in Seattle, and art-science collaboration. This project will develop a history of ice dynamics at the intersection of the East and West Antarctic ice sheets, and ascertain whether the site is suitable for a deep ice-coring operation. Ice divides provide a unique opportunity to assess the stability of past ice flow. The low deviatoric stresses and non-linearity of ice flow causes an arch (a \"Raymond Bump\") in the internal layers beneath a stable ice divide. This information can be used to determine the duration of steady ice flow. Due to the slow horizontal ice-flow velocities, ice divides also preserve old ice with internal layering that reflects past flow conditions caused by divide migration. Hercules Dome is an ice divide that is well positioned to retain information of past variations in the geometry of both the East and West Antarctic Ice Sheets. This dome is also the most promising location at which to recover an ice core that can be used to determine whether the West Antarctic Ice Sheet collapsed during the last interglacial period. Limited ice-penetrating radar data collected along a previous scientific surface traverse indicate well-preserved englacial stratigraphy and evidence suggestive of a Raymond Bump, but the previous survey was not sufficiently extensive to allow thorough characterization or determination of past changes in ice dynamics. This project will conduct a dedicated survey to map the englacial stratigraphy and subglacial topography as well as basal properties at Hercules Dome. The project will use ground-based ice-penetrating radar to 1) image internal layers and the ice-sheet basal interface, 2) accurately measure englacial attenuation, and 3) determine englacial vertical strain rates. The radar data will be combined with GPS observations for detailed topography and surface velocities and ice-flow modeling to constrain the basal characteristics and the history of past ice flow. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -95.0, "geometry": "POINT(-107.5 -86.1)", "instruments": null, "is_usap_dc": true, "keywords": "West Antarctica; ICE DEPTH/THICKNESS; East Antarctica", "locations": "West Antarctica; East Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Hoffman, Andrew; Holschuh, Nicholas", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.7, "title": "Ice Dynamics at the Intersection of the West and East Antarctic Ice Sheets", "uid": "p0010359", "west": -120.0}, {"awards": "2012365 Johnston, David; 2012247 Groff, Dulcinea; 2012444 Cimino, Megan", "bounds_geometry": "POLYGON((-65 -64.5,-64.8 -64.5,-64.6 -64.5,-64.4 -64.5,-64.2 -64.5,-64 -64.5,-63.8 -64.5,-63.6 -64.5,-63.4 -64.5,-63.2 -64.5,-63 -64.5,-63 -64.55,-63 -64.6,-63 -64.65,-63 -64.7,-63 -64.75,-63 -64.8,-63 -64.85,-63 -64.9,-63 -64.95,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.95,-65 -64.9,-65 -64.85,-65 -64.8,-65 -64.75,-65 -64.7,-65 -64.65,-65 -64.6,-65 -64.55,-65 -64.5))", "dataset_titles": "Aerial data from drone surveys of coastal habitats on the West Antarctic Peninsula during austral summer (January\u2013March 2020 and February\u2013March 2019); Data from: Terrestrial spatial distribution and summer abundance of Antarctic fur seals (Arctocephalus gazella) near Palmer Station, Antarctica, from drone surveys", "datasets": [{"dataset_uid": "200472", "doi": "10.5061/dryad.qv9s4mwp0", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Terrestrial spatial distribution and summer abundance of Antarctic fur seals (Arctocephalus gazella) near Palmer Station, Antarctica, from drone surveys", "url": "https://datadryad.org/dataset/doi:10.5061/dryad.qv9s4mwp0"}, {"dataset_uid": "200471", "doi": "10.7924/r4sf2xs2w", "keywords": null, "people": null, "repository": "Duke Research Repository", "science_program": null, "title": "Aerial data from drone surveys of coastal habitats on the West Antarctic Peninsula during austral summer (January\u2013March 2020 and February\u2013March 2019)", "url": "https://research.repository.duke.edu/concern/datasets/r207tq370?locale=en"}], "date_created": "Sun, 24 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Ad\u00e9lie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Ad\u00e9lie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Ad\u00e9lie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Ad\u00e9lie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula \u2013 interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Ad\u00e9lie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -63.0, "geometry": "POINT(-64 -64.75)", "instruments": null, "is_usap_dc": true, "keywords": "Palmer Station; Antarctic Peninsula; COASTAL; STABLE ISOTOPES; TOPOGRAPHIC EFFECTS; PALEOCLIMATE RECONSTRUCTIONS; MACROFOSSILS; PLANTS; PENGUINS; ISOTOPES; VISIBLE IMAGERY; RADIOCARBON; Anvers Island", "locations": "Antarctic Peninsula; Anvers Island; Palmer Station", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Groff, Dulcinea; Cimino, Megan; Johnston, David", "platforms": null, "repo": "Dryad", "repositories": "Dryad; Duke Research Repository", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Common Environmental Drivers Determine the Occupation Chronology of Ad\u00e9lie Penguins and Moss Peatbanks on the Western Antarctic Peninsula", "uid": "p0010354", "west": -65.0}, {"awards": "1745081 Bernard, Kim; 1745018 Fraser, William; 1745009 Kohut, Josh; 1744884 Oliver, Matthew; 1745023 Hennon, Tyler; 1745011 Klinck, John", "bounds_geometry": "POLYGON((-75 -60,-73 -60,-71 -60,-69 -60,-67 -60,-65 -60,-63 -60,-61 -60,-59 -60,-57 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57 -70,-59 -70,-61 -70,-63 -70,-65 -70,-67 -70,-69 -70,-71 -70,-73 -70,-75 -70,-75 -69,-75 -68,-75 -67,-75 -66,-75 -65,-75 -64,-75 -63,-75 -62,-75 -61,-75 -60))", "dataset_titles": "Antarctic ACROBAT data; CTD Data from IFCB Sampling; Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents; High Frequency Radar, Palmer Deep; IFCB Image Data; Relative Particle Density; SWARM AMLR moorings - acoustic data; SWARM Glider Data near Palmer Deep; WAP model float data; Winds from Joubin and Wauwerman Islands", "datasets": [{"dataset_uid": "200392", "doi": "10.26008/1912/bco-dmo.917884.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "High Frequency Radar, Palmer Deep", "url": "https://www.bco-dmo.org/dataset/917884"}, {"dataset_uid": "200398", "doi": "", "keywords": null, "people": null, "repository": "IOOS Glider DAAC", "science_program": null, "title": "SWARM Glider Data near Palmer Deep", "url": "https://gliders.ioos.us/erddap/search/index.html?page=1\u0026itemsPerPage=1000\u0026searchFor=swarm"}, {"dataset_uid": "200397", "doi": "10.26008/1912/bco-dmo.865098.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Winds from Joubin and Wauwerman Islands", "url": "https://www.bco-dmo.org/dataset/865098"}, {"dataset_uid": "200396", "doi": "10.26008/1912/bco-dmo.867442.2", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "WAP model float data", "url": "https://www.bco-dmo.org/dataset/867442"}, {"dataset_uid": "200395", "doi": "10.26008/1912/bco-dmo.872729.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "SWARM AMLR moorings - acoustic data", "url": "https://www.bco-dmo.org/dataset/872729"}, {"dataset_uid": "200394", "doi": "10.26008/1912/bco-dmo.917926.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Relative Particle Density", "url": "https://www.bco-dmo.org/dataset/917926"}, {"dataset_uid": "200393", "doi": "10.26008/1912/bco-dmo.865002.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "IFCB Image Data", "url": "https://www.bco-dmo.org/dataset/865002"}, {"dataset_uid": "200391", "doi": "10.26008/1912/bco-dmo.917914.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Finite Time Lyapunov Exponent Results, Calculated from High Frequency Radar Observed Surface Currents", "url": "https://www.bco-dmo.org/dataset/917914"}, {"dataset_uid": "200390", "doi": "10.26008/1912/bco-dmo.865030.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD Data from IFCB Sampling", "url": "https://www.bco-dmo.org/dataset/865030"}, {"dataset_uid": "200389", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Antarctic ACROBAT data", "url": "https://www.bco-dmo.org/dataset/916046"}], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-65 -65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CONDUCTIVITY SENSORS \u003e CONDUCTIVITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e RADIATION SENSORS", "is_usap_dc": true, "keywords": "MOORED; WATER TEMPERATURE; CONDUCTIVITY; FLUORESCENCE; UNCREWED VEHICLES; Palmer Station; PHOTOSYNTHETICALLY ACTIVE RADIATION; PELAGIC; OCEAN MIXED LAYER; SURFACE; SALINITY; WATER PRESSURE; LIVING ORGANISM; MODELS; ACOUSTIC SCATTERING", "locations": "Palmer Station", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": "NOT APPLICABLE", "persons": "Bernard, Kim; Oliver, Matthew; Kohut, Josh; Fraser, William; Klinck, John M.; Statcewich, Hank", "platforms": "LIVING ORGANISM-BASED PLATFORMS \u003e LIVING ORGANISM; OTHER \u003e MODELS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE", "repo": "BCO-DMO", "repositories": "BCO-DMO; IOOS Glider DAAC", "science_programs": null, "south": -70.0, "title": "Collaborative Research: Physical Mechanisms Driving Food Web Focusing in Antarctic Biological Hotspots", "uid": "p0010346", "west": -75.0}, {"awards": "2201129 Fischer, Karen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crustal thicknesses in Antarctica from Sp receiver functions; Lithospheric thicknesses in Antarctica from Sp receiver functions", "datasets": [{"dataset_uid": "601899", "doi": "10.15784/601899", "keywords": "Antarctica; Cryosphere; LAB; Lithosphere; Lithospheric Thickness", "people": "Brown, Sarah; Fischer, Karen", "repository": "USAP-DC", "science_program": null, "title": "Lithospheric thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601899"}, {"dataset_uid": "601898", "doi": "10.15784/601898", "keywords": "Antarctica; Crust; Cryosphere; Moho", "people": "Fischer, Karen; Brown, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Crustal thicknesses in Antarctica from Sp receiver functions", "url": "https://www.usap-dc.org/view/dataset/601898"}], "date_created": "Tue, 14 Jun 2022 00:00:00 GMT", "description": "The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth\u0027s crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; West Antarctica; USA/NSF; SEISMIC SURFACE WAVES; AMD; PLATE TECTONICS; Amd/Us; GLACIERS/ICE SHEETS; FIELD INVESTIGATION", "locations": "West Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Fischer, Karen; Dalton, Colleen", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Probing the Western Antarctic Lithosphere and Asthenosphere with New Approaches to Imaging Seismic Wave Attenuation and Velocity", "uid": "p0010339", "west": -180.0}, {"awards": "2146791 Lai, Chung Kei Chris", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 06 May 2022 00:00:00 GMT", "description": "Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. As a part of this work, two graduate students will receive interdisciplinary training and each year two undergraduate students will be trained in experimental fluid mechanics to assist in this work and develop their own research projects. This project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Glacier-Ocean Boundary Layer; Alaska; USAP-DC; USA/NSF; ABLATION ZONES/ACCUMULATION ZONES; GLACIERS; AMD; Amd/Us; Antarctica; LABORATORY", "locations": "Antarctica; Alaska", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lai, Chung; Robel, Alexander", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Revising Models of the Glacier-Ocean Boundary Layer with Novel Laboratory Experiments ", "uid": "p0010317", "west": null}, {"awards": "1543361 Kurbatov, Andrei; 1543454 Dunbar, Nelia", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Cryptotephra in SPC-14 ice core; SPICEcore visable tephra", "datasets": [{"dataset_uid": "601667", "doi": "10.15784/601667", "keywords": "Antarctica; Electron Microprobe; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; Tephra", "people": "Iverson, Nels", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore visable tephra", "url": "https://www.usap-dc.org/view/dataset/601667"}, {"dataset_uid": "601666", "doi": "10.15784/601666", "keywords": "Antarctica; Cryptotephra; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; SPICEcore; Tephra", "people": "Yates, Martin; Helmick, Meredith; Hartman, Laura; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Cryptotephra in SPC-14 ice core", "url": "https://www.usap-dc.org/view/dataset/601666"}], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "Dunbar/1543454 Antarctic ice cores offer unparalleled records of earth?s climate back to almost one million years and perhaps beyond. Layers of volcanic ash (tephra) embedded in glacial ice can be used to establish an accurate ice core chronology. In order to use a visible or ultrafine volcanic ash layer as a time-stratigraphic marker, a unique geochemical fingerprint must be established, and this forms the basis of our research. This award will investigate the volcanic record in the 1751 m ice core that was completed at the South Pole during the 2015/16 field season. The core is in an ideal location to link the existing, established, volcanic records in East and West Antarctica, and therefore to connect and integrate those records, allowing the climate records of ice cores to be directly compared, as well as to focus research on the most widespread and significant volcanic eruptions from West Antarctica. Tephra derived from well-dated, large, tropical volcanic eruptions that may have had an impact on climate will also be studied. Recent success in identifying and analyzing very fine ash particles from these types of eruptions makes it likely that we will be able to pinpoint some of these eruptions, which will allow the sulfate peaks associated with these layers to be positively identified and dated. Volcanic forcing time series developed from earlier South Pole ice cores based on preserved sulfate were crucial for testing climate models, but without tephra analysis, the origin of these layers remains uncertain. Work on the tephra layers in the South Pole ice core has a number of significant specific objectives, some with practical applications to the basic science goals of Antarctic ice coring, and others that represent independent scientific contributions in their own right. These include: (1) providing independently dated time-intervals in the core, particularly for the deepest ice, (2) quantitatively linking tephra records across Antarctica with the goal of allowing direct and robust climate comparisons between these different parts of the continent, (3) providing information for large local eruptions, that will lead to direct estimates of eruption magnitude and dispersal patterns of Antarctic volcanoes, several of which will likely erupt again. The initial stages of the work will be carried out by identifying silicate-bearing horizons in the ice core, using several methods. Once found, silicate particles will be imaged so that morphological characteristics of the particles can be used to identify volcanic origin. Particles identified as tephra will then be chemically analyzed using electron microprobe and laser ablation ICP-MS. Samples that yield a robust chemical fingerprint will be statistically correlated to known eruptions, and this will be used to address the goals described above. Broader impacts of this project fall into the areas of education of future generation of researchers, outreach and international cooperation. These activities will continue to promote forward progress in integrating the Antarctic tephra record and more broadly tying it to the global volcanic record.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": null, "is_usap_dc": true, "keywords": "VOLCANIC DEPOSITS; South Pole", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Tephrochronology of a South Pole Ice Core", "uid": "p0010311", "west": 0.0}, {"awards": "1643917 Fricker, Helen", "bounds_geometry": "POLYGON((-163.646 -84.186,-162.58715 -84.186,-161.5283 -84.186,-160.46945 -84.186,-159.4106 -84.186,-158.35175 -84.186,-157.2929 -84.186,-156.23405 -84.186,-155.1752 -84.186,-154.11635 -84.186,-153.0575 -84.186,-153.0575 -84.20871,-153.0575 -84.23142,-153.0575 -84.25413,-153.0575 -84.27684,-153.0575 -84.29955,-153.0575 -84.32226,-153.0575 -84.34497,-153.0575 -84.36768,-153.0575 -84.39039,-153.0575 -84.4131,-154.11635 -84.4131,-155.1752 -84.4131,-156.23405 -84.4131,-157.2929 -84.4131,-158.35175 -84.4131,-159.4106 -84.4131,-160.46945 -84.4131,-161.5283 -84.4131,-162.58715 -84.4131,-163.646 -84.4131,-163.646 -84.39039,-163.646 -84.36768,-163.646 -84.34497,-163.646 -84.32226,-163.646 -84.29955,-163.646 -84.27684,-163.646 -84.25413,-163.646 -84.23142,-163.646 -84.20871,-163.646 -84.186))", "dataset_titles": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "datasets": [{"dataset_uid": "601526", "doi": "10.15784/601526", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Magnetotelluric; Subglacial; Whillans Ice Stream", "people": "Siegfried, Matthew; Key, Kerry; Gustafson, Chloe; Fricker, Helen", "repository": "USAP-DC", "science_program": null, "title": "Wideband magnetotelluric responses from Whillans Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601526"}], "date_created": "Sat, 26 Feb 2022 00:00:00 GMT", "description": "The Antarctic ice sheet is underlain by a dynamic water system that lubricates the flow of ice streams and outlet glaciers, provides a habitat for a diverse microbial ecosystem, and delivers freshwater and nutrients to the Southern Ocean. However, imaging this subglacial environment is difficult: Antarctica is a vast continent with ice up to four kilometers (2.5 miles) thick. To detect water at the ice-bed interface and in deeper groundwater reservoirs, this project will adapt a technique called electromagnetic sounding that is well-established on land and in the ocean for imaging fluids beneath the surface. Groundwater is estimated to be a significant part of the subglacial water budget in Antarctica, yet previous observational approaches have been unable to characterize its volume and distribution. This project will thus yield critical information about how ice-rock-water-ocean systems interact and inform our understanding of ice-sheet processes, global nutrient cycles, and freshwater flux to the ocean. The project will provide cross-disciplinary training for a graduate student and postdoctoral scientist, and develop an educational outreach program through the Birch Aquarium. Standard geophysical surveying techniques used in glaciology to image subglacial water (radio-echo sounding and active-source seismology) are not directly sensitive to water content. In contrast, ground-based electromagnetic (EM) methods are sensitive to water content through its impact on bulk conductivity. Although EM methods are well-established for high-precision mapping of hydrology in other geological environments, their application on ice sheets is in its infancy. The proposed work will adapt both passive- and active-source EM techniques to glaciological questions to quantify the three-dimensional structure of subglacial water beneath an ice stream and in a grounding zone. The project will perform a suite of synthetic inversion studies to determine the range of applications of EM techniques in glaciology and execute a field experiment on the Whillans Ice Plain to investigate two hypotheses about the subglacial water system based on previous observational and modeling results: (1) Subglacial Lake Whillans is underlain by a deep, saline groundwater reservoir; and (2) there is an estuary-like zone of mixing between fresh subglacial water and seawater near, and possibly landward, of the grounding line.", "east": -153.0575, "geometry": "POINT(-158.35175 -84.29955)", "instruments": null, "is_usap_dc": true, "keywords": "Whillans Ice Stream; GROUND WATER; USA/NSF; USAP-DC; AMD; GEOMAGNETIC INDUCTION; Amd/Us; FIELD SURVEYS", "locations": "Whillans Ice Stream", "north": -84.186, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Key, Kerry; Fricker, Helen; Siegfried, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.4131, "title": "Mapping Antarctic Subglacial Water with Novel Electromagnetic Techniques", "uid": "p0010300", "west": -163.646}, {"awards": "1744785 Barrett, John", "bounds_geometry": "POLYGON((-180 -77.62,-145.683 -77.62,-111.366 -77.62,-77.049 -77.62,-42.732 -77.62,-8.415 -77.62,25.902 -77.62,60.219 -77.62,94.536 -77.62,128.853 -77.62,163.17 -77.62,163.17 -77.618,163.17 -77.616,163.17 -77.614,163.17 -77.612,163.17 -77.61,163.17 -77.608,163.17 -77.606,163.17 -77.604,163.17 -77.602,163.17 -77.6,128.853 -77.6,94.536 -77.6,60.219 -77.6,25.902 -77.6,-8.415 -77.6,-42.732 -77.6,-77.049 -77.6,-111.366 -77.6,-145.683 -77.6,180 -77.6,178.319 -77.6,176.638 -77.6,174.957 -77.6,173.276 -77.6,171.595 -77.6,169.914 -77.6,168.233 -77.6,166.552 -77.6,164.871 -77.6,163.19 -77.6,163.19 -77.602,163.19 -77.604,163.19 -77.606,163.19 -77.608,163.19 -77.61,163.19 -77.612,163.19 -77.614,163.19 -77.616,163.19 -77.618,163.19 -77.62,164.871 -77.62,166.552 -77.62,168.233 -77.62,169.914 -77.62,171.595 -77.62,173.276 -77.62,174.957 -77.62,176.638 -77.62,178.319 -77.62,-180 -77.62))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "datasets": [{"dataset_uid": "200260", "doi": "doi:10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica", "url": "https://doi.org/10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4"}], "date_created": "Tue, 30 Nov 2021 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.19, "geometry": "POINT(-16.82 -77.61)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; ECOSYSTEM FUNCTIONS; FIELD SURVEYS; USAP-DC; USA/NSF; Taylor Valley; Amd/Us", "locations": "Taylor Valley", "north": -77.6, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Barrett, John; Salvatore, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.62, "title": "Collaborative Research: Remote characterization of microbial mats in Taylor Valley, Antarctica through in situ sampling and spectral validation", "uid": "p0010281", "west": 163.17}, {"awards": "2136938 Tedesco, Marco; 2136940 Newman, Dava; 2136939 Cervone, Guido", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications; Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "datasets": [{"dataset_uid": "601841", "doi": "10.15784/601841", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "Alexander, Patrick; Tedesco, Marco; L\u00fctjens, Bj\u00f6rn; Fettweis, Xavier; Cervone, Guido; Antwerpen, Raphael", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601841"}, {"dataset_uid": "601842", "doi": "10.15784/601842", "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "people": "Tedesco, Marco; Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn", "repository": "USAP-DC", "science_program": null, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "url": "https://www.usap-dc.org/view/dataset/601842"}], "date_created": "Mon, 08 Nov 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Climate change is promoting increased melting in Greenland and Antarctica, contributing to the global sea level rise. Understanding what drives the increase and the amount of meltwater from the ice sheets is paramount to improve our skills to project future sea level rise and associated consequences. Melting in Antarctica mostly occurs along ice shelves (tongues of ice floating in the water). They do not contribute directly to sea level when they melt but their disappearance allows the glaciers at the top to flow faster towards the ocean, increasing the contribution of Antarctica to sea level rise. Satellite data can only offer a partial view of what is happening, either because of limited coverage or because of the presence of clouds, which often obstruct the view in this part of the world. Models, on the other hand, can provide estimates but the spatial detail they can provide is still limited by many factors. This project will use artificial intelligence to overcome these problems and to merge satellite data and model outputs to generate daily maps of surface melting with unprecedented detail. These techniques are similar to those used in cell phones to sharpen images or to create landscapes that look \u201creal\u201d but are only existing in the \u201ccomputer world,\u201d but they have never been applied to melting in Antarctica for improving estimates of sea level rise. Meltwater in Antarctica has been shown to impact ice shelf stability through the fracturing and flexural processes. Image scarcity has often forced the community to use general climate and regional climate models to explore hydrological features. Notwithstanding models having been considerably refined over the past years, they still require improvements in capturing the processes driving the energy balance and, most importantly, the feedback among the drivers and the energy balance terms that drive the hydrological processes. Moreover, spatial resolution is still too coarse to properly capture hydrological processes, especially over ice shelves. Machine learning (ML) tools can help in this regard, especially when it is computationally infeasible to run physics-based models at desired resolutions in space and time, like in the case of ice shelf surface hydrology. This project will train Generative Adversarial Networks (GANs) with the outputs of a regional climate model and remote sensing data to generate unprecedented, high-resolution (100 m) maps of surface melting. Beside improving the spatial resolution, and hence providing a long-needed and crucial dataset to the polar community, the tool here proposed will be able to provide satellite-like maps on a daily basis, hence addressing also those issues related to the lack of spatial coverage. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; Amd/Us; AMD; USA/NSF; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure; Polar Cyberinfrastructure; Polar Cyberinfrastructure", "paleo_time": null, "persons": "Tedesco, Marco", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "uid": "p0010277", "west": -180.0}, {"awards": "2040199 Ainley, David; 2040048 Ballard, Grant; 2040571 Smith, Walker", "bounds_geometry": "POLYGON((164 -74,165.6 -74,167.2 -74,168.8 -74,170.4 -74,172 -74,173.6 -74,175.2 -74,176.8 -74,178.4 -74,180 -74,180 -74.4,180 -74.8,180 -75.2,180 -75.6,180 -76,180 -76.4,180 -76.8,180 -77.2,180 -77.6,180 -78,178.4 -78,176.8 -78,175.2 -78,173.6 -78,172 -78,170.4 -78,168.8 -78,167.2 -78,165.6 -78,164 -78,164 -77.6,164 -77.2,164 -76.8,164 -76.4,164 -76,164 -75.6,164 -75.2,164 -74.8,164 -74.4,164 -74))", "dataset_titles": "P2P 2022-2023 Adelie Penguin Biologging Data; Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "datasets": [{"dataset_uid": "200418", "doi": "10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24", "keywords": null, "people": null, "repository": "BODC", "science_program": null, "title": "Seaglider data from the Western Ross Sea, Antarctica, November 2022-January 2023", "url": "\r\nhttps://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/0a1c43b9-4738-75e0-e063-6c86abc0ea24\r\n"}, {"dataset_uid": "601928", "doi": null, "keywords": "Adelie Penguin; Antarctica; Biologging; Cape Crozier; Cryosphere; Ross Sea", "people": "Ainley, David; Ballard, Grant; Schmidt, Annie", "repository": "USAP-DC", "science_program": null, "title": "P2P 2022-2023 Adelie Penguin Biologging Data", "url": "https://www.usap-dc.org/view/dataset/601928"}], "date_created": "Mon, 25 Oct 2021 00:00:00 GMT", "description": "NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton \u2013 Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Ad\u00e9lie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species\u2019 role within the local food web through assessing of Ad\u00e9lie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins\u2019 foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region\u2019s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Ad\u00e9lie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the \u2018preyscape\u2019 within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(172 -76)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AQUATIC SCIENCES; USA/NSF; Amd/Us; Biologging; AMD; Foraging Ecology; FIELD SURVEYS; Ross Sea; Adelie Penguin", "locations": "Ross Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ainley, David; Santora, Jarrod; Varsani, Arvind; Smith, Walker; Ballard, Grant; Schmidt, Annie", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "BODC", "repositories": "BODC; USAP-DC", "science_programs": null, "south": -78.0, "title": "NSFGEO-NERC: Collaborative Research \"P2P: Predators to Plankton -Biophysical Controls in Antarctic Polynyas\"", "uid": "p0010273", "west": 164.0}, {"awards": "1921418 Yan, Stephen", "bounds_geometry": null, "dataset_titles": "2019 initial L-band radar data for Dome Concordia; 2019 initial L-band radar data for EGRIP", "datasets": [{"dataset_uid": "601489", "doi": "10.15784/601489", "keywords": "Antarctica", "people": "Gogineni, Prasad; O\u0027Neill, Charles; Taylor, Ryan; Taylor, Drew", "repository": "USAP-DC", "science_program": null, "title": "2019 initial L-band radar data for Dome Concordia", "url": "https://www.usap-dc.org/view/dataset/601489"}, {"dataset_uid": "601488", "doi": "10.15784/601488", "keywords": "Antarctica; Greenland", "people": "Gogineni, Prasad; Taylor, Drew; Taylor, Ryan; O\u0027Neill, Charles", "repository": "USAP-DC", "science_program": null, "title": "2019 initial L-band radar data for EGRIP", "url": "https://www.usap-dc.org/view/dataset/601488"}], "date_created": "Mon, 11 Oct 2021 00:00:00 GMT", "description": "Predicting the response of ice sheets to changing climate and their contribution to sea level requires accurate representation in numerical models of basal conditions under the ice. There remain large data gaps for these basal boundary conditions under the East Antarctic Ice Sheet as well as in West Antarctica, including basal melt rates under ice shelves. This project will develop and test a prototype ground-based radar system to sound and image ice more than 4km thick, detect thin water films at the ice bed, and determine basal melt rates under ice shelves. The team will work with European partners (France, Italy, Germany) at Dome C to conduct deep-field Antarctic testing of the new radar. The project will build and test an L-band radar system (1.2-1.4GHz) with peak transmit power of 2kW. In addition to sounding and imaging thick ice, detection goals include resolving thin water films (\u003e0.5mm). Such a system would target glaciological problems including site selection for ice in the 1.5-million-year age range, basal stress boundary conditions under grounded ice, and melt rates under floating shelves. By demonstrating feasibility, the project aims to influence sensor selection for satellite missions. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; GLACIER THICKNESS/ICE SHEET THICKNESS; Amd/Us; USAP-DC; AMD; Greenland; USA/NSF; FIELD SURVEYS; Antarctica", "locations": "Antarctica; Greenland", "north": null, "nsf_funding_programs": "Antarctic Science and Technology; Antarctic Glaciology", "paleo_time": null, "persons": "Gogineni, Prasad; O\u0027Neill, Charles; Yan, Stephen; Taylor, Drew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "EAGER: L-Band Radar Ice Sounder for Measuring Ice Basal Conditions and Ice-Shelf Melt Rate", "uid": "p0010271", "west": null}, {"awards": "2046240 Khan, Alia", "bounds_geometry": "POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-67.5 -66.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctic Peninsula; Amd/Us; AMD; SNOW/ICE CHEMISTRY; USA/NSF; USAP-DC; SNOW", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Khan, Alia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -70.5, "title": "CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts", "uid": "p0010263", "west": -75.0}, {"awards": "0739480 Grunow, Anne; 1141906 Grunow, Anne; 9910267 Grunow, Anne; 0440695 Grunow, Anne; 2137467 Grunow, Anne; 2436582 Grunow, Anne; 1643713 Grunow, Anne", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Marine Geoscience Data System - cruise links; Polar Rock Repository; SESAR sample registration", "datasets": [{"dataset_uid": "200359", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "200241", "doi": "", "keywords": null, "people": null, "repository": "SESAR", "science_program": null, "title": "SESAR sample registration", "url": "https://www.geosamples.org/about/services#igsnregistration"}, {"dataset_uid": "200242", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Marine Geoscience Data System - cruise links", "url": "https://www.marine-geo.org/"}, {"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}], "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a \"Polar Rock Box\" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet\u2019s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the \"Polar Rock Box\" program. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD SURVEYS; Pacific Ocean; ROCKS/MINERALS/CRYSTALS; GLACIATION; AMD; Weddell Sea; Scotia Sea; TECTONICS; Antarctica; Southern Ocean; Amd/Us; USA/NSF; Amundsen Sea", "locations": "Pacific Ocean; Amundsen Sea; Scotia Sea; Weddell Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Grunow, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "PRR", "repositories": "MGDS; PRR; SESAR", "science_programs": null, "south": -90.0, "title": "Continuing Operations Proposal: \r\nThe Polar Rock Repository as a Resource for Earth Systems Science\r\n", "uid": "p0010259", "west": -180.0}, {"awards": "1951603 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AMRDC Repository", "datasets": [{"dataset_uid": "200318", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "AMRDC Repository", "url": "https://amrdcdata.ssec.wisc.edu/"}], "date_created": "Tue, 17 Aug 2021 00:00:00 GMT", "description": "The Antarctic Meteorological Research and Data Center (AMRDC) project will create an Antarctic meteorological observational data repository and archive system based on an open source platform to manage data from submission to end-user retrieval. The new archival system will host both currently available datasets and campaign meteorological datasets deposited by other Antarctic investigators. The project will also engage undergraduate and graduate students in order to provide them with meaningful experiences that can translate to several science, technology, engineering, and mathematics (STEM) career paths. This project targets four main tasks as a starting point toward meeting existing recommendations and creating a more sustainable Antarctic meteorological enterprise: 1. Designation of the Antarctic Meteorological Research and Data Center (AMRDC), 2. Distribution of Automatic Weather Station (AWS) observations on GTS in WMO BUFR format, 3. Establish a steering committee for the AMRDC, and 4. Diagnostic case studies of Antarctic meteorological events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC; RADAR IMAGERY; United States Of America; Amd/Us; GLACIAL PROCESSES; Antarctica; ATMOSPHERIC TEMPERATURE; SNOW/ICE; AMD; USA/NSF", "locations": "United States Of America; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Havens, Jeffrey F", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research and Data Center", "uid": "p0010247", "west": -180.0}, {"awards": "1744794 Jenouvrier, Stephanie; 1744989 LaRue, Michelle", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Detecting climate signals in populations: case of emperor penguin; Emperor penguin population trends (2009-2018); Landfast ice: a major driver of reproductive success in a polar seabird", "datasets": [{"dataset_uid": "601513", "doi": "10.15784/601513", "keywords": "Antarctica; Breeding Success; Emperor Penguin; Fast Sea Ice", "people": "Jenouvrier, Stephanie; Labrousse, Sara", "repository": "USAP-DC", "science_program": null, "title": "Landfast ice: a major driver of reproductive success in a polar seabird", "url": "https://www.usap-dc.org/view/dataset/601513"}, {"dataset_uid": "601491", "doi": "10.15784/601491", "keywords": "Antarctica", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Detecting climate signals in populations: case of emperor penguin", "url": "https://www.usap-dc.org/view/dataset/601491"}, {"dataset_uid": "200388", "doi": "", "keywords": null, "people": null, "repository": "Github", "science_program": null, "title": "Emperor penguin population trends (2009-2018)", "url": "https://github.com/davidiles/EMPE_Global"}], "date_created": "Wed, 14 Jul 2021 00:00:00 GMT", "description": "The emperor penguin is an iconic seabird that is found in colonies distributed around the entirety of the Antarctic coastline. Emperor penguins are an important indicator species for the health of the Southern Ocean because their reliance on sea ice for major parts of their life cycle means that their population can be influenced by changes in the extent and duration of sea ice around Antarctica. Although baseline data exists on emperor penguin distributions and overall population size, data on how population size varies at individual colonies is limited to only a few locations. Thus, knowledge about how changes in local or regional environmental conditions impacts local or global population status is poorly understood. By combining established methods in satellite remote sensing with ground and aerial surveys of several colonies across the continent, this project will generate population estimates for the 54 known emperor penguin colonies. Decadal scale population trend data will be combined with environmental variables (e.g., sea ice extent and duration among others) to reveal which conditions influence population fluctuations at regional and continental scales. The project will engage with international collaborators, train post-doctoral associates and future scientists, and develop citizen science and K-12 outreach programs. This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Ross Sea; USAP-DC; AMD; COMMUNITY DYNAMICS; Amd/Us", "locations": "Ross Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Ito, Emi; Jenouvrier, Stephanie", "platforms": null, "repo": "USAP-DC", "repositories": "Github; USAP-DC", "science_programs": null, "south": -90.0, "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", "uid": "p0010229", "west": -180.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": "POLYGON((-65.3 -63.3,-65 -63.3,-64.7 -63.3,-64.4 -63.3,-64.1 -63.3,-63.8 -63.3,-63.5 -63.3,-63.2 -63.3,-62.9 -63.3,-62.6 -63.3,-62.3 -63.3,-62.3 -63.47,-62.3 -63.64,-62.3 -63.81,-62.3 -63.98,-62.3 -64.15,-62.3 -64.32,-62.3 -64.49,-62.3 -64.66,-62.3 -64.83,-62.3 -65,-62.6 -65,-62.9 -65,-63.2 -65,-63.5 -65,-63.8 -65,-64.1 -65,-64.4 -65,-64.7 -65,-65 -65,-65.3 -65,-65.3 -64.83,-65.3 -64.66,-65.3 -64.49,-65.3 -64.32,-65.3 -64.15,-65.3 -63.98,-65.3 -63.81,-65.3 -63.64,-65.3 -63.47,-65.3 -63.3))", "dataset_titles": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.); 18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.); Expedition Data of LMG1805; Fish pictures and skin pathology of X-cell infection in Trematomus scotti.; Gonad and skin histology of Trematomus loennbergii infected by Notoxcellia sp.; Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.; In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.; Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ; microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas; Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.; Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.; Nomenclatural Act for the genus Notoxcellia; Nomenclatural Act for the species Notoxcellia coronata; Nomenclatural Act for the species Notoxcellia picta; Phylogenetic Analysis of Notoxcellia species.; Phylogenetic Analysis of Notoxcellia species, including novel Ross Sea specimen; Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni; Similarity matrices of Notoxcellia spp.; Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.; Trematomus scotti mt-co1 sequence alignment.; Trematomus scotti with X-cell xenomas", "datasets": [{"dataset_uid": "601917", "doi": "10.15784/601917", "keywords": "Alveolata; Antarctic; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Devine, Jennifer; Desvignes, Thomas; Postlethwait, John; P\u00e9ron, Clara", "repository": "USAP-DC", "science_program": null, "title": "Similarity matrices of Notoxcellia spp.", "url": "https://www.usap-dc.org/view/dataset/601917"}, {"dataset_uid": "200254", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://www.rvdata.us/search/cruise/LMG1805"}, {"dataset_uid": "200443", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG1805", "url": "https://doi.org/10.7284/907930"}, {"dataset_uid": "601892", "doi": "10.15784/601892", "keywords": "Antarctica; Biota; CO1; COX1; Cryonotothenioid; Cryosphere; Genetic Sequences; LMG1805; MT-CO1; Nototheniidae; Notothenioid; Population Genetics", "people": "Schiavon, Luca ; Postlethwait, John; Desvignes, Thomas; Papetti, Chiara", "repository": "USAP-DC", "science_program": null, "title": "Trematomus scotti mt-co1 sequence alignment.", "url": "https://www.usap-dc.org/view/dataset/601892"}, {"dataset_uid": "601893", "doi": "10.15784/601893", "keywords": "Age; Antarctica; Biota; Cryonotothenioid; Cryosphere; Fecundity; Growth; Length; Nototheniidae; Oceans; Otolith; Reproduction; Weight", "people": "Lucassen, Magnus; Streeter, Margaret; Le Francois, Nathalie; Grondin, Jacob; Valdivieso, Alejandro; Sguotti, Camilla; Postlethwait, John; La Mesa, Mario; Detrich, H. William; Mark, Felix C; Riginella, Emilio; Papetti, Chiara; Desvignes, Thomas; Cal\u00ec, Federico", "repository": "USAP-DC", "science_program": null, "title": "Morphological, fecundity, and age data of Trematomus scotti from Andvord Bay and the Weddell Sea.", "url": "https://www.usap-dc.org/view/dataset/601893"}, {"dataset_uid": "200383", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia coronata", "url": "https://zoobank.org/NomenclaturalActs/194d91b2-e268-4238-89e2-385819f2c35b"}, {"dataset_uid": "601539", "doi": "10.15784/601539", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "In situ hybridization of X-cell and host fish 18S SSU rRNA in alternate sections of tumor xenomas.", "url": "https://www.usap-dc.org/view/dataset/601539"}, {"dataset_uid": "601538", "doi": "10.15784/601538", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John; Lauridsen, Henrik", "repository": "USAP-DC", "science_program": null, "title": "microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas", "url": "https://www.usap-dc.org/view/dataset/601538"}, {"dataset_uid": "601537", "doi": "10.15784/601537", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John; Varsani, Arvind; Kraberger, Simona ; Fontenele, Rafaela S. ", "repository": "USAP-DC", "science_program": null, "title": "Metagenomic analysis of apparently healthy and tumor samples using Kaiju software ", "url": "https://www.usap-dc.org/view/dataset/601537"}, {"dataset_uid": "601536", "doi": "10.15784/601536", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Desvignes, Thomas; Postlethwait, John; Murray, Katrina N. ; Kent, Michael L. ", "repository": "USAP-DC", "science_program": null, "title": "Histopathology of X-cell xenomas in Trematomus scotti and Nototheniops larseni.", "url": "https://www.usap-dc.org/view/dataset/601536"}, {"dataset_uid": "601915", "doi": "10.15784/601915", "keywords": "Alveolata; Antarctic; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Desvignes, Thomas; P\u00e9ron, Clara; Devine, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species, including novel Ross Sea specimen", "url": "https://www.usap-dc.org/view/dataset/601915"}, {"dataset_uid": "601916", "doi": "10.15784/601916", "keywords": "Alveolata; Antarctica; Cryosphere; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Ross Sea; Xcellidae", "people": "Postlethwait, John; Desvignes, Thomas; P\u00e9ron, Clara; Devine, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Gonad and skin histology of Trematomus loennbergii infected by Notoxcellia sp.", "url": "https://www.usap-dc.org/view/dataset/601916"}, {"dataset_uid": "601501", "doi": "10.15784/601501", "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "people": "Postlethwait, John; Desvignes, Thomas; Varsani, Arvind", "repository": "USAP-DC", "science_program": null, "title": "Phylogenetic Analysis of Notoxcellia species.", "url": "https://www.usap-dc.org/view/dataset/601501"}, {"dataset_uid": "601496", "doi": "10.15784/601496", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Desvignes, Thomas; Postlethwait, John; Lauridsen, Henrik", "repository": "USAP-DC", "science_program": null, "title": "Fish pictures and skin pathology of X-cell infection in Trematomus scotti.", "url": "https://www.usap-dc.org/view/dataset/601496"}, {"dataset_uid": "601495", "doi": "10.15784/601495", "keywords": "Antarctica; Antarctic Peninsula", "people": "Desvignes, Thomas", "repository": "USAP-DC", "science_program": null, "title": "Temperature profiles at five fishing locations on the West Antarctic Peninsula during austral fall 2018.", "url": "https://www.usap-dc.org/view/dataset/601495"}, {"dataset_uid": "601494", "doi": "10.15784/601494", "keywords": "Andvord Bay; Antarctica; Fish", "people": "Postlethwait, John; Le Francois, Nathalie; Desvignes, Thomas; Lauridsen, Henrik", "repository": "USAP-DC", "science_program": null, "title": "Morphological and pathological data of Trematomus scotti specimens captured on May 30th, 2018 in Andvord Bay.", "url": "https://www.usap-dc.org/view/dataset/601494"}, {"dataset_uid": "200262", "doi": "", "keywords": null, "people": null, "repository": "MorphoSource", "science_program": null, "title": "Trematomus scotti with X-cell xenomas", "url": "https://www.morphosource.org/projects/000405843?locale=en"}, {"dataset_uid": "200275", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia coronata (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630144"}, {"dataset_uid": "200276", "doi": "", "keywords": null, "people": null, "repository": "GenBank", "science_program": null, "title": "18 SSU rDNA type sequences for Notoxcellia picta (nov. sp.)", "url": "https://www.ncbi.nlm.nih.gov/nuccore/OL630145"}, {"dataset_uid": "200277", "doi": "", "keywords": null, "people": null, "repository": "NCBI SRA", "science_program": null, "title": "Raw Illumina sequencing reads from skin tumors and visually healthy skins from Trematomus scotti and Nototheniops larseni", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA789574"}, {"dataset_uid": "200382", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the genus Notoxcellia", "url": "https://zoobank.org/NomenclaturalActs/5cf9609e-0111-4386-8518-bd50b5bdde0e"}, {"dataset_uid": "200384", "doi": "", "keywords": null, "people": null, "repository": "ZooBank", "science_program": null, "title": "Nomenclatural Act for the species Notoxcellia picta", "url": "https://zoobank.org/NomenclaturalActs/31062dd2-7202-47fa-86e0-7be5c55ac0e2"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Antarctica\u2019s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor\u2019s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation\u2019s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.3, "geometry": "POINT(-63.8 -64.15)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Andvord Bay; Amd/Us; PROTISTS; BENTHIC; FISH; Dallmann Bay; USAP-DC; NSF/USA; AMD", "locations": "Andvord Bay; Dallmann Bay", "north": -63.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Postlethwait, John; Varsani, Arvind; Desvignes, Thomas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "GenBank; MorphoSource; NCBI SRA; R2R; USAP-DC; ZooBank", "science_programs": null, "south": -65.0, "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "uid": "p0010221", "west": -65.3}, {"awards": "2022920 Zhan, Zhongwen", "bounds_geometry": "POINT(180 -90)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth\u0027s crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; South Pole Station; GLACIERS/ICE SHEETS; NSF/USA; Amd/Us; SEISMIC SURFACE WAVES; SEISMOLOGICAL STATIONS; USAP-DC", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Zhan, Zhongwen", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repositories": null, "science_programs": null, "south": -90.0, "title": "EAGER: Pilot Fiber Seismic Networks at the Amundsen-Scott South Pole Station", "uid": "p0010214", "west": 180.0}, {"awards": "1933764 Enderlin, Ellyn; 1643455 Enderlin, Ellyn", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Crane Glacier centerline observations and modeling results ; Remotely-sensed iceberg geometries and meltwater fluxes", "datasets": [{"dataset_uid": "601617", "doi": "10.15784/601617", "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "people": "Enderlin, Ellyn; Aberle, Rainey; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "repository": "USAP-DC", "science_program": null, "title": "Crane Glacier centerline observations and modeling results ", "url": "https://www.usap-dc.org/view/dataset/601617"}, {"dataset_uid": "601679", "doi": "10.15784/601679", "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "people": "Enderlin, Ellyn; Aberle, Rainey; Oliver, Caitlin; Dryak, Mariama; Miller, Emily; Dickson, Adam", "repository": "USAP-DC", "science_program": null, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "url": "https://www.usap-dc.org/view/dataset/601679"}], "date_created": "Mon, 28 Jun 2021 00:00:00 GMT", "description": "Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amery Ice Shelf; FIELD SURVEYS; Totten Glacier; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; USAP-DC; Antarctic Peninsula; ICEBERGS; Mertz Glacier; OCEAN TEMPERATURE; USA/NSF; Amd/Us; Amundsen Sea; Ronne Ice Shelf; Filchner Ice Shelf; AMD", "locations": "Antarctic Peninsula; Totten Glacier; Ronne Ice Shelf; Filchner Ice Shelf; Amery Ice Shelf; Mertz Glacier; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Enderlin, Ellyn", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "uid": "p0010210", "west": -180.0}, {"awards": "1914743 Becker, Thorsten; 1914668 Aschwanden, Andy; 1914767 Winberry, Paul; 1914698 Hansen, Samantha", "bounds_geometry": "POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))", "dataset_titles": "East Antarctic Seismicity from different Automated Event Detection Algorithms; Full Waveform Ambient Noise Tomography for East Antarctica", "datasets": [{"dataset_uid": "601762", "doi": "10.15784/601762", "keywords": "Antarctica; Geoscientificinformation; Machine Learning; Seismic Event Detection; Seismology; Seismometer", "people": "Ho, Long; Hansen, Samantha; Walter, Jacob", "repository": "USAP-DC", "science_program": null, "title": "East Antarctic Seismicity from different Automated Event Detection Algorithms", "url": "https://www.usap-dc.org/view/dataset/601762"}, {"dataset_uid": "601763", "doi": "10.15784/601763", "keywords": "Ambient Noise; Antarctica; East Antarctica; Geoscientificinformation; Seismic Tomography; Seismology", "people": "Hansen, Samantha; Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Full Waveform Ambient Noise Tomography for East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601763"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California\u0027s Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica\u0027s potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(135 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "TECTONICS; AMD; Wilkes Subglacial Basin; ICE SHEETS; USA/NSF; Amd/Us; SEISMOLOGICAL STATIONS; SEISMIC SURFACE WAVES; East Antarctica; USAP-DC", "locations": "East Antarctica; Wilkes Subglacial Basin", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Becker, Thorsten; Binder, April; Hansen, Samantha; Aschwanden, Andy; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "uid": "p0010204", "west": 90.0}, {"awards": "1643877 Friedlaender, Ari", "bounds_geometry": "POLYGON((-65 -63.5,-64.5 -63.5,-64 -63.5,-63.5 -63.5,-63 -63.5,-62.5 -63.5,-62 -63.5,-61.5 -63.5,-61 -63.5,-60.5 -63.5,-60 -63.5,-60 -63.73,-60 -63.96,-60 -64.19,-60 -64.42,-60 -64.65,-60 -64.88,-60 -65.11,-60 -65.34,-60 -65.57,-60 -65.8,-60.5 -65.8,-61 -65.8,-61.5 -65.8,-62 -65.8,-62.5 -65.8,-63 -65.8,-63.5 -65.8,-64 -65.8,-64.5 -65.8,-65 -65.8,-65 -65.57,-65 -65.34,-65 -65.11,-65 -64.88,-65 -64.65,-65 -64.42,-65 -64.19,-65 -63.96,-65 -63.73,-65 -63.5))", "dataset_titles": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "datasets": [{"dataset_uid": "601542", "doi": "10.15784/601542", "keywords": "Antarctica; Antarctic Peninsula; Biologging; Foraging; Ice; Minke Whales", "people": "Friedlaender, Ari", "repository": "USAP-DC", "science_program": null, "title": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601542"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans.", "east": -60.0, "geometry": "POINT(-62.5 -64.65)", "instruments": null, "is_usap_dc": true, "keywords": "Andvord Bay; USAP-DC; MARINE ECOSYSTEMS; AMD; FIELD INVESTIGATION; Amd/Us; USA/NSF", "locations": "Andvord Bay", "north": -63.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Friedlaender, Ari", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.8, "title": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)", "uid": "p0010207", "west": -65.0}, {"awards": "1739027 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((-125 -73,-122.1 -73,-119.2 -73,-116.3 -73,-113.4 -73,-110.5 -73,-107.6 -73,-104.7 -73,-101.8 -73,-98.9 -73,-96 -73,-96 -73.7,-96 -74.4,-96 -75.1,-96 -75.8,-96 -76.5,-96 -77.2,-96 -77.9,-96 -78.6,-96 -79.3,-96 -80,-98.9 -80,-101.8 -80,-104.7 -80,-107.6 -80,-110.5 -80,-113.4 -80,-116.3 -80,-119.2 -80,-122.1 -80,-125 -80,-125 -79.3,-125 -78.6,-125 -77.9,-125 -77.2,-125 -76.5,-125 -75.8,-125 -75.1,-125 -74.4,-125 -73.7,-125 -73))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 24 Jun 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -96.0, "geometry": "POINT(-110.5 -76.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIER MOTION/ICE SHEET MOTION; Thwaites Glacier; USAP-DC; USA/NSF; Magmatic Volatiles; AMD; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; ICE SHEETS; Amd/Us", "locations": "Thwaites Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": "Thwaites (ITGC)", "south": -80.0, "title": "NSF-NERC: Thwaites Interdisciplinary Margin Evolution (TIME): The Role of Shear Margin Dynamics in the Future Evolution of the Thwaites Drainage Basin", "uid": "p0010199", "west": -125.0}, {"awards": "1848887 McClintock, James", "bounds_geometry": "POINT(-64.0527 -64.77423)", "dataset_titles": "2020 and 2023 Underwater video transect community analysis data; 2020 daily seawater carbonate chemistry; 2023 daily seawater carbonate chemistry; Amphipod counts from 2020 ocean acidification experiment; Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments; Palatability of Desmarestia menziesii extracts from ambient and low pH treatments; Palatability of Palmaria decipiens thallus from ambient and low pH treatments; Underwater transect videos used for 2020 and 2023 community analyses", "datasets": [{"dataset_uid": "601792", "doi": "10.15784/601792", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Palmaria decipiens thallus from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601792"}, {"dataset_uid": "601787", "doi": "10.15784/601787", "keywords": "Antarctica; Antarctic Peninsula; Biota; Cryosphere; Species Abundance; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 and 2023 Underwater video transect community analysis data", "url": "https://www.usap-dc.org/view/dataset/601787"}, {"dataset_uid": "601702", "doi": "10.15784/601702", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Amphipod counts from 2020 ocean acidification experiment", "url": "https://www.usap-dc.org/view/dataset/601702"}, {"dataset_uid": "601791", "doi": "10.15784/601791", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Palatability of Desmarestia menziesii extracts from ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601791"}, {"dataset_uid": "601701", "doi": "10.15784/601701", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2023 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601701"}, {"dataset_uid": "601700", "doi": "10.15784/601700", "keywords": "Antarctica; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "2020 daily seawater carbonate chemistry", "url": "https://www.usap-dc.org/view/dataset/601700"}, {"dataset_uid": "601796", "doi": "10.15784/601796", "keywords": "Antarctica; Biota; Cryosphere; Oceans; Southern Ocean; Video Transects", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Underwater transect videos used for 2020 and 2023 community analyses", "url": "https://www.usap-dc.org/view/dataset/601796"}, {"dataset_uid": "601793", "doi": "10.15784/601793", "keywords": "Antarctica; Cryosphere; Palmer Station", "people": "Amsler, Charles", "repository": "USAP-DC", "science_program": null, "title": "Feeding of Gondogeneia antarctica maintained under ambient and low pH treatments", "url": "https://www.usap-dc.org/view/dataset/601793"}], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative \"winners\" and some will be relative \"losers\" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod \"winners\" and two key amphipod \"losers\". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.0527, "geometry": "POINT(-64.0527 -64.77423)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Amd/Us; AMD; COASTAL; BENTHIC; USAP-DC; Palmer Station; ANIMALS/INVERTEBRATES; FIELD INVESTIGATION; MACROALGAE (SEAWEEDS)", "locations": "Palmer Station", "north": -64.77423, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Amsler, Charles; McClintock, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77423, "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "uid": "p0010193", "west": -64.0527}, {"awards": "1443556 Thomson, Stuart; 1443342 Licht, Kathy", "bounds_geometry": null, "dataset_titles": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "datasets": [{"dataset_uid": "601462", "doi": "10.15784/601462", "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "people": "He, John; Hemming, Sidney R.; Licht, Kathy; Reiners, Peter; Thomson, Stuart", "repository": "USAP-DC", "science_program": null, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601462"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth\u0027s last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100\u00b0E-160\u00b0E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; LANDSCAPE; AGE DETERMINATIONS; FIELD INVESTIGATION; GLACIAL PROCESSES; Transantarctic Mountains; USA/NSF; Thermochronology; Amd/Us; USAP-DC; TRACE ELEMENTS; Provenance Analysis; AMD; LANDFORMS; GLACIAL LANDFORMS", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thomson, Stuart; Reiners, Peter; Licht, Kathy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "uid": "p0010188", "west": null}, {"awards": "1543501 Howat, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "The Reference Model of Antarctica", "datasets": [{"dataset_uid": "200218", "doi": "", "keywords": null, "people": null, "repository": "PGC", "science_program": null, "title": "The Reference Model of Antarctica", "url": "https://www.pgc.umn.edu/data/rema/"}], "date_created": "Tue, 18 May 2021 00:00:00 GMT", "description": "Howat/1543501 This award will provide support to map the topography of the Antarctic continent at high spatial resolution and precision to measure ice sheet change, constrain models, correct satellite observations and support logistics. Antarctica remains the most poorly mapped landmass on Earth, yet, accurate and complete surface topography is essential for a wide range of scientific and logistical activities. The group will use a combination of very high-resolution satellite imagery, existing ground and airborne survey data and the NSF\u0027s supercomputer infrastructure to construct the Reference Elevation Model of Antarctica (REMA): a continuous, time-stamped reference surface that will be one to two orders of magnitude higher resolution than currently available. REMA will be constructed from stereoscopic, submeter resolution imagery collected by the WorldView satellite constellation, obtained at no cost in partnership with the National Geospatial Intelligence Agency and the NSF-supported Polar Geospatial Center (PGC). The high spatial and radiometric resolution of the imagery enables photogrammetric digital elevation model (DEM) extraction over low contrast terrains such as snow, ice and shadows. These DEM\u0027s have horizontal and vertical offsets of up to several meters that can be reduced to the DEM relative accuracy of 0.2 meter with a single ground control point. We will use available control points from ground and lidar surveys to register individual DEMs and optimized, least-squares co-registration to provide control between overlapping DEM\u0027s over large regions. REMA will have a posting of 10 meters and accuracy better than 1 meter. It will be distributed openly by the Polar Geospatial Center. This project will involve substantial undergraduate participation, providing training in geospatial science and remote sensing, and REMA will be used extensively for the outreach programs of the Byrd Polar and Climate Research Center. This project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Topography; AMD; USA/NSF; Amd/Us; USAP-DC; Antarctica; ICE SHEETS; COMPUTERS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Howat, Ian; Myoung-Jong Noh, ", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "PGC", "repositories": "PGC", "science_programs": null, "south": -90.0, "title": "The Reference Elevation Model of Antarctica", "uid": "p0010180", "west": -180.0}, {"awards": "1834986 Ballard, Grant", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "datasets": [{"dataset_uid": "601612", "doi": "10.15784/601612", "keywords": "Aerial Imagery; Aerial Survey; Antarctica; Biota; Geotiff; Penguin; Photo/video; Photo/Video; Population Count; Ross Island; UAV", "people": "Ballard, Grant; Schmidt, Annie; Shah, Kunal", "repository": "USAP-DC", "science_program": null, "title": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "url": "https://www.usap-dc.org/view/dataset/601612"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species\u0027 range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential ofclimate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan. Adelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species\u0027 response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "UAS; Ross Island; USA/NSF; FIELD INVESTIGATION; AMD; UAV; MARINE ECOSYSTEMS; USAP-DC; Amd/Us; Penguin", "locations": "Ross Island", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Schwager, Mac; McKown, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Does Nest Density Matter? Using Novel Technology to Collect Whole-colony Data on Adelie Penguins.", "uid": "p0010178", "west": 165.0}, {"awards": "1852617 Carlstrom, John", "bounds_geometry": "POINT(0 -90)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 May 2021 00:00:00 GMT", "description": "This award is to support measurements of the 14-billion-year cosmic microwave background (CMB) light with the South Pole Telescope (SPT) to address some of the most basic and compelling questions in cosmology: What is the origin of the Universe? What is the Universe made of? What is the mass scale of the neutrinos? When did the first stars and galaxies form and how was the Universe reionized? What is the Dark Energy that is accelerating the expansion of the Universe? The SPT plays a unique role in the pursuit of these questions. Its siting is ideal for ultra-low-noise imaging surveys of the sky at the millimeter and sub-millimeter radio wavelengths. The SPT is supported by the NSF\u0027s Amundsen-Scott South Pole Station, which is the best operational site on Earth for mm-wave sky surveys. This unique geographical location allows SPT to obtain extremely sensitive 24/7 observations of targeted low Galactic foreground regions of the sky. The telescope\u0027s third-generation, SPT-3G receiver has 16,000 detectors configured for polarization-sensitive observations in three millimeter-wave bands. The proposed operation includes five years of sky surveys to obtain ultra-deep measurements of a 1500 square degree field and to produce and publicly archive essential data products from the survey. The telescope\u0027s CMB temperatures and polarization power spectrum will play a central role in probing the nature of current tensions among cosmological parameter estimations from different data sets and determining if their explanation requires physics beyond the current LCDM model. The data will help constraining the Dark Energy properties that affect the growth of large structures through both the CMB lensing and abundance of galaxy clusters. The proposed operations also support SPT\u0027s critical role in the Event Horizon Telescope (EHT), a global array of telescopes to image the event horizon around the black hole at the center of Milky Way Galaxy. This award addresses and advances the science objectives and goals of the NSF\u0027s \"Windows on the Universe: The Era of Multi-Messenger Astrophysics\" program. The proposed research activity will also contribute to the training of the next generation of scientists by integrating graduate and undergraduate education with the technology development, astronomical observations, and scientific analyses of SPT data. Research and education are integrated by bringing research activities into the undergraduate classroom and sharing of forefront research with non-scientists extending it beyond the university through a well-established educational network that reaches a wide audience at all levels of the educational continuum. Through museum partnerships and new media, the SPT outreach and educational efforts reach large numbers of individuals while personalizing the experience. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e RADIO WAVE DETECTORS \u003e RADIO TELESCOPES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; Adelie Penguin; THERMAL INFRARED; South Pole Station; Amd/Us; OBSERVATORIES", "locations": "South Pole Station", "north": -90.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Astrophysics and Geospace Sciences; Antarctic Science and Technology", "paleo_time": null, "persons": "Carlstrom, John; Holzapfel, William; Benson, Bradford", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e OBSERVATORIES", "repositories": null, "science_programs": null, "south": -90.0, "title": "South Pole Telescope Operations and Data Products", "uid": "p0010176", "west": 0.0}, {"awards": "1543325 Landolt, Scott; 1543377 Seefeldt, Mark", "bounds_geometry": "POLYGON((166.918 -77.8675,167.2997 -77.8675,167.6814 -77.8675,168.0631 -77.8675,168.4448 -77.8675,168.8265 -77.8675,169.2082 -77.8675,169.5899 -77.8675,169.9716 -77.8675,170.3533 -77.8675,170.735 -77.8675,170.735 -77.98145,170.735 -78.0954,170.735 -78.20935,170.735 -78.3233,170.735 -78.43725,170.735 -78.5512,170.735 -78.66515,170.735 -78.7791,170.735 -78.89305,170.735 -79.007,170.3533 -79.007,169.9716 -79.007,169.5899 -79.007,169.2082 -79.007,168.8265 -79.007,168.4448 -79.007,168.0631 -79.007,167.6814 -79.007,167.2997 -79.007,166.918 -79.007,166.918 -78.89305,166.918 -78.7791,166.918 -78.66515,166.918 -78.5512,166.918 -78.43725,166.918 -78.3233,166.918 -78.20935,166.918 -78.0954,166.918 -77.98145,166.918 -77.8675))", "dataset_titles": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "datasets": [{"dataset_uid": "601441", "doi": "10.15784/601441", "keywords": "Accumulation; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Precipitation; Ross Ice Shelf; Snow; Snow/ice; Snow/Ice; Weatherstation; Weather Station Data", "people": "Seefeldt, Mark", "repository": "USAP-DC", "science_program": null, "title": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "url": "https://www.usap-dc.org/view/dataset/601441"}], "date_created": "Tue, 27 Apr 2021 00:00:00 GMT", "description": "Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. Project goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications.", "east": 170.735, "geometry": "POINT(168.8265 -78.43725)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; Amd/Us; USA/NSF; SNOW; Wind Data; WEATHER STATIONS; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.8675, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Seefeldt, Mark; Landolt, Scott", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.007, "title": "Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation", "uid": "p0010173", "west": 166.918}, {"awards": "1738992 Pettit, Erin C; 1929991 Pettit, Erin C", "bounds_geometry": "POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))", "dataset_titles": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021; AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data; AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021; AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021; CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019; Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper; Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022); Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022; SIIOS Temporary Deployment; Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020; Thwaites Eastern Ice Shelf GPS displacements; Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation; Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020; Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites; Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "datasets": [{"dataset_uid": "601547", "doi": "10.15784/601547", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601547"}, {"dataset_uid": "601478", "doi": "10.15784/601478", "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "people": "Klinger, Marin; Wild, Christian; Scambos, Ted; Wallin, Bruce; Truffer, Martin; Alley, Karen; Pettit, Erin; Muto, Atsu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "url": "https://www.usap-dc.org/view/dataset/601478"}, {"dataset_uid": "601925", "doi": "10.15784/601925", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; Ice Shelf; Ice Velocity; Thwaites Glacier", "people": "Pettit, Erin; Alley, Karen; Wild, Christian; Scambos, Ted; Truffer, Martin", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Eastern Ice Shelf GPS displacements", "url": "https://www.usap-dc.org/view/dataset/601925"}, {"dataset_uid": "601499", "doi": "10.15784/601499", "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "people": "Truffer, Martin; Pettit, Erin; Scambos, Ted; Muto, Atsu; Alley, Karen; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "url": "https://www.usap-dc.org/view/dataset/601499"}, {"dataset_uid": "601914", "doi": null, "keywords": "Antarctica; Cryosphere; Glaciology; Ice Shelf; Thwaites Glacier; Velocity", "people": "Wild, Christian; Alley, Karen; Muto, Atsuhiro; Scambos, Ted; Pettit, Erin; Truffer, Martin; Luckman, Adrian; Lilien, David; Banerjee, Debangshu", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sentinel-1-derived monthly-averaged velocity components from Thwaites Eastern Ice Shelf, 2016 - 2022", "url": "https://www.usap-dc.org/view/dataset/601914"}, {"dataset_uid": "601904", "doi": "10.15784/601904", "keywords": "Antarctica; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Shelf; Remote Sensing; Satellite Imagery; Thwaites; Thwaites Glacier; Velocity", "people": "Pettit, Erin; Alley, Karen; Wild, Christian; Banerjee, Debangshu; Lilien, David; Truffer, Martin; Muto, Atsuhiro; Luckman, Adrian; Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Yearly velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2013-2022", "url": "https://www.usap-dc.org/view/dataset/601904"}, {"dataset_uid": "601903", "doi": "10.15784/601903", "keywords": "Antarctica; Cryosphere; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Thwaites", "people": "Lilien, David; Alley, Karen; Truffer, Martin; Luckman, Adrian; Wild, Christian; Banerjee, Debangshu; Pettit, Erin; Scambos, Ted; Muto, Atsuhiro", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Pinning-point shear-zone fractures in Thwaites Eastern Ice Shelf (2002 - 2022)", "url": "https://www.usap-dc.org/view/dataset/601903"}, {"dataset_uid": "601544", "doi": "10.15784/601544", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601544"}, {"dataset_uid": "601545", "doi": "10.15784/601545", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "url": "https://www.usap-dc.org/view/dataset/601545"}, {"dataset_uid": "601548", "doi": "10.15784/601548", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "url": "https://www.usap-dc.org/view/dataset/601548"}, {"dataset_uid": "601549", "doi": "10.15784/601549", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "url": "https://www.usap-dc.org/view/dataset/601549"}, {"dataset_uid": "601552", "doi": "10.15784/601552", "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "url": "https://www.usap-dc.org/view/dataset/601552"}, {"dataset_uid": "601578", "doi": "10.15784/601578", "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Segabinazzi-Dotto, Tiago; Wild, Christian", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "url": "https://www.usap-dc.org/view/dataset/601578"}, {"dataset_uid": "200204", "doi": "https://doi.org/10.7914/SN/1L_2019", "keywords": null, "people": null, "repository": "International Federation of Digital Seismograph Networks", "science_program": null, "title": "SIIOS Temporary Deployment", "url": "http://www.fdsn.org/networks/detail/1L_2019/"}, {"dataset_uid": "200321", "doi": "10.5285/e338af5d-8622-05de-e053-6c86abc06489", "keywords": null, "people": null, "repository": "British Oceanographic Data Centre", "science_program": null, "title": "CTD data from the NBP 19/02 cruise as part of the TARSAN project in the Amundsen Sea during austral summer 2018/2019", "url": "https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/e338af5d-8622-05de-e053-6c86abc06489/"}, {"dataset_uid": "601827", "doi": "10.15784/601827", "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "people": "Pettit, Erin; Wild, Christian; Alley, Karen; Scambos, Ted; Muto, Atsuhiro; Truffer, Martin; Pomraning, Dale; Wallin, Bruce; Roccaro, Alexander", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "url": "https://www.usap-dc.org/view/dataset/601827"}], "date_created": "Mon, 22 Feb 2021 00:00:00 GMT", "description": "This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team\u0027s specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a \"Live from the Ice\" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.0, "geometry": "POINT(-109 -75)", "instruments": null, "is_usap_dc": true, "keywords": "Thwaites Glacier; FIELD SURVEYS; GLACIERS/ICE SHEETS", "locations": "Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Scambos, Ted; Muto, Atsu; Heywood, Karen; Boehme, Lars; Hall, Robert; Wahlin, Anna; Lenaerts, Jan; Pettit, Erin", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "British Oceanographic Data Centre; International Federation of Digital Seismograph Networks; USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "uid": "p0010162", "west": -114.0}, {"awards": "1643353 Christianson, Knut; 1643301 Gerbi, Christopher", "bounds_geometry": null, "dataset_titles": "ImpDAR: an impulse radar processor; SeidarT; South Pole Lake ApRES Radar; South Pole Lake GNSS; South Pole Lake: ground-based ice-penetrating radar", "datasets": [{"dataset_uid": "200244", "doi": " https://zenodo.org/badge/latestdoi/382590632", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "SeidarT", "url": "https://github.com/UMainedynamics/SeidarT"}, {"dataset_uid": "200203", "doi": "", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "South Pole Lake: ground-based ice-penetrating radar", "url": "http://hdl.handle.net/1773/45293"}, {"dataset_uid": "601502", "doi": "10.15784/601502", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; GPS; GPS Data; South Pole; Subglacial Lakes", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake GNSS", "url": "https://www.usap-dc.org/view/dataset/601502"}, {"dataset_uid": "200202", "doi": "http://doi.org/10.5281/zenodo.3833057", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ImpDAR: an impulse radar processor", "url": "https://www.github.com/dlilien/ImpDAR"}, {"dataset_uid": "601503", "doi": "10.15784/601503", "keywords": "Antarctica; Apres; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; Subglacial Lakes; Vertical Velocity", "people": "Hills, Benjamin", "repository": "USAP-DC", "science_program": null, "title": "South Pole Lake ApRES Radar", "url": "https://www.usap-dc.org/view/dataset/601503"}], "date_created": "Wed, 17 Feb 2021 00:00:00 GMT", "description": "Gerbi/1643301 This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; GLACIERS/ICE SHEETS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; South Pole; USA/NSF; AMD; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; FIELD SURVEYS; Amd/Us", "locations": "South Pole; United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Christianson, Knut; Gerbi, Christopher; Campbell, Seth; Vel, Senthil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "GitHub", "repositories": "GitHub; Uni. Washington ResearchWorks Archive; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow", "uid": "p0010160", "west": null}, {"awards": "0838968 Putkonen, Jaakko; 0838757 Balco, Gregory", "bounds_geometry": "POLYGON((-158.00085 -83.2093,-157.945063 -83.2093,-157.889276 -83.2093,-157.833489 -83.2093,-157.777702 -83.2093,-157.721915 -83.2093,-157.666128 -83.2093,-157.610341 -83.2093,-157.554554 -83.2093,-157.498767 -83.2093,-157.44298 -83.2093,-157.44298 -83.50197,-157.44298 -83.79464,-157.44298 -84.08731,-157.44298 -84.37998,-157.44298 -84.67265,-157.44298 -84.96532,-157.44298 -85.25799,-157.44298 -85.55066,-157.44298 -85.84333,-157.44298 -86.136,-157.498767 -86.136,-157.554554 -86.136,-157.610341 -86.136,-157.666128 -86.136,-157.721915 -86.136,-157.777702 -86.136,-157.833489 -86.136,-157.889276 -86.136,-157.945063 -86.136,-158.00085 -86.136,-158.00085 -85.84333,-158.00085 -85.55066,-158.00085 -85.25799,-158.00085 -84.96532,-158.00085 -84.67265,-158.00085 -84.37998,-158.00085 -84.08731,-158.00085 -83.79464,-158.00085 -83.50197,-158.00085 -83.2093))", "dataset_titles": "Interface to observational data and geologic age information calculated therefrom; Web page with links to files containing cosmogenic noble gas concentrations and related analytical data", "datasets": [{"dataset_uid": "200197", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Interface to observational data and geologic age information calculated therefrom", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200198", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Web page with links to files containing cosmogenic noble gas concentrations and related analytical data", "url": "http://noblegas.berkeley.edu/~balcs/ongvalley/"}], "date_created": "Sun, 20 Dec 2020 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposed project will investigate the coldest and driest parts of the Transantarctic Mountains (Ong Valley at Nimrod Glacier and Moraine Canyon at Amundsen Glacier) where the lack of running water and biological activity in the modern environment is thought to have preserved the landscape, essentially unchanged, for millions of years. Contrary to this common belief, it is hypothesized that the landscape does evolve, perhaps as fast as many surfaces in the Dry Valleys area where both loose soil and bedrock surfaces have been degrading at a rate of about 1-2 m/Myrs for the past several million years. The research team will rely on analysis of the both stable and radioactive cosmogenic isotopes that accumulate in near surface soil and bedrock. Collectively these measurements allow comparison of the long term landscape evolution to current processes and environmental drivers such as wind speed. The results of this work will improve understanding of the evolution of the Earth\u0027s surface and directly aid in evaluating imagery of Martian geomorphology. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": -157.44298, "geometry": "POINT(-157.721915 -84.67265)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -83.2093, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Balco, Gregory; Putkonen, Jaakko; Morgan, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D; PI website", "science_programs": null, "south": -86.136, "title": "Collaborative Research: Systematic Analysis of Landscape Evolution and Surface Ages in Transantarctic Mountains", "uid": "p0010152", "west": -158.00085}, {"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}, {"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish\u0027s habitat and the fish\u0027s behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid\u0027s freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "1643873 Hansen, Samantha; 1643798 Emry, Erica", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "GEOSCOPE Network; IU: Global Seismograph Network; Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise; XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ; YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets; ZJ (2012-2015): Transantarctic Mountains Northern Network ; ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "datasets": [{"dataset_uid": "200169", "doi": "10.7914/SN/IU", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IU: Global Seismograph Network", "url": "http://www.fdsn.org/networks/detail/IU/"}, {"dataset_uid": "200171", "doi": "10.7914/SN/YT_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "YT (2007-2023): IPY POLENET-Antarctica: Investigating links between geodynamics and ice sheets", "url": "http://www.fdsn.org/networks/detail/YT_2007/"}, {"dataset_uid": "200172", "doi": "10.7914/SN/ZM_2007", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": " ZM (2007-2013): A Broadband Seismic Experiment to Image the Lithosphere beneath the Gamburtsev Mountains, East Antarctica", "url": "http://www.fdsn.org/networks/detail/ZM_2007/"}, {"dataset_uid": "601909", "doi": "10.15784/601909", "keywords": "Ambient Seismic Noise; Antarctica; Cryosphere; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity", "people": "Hansen, Samantha; Emry, Erica", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "url": "https://www.usap-dc.org/view/dataset/601909"}, {"dataset_uid": "200170", "doi": "10.7914/SN/XP_2000", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "XP (2000-2004): A Broadband Seismic Investigation of Deep Continental Structure Across the East-West Antarctic Boundary ", "url": "http://www.fdsn.org/networks/detail/XP_2000/"}, {"dataset_uid": "200168", "doi": "10.18715/GEOSCOPE.G", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "GEOSCOPE Network", "url": "http://geoscope.ipgp.fr/networks/detail/G/"}, {"dataset_uid": "200173", "doi": "10.7914/SN/ZJ_2012", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "ZJ (2012-2015): Transantarctic Mountains Northern Network ", "url": "http://www.fdsn.org/networks/detail/ZJ_2012/"}], "date_created": "Thu, 15 Oct 2020 00:00:00 GMT", "description": "Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS", "is_usap_dc": true, "keywords": "SEISMIC SURFACE WAVES; USA/NSF; USAP-DC; SEISMOLOGICAL STATIONS; Amd/Us; AMD; POLNET; TECTONICS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Emry, Erica; Hansen, Samantha", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS", "repo": "IRIS", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "uid": "p0010139", "west": -180.0}, {"awards": "1341500 Ryberg, Patricia", "bounds_geometry": null, "dataset_titles": "Images of Fossil Plants of Antarctica", "datasets": [{"dataset_uid": "601066", "doi": "10.15784/601066", "keywords": "Antarctica; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Ryberg, Patricia", "repository": "USAP-DC", "science_program": null, "title": "Images of Fossil Plants of Antarctica", "url": "https://www.usap-dc.org/view/dataset/601066"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM \u0026 SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. Broader impacts: The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; AMD; PLANTS; Victoria Land Basin; Transantarctic Mountains; Amd/Us; USA/NSF; Fossils; SEDIMENTS; FIELD INVESTIGATION; USAP-DC", "locations": "Antarctica; Transantarctic Mountains; Victoria Land Basin", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ryberg, Patricia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "RUI: Antarctic Paleobotany: Permian Floral Characteristics in a Sedimentary Setting", "uid": "p0010134", "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Raw satellite images from NB Palmer and LM Gould Antarctic cruises", "datasets": [{"dataset_uid": "601313", "doi": "10.15784/601313", "repository": "USAP-DC", "science_program": null, "title": "Raw satellite images from NB Palmer and LM Gould Antarctic cruises", "url": "http://www.usap-dc.org/view/dataset/601313"}], "date_created": "Mon, 04 May 2020 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; LMG0301; LMG0302; LMG0304; LMG0309; LMG0411; LMG0412; LMG0413A; LMG0414; LMG0502; LMG0511; LMG0512; LMG0514; LMG0605; LMG0610; LMG0611; LMG0611B; LMG0612; LMG0717; LMG0804; LMG0808; LMG0809; LMG0901; LMG0905; LMG0906A; LMG0909; LMG0910; LMG1001; NBP0107; NBP0301; NBP0302; NBP0304A; NBP0305; NBP0305A; NBP0401; NBP0402; NBP0404; NBP0409; NBP0501; NBP0506; NBP0508; NBP0601; NBP0602A; NBP0603; NBP0608; NBP0701; NBP0702; NBP0703; NBP0709; NBP0710; NBP0711; NBP0801; NBP0802; NBP0803; NBP0804; NBP0805; NBP0806; NBP0808; NBP0901; NBP0908; NBP1101; NBP1102; Satellite; Satellite Imagery", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": null, "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "9319854 Bell, Robin; 9319877 Finn, Carol; 9319369 Blankenship, Donald", "bounds_geometry": "POLYGON((-155 -77.5,-150 -77.5,-145 -77.5,-140 -77.5,-135 -77.5,-130 -77.5,-125 -77.5,-120 -77.5,-115 -77.5,-110 -77.5,-105 -77.5,-105 -78.2,-105 -78.9,-105 -79.6,-105 -80.3,-105 -81,-105 -81.7,-105 -82.4,-105 -83.1,-105 -83.8,-105 -84.5,-110 -84.5,-115 -84.5,-120 -84.5,-125 -84.5,-130 -84.5,-135 -84.5,-140 -84.5,-145 -84.5,-150 -84.5,-155 -84.5,-155 -83.8,-155 -83.1,-155 -82.4,-155 -81.7,-155 -81,-155 -80.3,-155 -79.6,-155 -78.9,-155 -78.2,-155 -77.5))", "dataset_titles": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project; SOAR-IRE airborne gravity data for the CASERTZ/WAIS project; SOAR-TKD airborne gravity data for the CASERTZ/WAIS project; SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "datasets": [{"dataset_uid": "601289", "doi": "10.15784/601289", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-TKD airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601289"}, {"dataset_uid": "601290", "doi": "10.15784/601290", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-IRE airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601290"}, {"dataset_uid": "601291", "doi": "10.15784/601291", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Solid Earth; WAIS", "people": "Bell, Robin; Arko, Robert A.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WAZ Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601291"}, {"dataset_uid": "601288", "doi": "10.15784/601288", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Solid Earth; WAIS", "people": "Arko, Robert A.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-BSB Airborne gravity data for the CASERTZ/WAIS project", "url": "https://www.usap-dc.org/view/dataset/601288"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "Blankenship: 9319369 Bell: 9319854 Behrendt: 9319877 This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.", "east": -105.0, "geometry": "POINT(-130 -81)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": true, "keywords": "USAP-DC; MAGNETIC FIELD; GRAVITY FIELD; Antarctica; GLACIERS/ICE SHEETS; Marie Byrd Land; Airborne Gravity", "locations": "Marie Byrd Land; Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Blankenship, Donald D.; Finn, C. A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Lithospheric Controls on the Behavior of the West Antarctic Ice Sheet: Corridor Aerogeophysics of Eastern Ross Transect Zone", "uid": "p0010094", "west": -155.0}, {"awards": "9725374 Bell, Robin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AWI processed ship-based Gravimeter Data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990); BGR processed Gravimeter data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990); CNES processed Gravimeter Data from the Antarctica (Continent) assembled as part of the ADGRAV Data Compilation (1990); Japanese processed Gravimeter Data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990); Norwegian Processed ship-based Gravimeter data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990); Russian processed Gravimeter data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990)", "datasets": [{"dataset_uid": "601281", "doi": null, "keywords": "ADGRAV; Antarctica; Geology/Geophysics - Other; Gravimeter; Gravity; Marine Geoscience; Ship", "people": "Bell, Robin; Damaske, Detlef", "repository": "USAP-DC", "science_program": null, "title": "BGR processed Gravimeter data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990)", "url": "https://www.usap-dc.org/view/dataset/601281"}, {"dataset_uid": "601280", "doi": null, "keywords": "ADGRAV; Antarctica; Geology/Geophysics - Other; Gravimeter; Gravity; PMGRE Il-38", "people": "Andrianov, Sergei; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Russian processed Gravimeter data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990)", "url": "https://www.usap-dc.org/view/dataset/601280"}, {"dataset_uid": "601279", "doi": null, "keywords": "ADGRAV; Antarctica; Geology/Geophysics - Other; Gravimeter; Gravity", "people": "Tronstad, Stein; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Norwegian Processed ship-based Gravimeter data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990)", "url": "https://www.usap-dc.org/view/dataset/601279"}, {"dataset_uid": "601278", "doi": null, "keywords": "ADGRAV; Antarctica; Geology/Geophysics - Other; Gravimeter; Gravity; Marine Geoscience", "people": "Biancale, Richard; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "CNES processed Gravimeter Data from the Antarctica (Continent) assembled as part of the ADGRAV Data Compilation (1990)", "url": "https://www.usap-dc.org/view/dataset/601278"}, {"dataset_uid": "601277", "doi": null, "keywords": "ADGRAV; Antarctica; Geology/Geophysics - Other; Gravimeter; Gravity; Marine Geoscience; R/v Polarstern; Weddell Sea", "people": "Jokat, Wilfred; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "AWI processed ship-based Gravimeter Data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990)", "url": "https://www.usap-dc.org/view/dataset/601277"}, {"dataset_uid": "601282", "doi": null, "keywords": "ADGRAV; Antarctica; Geology/Geophysics - Other; Gravimeter; Gravity; Marine Geoscience; Ship", "people": "Bell, Robin; Nogi, Yasufumi", "repository": "USAP-DC", "science_program": null, "title": "Japanese processed Gravimeter Data from the Antarctica assembled as part of the ADGRAV Data Compilation (1990)", "url": "https://www.usap-dc.org/view/dataset/601282"}], "date_created": "Mon, 13 Apr 2020 00:00:00 GMT", "description": "9725374 Bell The goal of this project is to develop a Web-based Antarctic gravity database to globally facilitate scientific use of gravity data in Antarctic studies. This compilation will provide an important new tool to the Antarctic Earth science community from the geologist placing field observations in a regional context to the seismologist studying continental scale mantle structure. The gravity database will complement the parallel projects underway to develop new continental bedrock (BEDMAP) and magnetic (ADMAP) maps of Antarctica. An international effort will parallel these ongoing projects in contacting the Antarctic geophysical community, identifying existing data sets, agreeing upon protocols for the use of data contributed to the database and finally assembling a new continental scale gravity map. The project has three principal stages. The first stage will be to investigate the accuracy and resolution of currently available high resolution satellite derived gravity data and quantify spatial variations in both accuracy and resolution. The second stage of this project will be to develop an interactive method of accessing existing satellite, shipboard, land based, and airborne gravity data via a Web based interface. The Lamont-Doherty Earth Observatory RIDGE Multi-beam bathymetry database will be used as a template for this project. The existing online RIDGE database allows users to access the raw data, the gridded data and raster images of the seafloor topography. A similar structure will be produced for the existing Antarctic gravity data. The third stage of this project will be to develop an international program to compile existing gravity data south of 60 S. This project will be discussed with leaders of both the ADMAP and BEDMAP efforts and the appropriate working groups of SCAR. A preliminary map of existing gravity data will be presented at the Antarctic Earth Science meeting in Wellington in 1999. A gravity working group meeting will be held in conjunction with the Wellington meeting to reach a consensus on the protocols for placing data into the database. By the completion of the project, existing gravity data will be identified and international protocols for placing this data in the on-line database will have been defined. The process of archiving the gravity data into the database will be an ongoing project as additional data become available.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; USAP-DC; GRAVITY FIELD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Small, Christopher", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Development of a New Generation Gravity Map of Antarctica", "uid": "p0010092", "west": -180.0}, {"awards": "1643733 Trusel, Luke; 1643715 Moussavi, Mahsa Sadat", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Supraglacial Lakes in Antarctica", "datasets": [{"dataset_uid": "601401", "doi": "10.15784/601401", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Landsat-8; Satellite Imagery; Supraglacial Lake", "people": "Halberstadt, Anna Ruth; Pope, Allen; Moussavi, Mahsa; Trusel, Luke; Abdalati, Waleed", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lakes in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601401"}], "date_created": "Mon, 16 Mar 2020 00:00:00 GMT", "description": "Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Supraglacial Lake; ICE SHEETS; Satellite Imagery; LANDSAT; Antarctica; USAP-DC; AMD; USA/NSF; SENTINEL-2A", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Moussavi, Mahsa; Pope, Allen; Trusel, Luke", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SENTINEL-2 \u003e SENTINEL-2A", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes", "uid": "p0010088", "west": -180.0}, {"awards": "1643864 Talghader, Joseph", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "datasets": [{"dataset_uid": "601254", "doi": "10.15784/601254", "keywords": "Antarctica; C-axis; Ice; Microscopy; Thin Sections", "people": "Talghader, Joseph; Mah, Merlin", "repository": "USAP-DC", "science_program": null, "title": " Automated c-axis stage images of WDC-06A 420 vertical thin section from WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601254"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; USAP-DC; Amd/Us; GLACIERS/ICE SHEETS; USA/NSF; FIELD INVESTIGATION; Ice Core; AMD", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Talghader, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Borehole Logging to Classify Volcanic Signatures in Antarctic Ice", "uid": "p0010080", "west": -112.085}, {"awards": "1246111 Dalziel, Ian", "bounds_geometry": "POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53))", "dataset_titles": "BAS Geological Collection: Central Scotia Sea (full data link not provided); Nathaniel B Palmer NBP 1408; South Georgia: SOG1, SOG2, SOG3", "datasets": [{"dataset_uid": "200107", "doi": "", "keywords": null, "people": null, "repository": "British Antarctic Survey", "science_program": null, "title": "BAS Geological Collection: Central Scotia Sea (full data link not provided)", "url": "https://www.bas.ac.uk/data/our-data/collections/geological-collections/"}, {"dataset_uid": "200106", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Nathaniel B Palmer NBP 1408", "url": "http://www.marine-geo.org/tools/search/entry.php?id=NBP1408"}, {"dataset_uid": "200105", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "South Georgia: SOG1, SOG2, SOG3", "url": "https://www.unavco.org/data/gps-gnss/gps-gnss.html"}], "date_created": "Tue, 28 Jan 2020 00:00:00 GMT", "description": "Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.", "east": -33.0, "geometry": "POINT(-38.5 -55)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Scotia Sea; PLATE BOUNDARIES; TECTONIC PROCESSES; NOT APPLICABLE; COASTAL ELEVATION; Southern Ocean; USAP-DC", "locations": "Scotia Sea; Southern Ocean", "north": -53.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "British Antarctic Survey", "repositories": "British Antarctic Survey; MGDS; UNAVCO", "science_programs": null, "south": -57.0, "title": "Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current", "uid": "p0010078", "west": -44.0}, {"awards": "1341496 Girton, James", "bounds_geometry": "POLYGON((-142 -66,-135.3 -66,-128.6 -66,-121.9 -66,-115.2 -66,-108.5 -66,-101.8 -66,-95.1 -66,-88.4 -66,-81.7 -66,-75 -66,-75 -66.8,-75 -67.6,-75 -68.4,-75 -69.2,-75 -70,-75 -70.8,-75 -71.6,-75 -72.4,-75 -73.2,-75 -74,-81.7 -74,-88.4 -74,-95.1 -74,-101.8 -74,-108.5 -74,-115.2 -74,-121.9 -74,-128.6 -74,-135.3 -74,-142 -74,-142 -73.2,-142 -72.4,-142 -71.6,-142 -70.8,-142 -70,-142 -69.2,-142 -68.4,-142 -67.6,-142 -66.8,-142 -66))", "dataset_titles": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703; Expedition Data; Expedition data of NBP1701", "datasets": [{"dataset_uid": "601302", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Benthos; Biota; LMG1708; Oceans; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Ship; Yoyo Camera", "people": "Girton, James", "repository": "USAP-DC", "science_program": null, "title": "Bottom Photographs from the Antarctic Peninsula acquired during R/V Laurence M. Gould expedition LMG1703", "url": "https://www.usap-dc.org/view/dataset/601302"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Tue, 10 Dec 2019 00:00:00 GMT", "description": "Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.", "east": -75.0, "geometry": "POINT(-108.5 -70)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "OCEAN TEMPERATURE; R/V NBP; USAP-DC; ICE DEPTH/THICKNESS; HEAT FLUX; OCEAN CURRENTS; SALINITY/DENSITY; LMG1703; Bellingshausen Sea; Yoyo Camera; WATER MASSES; R/V LMG; NBP1701", "locations": "Bellingshausen Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Girton, James; Rynearson, Tatiana", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -74.0, "title": "Collaborative Research: Pathways of Circumpolar Deep Water to West Antarctica from Profiling Float and Satellite Measurements", "uid": "p0010074", "west": -142.0}, {"awards": "1443371 Fountain, Andrew", "bounds_geometry": "POLYGON((160.2 -77.1,160.57 -77.1,160.94 -77.1,161.31 -77.1,161.68 -77.1,162.05 -77.1,162.42 -77.1,162.79 -77.1,163.16 -77.1,163.53 -77.1,163.9 -77.1,163.9 -77.196,163.9 -77.292,163.9 -77.388,163.9 -77.484,163.9 -77.58,163.9 -77.676,163.9 -77.772,163.9 -77.868,163.9 -77.964,163.9 -78.06,163.53 -78.06,163.16 -78.06,162.79 -78.06,162.42 -78.06,162.05 -78.06,161.68 -78.06,161.31 -78.06,160.94 -78.06,160.57 -78.06,160.2 -78.06,160.2 -77.964,160.2 -77.868,160.2 -77.772,160.2 -77.676,160.2 -77.58,160.2 -77.484,160.2 -77.388,160.2 -77.292,160.2 -77.196,160.2 -77.1))", "dataset_titles": "McMurdo Dry Valleys LTER: A digital archive of human activity in the McMurdo Dry Valleys, Antarctica from 1902 to present", "datasets": [{"dataset_uid": "200086", "doi": "10.6073/pasta/0725cbd31f2af4bca2c6ad145e38dd3a", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: A digital archive of human activity in the McMurdo Dry Valleys, Antarctica from 1902 to present", "url": "https://doi.org/10.6073/pasta/0725cbd31f2af4bca2c6ad145e38dd3a"}], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "Beginning with the discovery of a \"curious valley\" in 1903 by Captain Scott, the McMurdo Dry Valleys (MDV) in Antarctica have been impacted by humans, although there were only three brief visits prior to 1950. Since the late 1950\u0027s, human activity in the MDV has become commonplace in summer, putting pressure on the region\u0027s fragile ecosystems through camp construction and inhabitation, cross-valley transport on foot and via vehicles, and scientific research that involves sampling and deployment of instruments. Historical photographs, put alongside information from written documentation, offer an invaluable record of the changing patterns of human activity in the MDV. Photographic images often show the physical extent of field camps and research sites, the activities that were taking place, and the environmental protection measures that were being followed. Historical photographs of the MDV, however, are scattered in different places around the world, often in private collections, and there is a real danger that many of these photos may be lost, along with the information they contain. This project will collect and digitize historical photographs of sites of human activity in the MDV from archives and private collections in the United States, New Zealand, and organize them both chronologically and spatially in a GIS database. Sites of past human activities will be re-photographed to provide comparisons with the present, and re-photography will assist in providing spatial data for historical photographs without obvious location information. The results of this analysis will support effective environmental management into the future. The digital photo archive will be openly available through the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) website (www.mcmlter.org), where it can be used by scientists, environmental managers, and others interested in the region. The central question of this project can be reformulated as a hypothesis: Despite an overall increase in human activities in the MDV, the spatial range of these activities has become more confined over time as a result of an increased awareness of ecosystem fragility and efforts to manage the region. To address this hypothesis, the project will define the spatial distribution and temporal frequency of human activity in the MDV. Photographs and reports will be collected from archives with polar collections such as the National Archives of New Zealand in Wellington and Christchurch and the Byrd Polar Research Center in Ohio. Private photograph collections will be accessed through personal connections, social media, advertisements in periodicals such as The Polar Times, and other means. Re-photography in the field will follow established techniques and will create benchmarks for future research projects. The spatial data will be stored in an ArcGIS database for analysis and quantification of the human footprint over time in the MDV. The improved understanding of changing patterns of human activity in the MDV provided by this historical photo archive will provide three major contributions: 1) a fundamentally important historic accounting of human activity to support current environmental management of the MDV; 2) defining the location and type of human activity will be of immediate benefit in two important ways: a) places to avoid for scientists interested in sampling pristine landscapes, and, b) targets of opportunity for scientists investigating the long-term environmental legacy of human activity; and 3) this research will make an innovative contribution to knowledge of the environmental history of the MDV.", "east": 163.9, "geometry": "POINT(162.05 -77.58)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "CONTAMINANT LEVELS/SPILLS; Antarctica; NOT APPLICABLE; USAP-DC", "locations": "Antarctica", "north": -77.1, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Fountain, Andrew; Howkins, Adrian", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -78.06, "title": "Collaborative Research: Assessing Changing Patterns of Human Activity in the McMurdo Dry Valleys using Digital Photo Archives", "uid": "p0010066", "west": 160.2}, {"awards": "1643550 Sletten, Ronald", "bounds_geometry": "POLYGON((160.5 -77.3,160.67 -77.3,160.84 -77.3,161.01 -77.3,161.18 -77.3,161.35 -77.3,161.52 -77.3,161.69 -77.3,161.86 -77.3,162.03 -77.3,162.2 -77.3,162.2 -77.35,162.2 -77.4,162.2 -77.45,162.2 -77.5,162.2 -77.55,162.2 -77.6,162.2 -77.65,162.2 -77.7,162.2 -77.75,162.2 -77.8,162.03 -77.8,161.86 -77.8,161.69 -77.8,161.52 -77.8,161.35 -77.8,161.18 -77.8,161.01 -77.8,160.84 -77.8,160.67 -77.8,160.5 -77.8,160.5 -77.75,160.5 -77.7,160.5 -77.65,160.5 -77.6,160.5 -77.55,160.5 -77.5,160.5 -77.45,160.5 -77.4,160.5 -77.35,160.5 -77.3))", "dataset_titles": "Timelapse photography of Don Juan Pond and surrounding basin", "datasets": [{"dataset_uid": "601487", "doi": "10.15784/601487", "keywords": "Antarctica; Brine; CaCl2; Don Juan Pond; Dry Valleys; Salt", "people": "Toner, Jonathan; Sletten, Ronald S.; Mushkin, Amit", "repository": "USAP-DC", "science_program": null, "title": "Timelapse photography of Don Juan Pond and surrounding basin", "url": "https://www.usap-dc.org/view/dataset/601487"}], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.", "east": 162.2, "geometry": "POINT(161.35 -77.55)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Antarctica; USA/NSF; USAP-DC; SOIL CHEMISTRY; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sletten, Ronald S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Formation and Characteristics of Brine-rich Water in the Dry Valleys, Antarctica", "uid": "p0010069", "west": 160.5}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic topographic and subglacial lake geostatistical simulations; Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "datasets": [{"dataset_uid": "601436", "doi": "10.15784/601436", "keywords": "Amundsen Sea; Antarctica; Bed Reflectivity; Ice Penetrating Radar; Radar Echo Sounder", "people": "Chu, Winnie; Schroeder, Dustin; Culberg, Riley; Hilger, Andrew M.; Young, Duncan A.; Vaughan, David G.; Seroussi, Helene; Jordan, Thomas M.", "repository": "USAP-DC", "science_program": null, "title": "Radar Sounding Observations of the Amundsen Sea Embayment, 2004-2005", "url": "https://www.usap-dc.org/view/dataset/601436"}, {"dataset_uid": "601213", "doi": "10.15784/601213", "keywords": "Active Lakes; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/ice; Snow/Ice; Subglacial Lakes; Topography", "people": "Caers, Jef; Scheidt, Celine; Siegfried, Matthew; MacKie, Emma; Schroeder, Dustin", "repository": "USAP-DC", "science_program": null, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "url": "https://www.usap-dc.org/view/dataset/601213"}], "date_created": "Sat, 12 Oct 2019 00:00:00 GMT", "description": "Earth\u0027s geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad. The radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS", "is_usap_dc": true, "keywords": "GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; Amd/Us; Airborne Radar; USA/NSF; ICE DEPTH/THICKNESS; Antarctica; Radar; AMD; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Schroeder, Dustin; MacKie, Emma", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "uid": "p0010058", "west": -180.0}, {"awards": "1543311 LaRue, Michelle; 1543230 Ainley, David; 1543003 Stammerjohn, Sharon; 1542791 Salas, Leonardo", "bounds_geometry": "POLYGON((-180 -64,-144 -64,-108 -64,-72 -64,-36 -64,0 -64,36 -64,72 -64,108 -64,144 -64,180 -64,180 -65.4,180 -66.8,180 -68.2,180 -69.6,180 -71,180 -72.4,180 -73.8,180 -75.2,180 -76.6,180 -78,144 -78,108 -78,72 -78,36 -78,0 -78,-36 -78,-72 -78,-108 -78,-144 -78,-180 -78,-180 -76.6,-180 -75.2,-180 -73.8,-180 -72.4,-180 -71,-180 -69.6,-180 -68.2,-180 -66.8,-180 -65.4,-180 -64))", "dataset_titles": "ContinentalWESEestimates; Counting seals from space tutorial; Fast Ice Tool; Weddell seals habitat suitability model for the Ross Sea", "datasets": [{"dataset_uid": "200047", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Counting seals from space tutorial", "url": "https://www.int-res.com/articles/suppl/m612p193_supp.pdf"}, {"dataset_uid": "200045", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Fast Ice Tool", "url": "https://github.com/leosalas/FastIceCovars"}, {"dataset_uid": "200046", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Weddell seals habitat suitability model for the Ross Sea", "url": "https://github.com/leosalas/WeddellSeal_SOS"}, {"dataset_uid": "200234", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "ContinentalWESEestimates", "url": "https://github.com/leosalas/ContinentalWESEestimates"}], "date_created": "Fri, 02 Aug 2019 00:00:00 GMT", "description": "The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage \"arm-chair\" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project\u0027s interactive website. Specifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation\u0027s Antarctic Science Program.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "COASTAL; Southern Ocean; COMMUNITY DYNAMICS; MAMMALS; SEA ICE; NOT APPLICABLE; Antarctica; PENGUINS; USAP-DC", "locations": "Antarctica; Southern Ocean", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "LaRue, Michelle; Stamatiou, Kostas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Publication", "repositories": "GitHub; Publication", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Determining Factors Affecting Distribution and Population Variability of the Ice-obligate Weddell Seal", "uid": "p0010041", "west": -180.0}, {"awards": "1745053 Salvatore, Mark; 1744849 Sokol, Eric; 1744785 Barrett, John", "bounds_geometry": "POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "datasets": [{"dataset_uid": "200344", "doi": "10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "url": "https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.263.1"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.43, "geometry": "POINT(163.175 -77.615)", "instruments": null, "is_usap_dc": true, "keywords": "RIVERS/STREAM; CYANOBACTERIA (BLUE-GREEN ALGAE); USAP-DC; Taylor Valley; INFRARED IMAGERY; WORLDVIEW-2; WORLDVIEW-3; Antarctica; FIELD INVESTIGATION; Amd/Us; ACTIVE LAYER", "locations": "Antarctica; Taylor Valley", "north": -77.56, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Barrett, John; Sokol, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-2; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-3", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.67, "title": "COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation", "uid": "p0010036", "west": 162.92}, {"awards": "1443677 Padman, Laurence; 1443534 Bell, Robin; 1443497 Siddoway, Christine; 1443498 Fricker, Helen", "bounds_geometry": "POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))", "dataset_titles": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice); LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice); ROSETTA-Ice data page; Ross Sea ocean model simulation used to support ROSETTA-Ice ; Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "datasets": [{"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Erofeeva, Svetlana; Padman, Laurence; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601788", "doi": null, "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "people": "Dhakal, Tejendra; Bertinato, Christopher; Boghosian, Alexandra; Locke, Caitlin; Becker, Maya K; Starke, Sarah", "repository": "USAP-DC", "science_program": null, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601788"}, {"dataset_uid": "601255", "doi": "10.15784/601255", "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "people": "Howard, Susan L.; Springer, Scott; Padman, Laurence", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "url": "https://www.usap-dc.org/view/dataset/601255"}, {"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200100", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "ROSETTA-Ice data page", "url": "http://wonder.ldeo.columbia.edu/data/ROSETTA-Ice/"}, {"dataset_uid": "601794", "doi": null, "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "people": "Dong, LingLing; Packard, Sarah; Spergel, Julian; Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Wearing, Martin; Keeshin, Skye; Bell, Robin; Das, Indrani", "repository": "USAP-DC", "science_program": null, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601794"}, {"dataset_uid": "601789", "doi": null, "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "people": "Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin; Cordero, Isabel", "repository": "USAP-DC", "science_program": null, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "url": "https://www.usap-dc.org/view/dataset/601789"}, {"dataset_uid": "601242", "doi": "10.15784/601242", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "people": "Cordero, Isabel; Tinto, Kirsty; Siegfried, Matthew; Frearson, Nicholas; Mosbeux, Cyrille; Siddoway, Christine; Hulbe, Christina; Fricker, Helen; Bell, Robin; Padman, Laurence; Das, Indrani; Dhakal, Tejendra", "repository": "USAP-DC", "science_program": null, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601242"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.", "east": 161.0, "geometry": "POINT(-174.5 -81.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Airborne Radar; LIDAR; Ross Ice Shelf; SALINITY; SALINITY/DENSITY; CONDUCTIVITY; ICE DEPTH/THICKNESS; Tidal Models; GRAVITY ANOMALIES; Ross Sea; Antarctica; BATHYMETRY; C-130; MAGNETIC ANOMALIES; USAP-DC; Airborne Gravity", "locations": "Ross Sea; Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bell, Robin; Frearson, Nicholas; Das, Indrani; Fricker, Helen; Padman, Laurence; Springer, Scott; Siddoway, Christine; Tinto, Kirsty", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e C-130", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "uid": "p0010035", "west": -150.0}, {"awards": "1341717 Ackley, Stephen; 1341513 Maksym, Edward; 1341606 Stammerjohn, Sharon; 1543483 Sedwick, Peter; 1341725 Guest, Peter", "bounds_geometry": "POLYGON((-180 -55,-177 -55,-174 -55,-171 -55,-168 -55,-165 -55,-162 -55,-159 -55,-156 -55,-153 -55,-150 -55,-150 -57.3,-150 -59.6,-150 -61.9,-150 -64.2,-150 -66.5,-150 -68.8,-150 -71.1,-150 -73.4,-150 -75.7,-150 -78,-153 -78,-156 -78,-159 -78,-162 -78,-165 -78,-168 -78,-171 -78,-174 -78,-177 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -75.7,160 -73.4,160 -71.1,160 -68.8,160 -66.5,160 -64.2,160 -61.9,160 -59.6,160 -57.3,160 -55,162 -55,164 -55,166 -55,168 -55,170 -55,172 -55,174 -55,176 -55,178 -55,-180 -55))", "dataset_titles": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017; Expedition data of NBP1704; Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle; NBP1704 CTD sensor data; NBP1704 Expedition Data; PIPERS Airborne LiDAR Data; PIPERS Meteorology Rawinsonde Data; PIPERS Meteorology Time Series; PIPERS Noble Gases; Sea Ice Layer Cakes, PIPERS 2017; SUMO unmanned aerial system (UAS) atmospheric data", "datasets": [{"dataset_uid": "601191", "doi": "10.15784/601191", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; NBP1704; PIPERS; R/v Nathaniel B. Palmer; Southern Ocean; Temperature Profiles; UAV; Unmanned Aircraft", "people": "Cassano, John", "repository": "USAP-DC", "science_program": null, "title": "SUMO unmanned aerial system (UAS) atmospheric data", "url": "https://www.usap-dc.org/view/dataset/601191"}, {"dataset_uid": "601188", "doi": "10.15784/601188", "keywords": "Aerogeophysics; Airborne Laser Altimetry; Antarctica; LIDAR; PIPERS; Ross Sea; Sea Ice", "people": "Dhakal, Tejendra; Bertinato, Christopher; Xie, Hongjie; Bell, Robin; Locke, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Airborne LiDAR Data", "url": "https://www.usap-dc.org/view/dataset/601188"}, {"dataset_uid": "601185", "doi": "10.15784/601185 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Rawinsonde Data", "url": "https://www.usap-dc.org/view/dataset/601185"}, {"dataset_uid": "200150", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Impact of Convective Processes and Sea Ice Formation on the Distribution of Iron in the Ross Sea: Closing the Seasonal Cycle", "url": "https://www.bco-dmo.org/project/815403"}, {"dataset_uid": "601183", "doi": "10.15784/601183", "keywords": "Antarctica; Glaciology; Ice Concentration; Ice Thickness; Ice Type; NBP1704; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow Depth; Snow/ice; Snow/Ice; Visual Observations", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "ASPeCt Visual Ice Observations on PIPERS Cruise NBP1704 April-June 2017", "url": "https://www.usap-dc.org/view/dataset/601183"}, {"dataset_uid": "601207", "doi": "10.15784/601207", "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "people": "Mei, M. Jeffrey; Maksym, Edward; Jeffrey Mei, M.", "repository": "USAP-DC", "science_program": null, "title": "Sea Ice Layer Cakes, PIPERS 2017", "url": "https://www.usap-dc.org/view/dataset/601207"}, {"dataset_uid": "002663", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1704", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601609", "doi": "10.15784/601609", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Mass Spectrometer; NBP1704; Noble Gas; Oceans; Ross Sea; R/v Nathaniel B. Palmer", "people": "Loose, Brice", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Noble Gases", "url": "https://www.usap-dc.org/view/dataset/601609"}, {"dataset_uid": "001363", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1704 Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1704"}, {"dataset_uid": "601422", "doi": "10.15784/601422", "keywords": "Antarctica; CTD; CTD Data; NBP1704; Ocean Profile Data; Ross Sea; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": null, "title": "NBP1704 CTD sensor data", "url": "https://www.usap-dc.org/view/dataset/601422"}, {"dataset_uid": "601184", "doi": "10.15784/601184 ", "keywords": "Air Temperature; Antarctica; Atmosphere; Meteorology; Near-Surface Air Temperatures; PIPERS; Radiation; Sea Ice Temperatures; Temperature; Weather Station Data; Wind Direction; Wind Speed", "people": "Guest, Peter", "repository": "USAP-DC", "science_program": null, "title": "PIPERS Meteorology Time Series", "url": "https://www.usap-dc.org/view/dataset/601184"}], "date_created": "Mon, 10 Jun 2019 00:00:00 GMT", "description": "Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth\u0027s dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program\u0027s LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.", "east": -150.0, "geometry": "POINT(-175 -66.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN MIXED LAYER; TRACE ELEMENTS; CARBON DIOXIDE; ATMOSPHERIC RADIATION; ICE GROWTH/MELT; AMD; BOUNDARY LAYER TEMPERATURE; SULFUR COMPOUNDS; NBP1704; HEAT FLUX; ICE DEPTH/THICKNESS; R/V NBP; USA/NSF; BOUNDARY LAYER WINDS; SNOW DEPTH; VERTICAL PROFILES; METHANE; POLYNYAS; CONDUCTIVITY; SEA ICE; Ross Sea; WATER MASSES; TURBULENCE; USAP-DC; Amd/Us", "locations": "Ross Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Ackley, Stephen; Bell, Robin; Weissling, Blake; Nuss, Wendell; Maksym, Edward; Stammerjohn, Sharon; Cassano, John; Guest, Peter; Sedwick, Peter; Xie, Hongjie", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "BCO-DMO; R2R; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "uid": "p0010032", "west": 160.0}, {"awards": "1246357 Bart, Philip", "bounds_geometry": null, "dataset_titles": "NBP1502 Cruise Geophysics and underway data; NBP1502 YoYo camera benthic images from Ross Sea", "datasets": [{"dataset_uid": "000245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1502 Cruise Geophysics and underway data", "url": "https://www.rvdata.us/search/cruise/NBP1502"}, {"dataset_uid": "601182", "doi": "10.15784/601182", "keywords": "Antarctica; Benthic; Benthic Images; Benthos; Bentic Fauna; Camera Tow; Marine Geoscience; Marine Sediments; NBP1502; Photo; Photo/video; Photo/Video; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Yoyo Camera", "people": "Bart, Philip", "repository": "USAP-DC", "science_program": null, "title": "NBP1502 YoYo camera benthic images from Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601182"}], "date_created": "Mon, 03 Jun 2019 00:00:00 GMT", "description": "Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and \u0026#948;18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e AIRGUN ARRAYS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e LONG STREAMERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "STRATIGRAPHIC SEQUENCE; R/V NBP; Ross Sea; Antarctica; MICROFOSSILS; RADIOCARBON; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTS; Southern Ocean; OCEANS; GEOSCIENTIFIC INFORMATION", "locations": "Antarctica; Ross Sea; Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bart, Philip; Steinberg, Deborah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "Timing and Duration of the LGM and Post-LGM Grounding Events in Whales Deep Paleo Ice Stream, Eastern Ross Sea Middle Continental Shelf", "uid": "p0000877", "west": null}, {"awards": "1637708 Gooseff, Michael", "bounds_geometry": "POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER; McMurdo Dry Valleys LTER Data Repository", "datasets": [{"dataset_uid": "200036", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "McMurdo Dry Valleys LTER Data Repository", "url": "http://mcm.lternet.edu/power-search/data-set"}, {"dataset_uid": "200037", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Fri, 31 May 2019 00:00:00 GMT", "description": "The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert. The McMurdo Long Term Ecological Research (LTER) project has been observing these ecosystems since 1993 and this award will support key long-term measurements, manipulation experiments, synthesis, and modeling to test current theories on ecosystem structure and function. Data collection is focused on meteorology and physical and biological dimensions of soils, streams, lakes, glaciers, and permafrost. The long-term measurements show that biological communities have adapted to the seasonally cold, dark, and arid conditions that prevail for all but a short period in the austral summer. Physical (climate and geological) drivers impart a dynamic connectivity among portions of the Dry Valley landscape over seasonal to millennial time scales. For instance, lakes and soils have been connected through cycles of lake-level rise and fall over the past 20,000 years while streams connect glaciers to lakes over seasonal time scales. Overlaid upon this physical system are biotic communities that are structured by the environment and by the movement of individual organisms within and between the glaciers, streams, lakes, and soils. The new work to be conducted at the McMurdo LTER site will explore how the layers of connectivity in the McMurdo Dry Valleys influence ecosystem structure and function. This project will test the hypothesis that increased ecological connectivity following enhanced melt conditions within the McMurdo Dry Valleys ecosystem will amplify exchange of biota, energy, and matter, homogenizing ecosystem structure and functioning. This hypothesis will be tested with new and continuing experiments that examine: 1) how climate variation alters connectivity among landscape units, and 2) how biota are connected across a heterogeneous landscape using state-of-the-science tools and methods including automated sensor networks, analysis of seasonal satellite imagery, biogeochemical analyses, and next-generation sequencing. McMurdo LTER education programs and outreach activities will be continued, and expanded with new programs associated with the 200th anniversary of the first recorded sightings of Antarctica. These activities will advance societal understanding of how polar ecosystems respond to change. McMurdo LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science, and lead the development of international environmental stewardship protocols for human activities in the region.", "east": 165.0, "geometry": "POINT(162.5 -77.875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; NOT APPLICABLE; Antarctica; RIVERS/STREAM; USAP-DC; TERRESTRIAL ECOSYSTEMS; LAKE/POND; Polar", "locations": "Antarctica; Polar", "north": -77.25, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Gooseff, Michael N.; Takacs-Vesbach, Cristina; Howkins, Adrian; McKnight, Diane; Doran, Peter; Adams, Byron; Barrett, John; Morgan-Kiss, Rachael; Priscu, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "LTER", "repositories": "EDI; LTER", "science_programs": "LTER", "south": -78.5, "title": "LTER: Ecosystem Response to Amplified Landscape Connectivity in the McMurdo Dry Valleys, Antarctica", "uid": "p0010031", "west": 160.0}, {"awards": "1822256 Smith, Craig; 1822289 Vernet, Maria", "bounds_geometry": "POLYGON((-59.5 -62,-59.05 -62,-58.6 -62,-58.15 -62,-57.7 -62,-57.25 -62,-56.8 -62,-56.35 -62,-55.9 -62,-55.45 -62,-55 -62,-55 -62.27,-55 -62.54,-55 -62.81,-55 -63.08,-55 -63.35,-55 -63.62,-55 -63.89,-55 -64.16,-55 -64.43,-55 -64.7,-55.45 -64.7,-55.9 -64.7,-56.35 -64.7,-56.8 -64.7,-57.25 -64.7,-57.7 -64.7,-58.15 -64.7,-58.6 -64.7,-59.05 -64.7,-59.5 -64.7,-59.5 -64.43,-59.5 -64.16,-59.5 -63.89,-59.5 -63.62,-59.5 -63.35,-59.5 -63.08,-59.5 -62.81,-59.5 -62.54,-59.5 -62.27,-59.5 -62))", "dataset_titles": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C; Yoyo camera survey transects, King George Island and Bransfield Strait", "datasets": [{"dataset_uid": "601199", "doi": "10.15784/601199", "keywords": "Antarctica; Araon; Araon Ana08d; Benthic Images; Benthos; Photo/video; Photo/Video; Southern Ocean; Station List; Yoyo Camera", "people": "Smith, Craig; Ziegler, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Yoyo camera survey transects, King George Island and Bransfield Strait", "url": "https://www.usap-dc.org/view/dataset/601199"}, {"dataset_uid": "601178", "doi": "10.15784/601178", "keywords": "Antarctica; Biota; Chlorophyll; CTD; Glacier; Iceberg; Ice Shelf; Larsen C Ice Shelf; Oceans; Physical Oceanography; Phytoplankton; Sample Location; Sea Ice; Southern Ocean; Station List", "people": "Vernet, Maria; Pan, B. Jack", "repository": "USAP-DC", "science_program": null, "title": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C", "url": "https://www.usap-dc.org/view/dataset/601178"}], "date_created": "Wed, 15 May 2019 00:00:00 GMT", "description": "Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-57.25 -63.35)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; R/V NBP; Sea Floor; ANIMALS/INVERTEBRATES; ICEBERGS; USAP-DC", "locations": "Antarctica; Sea Floor", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Vernet, Maria; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7, "title": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\"", "uid": "p0010029", "west": -59.5}, {"awards": "1758224 Salvatore, Mark", "bounds_geometry": "POLYGON((-180 -83,-178 -83,-176 -83,-174 -83,-172 -83,-170 -83,-168 -83,-166 -83,-164 -83,-162 -83,-160 -83,-160 -83.4,-160 -83.8,-160 -84.2,-160 -84.6,-160 -85,-160 -85.4,-160 -85.8,-160 -86.2,-160 -86.6,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178 -87,176 -87,174 -87,172 -87,170 -87,168 -87,166 -87,164 -87,162 -87,160 -87,160 -86.6,160 -86.2,160 -85.8,160 -85.4,160 -85,160 -84.6,160 -84.2,160 -83.8,160 -83.4,160 -83,162 -83,164 -83,166 -83,168 -83,170 -83,172 -83,174 -83,176 -83,178 -83,-180 -83))", "dataset_titles": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments; Orbital imagery used for SpecMap project", "datasets": [{"dataset_uid": "601163", "doi": "10.15784/601163", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Remote Sensing; Rocks; Solid Earth; Spectroscopy; Transantarctic Mountains", "people": "Salvatore, Mark", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments", "url": "https://www.usap-dc.org/view/dataset/601163"}, {"dataset_uid": "002735", "doi": null, "keywords": null, "people": null, "repository": "PGC", "science_program": null, "title": "Orbital imagery used for SpecMap project", "url": "https://www.pgc.umn.edu/projects/specmap/"}], "date_created": "Thu, 14 Mar 2019 00:00:00 GMT", "description": "Intellectual Merit: Ice free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000). This project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp. Broader impacts: The proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.", "east": -160.0, "geometry": "POINT(180 -85)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; GEOCHEMISTRY; LANDSCAPE; REFLECTED INFRARED; USAP-DC", "locations": "Antarctica", "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Salvatore, Mark", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "PGC; USAP-DC", "science_programs": null, "south": -87.0, "title": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica", "uid": "p0010020", "west": 160.0}, {"awards": "1246776 Nyblade, Andrew; 1247518 Smalley, Robert; 1419268 Aster, Richard; 1246666 Huerta, Audrey; 1246712 Wiens, Douglas; 1249513 Dalziel, Ian; 1249631 Wilson, Terry", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Network/Campaign: Antarctica POLENET - ANET; POLENET - Network YT", "datasets": [{"dataset_uid": "200012", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "POLENET - Network YT", "url": "http://ds.iris.edu/mda/YT/?timewindow=2007-2018"}, {"dataset_uid": "200011", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Network/Campaign: Antarctica POLENET - ANET", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#grouping=Antarctica%20POLENET%20-%20ANET;scope=Station;sampleRate=normal;groupingMod=contains"}], "date_created": "Sun, 17 Feb 2019 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community \"backbone network\" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Geodesy; USAP-DC; SEISMIC SURFACE WAVES; CRUSTAL MOTION; TECTONICS; Broadband Seismic; NOT APPLICABLE; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry; Dalziel, Ian W.; Bevis, Michael; Aster, Richard; Huerta, Audrey D.; Winberry, Paul; Anandakrishnan, Sridhar; Nyblade, Andrew; Wiens, Douglas; Smalley, Robert", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IRIS", "repositories": "IRIS; UNAVCO", "science_programs": "POLENET", "south": -90.0, "title": "Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2", "uid": "p0010013", "west": -180.0}, {"awards": "1750630 Smith, Craig", "bounds_geometry": "POLYGON((-64 -66,-63.3 -66,-62.6 -66,-61.9 -66,-61.2 -66,-60.5 -66,-59.8 -66,-59.1 -66,-58.4 -66,-57.7 -66,-57 -66,-57 -66.3,-57 -66.6,-57 -66.9,-57 -67.2,-57 -67.5,-57 -67.8,-57 -68.1,-57 -68.4,-57 -68.7,-57 -69,-57.7 -69,-58.4 -69,-59.1 -69,-59.8 -69,-60.5 -69,-61.2 -69,-61.9 -69,-62.6 -69,-63.3 -69,-64 -69,-64 -68.7,-64 -68.4,-64 -68.1,-64 -67.8,-64 -67.5,-64 -67.2,-64 -66.9,-64 -66.6,-64 -66.3,-64 -66))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Feb 2019 00:00:00 GMT", "description": "Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project was to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop was designed to bring scientists with expertise in Antarctic biological, ecological, and ecosystem sciences to Florida State University to share knowledge, identify important research knowledge gaps, and outline strategic plans for research. \r\n\r\nMajor outcomes from the project were as follows. The international workshop to share and review knowledge concerning the response of Antarctic ecosystems to ice-shelf collapse was held at the Florida State University Coastal and Marine Laboratory (FSUCML) on 18-19 November 2017. Thirty-eight U.S. and international scientists attended the workshop, providing expertise in biological, ecological, geological, biogeographical, and glaciological sciences. Twenty-six additional scientists were either not able to attend or were declined because of having reached maximum capacity of the venue or for not responding to our invitation before the registration deadline.\r\n\r\nThe latest results of ice-shelf research were presented, providing an overview of the current scientific knowledge and understanding of the biological, ecological,\r\ngeological and cryospheric processes associated with ice-shelf collapse and its\r\necosystem-level consequences. In addition, several presentations focused on future plans to investigate the impacts of the recent Larsen C collapse. The following presentations were given at the meeting:\r\n\r\n1) Cryospheric dynamics and ice-shelf collapse \u2013 past and future (M. Truffer,\r\nUniversity of Alaska, Fairbanks)\r\n2) The geological history and geological impacts of ice-shelf collapse on the Antarctic Peninsula (Scottt Ishman, Amy Leventer)\r\n3) Pelagic ecosystem responses to ice-shelf collapse (Mattias Cape, Amy Leventer)\r\n4) Benthic ecosystem response to ice-shelf collapse (Craig Smith, Pavica Sr\u0161en, Ann Vanreusel)\r\n5) Larsen C and biotic homogenization of the benthos (Richard Aronson, James\r\nMcClintock, Kathryn Smith, Brittany Steffel)\r\n6) British Antarctic Survey: plans for Larsen C investigations early 2018 and in the\r\nfuture (Huw Griffiths)\r\n7) Feedback on the workshop \u201cClimate change impacts on marine ecosystems:\r\nimplications for management of living resources and conservation\u201d held 19-22\r\nSeptember 2017, Cambridge, UK (Alex Rogers)\r\n8) Past research activities and plans for Larsen field work by the Alfred Wegener\r\nInstitute, Germany (Charlotte Havermans, Dieter Piepenburg.\r\n\r\nOne of the salient points emerging from the presentations and ensuing discussions was that, given our poor abilities to predict ecological outcomes of ice-shelf collapses, major cross-disciplinary efforts are needed on a variety of spatial and temporal scales to achieve a broader, predictive understanding of ecosystem\r\nconsequences of climatic warming and ice-shelf failure. As part of the workshop, the FSUCML Polar Academy Team\u2014Dr. Emily Dolan, Dr. Heidi Geisz, Barbara Shoplock, and Dr. Jeroen Ingels\u2014initiated AntICE: \"Antarctic Influences of Climate Change on Ecosystems\" (AntICE). They reached out to various groups of school children in the local area (and continue to do so). The AntICE Team have been interacting with these children at Wakulla High School and Wakulla Elementary in Crawfordville; children from the Cornerstone Learning Community, Maclay Middle School, Gilchrist Elementary, and the School of Arts and Sciences in Tallahassee; and the Tallahassee-area homeschooling community to educate them about Antarctic ecosystems and ongoing climate change. The underlying idea was to\r\nmake the children aware of climatic changes in the Antarctic and their effect on\r\necosystems so they, in turn, can spread this knowledge to their communities, family\r\nand friends \u2013 acting as \u2018Polar Ambassadors\u2019. We collaborated with the Polar-ICE\r\nproject, an NSF-funded educational project that established the Polar Literacy\r\nInitiative. This program developed the Polar Literacy Principles, which outline\r\nessential concepts to improve public understanding of Antarctic and Arctic\r\necosystems. In the Polar Academy work, we used the Polar Literacy principles, the\r\nPolar Academy Team\u2019s own Antarctic scientific efforts, and the experience of the FSU outreach and education program to engage with the children. We focused on the importance of Antarctic organisms and ecosystems, the uniqueness of its biota and the significance of its food webs, as well as how all these are changing and will\r\nchange further with climate change. Using general presentations, case studies,\r\nscientific methodology, individual experiences, interactive discussions and Q\u0026A\r\nsessions, the children were guided through the many issues Antarctic ecosystems\r\nare facing. Over 300 \u0027Polar ambassadors\u0027 attended the interactive lectures and\r\nafterwards took their creativity to high latitudes by creating welcome letters, displays, dioramas, sculptures, videos and online media to present at the scientific workshop. Over 50 projects were created by the children (Please see supporting files for images). We were also joined by a photographer, Ryan David Reines, to document the event. More information, media and links to online outreach products are available at https://marinelab.fsu.edu/labs/ingels/outreach/polar-academy/", "east": -57.0, "geometry": "POINT(-60.5 -67.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; USAP-DC; ECOLOGICAL DYNAMICS; NOT APPLICABLE; MARINE ECOSYSTEMS; Weddell Sea", "locations": "Weddell Sea", "north": -66.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -69.0, "title": "Collaborative Research: RAPID/Workshop- Antarctic Ecosystem Research following Ice Shelf Collapse and Iceberg Calving Events", "uid": "p0010012", "west": -64.0}, {"awards": "1443733 Winsor, Peter; 1443680 Smith, Craig; 1443705 Vernet, Maria", "bounds_geometry": "POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))", "dataset_titles": "Andvord Bay Glacier Timelapse; Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603); Expedition Data; Expedition data of LMG1702; FjordEco Phytoplankton Ecology Dataset in Andvord Bay ; Fjord-Eco Sediment OrgC OrgN Data - Craig Smith; LMG1510 Expedition data; NBP1603 Expedition data; Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "datasets": [{"dataset_uid": "601193", "doi": "10.15784/601193", "keywords": "Antarctica; Geochronology; Grain Size; LMG1510; NBP1603; Sediment; Sediment Core Data", "people": "Nittrouer, Charles; Eidam, Emily; Smith, Craig; Homolka, Khadijah", "repository": "USAP-DC", "science_program": null, "title": "Andvord Bay sediment core data collected during the FjordEco project (LMG1510 and NBP1603)", "url": "https://www.usap-dc.org/view/dataset/601193"}, {"dataset_uid": "601157", "doi": "10.15784/601157", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Fjord-Eco Sediment OrgC OrgN Data - Craig Smith", "url": "https://www.usap-dc.org/view/dataset/601157"}, {"dataset_uid": "601111", "doi": "10.15784/601111", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "people": "Truffer, Martin; Winsor, Peter", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Andvord Bay Glacier Timelapse", "url": "https://www.usap-dc.org/view/dataset/601111"}, {"dataset_uid": "200040", "doi": "10.7284/907085", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG1510 Expedition data", "url": "https://www.rvdata.us/search/cruise/LMG1510"}, {"dataset_uid": "601236", "doi": "10.15784/601236", "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "FjordEco", "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "url": "https://www.usap-dc.org/view/dataset/601236"}, {"dataset_uid": "200039", "doi": "10.7284/907205", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1603 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1603"}, {"dataset_uid": "002733", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1702", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601158", "doi": "10.15784/601158", "keywords": "Antarctica; Antarctic Peninsula; Biota; Ecology; Fjord; Phytoplankton", "people": "Manck, Lauren; Vernet, Maria; Pan, B. Jack; Forsch, Kiefer", "repository": "USAP-DC", "science_program": "FjordEco", "title": "FjordEco Phytoplankton Ecology Dataset in Andvord Bay ", "url": "https://www.usap-dc.org/view/dataset/601158"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Wed, 13 Feb 2019 00:00:00 GMT", "description": "Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.", "east": -62.0, "geometry": "POINT(-64 -64.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "OCEAN CURRENTS; Bellingshausen Sea; LMG1702; COMMUNITY DYNAMICS; FJORDS; R/V LMG; MARINE ECOSYSTEMS; USAP-DC; ECOSYSTEM FUNCTIONS; ANIMALS/INVERTEBRATES; SEDIMENTATION; NOT APPLICABLE; BENTHIC", "locations": "Bellingshausen Sea", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Winsor, Peter; Truffer, Martin; Smith, Craig; Powell, Brian; Merrifield, Mark; Vernet, Maria; Kohut, Josh", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "uid": "p0010010", "west": -66.0}, {"awards": "1341612 Bowser, Samuel", "bounds_geometry": null, "dataset_titles": "Aerial survey of Explorers Cove shoreline, late January 2005; Astrammina rara genome sequencing and assembly; Astrammina triangularis genome sequencing and assembly; Crithionina delacai mitochondrial genome sequence and assembly; Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "datasets": [{"dataset_uid": "601229", "doi": "10.15784/601229", "keywords": "Aerial Imagery; Antarctica; Camera; Delta; Freshwater; Helicopter; Moat; Shoreline Survey; Small Ponds; Snow Melt; Tide Pools", "people": "Bowser, Samuel; Alexander, Steve", "repository": "USAP-DC", "science_program": null, "title": "Aerial survey of Explorers Cove shoreline, late January 2005", "url": "https://www.usap-dc.org/view/dataset/601229"}, {"dataset_uid": "200089", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina triangularis genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521279?reviewer=g418tpq02sif2g6do94dpmmjdv"}, {"dataset_uid": "601138", "doi": "10.15784/601138", "keywords": "Antarctica; Biota; Foraminifera; Heavy Metal Toxicity; Scanning Electron Microscop; Scanning Electron Microscope (SEM) Images; Scanning Electron Microscopy; Transantarctic Mountains", "people": "Bowser, Samuel; Andreas, Amanda", "repository": "USAP-DC", "science_program": null, "title": "Scanning electron micrographs: Influence of heavy metal (Pb, Cd) exposure on shell morphogenesis in Astrammina rara, a giant agglutinated Antarctic foraminiferan protist", "url": "https://www.usap-dc.org/view/dataset/601138"}, {"dataset_uid": "200090", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Astrammina rara genome sequencing and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA521081?reviewer=25e190ih1svottjkrrpfa7huoe"}, {"dataset_uid": "200091", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Crithionina delacai mitochondrial genome sequence and assembly", "url": "https://dataview.ncbi.nlm.nih.gov/object/PRJNA592714?reviewer=ivse8455h3gfaiilg4nqle0vm1"}], "date_created": "Thu, 29 Nov 2018 00:00:00 GMT", "description": "Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These \"living fossils\" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as \"cellular machines\" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then \"mine\" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the \"thrill of scientific exploration and discovery\" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students. Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bowser, Samuel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": null, "title": "Assembling and Mining the Genomes of Giant Antarctic Foraminifera", "uid": "p0000004", "west": null}, {"awards": "1144177 Pettit, Erin; 1144176 Lyons, W. Berry; 1144192 Tulaczyk, Slawek; 1727387 Mikucki, Jill", "bounds_geometry": "POLYGON((161.8 -77.7,161.88 -77.7,161.96 -77.7,162.04000000000002 -77.7,162.12 -77.7,162.2 -77.7,162.28 -77.7,162.36 -77.7,162.44 -77.7,162.51999999999998 -77.7,162.6 -77.7,162.6 -77.70700000000001,162.6 -77.714,162.6 -77.721,162.6 -77.728,162.6 -77.735,162.6 -77.742,162.6 -77.749,162.6 -77.756,162.6 -77.76299999999999,162.6 -77.77,162.51999999999998 -77.77,162.44 -77.77,162.36 -77.77,162.28 -77.77,162.2 -77.77,162.12 -77.77,162.04000000000002 -77.77,161.96 -77.77,161.88 -77.77,161.8 -77.77,161.8 -77.76299999999999,161.8 -77.756,161.8 -77.749,161.8 -77.742,161.8 -77.735,161.8 -77.728,161.8 -77.721,161.8 -77.714,161.8 -77.70700000000001,161.8 -77.7))", "dataset_titles": "Ablation Stake Data from of Taylor Glacier near Blood Falls; Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset; Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network; FLIR thermal imaging data near Blood Falls, Taylor Glacier; Ground Penetrating Radar Data near Blood Falls, Taylor Glacier; Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica; NCBI short read archive -Metagenomic survey of Antarctic Groundwater; Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier; The Geochemistry of englacial brine from Taylor Glacier, Antarctica; Time Lapse imagery of the Blood Falls feature, Antarctica ; Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "datasets": [{"dataset_uid": "601166", "doi": "10.15784/601166", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Terrestrial Radar Interferometry near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601166"}, {"dataset_uid": "601167", "doi": "10.15784/601167", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo; Photo/video; Photo/Video; Snow/ice; Snow/Ice; Taylor Glacier; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Time Lapse imagery of the Blood Falls feature, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601167"}, {"dataset_uid": "601168", "doi": "10.15784/601168", "keywords": "Antarctica; Atmosphere; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Taylor Glacier; Temperature; Weather Station Data; Wind Speed", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Vaisala Integrated Met Station near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601168"}, {"dataset_uid": "601169", "doi": "10.15784/601169", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Infrared Imagery; Photo/video; Photo/Video; Taylor Glacier; Thermal Camera; Timelaps Images", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "FLIR thermal imaging data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601169"}, {"dataset_uid": "601179", "doi": "10.15784/601179", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Brine", "people": "Lyons, W. Berry; Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "The Geochemistry of englacial brine from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601179"}, {"dataset_uid": "601139", "doi": "10.15784/601139", "keywords": "Antarctica; Borehole; Borehole Logging; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Temperature; Snow/ice; Snow/Ice; Temperature; Temperature Profiles", "people": "Tulaczyk, Slawek", "repository": "USAP-DC", "science_program": null, "title": "Ice Temperature in Shallow Boreholes Near Blood Falls at the Terminus of Taylor Glacier, McMurdo Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601139"}, {"dataset_uid": "200074", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "NCBI short read archive -Metagenomic survey of Antarctic Groundwater", "url": "https://www.ncbi.nlm.nih.gov/sra/?term=SRR6667787"}, {"dataset_uid": "200029", "doi": "10.7914/SN/YW_2013", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Blood Falls, McMurdo Dry Va. International Federation of Digital Seismograph Networks. Dataset/Seismic Network", "url": "http://www.fdsn.org/networks/detail/YW_2013/"}, {"dataset_uid": "601164", "doi": "10.15784/601164", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ablation Stake Data from of Taylor Glacier near Blood Falls", "url": "https://www.usap-dc.org/view/dataset/601164"}, {"dataset_uid": "601165", "doi": "10.15784/601165", "keywords": "Antarctica; Basal Crevassing; Glacier Hydrology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Snow/ice; Snow/Ice; Taylor Glacier", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Data near Blood Falls, Taylor Glacier", "url": "https://www.usap-dc.org/view/dataset/601165"}, {"dataset_uid": "200028", "doi": "10.7283/FCEN-8050", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Antarctica Support 2014/2015 - C-528 Blood Falls GPS/GNSS Observations Dataset", "url": "https://www.unavco.org/data/doi/10.7283/fcen-8050"}], "date_created": "Wed, 28 Nov 2018 00:00:00 GMT", "description": "Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. The MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the \u0027Ice Mole\u0027 team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems.", "east": 162.6, "geometry": "POINT(162.2 -77.735)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; BACTERIA/ARCHAEA; USAP-DC", "locations": null, "north": -77.7, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Tulaczyk, Slawek; Pettit, Erin; Lyons, W. Berry; Mikucki, Jill", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "IRIS; NCBI GenBank; UNAVCO; USAP-DC", "science_programs": null, "south": -77.77, "title": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys", "uid": "p0000002", "west": 161.8}, {"awards": "1141916 Aster, Richard", "bounds_geometry": null, "dataset_titles": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "datasets": [{"dataset_uid": "002573", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "url": "http://www.iris.washington.edu/mda/XH?timewindow=2014-2017"}], "date_created": "Mon, 22 Oct 2018 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region. Broader impacts: Data from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Aster, Richard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": null, "title": "Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf", "uid": "p0000761", "west": null}, {"awards": "1245915 Ray, Laura", "bounds_geometry": null, "dataset_titles": "Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone", "datasets": [{"dataset_uid": "601102", "doi": "10.15784/601102", "keywords": "Antarctica; Firn; Folds; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Snow/ice; Snow/Ice", "people": "Walker, Ben; Kaluzienski, Lynn; Lever, Jim; Ray, Laura; Koons, Peter; Arcone, Steven", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone", "url": "https://www.usap-dc.org/view/dataset/601102"}], "date_created": "Thu, 27 Sep 2018 00:00:00 GMT", "description": "Hamilton/1246400 This award supports an integrated field observation, remote sensing and numerical modeling study of the McMurdo Shear Zone (SZ). The SZ is a 5-10 km wide strip of heavily crevassed ice that separates the McMurdo and Ross ice shelves, and is an important region of lateral support for the Ross Ice Shelf. Previous radar and remote sensing studies reveal an enigmatic picture of the SZ in which crevasses detected at depth have no apparent surface expression, and have orientations which are possibly inconsistent with the observed flow field. In the proposed work, we seek to test the hypothesis that the SZ is a zone of chaotic Lagrangian mixing with (intersecting) buried crevasses which leads to rheological instability, potentially allowing large scale velocity discontinuities. The work will involve detailed field-based observations of crevasse distributions and structure using ground-penetrating radar, and GPS and remote sensing observations of the flow and stress field in the SZ. Because of the hazardous nature of the SZ, the radar surveys will be conducted largely with the aid of a lightweight robotic vehicle. Observations will be used to develop a finite element model of ice shelf shear margin behavior. The intellectual merit of this project is an increased understanding of ice shelf shear margin dynamics. Shear margins play a key role in ice shelf stability, and ice shelves in turn modulate the flux of ice from the ice sheet across the grounding line to the ocean. Insights from this project will improve large-scale models being developed to predict ice sheet evolution and future rates of sea level rise, which are topics of enormous societal concern. The broader impacts of the project include an improved basis for US Antarctic Program logistics planning as well as numerous opportunities to engage K-12 students in scientific discovery. Intensified crevassing in the shear zone between the Ross and McMurdo ice shelves would preclude surface crossing by heavy traverse vehicles which would lead to increased costs of delivering fuel to South Pole and a concomitant loss of flight time provided by heavy-lift aircraft for science missions on the continent. Our multidisciplinary research combining glaciology, numerical modeling, and robotics engineering is an engaging way to show how robotics can assist scientists in collecting hazardous field measurements. Our outreach activities will leverage Dartmouth\u0027s current NSF GK-12 program, build on faculty-educator relationships established during University of Maine\u0027s recent GK-12 program, and incorporate project results into University of Maine\u0027s IDEAS initiative, which integrates computational modeling with the existing science curriculum at the middle school level. This award has field work in Antarctica.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ray, Laura", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Flow and Fracture Dynamics in an Ice Shelf Lateral Margin: Observations and Modeling of the McMurdo Shear Zone", "uid": "p0000701", "west": null}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": "POLYGON((166.1631 -77.9007,166.19736 -77.9007,166.23162 -77.9007,166.26588 -77.9007,166.30014 -77.9007,166.3344 -77.9007,166.36866 -77.9007,166.40292 -77.9007,166.43718 -77.9007,166.47144 -77.9007,166.5057 -77.9007,166.5057 -77.90423,166.5057 -77.90776,166.5057 -77.91129,166.5057 -77.91482,166.5057 -77.91835,166.5057 -77.92188,166.5057 -77.92541,166.5057 -77.92894,166.5057 -77.93247,166.5057 -77.936,166.47144 -77.936,166.43718 -77.936,166.40292 -77.936,166.36866 -77.936,166.3344 -77.936,166.30014 -77.936,166.26588 -77.936,166.23162 -77.936,166.19736 -77.936,166.1631 -77.936,166.1631 -77.93247,166.1631 -77.92894,166.1631 -77.92541,166.1631 -77.92188,166.1631 -77.91835,166.1631 -77.91482,166.1631 -77.91129,166.1631 -77.90776,166.1631 -77.90423,166.1631 -77.9007))", "dataset_titles": "McMurdo Ice Shelf AWS data; McMurdo Ice Shelf GPS survey of vertical motion; Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica; Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "datasets": [{"dataset_uid": "601113", "doi": "10.15784/601113", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Photo/video; Photo/Video; Supraglacial Meltwater", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Time-lapse video of McMurdo Ice Shelf surface melting and hydrology", "url": "https://www.usap-dc.org/view/dataset/601113"}, {"dataset_uid": "601107", "doi": "10.15784/601107", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ice Shelf; Ice-Shelf Flexure; Snow/ice; Snow/Ice; Surface Melt", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf GPS survey of vertical motion", "url": "https://www.usap-dc.org/view/dataset/601107"}, {"dataset_uid": "601106", "doi": "10.15784/601106", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "people": "Banwell, Alison; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Ice Shelf AWS data", "url": "https://www.usap-dc.org/view/dataset/601106"}, {"dataset_uid": "601116", "doi": "10.15784/601116", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Snow/ice; Snow/Ice; Subglacial And Supraglacial Water Depth; Supraglacial Lake; Supraglacial Meltwater; Water Depth", "people": "MacAyeal, Douglas; Banwell, Alison", "repository": "USAP-DC", "science_program": null, "title": "Supraglacial Lake Depths on McMurdo Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601116"}], "date_created": "Tue, 24 Jul 2018 00:00:00 GMT", "description": "Meltwater lakes that sit on top of Antarctica\u0027s floating ice shelves have likely contributed to the dramatic changes seen in Antarctica\u0027s glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that \u003e2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.", "east": 166.5057, "geometry": "POINT(166.3344 -77.91835)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS", "is_usap_dc": true, "keywords": "USAP-DC; AWOS", "locations": null, "north": -77.9007, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e AWOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "uid": "p0000138", "west": 166.1631}, {"awards": "2023425 Schofield, Oscar; 1440435 Ducklow, Hugh", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Hilton, Eric; Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Dale, Julian; Boyer, Keyvi; Friedlaender, Ari; Nowacek, Douglas; Bierlich, KC", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00e8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1443232 Waddington, Edwin", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "AC-ECM for SPICEcore; ECM (DC and AC) multi-track data and images from 2016 processing season", "datasets": [{"dataset_uid": "601189", "doi": " 10.15784/601189 ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; SPICEcore; Volcanic", "people": "Fudge, T. J.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "AC-ECM for SPICEcore", "url": "https://www.usap-dc.org/view/dataset/601189"}, {"dataset_uid": "601366", "doi": "10.15784/601366", "keywords": "Antarctica", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "ECM (DC and AC) multi-track data and images from 2016 processing season", "url": "https://www.usap-dc.org/view/dataset/601366"}], "date_created": "Tue, 08 May 2018 00:00:00 GMT", "description": "Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Amd/Us; AMD; LABORATORY", "locations": null, "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology", "uid": "p0000378", "west": 110.0}, {"awards": "0944021 Brook, Edward J.; 0944307 Conway, Howard; 0943466 Hawley, Robert", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Lee, James; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "1143834 Huber, Bruce; 1430550 Domack, Eugene; 1143836 Leventer, Amy; 1143833 Orsi, Alejandro", "bounds_geometry": "POLYGON((116 -65.2,116.5 -65.2,117 -65.2,117.5 -65.2,118 -65.2,118.5 -65.2,119 -65.2,119.5 -65.2,120 -65.2,120.5 -65.2,121 -65.2,121 -65.38,121 -65.56,121 -65.74,121 -65.92,121 -66.1,121 -66.28,121 -66.46,121 -66.64,121 -66.82,121 -67,120.5 -67,120 -67,119.5 -67,119 -67,118.5 -67,118 -67,117.5 -67,117 -67,116.5 -67,116 -67,116 -66.82,116 -66.64,116 -66.46,116 -66.28,116 -66.1,116 -65.92,116 -65.74,116 -65.56,116 -65.38,116 -65.2))", "dataset_titles": "AU1402 Final UCTD data; AU1402 mooring data; Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ; NBP1402 diatom data; NBP1402 Final CTD data; NBP1402 Final UCTD data; NBP1402 JPC43 Diatom Data; NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data; NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data; NBP14-02 JPC-55 foraminifer assemblage data; NBP1402 Lowered ADCP data; Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402; Sabrina Coast mooring data - sediment trap mooring 2014", "datasets": [{"dataset_uid": "601044", "doi": "10.15784/601044", "keywords": "Antarctica; Carbon; Chemistry:sediment; Chemistry:Sediment; Geochemistry; Marine Sediments; NBP1402; Nitrogen; Oceans; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Domack, Eugene Walter; Smith, Catherine; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 Bulk Sediment Carbon and Nitrogen data", "url": "https://www.usap-dc.org/view/dataset/601044"}, {"dataset_uid": "601312", "doi": null, "keywords": "Antarctica; Benthic Images; Camera; East Antarctica; Marine Geoscience; NBP1402; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Sabrina Coast; Totten Glacier; Video Data; Yoyo Camera", "people": "Leventer, Amy; Domack, Eugene Walter; Orsi, Alejandro; Post, Alexandra; Shevenell, Amelia; Blankenship, Donald D.; Huber, Bruce; Gulick, Sean", "repository": "USAP-DC", "science_program": null, "title": "Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402", "url": "https://www.usap-dc.org/view/dataset/601312"}, {"dataset_uid": "601310", "doi": null, "keywords": "Antarctica; Benthic Images; Benthos; East Antarctica; Marine Geoscience; NBP1402; Photo; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Totten Glacier; Yoyo Camera", "people": "Gulick, Sean; Domack, Eugene Walter; Shevenell, Amelia; Orsi, Alejandro; Huber, Bruce; Leventer, Amy; Post, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Bottom photos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402 ", "url": "https://www.usap-dc.org/view/dataset/601310"}, {"dataset_uid": "601067", "doi": "10.15784/601067", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final CTD data", "url": "https://www.usap-dc.org/view/dataset/601067"}, {"dataset_uid": "601046", "doi": "10.15784/601046", "keywords": "Antarctica; Biota; Marine Sediments; NBP1402; Oceans; Paleoclimate; Pollen; Sabrina Coast; Sediment Core; Southern Ocean; Totten Glacier", "people": "Smith, Catherine; Domack, Eugene Walter; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-54 and JPC-55 Pollen Assemblage data", "url": "https://www.usap-dc.org/view/dataset/601046"}, {"dataset_uid": "601148", "doi": "10.15784/601148", "keywords": "Antarctica; Au1402; Mooring; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Aurora Australis; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 mooring data", "url": "https://www.usap-dc.org/view/dataset/601148"}, {"dataset_uid": "601147", "doi": "10.15784/601147", "keywords": "Antarctica; CTD Data; NBP1402; Ocean Temperature; Physical Oceanography; Sabrina Coast; Salinity; Southern Ocean; Temperature; Underway CTD", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "AU1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601147"}, {"dataset_uid": "601146", "doi": "10.15784/601146", "keywords": "Antarctica; CTD Data; NBP1402; Oceans; Ocean Temperature; Physical Oceanography; R/v Nathaniel B. Palmer; Sabrina Coast; Salinity; Southern Ocean; Temperature", "people": "Orsi, Alejandro", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Final UCTD data", "url": "https://www.usap-dc.org/view/dataset/601146"}, {"dataset_uid": "601042", "doi": "10.15784/601042", "keywords": "Antarctica; Biota; Continental Margin; Foraminifera; NBP1402; Oceans; Paleoclimate; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean; Totten Glacier", "people": "Leventer, Amy; Shevenell, Amelia", "repository": "USAP-DC", "science_program": null, "title": "NBP14-02 JPC-55 foraminifer assemblage data", "url": "https://www.usap-dc.org/view/dataset/601042"}, {"dataset_uid": "601845", "doi": "10.15784/601845", "keywords": "Antarctica; Cryosphere; Diatom; NBP1402; Totten Glacier", "people": "Leventer, Amy; NBP1402 science party, ", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 diatom data", "url": "https://www.usap-dc.org/view/dataset/601845"}, {"dataset_uid": "601440", "doi": "10.15784/601440", "keywords": "Antarctica; Diatom; Holocene; Jumbo Piston Corer; NBP1402; R/v Nathaniel B. Palmer; Sabrina Coast; Sediment Core Data; Species Abundance; Totten Glacier", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 JPC43 Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601440"}, {"dataset_uid": "601068", "doi": "10.15784/601068", "keywords": "ADCP Acoustic Doppler Current Profiler; Antarctica; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "NBP1402 Lowered ADCP data", "url": "https://www.usap-dc.org/view/dataset/601068"}, {"dataset_uid": "601069", "doi": "10.15784/601069", "keywords": "Antarctica; Mooring; NBP1402; Oceans; Physical Oceanography; Sabrina Coast; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Sabrina Coast mooring data - sediment trap mooring 2014", "url": "https://www.usap-dc.org/view/dataset/601069"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change. Independent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models.", "east": 121.0, "geometry": "POINT(118.5 -66.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "Totten Glacier; NBP1402; Sabrina Coast; LABORATORY; Diatom; R/V NBP; Amd/Us; Bottom Photos; R/V AA; Not provided; USAP-DC; AMD; USA/NSF", "locations": "Sabrina Coast; Totten Glacier", "north": -65.2, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Orsi, Alejandro; Huber, Bruce; Leventer, Amy; Domack, Eugene Walter", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V AA; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "uid": "p0000008", "west": 116.0}, {"awards": "1245899 Kowalewski, Douglas", "bounds_geometry": "POLYGON((-180 -70,-174 -70,-168 -70,-162 -70,-156 -70,-150 -70,-144 -70,-138 -70,-132 -70,-126 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-126 -85,-132 -85,-138 -85,-144 -85,-150 -85,-156 -85,-162 -85,-168 -85,-174 -85,180 -85,178 -85,176 -85,174 -85,172 -85,170 -85,168 -85,166 -85,164 -85,162 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70,162 -70,164 -70,166 -70,168 -70,170 -70,172 -70,174 -70,176 -70,178 -70,-180 -70))", "dataset_titles": "Region Climate Model Output Plio-Pleistocene", "datasets": [{"dataset_uid": "601080", "doi": "10.15784/601080", "keywords": "Antarctica; Climate Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; McMurdo; Paleoclimate; Ross Sea", "people": "Kowalewski, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Region Climate Model Output Plio-Pleistocene", "url": "https://www.usap-dc.org/view/dataset/601080"}], "date_created": "Tue, 16 Jan 2018 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to complement the ANDRILL marine record with a terrestrial project that will provide chronological control for past fluctuations of the West Antarctic Ice Sheet (WAIS) and alpine glaciers in McMurdo Sound. The project will develop high-resolution maps of drifts deposited from grounded marine-based ice and alpine glaciers on islands and peninsulas in McMurdo Sound. In addition, the PIs will acquire multi-clast/multi-nuclide cosmogenic analyses of these mapped drift sheets and alpine moraines and use regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession. The PIs will make use of geological records for ice sheet and alpine glacier fluctuations preserved on the flanks of Mount Discovery, Black Island, and Brown Peninsula. Drifts deposited from grounded, marine-based ice will yield spatial constraints for former advances and retreats of the WAIS. Moraines from alpine glaciers, hypothesized to be of interglacial origin, could yield a first-order record of hydrologic change in the region. Synthesizing the field data, the team proposes to improve the resolution of existing regional-scale climate models for the Ross Embayment. The overall approach and anticipated results will provide the first steps towards linking the marine and terrestrial records in this critical sector of Antarctica. Broader impacts: Results from the proposed work will be integrated with outreach programs at Boston University, Columbia University, and Worcester State University. The team will actively collaborate with the American Museum of Natural History to feature this project prominently in museum outreach. The team will also include a PolarTREC teacher as a member of the research team. The geomorphological results will be presented in 3D at Boston University?s Antarctic Digital Image Analyses Lab. The research will form the basis of a PhD dissertation at Boston University.", "east": -120.0, "geometry": "POINT(-160 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kowalewski, Douglas", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound", "uid": "p0000391", "west": 160.0}, {"awards": "1143981 Domack, Eugene", "bounds_geometry": "POLYGON((-69.9517 -52.7581,-69.02971 -52.7581,-68.10772 -52.7581,-67.18573 -52.7581,-66.26374 -52.7581,-65.34175 -52.7581,-64.41976 -52.7581,-63.49777 -52.7581,-62.57578 -52.7581,-61.65379 -52.7581,-60.7318 -52.7581,-60.7318 -54.31551,-60.7318 -55.87292,-60.7318 -57.43033,-60.7318 -58.98774,-60.7318 -60.54515,-60.7318 -62.10256,-60.7318 -63.65997,-60.7318 -65.21738,-60.7318 -66.77479,-60.7318 -68.3322,-61.65379 -68.3322,-62.57578 -68.3322,-63.49777 -68.3322,-64.41976 -68.3322,-65.34175 -68.3322,-66.26374 -68.3322,-67.18573 -68.3322,-68.10772 -68.3322,-69.02971 -68.3322,-69.9517 -68.3322,-69.9517 -66.77479,-69.9517 -65.21738,-69.9517 -63.65997,-69.9517 -62.10256,-69.9517 -60.54515,-69.9517 -58.98774,-69.9517 -57.43033,-69.9517 -55.87292,-69.9517 -54.31551,-69.9517 -52.7581))", "dataset_titles": "Expedition Data; Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "datasets": [{"dataset_uid": "000402", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}, {"dataset_uid": "601311", "doi": "10.15784/601311", "keywords": "Antarctica; Antarctic Peninsula; Benthic Images; Camera; LARISSA; LMG1311; Marine Geoscience; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould", "people": "Domack, Eugene Walter", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed Camera Images acquired during the Laurence M. Gould expedition LMG1311", "url": "https://www.usap-dc.org/view/dataset/601311"}, {"dataset_uid": "001366", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1702"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth\u0027s crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth\u0027s bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the \"bull\u0027s eye\" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.", "east": -60.7318, "geometry": "POINT(-65.34175 -60.54515)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": false, "keywords": "LMG1702; R/V LMG", "locations": null, "north": -52.7581, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Kohut, Josh; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.3322, "title": "Continuation of the LARISSA Continuous GPS Network in View of Observed Dynamic Response to Antarctic Peninsula Ice Mass Balance and Required Geologic Constraints", "uid": "p0000233", "west": -69.9517}, {"awards": "1246342 Fountain, Andrew; 1245749 Levy, Joseph; 1246203 Gooseff, Michael", "bounds_geometry": "POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119))", "dataset_titles": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica; Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "datasets": [{"dataset_uid": "000209", "doi": "", "keywords": null, "people": null, "repository": "OpenTopo", "science_program": null, "title": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica", "url": "http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.112016.3294.1"}, {"dataset_uid": "601075", "doi": "10.15784/601075", "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "url": "https://www.usap-dc.org/view/dataset/601075"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.", "east": 166.95825, "geometry": "POINT(163.5318575 -77.747214)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; Not provided; LANDFORMS; NOT APPLICABLE", "locations": "Antarctica", "north": -77.2119, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "OpenTopo", "repositories": "OpenTopo; USAP-DC", "science_programs": null, "south": -78.282528, "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "uid": "p0000076", "west": 160.105465}, {"awards": "1565576 Pettit, Erin", "bounds_geometry": "POLYGON((-62.2 -65.5,-62.12 -65.5,-62.04 -65.5,-61.96 -65.5,-61.88 -65.5,-61.8 -65.5,-61.72 -65.5,-61.64 -65.5,-61.56 -65.5,-61.48 -65.5,-61.4 -65.5,-61.4 -65.53,-61.4 -65.56,-61.4 -65.59,-61.4 -65.62,-61.4 -65.65,-61.4 -65.68,-61.4 -65.71,-61.4 -65.74,-61.4 -65.77,-61.4 -65.8,-61.48 -65.8,-61.56 -65.8,-61.64 -65.8,-61.72 -65.8,-61.8 -65.8,-61.88 -65.8,-61.96 -65.8,-62.04 -65.8,-62.12 -65.8,-62.2 -65.8,-62.2 -65.77,-62.2 -65.74,-62.2 -65.71,-62.2 -65.68,-62.2 -65.65,-62.2 -65.62,-62.2 -65.59,-62.2 -65.56,-62.2 -65.53,-62.2 -65.5))", "dataset_titles": "Scar Inlet Terrestrial Radar Interferometry; Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "datasets": [{"dataset_uid": "601084", "doi": "10.15784/601084", "keywords": "Antarctica; Antarctic Peninsula; Atmosphere; Automated Weather Station; Flask Glacier; Foehn Winds; Glaciers/ice Sheet; Glaciers/Ice Sheet; LARISSA; Larsen B Ice Shelf; Meteorology; Scar Inlet; Weatherstation; Wind Speed", "people": "Scambos, Ted", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Weather data from LARISSA / SCAR Inlet Rapid AMIGOS and cGPS stations", "url": "https://www.usap-dc.org/view/dataset/601084"}, {"dataset_uid": "601078", "doi": "10.15784/601078", "keywords": "Antarctica; Antarctic Peninsula; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Radar Interferometer", "people": "Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Scar Inlet Terrestrial Radar Interferometry", "url": "https://www.usap-dc.org/view/dataset/601078"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Pettit/1565576 This award supports a Rapid Response Research (RAPID) project to observe the current weakened state of the Scar Inlet Ice Shelf, and potentially capture data during its anticipated disintegration. The Scar Inlet Ice Shelf (SIIS) is the southern remnant of the former Larsen B Ice Shelf, which disintegrated in March of 2002. Since then, the SIIS has weakened significantly but has not yet broken up. Cooler conditions than those seen prior to 2006 have reduced the chance of a disintegration in recent years, although a single warm season is likely to be enough to trigger such an event. The predicted \"Super El Nino\" for this austral summer may have significant effects on Antarctica\u0027s weather, potentially leading to a break-up or disintegration this year. Given the very weak state of the SIIS, it is urgent that we act now to better understand the processes involved in shelf disintegration or break-up of ice shelves. The goal of this work is to collect several key data sets, publish initial observations and preliminary conclusions, and then make the complete data record available to all scientists. Extreme changes in the stress conditions on the SIIS resulted from both the loss of the Larsen B ice plate and the continued inflow of ice from three large glaciers (Flask, Leppard, and Starbuck). The SIIS now has a number of large rifts and it is expected to break up or disintegrate in the very near future. Past research has made use of satellite data and weather instruments, establishing many of the current ideas regarding ice shelf break-ups and ice shelf weakening. Additional ground-based data to be collected under this study will test a number of hypotheses regarding pre-disintegration characteristics, triggering mechanisms, fracturing processes, runaway feedback effects, and stabilizing mechanisms. The project will collect extensive multi-instrument field observations of the SIIS and possibly capture a major disintegration event. In collaboration with the British Antarctic Survey, a team of 4 people will be deployed via Twin Otter for up to 4 weeks to a site with a broad view of the shelf and will install several temporary observing instruments there. The study derives its intellectual merit from the role of the Antarctic Peninsula as a microcosm of how other parts of Antarctica might evolve and de-glaciate in the next few centuries. The broader impacts include an opportunity to educate the public about the anticipated collapse of this remnant ice shelf and its relationship to future changes in Antarctica. The potential for wide media coverage (through a connection with the National Geographic) will underscore the critical changes scientists are observing in the crysophere driven by climate change. This proposal requires field work in Antarctica.", "east": -61.4, "geometry": "POINT(-61.8 -65.65)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -65.5, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.8, "title": "RAPID: Observing the Disintegration of the Scar Inlet Ice Shelf", "uid": "p0000274", "west": -62.2}, {"awards": "1543452 Blankenship, Donald", "bounds_geometry": "POLYGON((90 -64,97 -64,104 -64,111 -64,118 -64,125 -64,132 -64,139 -64,146 -64,153 -64,160 -64,160 -64.6,160 -65.2,160 -65.8,160 -66.4,160 -67,160 -67.6,160 -68.2,160 -68.8,160 -69.4,160 -70,153 -70,146 -70,139 -70,132 -70,125 -70,118 -70,111 -70,104 -70,97 -70,90 -70,90 -69.4,90 -68.8,90 -68.2,90 -67.6,90 -67,90 -66.4,90 -65.8,90 -65.2,90 -64.6,90 -64))", "dataset_titles": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES); EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING); EAGLE/ICECAP II RADARGRAMS; EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images); ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "datasets": [{"dataset_uid": "200043", "doi": "http://dx.doi.org/doi:10.26179/5bcff4afc287d", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II RADARGRAMS", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_RADAR_DATA"}, {"dataset_uid": "601371", "doi": "10.15784/601371", "keywords": "Antarctica; East Antarctica; ICECAP; Ice Penetrating Radar; Radar Echo Sounder; Radar Echo Sounding; Subglacial Hydrology", "people": "Schroeder, Dustin; Young, Duncan A.; Roberts, Jason; Blankenship, Donald D.; Siegert, Martin; van Ommen, Tas; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "ICECAP Basal Interface Specularity Content Profiles: IPY and OIB", "url": "https://www.usap-dc.org/view/dataset/601371"}, {"dataset_uid": "200044", "doi": "https://dx.doi.org/10.26179/5bbedd001756b", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II Raw data (gps, raw serial packet data, raw radar records, gravimeter data and camera images)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL0_RAW_DATA"}, {"dataset_uid": "200041", "doi": "https://doi.org/10.26179/5bcfffdabcf92", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II GEOPHYSICAL OBSERVATIONS (SURFACE AND BED ELEVATION, ICE THICKNESS, GRAVITY DISTURBANCE AND MAGNETIC ANOMALIES)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_LEVEL2_AEROGEOPHYSICS"}, {"dataset_uid": "200042", "doi": "http://dx.doi.org/doi:10.26179/5bcfef4e3a297", "keywords": null, "people": null, "repository": "AADC", "science_program": null, "title": "EAGLE/ICECAP II INSTRUMENT MEASUREMENTS (LASER, MAGNETICS and POSITIONING)", "url": "https://data.aad.gov.au/metadata/records/AAS_4346_EAGLE_ICECAP_Level1B_AEROGEOPHYSICS"}], "date_created": "Tue, 05 Dec 2017 00:00:00 GMT", "description": "Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica\u0027s continental margins.", "east": 160.0, "geometry": "POINT(125 -67)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAGNETOMETERS \u003e GEOMET 823A; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "BT-67; Antarctica; GLACIER TOPOGRAPHY/ICE SHEET TOPOGRAPHY; USAP-DC; SEAFLOOR TOPOGRAPHY; GRAVITY ANOMALIES; MAGNETIC ANOMALIES; Polar; Sea Floor", "locations": "Antarctica; Sea Floor; Polar", "north": -64.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Young, Duncan A.; Grima, Cyril; Blankenship, Donald D.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e BT-67", "repo": "AADC", "repositories": "AADC; USAP-DC", "science_programs": null, "south": -70.0, "title": "East Antarctic Grounding Line Experiment (EAGLE)", "uid": "p0000254", "west": 90.0}, {"awards": "1341284 Swanger, Kate", "bounds_geometry": "POLYGON((161 -77.5,161.2 -77.5,161.4 -77.5,161.6 -77.5,161.8 -77.5,162 -77.5,162.2 -77.5,162.4 -77.5,162.6 -77.5,162.8 -77.5,163 -77.5,163 -77.525,163 -77.55,163 -77.575,163 -77.6,163 -77.625,163 -77.65,163 -77.675,163 -77.7,163 -77.725,163 -77.75,162.8 -77.75,162.6 -77.75,162.4 -77.75,162.2 -77.75,162 -77.75,161.8 -77.75,161.6 -77.75,161.4 -77.75,161.2 -77.75,161 -77.75,161 -77.725,161 -77.7,161 -77.675,161 -77.65,161 -77.625,161 -77.6,161 -77.575,161 -77.55,161 -77.525,161 -77.5))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 09 Oct 2017 00:00:00 GMT", "description": "Paragraph for Laypersons: This research focuses on the history of rock glaciers and buried glacial ice in the McMurdo Dry Valleys region of Antarctica. Rock glaciers are flowing mixtures of ice and sediments common throughout alpine and high-latitude regions on Earth and Mars. Despite similar appearances, rock glaciers can form under highly variable environmental and hydrological conditions. The main research questions addressed here are: 1) what environmental and climatological conditions foster long-term preservation of rock glaciers in Antarctica, 2) what role do rock glaciers play in Antarctic landscape evolution and the local water cycle, and 3) what can rock glaciers reveal about the extent and timing of previous glacial advances? The project will involve two Antarctic field seasons to image the interior of Antarctic rock glaciers using ground-penetrating radar, to gather ice cores for chemical analyses, and to gather surface sediments for dating. The Dry Valleys host the world?s southernmost terrestrial ecosystem (soil, stream and lake micro-organisms and mosses); rock glaciers and ground-ice are an important and poorly-studied source of meltwater and nutrients for these ecosystems. This research will shed light on the glacial and hydrological history of the Dry Valleys region and the general environmental conditions the foster rock glaciers, features that generally occur in warmer and/or wetter locations. The research will provide support for five graduate/undergraduate students, who will actively gather data in the field, followed by interpretation, dissemination and presentation of the data. Additionally, the researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities. A series of time-lapse images of hydrological processes, and videos of researchers in the field, will serve as a dramatic centerpiece in community and school presentations. Paragraph for Scientific Community: Rock glaciers are common in the McMurdo Dry Valleys, but are concentrated in a few isolated regions: western Taylor Valley, western Wright Valley, Pearse Valley and Bull Pass. The investigators hypothesize that the origin and age of these features varies by region: that rock glaciers in Pearse and Taylor valley originated as buried glacier ice, whereas rock glaciers in Wright Valley formed through permafrost processes, such as mobilization of ice-rich talus. To address these hypotheses, the project will: 1) develop relative and absolute chronologies for the rock glaciers through field mapping and optically stimulated luminescence dating of overlying sediments, 2) assess the origin of clean-ice cores through stable isotopic analyses, and 3) determine if present-day soil-moisture and temperature conditions are conducive to rock glacier formation/preservation. The proposed research will provide insight into the spatial and temporal distribution of buried glacier ice and melt-water-derived ground ice in the McMurdo Dry Valleys, with implications for glacial history, as well as the potential role of rock glaciers in the regional hydrologic cycle (and the role of ground-ice as a source for moisture and nutrient for local ecosystems). The project will provide general constraints on the climatic and hydrologic conditions that foster permafrost rock glaciers, features that generally occur under warmer and wetter conditions than those found in the present-day McMurdo Dry Valleys. The application of OSL and cosmogenic exposure dating is novel to rock glaciers, geomorphic features that have proven difficult to date, despite their ubiquity in Antarctica and their potential scientific importance. The research will provide support for five graduate/undergraduate students, who will participate in the field work, followed by interpretation, dissemination and presentation of the data. The researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities.", "east": 163.0, "geometry": "POINT(162 -77.625)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.75, "title": "Origin and Climatic Significance of Rock Glaciers in the McMurdo Dry Valleys: Assessing Spatial and Temporal Variability", "uid": "p0000297", "west": 161.0}, {"awards": "1246317 Mittal, Rajat; 1246296 Yen, Jeannette", "bounds_geometry": null, "dataset_titles": "Hydrodynamics of Spongiobranchaea australis; Tomographic PIV measurements of swimming shelled Antarctic pteropod", "datasets": [{"dataset_uid": "601058", "doi": "10.15784/601058", "keywords": "Biota; Fish; Southern Ocean", "people": "Mittal, Rajat", "repository": "USAP-DC", "science_program": null, "title": "Hydrodynamics of Spongiobranchaea australis", "url": "https://www.usap-dc.org/view/dataset/601058"}, {"dataset_uid": "601108", "doi": "10.15784/601108", "keywords": "Antarctica; Biota; Glaciology", "people": "Yen, Jeannette; Adhikari, Deepak; Webster, Donald R", "repository": "USAP-DC", "science_program": null, "title": "Tomographic PIV measurements of swimming shelled Antarctic pteropod", "url": "https://www.usap-dc.org/view/dataset/601108"}], "date_created": "Fri, 29 Sep 2017 00:00:00 GMT", "description": "Ocean acidification (OA) poses a serious threat, particularly to organisms that precipitate calcium carbonate from seawater. One organism with an aragonite shell that is a key to high latitude ecosystems is the pteropod. With OA, the pteropod shell will thin because the aragonite is highly soluble. As the shell thins, it changes the mass distribution and buoyancy of the animal, which will affect locomotion and through it, all locomotion dependent behavior such as foraging, mating, predator avoidance and migratory patterns. A lower shell weight will be counterbalanced by a smaller mucus web potentially decreasing ingestion rates and carbon flux rates. This interdisciplinary research relies on biological studies of swimming behavior of the pteropod mollusk Limacina helicina in their natural environments with fluid mechanics analyses of swimming hydrodynamics via 3D tomographic particle-image velocimetry and computational fluid dynamics (CFD). This work will: (a) determine how the L. helicina uses its \u0027wings\u0027 (parapodia) to propel itself; (b) examine whether its locomotory kinematics provide efficient propulsion; (c) identify the factors that influence swimming trajectory and \u0027wobble\u0027; and (d) synthesize all data and insights into guidelines for the potential use of pteropod swimming behavior as a bioassay for OA. The loss of these sentinels of anthropogenic increases in CO2 may result in an ecological shift since thecosome pteropods are responsible for ingesting nearly half the primary production in the Southern Ocean and also serve as a primary food resource to upper trophic levels like fish. Since locomotory data can be gathered immediately, the bioassay being developed in this proposal may serve as an early warning of the impending onset of OA effects on this important member of the plankton. Students and researchers will collaborate in a rich interdisciplinary research environment by working with a biological oceanographer, a fluid mechanics expert and a CFD expert coupled with the teamsmanship needed for work in the Antarctic. By setting up a one-of-a-kind 3D tomography system for visualizing flow around planktonic organisms in Norway and at Palmer Station, we increase international exchange of state-of-the-art techniques. The educational impact of the current research will be multiplied by including in the research team, undergraduate students, high-school students and underrepresented minorities in addition to graduate students.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yen, Jeannette; Mittal, Rajat; Webster, Donald R", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification", "uid": "p0000139", "west": null}, {"awards": "1542778 Alley, Richard", "bounds_geometry": null, "dataset_titles": "c-Axis Fabric of the South Pole Ice Core, SPC14; South Pole Ice Core (SPC14) Bubble Number-Density Data; South Pole Ice Core (SPIcecore) Visual Observations", "datasets": [{"dataset_uid": "601088", "doi": "10.15784/601088", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; Visual Observations", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPIcecore) Visual Observations", "url": "https://www.usap-dc.org/view/dataset/601088"}, {"dataset_uid": "601057", "doi": "10.15784/601057", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; SPICEcore", "people": "Voigt, Donald E.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "c-Axis Fabric of the South Pole Ice Core, SPC14", "url": "https://www.usap-dc.org/view/dataset/601057"}, {"dataset_uid": "601880", "doi": "10.15784/601880", "keywords": "Antarctic; Antarctica; Bubble Number Density; Cryosphere; Glaciers; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow; South Pole", "people": "Fegyveresi, John", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPC14) Bubble Number-Density Data", "url": "https://www.usap-dc.org/view/dataset/601880"}], "date_created": "Fri, 29 Sep 2017 00:00:00 GMT", "description": "Alley/1542778 This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice. The intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Fegyveresi, John; Voigt, Donald E.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": null, "title": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core", "uid": "p0000141", "west": null}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": "POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))", "dataset_titles": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins; Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains; Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography; Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "datasets": [{"dataset_uid": "601017", "doi": "10.15784/601017", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography", "url": "https://www.usap-dc.org/view/dataset/601017"}, {"dataset_uid": "601194", "doi": "10.15784/601194", "keywords": "Antarctica; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins", "url": "https://www.usap-dc.org/view/dataset/601194"}, {"dataset_uid": "601018", "doi": "10.15784/601018", "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601018"}, {"dataset_uid": "601019", "doi": "10.15784/601019", "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601019"}], "date_created": "Sun, 04 Jun 2017 00:00:00 GMT", "description": "Intellectual Merit: To understand Antarctica\u0027s geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. Broader impacts: This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF\u0027s PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI\u0027s supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.", "east": 165.120012, "geometry": "POINT(159.223506 -74.6349495)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.032547, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "uid": "p0000300", "west": 153.327}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": "POINT(149 -80)", "dataset_titles": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound; Cortisol levels in Weddell seal fur; Seasonal Dive Data ; Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017; Weddell Seal Heat Flux Dataset; Weddell seal iron dynamics and oxygen stores across lactation; Weddell seal metabolic hormone data; Weddell Seal Molt Phenology Dataset; Weddell Seal Molt Survey Data; Weddell seal summer diving behavior", "datasets": [{"dataset_uid": "601560", "doi": "10.15784/601560", "keywords": "Antarctica; Biota; Diving Behavior; McMurdo Sound; Weddell Seal", "people": "Tsai, EmmaLi", "repository": "USAP-DC", "science_program": null, "title": "1970s - 1980s Kooyman-Billups TDR Dive Records from Weddell Seals in McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601560"}, {"dataset_uid": "601587", "doi": "10.15784/601587", "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "people": "Shero, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "url": "https://www.usap-dc.org/view/dataset/601587"}, {"dataset_uid": "601840", "doi": "10.15784/601840", "keywords": "Antarctica; Cryosphere; Hormones; McMurdo Sound; Ross Sea; Weddell Seal", "people": "Kirkham, Amy", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal metabolic hormone data", "url": "https://www.usap-dc.org/view/dataset/601840"}, {"dataset_uid": "601338", "doi": "10.15784/601338", "keywords": "Animal Behavior Observation; Antarctica; Biota; McMurdo Sound; Ross Sea; Seal Dive Data; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Seasonal Dive Data ", "url": "https://www.usap-dc.org/view/dataset/601338"}, {"dataset_uid": "601027", "doi": "10.15784/601027", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Specimen logs and observations from Weddell Seal colonies in Erebus Bay, 2013-2017", "url": "https://www.usap-dc.org/view/dataset/601027"}, {"dataset_uid": "601271", "doi": "10.15784/601271", "keywords": "Antarctica; Heat Flux; Infrared Thermography; Physiological Conditions; Surface Temperatures; Thermoregulation; Weddell Seal", "people": "Walcott, Skyla", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Heat Flux Dataset", "url": "https://www.usap-dc.org/view/dataset/601271"}, {"dataset_uid": "601131", "doi": "10.15784/601131", "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Phenology Dataset", "url": "https://www.usap-dc.org/view/dataset/601131"}, {"dataset_uid": "601137", "doi": "10.15784/601137", "keywords": "Antarctica; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "people": "Beltran, Roxanne; Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell seal summer diving behavior", "url": "https://www.usap-dc.org/view/dataset/601137"}, {"dataset_uid": "601134", "doi": "10.15784/601134", "keywords": "Antarctica; Biota; Cortisol; Fur; Ross Sea; Seals; Southern Ocean; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Cortisol levels in Weddell seal fur", "url": "https://www.usap-dc.org/view/dataset/601134"}, {"dataset_uid": "601133", "doi": "10.15784/601133", "keywords": "Antarctica; Biota; Ross Sea; Seals; Visual Observations; Weddell Seal", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Weddell Seal Molt Survey Data", "url": "https://www.usap-dc.org/view/dataset/601133"}], "date_created": "Wed, 24 May 2017 00:00:00 GMT", "description": "Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay\u0027s Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.", "east": 165.0, "geometry": "POINT(165 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; USAP-DC; Seal Dive Data; Weddell Seal", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "uid": "p0000229", "west": 165.0}, {"awards": "0944191 Taylor, Kendrick; 0944197 Waddington, Edwin", "bounds_geometry": "POLYGON((-180 -79,-173.3 -79,-166.6 -79,-159.9 -79,-153.2 -79,-146.5 -79,-139.8 -79,-133.1 -79,-126.4 -79,-119.7 -79,-113 -79,-113 -79.1,-113 -79.2,-113 -79.3,-113 -79.4,-113 -79.5,-113 -79.6,-113 -79.7,-113 -79.8,-113 -79.9,-113 -80,-119.7 -80,-126.4 -80,-133.1 -80,-139.8 -80,-146.5 -80,-153.2 -80,-159.9 -80,-166.6 -80,-173.3 -80,180 -80,150.9 -80,121.8 -80,92.7 -80,63.6 -80,34.5 -80,5.4 -80,-23.7 -80,-52.8 -80,-81.9 -80,-111 -80,-111 -79.9,-111 -79.8,-111 -79.7,-111 -79.6,-111 -79.5,-111 -79.4,-111 -79.3,-111 -79.2,-111 -79.1,-111 -79,-81.9 -79,-52.8 -79,-23.7 -79,5.4 -79,34.5 -79,63.6 -79,92.7 -79,121.8 -79,150.9 -79,-180 -79))", "dataset_titles": "Accumulation Rates from the WAIS Divide Ice Core; WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica; WAIS Divide Multi Track Electrical Measurements; WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "datasets": [{"dataset_uid": "601004", "doi": "10.15784/601004", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow Accumulation; WAIS Divide Ice Core", "people": "Waddington, Edwin D.; Buizert, Christo; Conway, Howard; Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Accumulation Rates from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/601004"}, {"dataset_uid": "601172", "doi": "10.15784/601172", "keywords": "Antarctic; Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; Wais Project; West Antarctic Ice Sheet", "people": "Taylor, Kendrick C.; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "WAIS Divide Multi Track Electrical Measurements", "url": "https://www.usap-dc.org/view/dataset/601172"}, {"dataset_uid": "609591", "doi": "10.7265/N5B56GPJ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609591"}, {"dataset_uid": "601015", "doi": "10.15784/601015", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "url": "https://www.usap-dc.org/view/dataset/601015"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.", "east": -111.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Core Depth; National Ice Core Lab; Electrical Conductivity; FIELD INVESTIGATION; Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Fudge, T. J.; Taylor, Kendrick C.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "uid": "p0000026", "west": -113.0}, {"awards": "0539578 Alley, Richard; 0539232 Cuffey, Kurt", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fitzpatrick, Joan; Cravens, Eric D.", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}, {"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.; Clow, Gary D.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Voigt, Donald E.; Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard; Fegyveresi, John", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": "POINT(161.5 -77.5)", "dataset_titles": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "datasets": [{"dataset_uid": "600379", "doi": "10.15784/600379", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "people": "Willenbring, Jane", "repository": "USAP-DC", "science_program": null, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "url": "https://www.usap-dc.org/view/dataset/600379"}], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. Broader impacts: This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": "POINT(161.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Willenbring, Jane", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "p0000429", "west": 161.5}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": "POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))", "dataset_titles": "Climate Change and Predatory Invasion of the Antarctic Benthos; Expedition Data; Material properties of the exoskeleton of Paralomis birsteini", "datasets": [{"dataset_uid": "601109", "doi": "10.15784/601109", "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "people": "Steffel, Brittan", "repository": "USAP-DC", "science_program": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "url": "https://www.usap-dc.org/view/dataset/601109"}, {"dataset_uid": "600385", "doi": "10.15784/600385", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600385"}, {"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}, {"dataset_uid": "600171", "doi": "10.15784/600171", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600171"}], "date_created": "Wed, 14 Sep 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": "POINT(-82.425 -64.21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -49.98, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Aronson, Richard", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -78.44, "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "p0000303", "west": -111.18}, {"awards": "1355533 Dayton, Paul", "bounds_geometry": "POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))", "dataset_titles": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "datasets": [{"dataset_uid": "600164", "doi": "10.15784/600164", "keywords": "Antarctica; Bentic Fauna; Biota; McMurdo Sound; Oceans; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Dayton, Paul", "repository": "USAP-DC", "science_program": null, "title": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "url": "https://www.usap-dc.org/view/dataset/600164"}], "date_created": "Tue, 31 May 2016 00:00:00 GMT", "description": "Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.", "east": 167.0, "geometry": "POINT(165 -78.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Dayton, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "EAGER: A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", "uid": "p0000401", "west": 163.0}, {"awards": "1043649 Hock, Regine", "bounds_geometry": null, "dataset_titles": "King George and Livingston Islands: Velocities and Digital Elevation Model", "datasets": [{"dataset_uid": "609667", "doi": "10.7265/N5R49NR1", "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "people": "Hock, Regine; Osmanoglu, Batuhan", "repository": "USAP-DC", "science_program": null, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "url": "https://www.usap-dc.org/view/dataset/609667"}], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "1043649/Braun This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e PALSAR", "is_usap_dc": true, "keywords": "ALOS; Digital Elevation Model", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Hock, Regine; Osmanoglu, Batuhan", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ADVANCED LAND OBSERVING SATELLITE (ALOS) \u003e ALOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "uid": "p0000054", "west": null}, {"awards": "1142074 Ballard, Grant; 1142174 Smith, Walker", "bounds_geometry": "POLYGON((165.9 -76.9,166.25 -76.9,166.6 -76.9,166.95 -76.9,167.3 -76.9,167.65 -76.9,168 -76.9,168.35 -76.9,168.7 -76.9,169.05 -76.9,169.4 -76.9,169.4 -76.97,169.4 -77.04,169.4 -77.11,169.4 -77.18,169.4 -77.25,169.4 -77.32,169.4 -77.39,169.4 -77.46,169.4 -77.53,169.4 -77.6,169.05 -77.6,168.7 -77.6,168.35 -77.6,168 -77.6,167.65 -77.6,167.3 -77.6,166.95 -77.6,166.6 -77.6,166.25 -77.6,165.9 -77.6,165.9 -77.53,165.9 -77.46,165.9 -77.39,165.9 -77.32,165.9 -77.25,165.9 -77.18,165.9 -77.11,165.9 -77.04,165.9 -76.97,165.9 -76.9))", "dataset_titles": "Access to data; Experimental analyses of phytoplankton temperature response; Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project); Penguin Science file sharing site", "datasets": [{"dataset_uid": "001426", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "Access to data", "url": "http://data.prbo.org/apps/penguinscience/AllData/NSF-ANT-1142074/"}, {"dataset_uid": "002740", "doi": null, "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Penguin Science file sharing site", "url": "https://data.pointblue.org/apps/penguin_science/"}, {"dataset_uid": "601135", "doi": "10.15784/601135", "keywords": "Antarctica; Biota; Chlorophyll; Foraminifera; Growth; Phytoplankton; Plankton; Temperature", "people": "Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Experimental analyses of phytoplankton temperature response", "url": "https://www.usap-dc.org/view/dataset/601135"}, {"dataset_uid": "002575", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Glider data from the southern Ross Sea collected from the iRobot Seaglider during the RVIB Nathaniel B. Palmer (AUV-SG-503-2012, NBP1210) cruises in 2012 (Penguin Glider project)", "url": "https://www.bco-dmo.org/dataset/568868/data"}], "date_created": "Mon, 14 Dec 2015 00:00:00 GMT", "description": "Abstract The Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. This collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative.", "east": 169.4, "geometry": "POINT(167.65 -77.25)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided; USAP-DC", "locations": null, "north": -76.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Walker; Ballard, Grant", "platforms": "Not provided", "repo": "CADC", "repositories": "BCO-DMO; CADC; Project website; USAP-DC", "science_programs": null, "south": -77.6, "title": "Collaborative Research: Penguin Foraging Reveals Phytoplankton Spatial Structure in the Ross Sea", "uid": "p0000322", "west": 165.9}, {"awards": "1043724 Swanger, Kate", "bounds_geometry": "POLYGON((160.3 -77.4,160.52 -77.4,160.74 -77.4,160.96 -77.4,161.18 -77.4,161.4 -77.4,161.62 -77.4,161.84 -77.4,162.06 -77.4,162.28 -77.4,162.5 -77.4,162.5 -77.44,162.5 -77.48,162.5 -77.52,162.5 -77.56,162.5 -77.6,162.5 -77.64,162.5 -77.68,162.5 -77.72,162.5 -77.76,162.5 -77.8,162.28 -77.8,162.06 -77.8,161.84 -77.8,161.62 -77.8,161.4 -77.8,161.18 -77.8,160.96 -77.8,160.74 -77.8,160.52 -77.8,160.3 -77.8,160.3 -77.76,160.3 -77.72,160.3 -77.68,160.3 -77.64,160.3 -77.6,160.3 -77.56,160.3 -77.52,160.3 -77.48,160.3 -77.44,160.3 -77.4))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 05 Dec 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.", "east": 162.5, "geometry": "POINT(161.4 -77.6)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.4, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Swanger, Kate", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.8, "title": "Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies", "uid": "p0000406", "west": 160.3}, {"awards": "0944653 Forster, Richard", "bounds_geometry": "POLYGON((-119.4 -78.1,-118.46000000000001 -78.1,-117.52000000000001 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82000000000001 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.28999999999999,-110 -78.47999999999999,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.42999999999999,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82000000000001 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52000000000001 -80,-118.46000000000001 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.42999999999999,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.47999999999999,-119.4 -78.28999999999999,-119.4 -78.1))", "dataset_titles": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "datasets": [{"dataset_uid": "600146", "doi": "10.15784/600146", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "people": "Forster, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "url": "https://www.usap-dc.org/view/dataset/600146"}], "date_created": "Fri, 20 Nov 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.", "east": -110.0, "geometry": "POINT(-114.7 -79.05)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -78.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Forster, Richard", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "uid": "p0000079", "west": -119.4}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": "POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))", "dataset_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "datasets": [{"dataset_uid": "600144", "doi": "10.15784/600144", "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "people": "Sidor, Christian", "repository": "USAP-DC", "science_program": null, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "url": "https://www.usap-dc.org/view/dataset/600144"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. Broader impacts: The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \"Explore Your World\" website with images and findings from their field season.", "east": 172.4, "geometry": "POINT(167.405 -84.685)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -84.27, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "p0000418", "west": 162.41}, {"awards": "1144224 Marchant, David", "bounds_geometry": "POLYGON((160 -71.5,161 -71.5,162 -71.5,163 -71.5,164 -71.5,165 -71.5,166 -71.5,167 -71.5,168 -71.5,169 -71.5,170 -71.5,170 -72.15,170 -72.8,170 -73.45,170 -74.1,170 -74.75,170 -75.4,170 -76.05,170 -76.7,170 -77.35,170 -78,169 -78,168 -78,167 -78,166 -78,165 -78,164 -78,163 -78,162 -78,161 -78,160 -78,160 -77.35,160 -76.7,160 -76.05,160 -75.4,160 -74.75,160 -74.1,160 -73.45,160 -72.8,160 -72.15,160 -71.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose a two-year project to map the distribution of climate-sensitive landforms throughout Northern Victoria Land between the Convoy Range and Cape Adare. This work will produce geospatial products to aid their geomorphic work on ice sheet stability and landscape evolution. Specifically, the PI will investigate the potential for extensive surface melting and ice-sheet retreat with modest warming in areas north of the Convoy Range in Northern Victoria Land. The hypothesis is that if key landform elements of the Dry Valleys assemblage are lacking in NVL it suggests a major variation in current climate conditions, and perhaps changes in climate evolution. The proposed work will also benefit the broader research community, as it will demonstrate the potential for using geospatial imagery in geomorphic research and produce geospatial products that can be used by other researchers. Broader impacts: This work will help the research community better leverage the investment being made in the Polar Geospatial Center (PGC) and will help further demonstrate the significance of satellite imagery for doing ?virtual? field work in the Polar regions. More effective use of satellite imagery by field scientists in Antarctica will help reduce the logistical footprint on the Continent. The proposed research will support one graduate student at Boston University who will be trained in image analysis, map production, Antarctic geomorphology, and geospatial technologies. The proposed work will help to forge stronger links between PGC and Boston University?s Digital Image Analyses Lab (DIAL).", "east": 170.0, "geometry": "POINT(165 -74.75)", "instruments": null, "is_usap_dc": false, "keywords": "Bu/es Data Repository; Not provided", "locations": null, "north": -71.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.0, "title": "Geomorphic investigations of Northern Victoria Land, Antarctica", "uid": "p0000231", "west": 160.0}, {"awards": "1043706 Marchant, David", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 23 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": false, "keywords": "McMurdo Dry Valleys; Rock Weathering; Not provided", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Marchant, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -78.5, "title": "Collaborative Research: Multi-nuclide approach to systematically evaluate the scatter in surface exposure ages in Antarctica and to develop consistent alpine glacier chronologies", "uid": "p0000269", "west": 160.0}, {"awards": "1141275 Warren, Stephen", "bounds_geometry": null, "dataset_titles": "Antarctic field campaign data page", "datasets": [{"dataset_uid": "001399", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Antarctic field campaign data page", "url": "http://www.atmos.washington.edu/articles/EastAntarctica_SeaIceAlbedos_SnowImpurities/"}], "date_created": "Fri, 30 Jan 2015 00:00:00 GMT", "description": "The albedo, or reflection coefficient, is a measure of the diffuse reflectivity of an irradiated surface. With the sunlit atmosphere as a light source, and sea-ice as a diffuse reflecting surface, the albedo would be the fraction of incident light that is returned to the atmosphere. A perfect (white) reflecting surface would have an albedo of 1; a perfect (black) absorbing surface would have an albedo of 0. The albedo of sea-ice is needed to assess the solar energy budget of the marginal ice zone, to compute the partial solar bands in radiation budgets in general circulation and earth system models, and is also needed to interpret remote sensing imagery data products. Applications requiring albedos further into the near IR, out to 2500nm, are assumed or approximated. Modern spectral radiometers, such as will be used in this campaign on a Southern Ocean voyage from Hobart to Antarctica, can extend these measurements of albedo from 350 to 2500nm, allowing earlier estimates to be verified, or corrected. Surfaces to be encountered on this research cruise are expected to include open water, grease ice, nila ice, pancake ice, young grey ice, young grey-white ice, along with first year ice. The presence of variable amounts of snow on these surfaces is also of interest. Light absorbing impurities in the snow and ice, including black carbon and organic matter (brown carbon) are different from those found in Arctic Sea ice, the Antarctic being so remote from combustion sources. This may allow better understanding of the seasonal cycles, energy budgets and their recent trends in spatial extent and thickness. The project will also broaden the educational experiences of both US and Australian students participating in the measurement campaign", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Radiometers; Radiation Budgets; Sea Ice; Energy Budgets; Impurities; COMPUTERS; Albedo; Spectral; LABORATORY; Antarctica; Snow Temperature; Reflecting Surface; Snow Density; R/V AA", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Warren, Stephen; Zatko, Maria", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V AA", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "Spectral and Broadband Albedo of Antarctic Sea-ice Types", "uid": "p0000375", "west": null}, {"awards": "0087345 Conway, Howard", "bounds_geometry": "POINT(112 79)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.", "east": -112.0, "geometry": "POINT(-112 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "FIELD SURVEYS; Internal Layering; Radar; Accumulation Rate; FIELD INVESTIGATION; LABORATORY; Not provided; Internal Layers; Antarctica; Ice Flow; Interferometry; Ice Thickness", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection", "uid": "p0000557", "west": -112.0}, {"awards": "0538672 Palo, Scott", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Jul 2014 00:00:00 GMT", "description": "The mesosphere and lower thermosphere (MLT), at an altitude between 80 and 120 km above the Earth\u0027s surface, is a highly dynamic region that couples the lower terrestrial atmosphere (troposphere and stratosphere) with the upper atmosphere near-Earth space environment (thermosphere and ionosphere). Of particular importance in this region are both the upward propagating thermally forced atmospheric tides and global scale planetary waves. Both of these phenomena transport heat and momentum from the lower atmosphere into the upper atmosphere. Studies in recent years have indicated that the Arctic and Antarctic MLT possess a rich spectrum waves and may be more sensitive to global change than the lower atmosphere. The primary goal of this research is to observe, quantify, model, and further understand the spatial-temporal structure and variability of the MLT circulation above Antarctica and its commonalities with the Arctic. A secondary goal is to quantify and understand the deposition of mass into the upper atmosphere through the ablation of meteors and the resulting effect on local and regional aeronomic processes. This includes the effect of meteor flux, temperature and dynamics on the seasonal distribution of sodium over the South Pole. Meteor radar was installed at the South Pole Amundsen-Scott station and has been running continuously since January 2002. A new sodium nightglow imager will be installed at the South Pole to infer the sodium abundance in the MLT. Observations from this instrument will be combined with the South Pole Fabry-Perot interferometer temperature measurements and the meteor radar wind and meteor flux measurements to improve our understanding of the sodium chemistry and dynamics. These observations will be interpreted using sophisticated numerical models and interpreted in conjunction with Arctic measurements along with current linear and nonlinear atmospheric models to advance the current understanding of processes important to the MLT region. This research also contributes to the training and education of the graduate and undergraduate students, a postdoc and early career tenure track faculty.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Palo, Scott; Avery, James; Avery, Susan", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Studies of the Antarctic Mesosphere and Lower Thermosphere", "uid": "p0000491", "west": -180.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "MODIS Mosaic of Antarctica 2008-2009 (MOA2009) Image Map", "datasets": [{"dataset_uid": "609593", "doi": "10.7265/N5KP8037", "repository": "USAP-DC", "science_program": null, "title": "MODIS Mosaic of Antarctica 2008-2009 (MOA2009) Image Map", "url": "http://www.usap-dc.org/view/dataset/609593"}], "date_created": "Thu, 17 Jul 2014 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MODIS; Satellite Remote Sensing", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Haran, Terry; Bohlander, Jennifer; Fahnestock, Mark; Painter, Thomas; Scambos, Ted", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1139739 Hansen, Samantha", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "datasets": [{"dataset_uid": "600132", "doi": "10.15784/600132", "keywords": "Antarctica; Geology/Geophysics - Other; Lithosphere; Seismic Tomography; Solid Earth", "people": "Hansen, Samantha", "repository": "USAP-DC", "science_program": null, "title": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "url": "https://www.usap-dc.org/view/dataset/600132"}], "date_created": "Mon, 14 Jul 2014 00:00:00 GMT", "description": "Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent. Broader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hansen, Samantha", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "uid": "p0000354", "west": -180.0}, {"awards": "1045215 Gooseff, Michael", "bounds_geometry": "POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))", "dataset_titles": "Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape", "datasets": [{"dataset_uid": "600131", "doi": "10.15784/600131", "keywords": "Antarctica; Climate; Critical Zone; Dry Valleys; Radar; Soil Moisture", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape", "url": "https://www.usap-dc.org/view/dataset/600131"}], "date_created": "Tue, 01 Jul 2014 00:00:00 GMT", "description": "Intellectual Merit: Until recently, wetted soils in the Dry Valleys were generally only found adjacent to streams and lakes. Since the warm austral summer of 2002, numerous ?wet spots? have been observed far from shorelines on relatively flat valley floor locations and as downslope fingers of flow on valley walls. The source of the water to wet these soils is unclear, as is the spatial and temporal pattern of occurrence from year to year. Their significance is potentially great as enhanced soil moisture may change the thermodynamics, hydrology, and erosion rate of surface soils, and facilitate transport of materials that had previously been stable. These changes to the soil active layer could significantly modify permafrost and ground ice stability within the Dry Valleys. The PIs seek to investigate these changes to address two competing hypotheses: that the source of water to these ?wet spots? is ground ice melt and that the source of this water is snowmelt. The PIs will document the spatiotemporal dynamics of these wet areas using high frequency remote sensing data from Quickbird and Wordview satellites to document the occurrence, dimensions, and growth of wet spots during the 2010-\u00ad11 and 2011-\u00ad12 austral summers. They will test their hypotheses by determining whether wet spots recur in the same locations in each season, and they will compare present to past distribution using archived imagery. They will also determine whether spatial snow accumulation patterns and temporal ablation patterns are coincident with wet spot formation. Broader impacts: One graduate student will be trained on this project. Findings will be reported at scientific meetings and published in peer reviewed journals. They will also develop a teaching module on remote sensing applications to hydrology for the Modular Curriculum for Hydrologic Advancement and an innovative prototype project designed to leverage public participation in mapping wet spots and snow patches across the Dry Valleys through the use of social media and mobile computing applications.", "east": 165.0, "geometry": "POINT(162.5 -77.875)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; USAP-DC; ANALYTICAL LAB; Amd/Us", "locations": null, "north": -77.25, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Gooseff, Michael N.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "EAGER: Are the Dry Valleys Getting Wetter? A Preliminary Assessment of Wetness Across the McMurdo Dry Valleys Landscape", "uid": "p0000471", "west": 160.0}, {"awards": "0739390 Davis, Randall", "bounds_geometry": "POLYGON((166.08823 -77.545,166.177124 -77.545,166.266018 -77.545,166.354912 -77.545,166.443806 -77.545,166.5327 -77.545,166.621594 -77.545,166.710488 -77.545,166.799382 -77.545,166.888276 -77.545,166.97717 -77.545,166.97717 -77.57736,166.97717 -77.60972,166.97717 -77.64208,166.97717 -77.67444,166.97717 -77.7068,166.97717 -77.73916,166.97717 -77.77152,166.97717 -77.80388,166.97717 -77.83624,166.97717 -77.8686,166.888276 -77.8686,166.799382 -77.8686,166.710488 -77.8686,166.621594 -77.8686,166.5327 -77.8686,166.443806 -77.8686,166.354912 -77.8686,166.266018 -77.8686,166.177124 -77.8686,166.08823 -77.8686,166.08823 -77.83624,166.08823 -77.80388,166.08823 -77.77152,166.08823 -77.73916,166.08823 -77.7068,166.08823 -77.67444,166.08823 -77.64208,166.08823 -77.60972,166.08823 -77.57736,166.08823 -77.545))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 17 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Weddell seals (Leptonychotes weddellii) locate and capture sparsely distributed and mobile prey under shore-fast ice throughout the year, including the austral winter when ambient light levels are very low and access to breathing holes is highly limited. This is one of the most challenging environments occupied by an aquatic mammalian predator, and it presents unique opportunities to test hypotheses concerning: 1) behavioral strategies and energetic costs for foraging and 2) sensory modalities used for prey capture under sea ice. To accomplish these objectives, we will attach digital video and data recorders to the backs of free-ranging Weddell seals during the autumn, winter and early spring. These instruments simultaneously record video of prey pursuit and capture and three-dimensional movements, swimming performance, ambient light level and other environmental variables. Energetic costs for entire dives and portions of dives will be estimated from stroking effort and our published relationship between swimming performance and energetics for Weddell seals. The energetic cost of different dive types will be evaluated for strategies that maximize foraging efficiency, range (distance traveled), and duration of submergence. The proposed study will provide a more thorough understanding of the role of vision and changing light conditions in foraging behavior, sensory ecology, energetics and habitat use of Weddell seals and the distribution of encountered prey. It also will provide new insights into survival strategies that allow Weddell seals to inhabit the Antarctic coastal marine ecosystem throughout the year. \u003cbr/\u003e\u003cbr/\u003eBroader Impacts: The proposed study will train two graduate students and a Post-doctoral Fellow. Outreach activities will include interviews, written material and photographs provided to print and electronic media, project web sites, high school email exchanges from McMurdo Station, hosting visiting artists at our field camp, and public lectures. We will provide a weekly summary of our research findings to teachers and students in elementary school programs through our websites, one of which received an educational award. Our previous projects have attracted an extraordinary amount of press coverage that effectively brings scientific research to the public. This coverage and the video images generated by our work excite the imagination and help instill an interest in science and wildlife conservation in children and adults.", "east": 166.97717, "geometry": "POINT(166.5327 -77.7068)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.545, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Davis, Randall", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.8686, "title": "Collaborative Research: Hunting in Darkness: Behavioral and Energetic Strategies of Weddell Seals in Winter", "uid": "p0000357", "west": 166.08823}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": "POLYGON((-63.72 -63.73,-62.893 -63.73,-62.066 -63.73,-61.239 -63.73,-60.412 -63.73,-59.585 -63.73,-58.758 -63.73,-57.931 -63.73,-57.104 -63.73,-56.277 -63.73,-55.45 -63.73,-55.45 -64.0876,-55.45 -64.4452,-55.45 -64.8028,-55.45 -65.1604,-55.45 -65.518,-55.45 -65.8756,-55.45 -66.2332,-55.45 -66.5908,-55.45 -66.9484,-55.45 -67.306,-56.277 -67.306,-57.104 -67.306,-57.931 -67.306,-58.758 -67.306,-59.585 -67.306,-60.412 -67.306,-61.239 -67.306,-62.066 -67.306,-62.893 -67.306,-63.72 -67.306,-63.72 -66.9484,-63.72 -66.5908,-63.72 -66.2332,-63.72 -65.8756,-63.72 -65.518,-63.72 -65.1604,-63.72 -64.8028,-63.72 -64.4452,-63.72 -64.0876,-63.72 -63.73))", "dataset_titles": "Go to the NSIDC and search for the data.; Standing Water Depth on Larsen B Ice Shelf", "datasets": [{"dataset_uid": "609584", "doi": "10.7265/N500002K", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "people": "MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Standing Water Depth on Larsen B Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609584"}, {"dataset_uid": "001996", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Go to the NSIDC and search for the data.", "url": "http://nsidc.org"}], "date_created": "Sat, 21 Dec 2013 00:00:00 GMT", "description": "MacAyeal/0944248\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a better understanding of the processes and conditions that trigger ice shelf instability and explosive disintegration. A significant product of the proposed research will be the establishment of parameterizations of micro- and meso-scale ice-shelf surface processes needed in large scale ice-sheet models designed to predict future sea level rise. The proposed research represents a 3-year effort to conduct numerical model studies of 6 aspects of surface-water evolution on Antarctic ice shelves. These 6 model-study areas include energy balance models of melting ice-shelf surfaces, with treatment of surface ponds and water-filled crevasses, distributed, Darcian water flow modeling to simulate initial firn melting, brine infiltration, pond drainage and crevasse filling, ice-shelf surface topography evolution modeling by phase change (surface melting and freezing), surface-runoff driven erosion and seepage flows, mass loading and flexure effects of ice-shelf and iceberg surfaces; feedbacks between surface-water loads and flexure stresses; possible seiche phenomena of the surface water, ice and underlying ocean that constitute a mechanism for, inducing surface crevassing., surface pond and crevasse convection, and basal crevasse thermohaline convection (as a phenomena related to area 5 above). The broader impacts of the proposed work bears on the socio-environmental concerns of climate change and sea-level rise, and will contribute to the important goal of advising public policy. The project will form the basis of a dissertation project of a graduate student whose training will contribute to the scientific workforce of the nation and the PI and graduate student will additionally participate in a summer science-enrichment program for high-school teachers organized by colleagues at the University of Chicago.", "east": -55.45, "geometry": "POINT(-59.585 -65.518)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e ETM+; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "Supraglacial Lake; LANDSAT-7; Melt Ponds; Standing Water Depth; Ice Shelf Stability", "locations": null, "north": -63.73, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-7", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -67.306, "title": "Model Studies of Surface Water Behavior on Ice Shelves", "uid": "p0000052", "west": -63.72}, {"awards": "0537371 Nyblade, Andrew", "bounds_geometry": "POLYGON((40 -76,50 -76,60 -76,70 -76,80 -76,90 -76,100 -76,110 -76,120 -76,130 -76,140 -76,140 -76.8,140 -77.6,140 -78.4,140 -79.2,140 -80,140 -80.8,140 -81.6,140 -82.4,140 -83.2,140 -84,130 -84,120 -84,110 -84,100 -84,90 -84,80 -84,70 -84,60 -84,50 -84,40 -84,40 -83.2,40 -82.4,40 -81.6,40 -80.8,40 -80,40 -79.2,40 -78.4,40 -77.6,40 -76.8,40 -76))", "dataset_titles": "Data at IRIS Data Management Center (full data link not provided)", "datasets": [{"dataset_uid": "000233", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Data at IRIS Data Management Center (full data link not provided)", "url": "http://www.iris.edu/dms/"}], "date_created": "Wed, 04 Dec 2013 00:00:00 GMT", "description": "Abstract\u003cbr/\u003eThis award supports a seismological study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project will perform a passive seismic experiment deploying twenty-three seismic stations over the GSM to characterize the structure of the crust and upper mantle, and determine the processes driving uplift. The outcomes will also offer constraints on the terrestrial heat flux, a key variable in modeling ice sheet formation and behavior. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. \u003cbr/\u003eBecause of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this seismic experiment, NSF is also supporting an aerogeophysical survey of the GSM under award number 0632292. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach.", "east": 140.0, "geometry": "POINT(90 -80)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nyblade, Andrew", "platforms": "Not provided", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": -84.0, "title": "Collaborative Research: A Broadband Seismic Experiment to Image the Lithosphere Beneath the Gamburtsev Mountains and Surrounding Areas, East Antarctica", "uid": "p0000657", "west": 40.0}, {"awards": "0632292 Bell, Robin; 1240707 Fahnestock, Mark", "bounds_geometry": "POLYGON((65 -77.5,67.4 -77.5,69.8 -77.5,72.2 -77.5,74.6 -77.5,77 -77.5,79.4 -77.5,81.8 -77.5,84.2 -77.5,86.6 -77.5,89 -77.5,89 -78.25,89 -79,89 -79.75,89 -80.5,89 -81.25,89 -82,89 -82.75,89 -83.5,89 -84.25,89 -85,86.6 -85,84.2 -85,81.8 -85,79.4 -85,77 -85,74.6 -85,72.2 -85,69.8 -85,67.4 -85,65 -85,65 -84.25,65 -83.5,65 -82.75,65 -82,65 -81.25,65 -80.5,65 -79.75,65 -79,65 -78.25,65 -77.5))", "dataset_titles": "Data Access Tool; Processed Ice Penetrating Radar Altimeter data (SEGY format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT; Processed Ice Penetrating Radar Data (jpeg images) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ; Processed Ice Penetrating Radar Data (Matlab format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ; Processed Ice Penetrating Radar Data (Netcdf format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "datasets": [{"dataset_uid": "601285", "doi": null, "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (Netcdf format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601285"}, {"dataset_uid": "601283", "doi": "10.1594/IEDA/318208", "keywords": "Aerogeophysics; AGAP; Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Altimeter data (SEGY format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT", "url": "https://www.usap-dc.org/view/dataset/601283"}, {"dataset_uid": "001489", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Data Access Tool", "url": "http://www.marine-geo.org/tools/search/entry.php?id=AGAP_GAMBIT"}, {"dataset_uid": "601286", "doi": "10.15784/601286", "keywords": "AGAP; Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (jpeg images) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601286"}, {"dataset_uid": "601284", "doi": null, "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Gamburtsev Mountains; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Radar; Radar Echo Sounder", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "Processed Ice Penetrating Radar Data (Matlab format) from the Gamburtsev Mountains in Antarctica acquired during GAMBIT ", "url": "https://www.usap-dc.org/view/dataset/601284"}], "date_created": "Sun, 29 Sep 2013 00:00:00 GMT", "description": "This award supports an aerogeophysical study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project would perform a combined gravity, magnetics, and radar study to achieve a range of goals including: advancing our understanding of the origin and evolution of the polar ice sheets and subglacial lakes; defining the crustal architecture of East Antarctica, a key question in the earth\u0027s history; and locating the oldest ice in East Antarctica, which may ultimately help find ancient climate records. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this study, NSF is also supporting a seismological survey of the GSM under award number 0537371. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach including a focus on groups underrepresented in the earth sciences.", "east": 89.0, "geometry": "POINT(77 -81.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": false, "keywords": "GRAVITY; East Antarctica; GLACIERS/ICE SHEETS; ICE SHEETS; DHC-6; MAGNETIC FIELD; Not provided; Gamburtsev Mountains", "locations": "East Antarctica; Gamburtsev Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.; Fahnestock, Mark", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "MGDS; USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research: IPY: GAMBIT: Gamburtsev Aerogeophysical Mapping of Bedrock and Ice Targets", "uid": "p0000114", "west": 65.0}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": "POINT(167.15334 -77.529724)", "dataset_titles": "Database of Erebus cave field seasons; Icequakes at Erebus volcano, Antarctica; Mount Erebus Observatory GPS data; Mount Erebus Seismic Data; Mount Erebus Thermodynamic model code; Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO); Seismic data used for high-resolution active-source seismic tomography", "datasets": [{"dataset_uid": "200032", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Mount Erebus Seismic Data", "url": "http://ds.iris.edu/mda/ER/"}, {"dataset_uid": "200030", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Database of Erebus cave field seasons", "url": "https://github.com/foobarbecue/troggle"}, {"dataset_uid": "200034", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Seismic data used for high-resolution active-source seismic tomography", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/ds/nodes/dmc/forms/assembled-data/?dataset_report_number=09-015"}, {"dataset_uid": "200031", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Mount Erebus Thermodynamic model code", "url": "https://github.com/kaylai/Iacovino2015_thermodynamic_model"}, {"dataset_uid": "600381", "doi": "10.15784/600381", "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "people": "Oppenheimer, Clive; Kyle, Philip", "repository": "USAP-DC", "science_program": "MEVO", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "url": "https://www.usap-dc.org/view/dataset/600381"}, {"dataset_uid": "200027", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "Mount Erebus Observatory GPS data", "url": "https://www.unavco.org/data/gps-gnss/data-access-methods/dai1/monument.php?mid=22083\u0026parent_link=Permanent\u0026pview=original"}, {"dataset_uid": "200033", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Icequakes at Erebus volcano, Antarctica", "url": "http://ds.iris.edu/mda/ZW/?timewindow=2007-2009http://ds.iris.edu/mda/Y4?timewindow=2008-2009http://ds.iris.edu/mda/ZO?timewindow=2011-2012"}], "date_created": "Tue, 03 Sep 2013 00:00:00 GMT", "description": "Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.", "east": 167.15334, "geometry": "POINT(167.15334 -77.529724)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e DOAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e PETROGRAPHIC MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e HRDI; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TIRS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e INFRASONIC MICROPHONES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-ES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e LASER RANGING \u003e MOBLAS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e IRGA; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE CHAMBERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e FTIR SPECTROMETER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e SIMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Earthquakes; Vesuvius; Cosmogenic Radionuclides; Infrasonic Signals; Icequakes; Magma Shells; Phase Equilibria; Passcal; Correlation; Backscattering; Eruptive History; Degassing; Volatiles; Magma Convection; Thermodynamics; Tremors; Optech; Uv Doas; Energy Partitioning; Erebus; Cronus; Holocene; Lava Lake; Phonolite; Vagrant; Thermal Infrared Camera; Flir; USA/NSF; Mount Erebus; Active Source Seismic; GROUND-BASED OBSERVATIONS; Interferometry; Volatile Solubility; Redox State; Viscosity; Hydrogen Emission; Seismicity; Eruptions; Explosion Energy; FIELD SURVEYS; Radar Spectra; OBSERVATION BASED; Seismic Events; Strombolian Eruptions; Anorthoclase; Ice Caves; Iris; VOLCANO OBSERVATORY; Melt Inclusions; Ftir; Alkaline Volcanism; Tomography; TLS; Volcanic Gases; ANALYTICAL LAB", "locations": "Vesuvius; Cronus; Vagrant; Mount Erebus; Passcal", "north": -77.529724, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kyle, Philip; Oppenheimer, Clive; Chaput, Julien; Jones, Laura; Fischer, Tobias", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e VOLCANO OBSERVATORY; OTHER \u003e MODELS \u003e OBSERVATION BASED; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "IRIS", "repositories": "GitHub; IRIS; UNAVCO; USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "p0000383", "west": 167.15334}, {"awards": "0636883 Bell, Robin", "bounds_geometry": "POLYGON((20 -75,23 -75,26 -75,29 -75,32 -75,35 -75,38 -75,41 -75,44 -75,47 -75,50 -75,50 -76.5,50 -78,50 -79.5,50 -81,50 -82.5,50 -84,50 -85.5,50 -87,50 -88.5,50 -90,47 -90,44 -90,41 -90,38 -90,35 -90,32 -90,29 -90,26 -90,23 -90,20 -90,20 -88.5,20 -87,20 -85.5,20 -84,20 -82.5,20 -81,20 -79.5,20 -78,20 -76.5,20 -75))", "dataset_titles": "Data portal at Lamont for airborne data", "datasets": [{"dataset_uid": "000111", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Data portal at Lamont for airborne data", "url": "http://wonder.ldeo.columbia.edu/wordpress/"}], "date_created": "Tue, 02 Apr 2013 00:00:00 GMT", "description": "Bell/0636883\u003cbr/\u003e\u003cbr/\u003eThis award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica\u0027s subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, \u0027lake-like\u0027 feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.", "east": 50.0, "geometry": "POINT(35 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AEM; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e LIDAR ALTIMETERS", "is_usap_dc": false, "keywords": "DHC-6; Basal Melting; Ice Stream; Ice Thickness; Velocity; Ice Stream Stability; Basal Freezing; Antarctica; Drainage; Aerogeophysical; Subglacial Lake; Flood Event", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bell, Robin; Studinger, Michael S.", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "Subglacial Lakes and the Onset of Ice Streaming: Recovery Lakes", "uid": "p0000702", "west": 20.0}, {"awards": "0440819 Taylor, Kendrick", "bounds_geometry": "POINT(112.1 -79.46667)", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.", "east": 112.1, "geometry": "POINT(112.1 -79.46667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Annual Layers; Time Scale; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Glaciology; Electrical Measurements; Antarctic; Not provided; Ice Sheet; Ice Core; LABORATORY; Climate Proxies", "locations": "Antarctic", "north": -79.46667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.46667, "title": "Investigation of the Stratigraphy and Time Scale of the WAIS Divide Ice Core Using Electrical Methods", "uid": "p0000373", "west": 112.1}, {"awards": "0739654 Catania, Ginny; 0739372 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011; Ice Flow History of the Thwaites Glacier, West Antarctica", "datasets": [{"dataset_uid": "609463", "doi": "10.7265/N5RR1W6X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow Lines; Thwaites Glacier", "people": "Catania, Ginny; Conway, Howard; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Ice Flow History of the Thwaites Glacier, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609463"}, {"dataset_uid": "609522", "doi": "10.7265/N5CC0XNK", "keywords": "Amundsen Sea; Antarctica; Climate Change; Coastline; GIS Data; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Satellite Data Interpretation", "people": "Markowski, Michael; Andrews, Alan G.; Catania, Ginny; Macgregor, Joseph A.", "repository": "USAP-DC", "science_program": null, "title": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011", "url": "https://www.usap-dc.org/view/dataset/609522"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Catania 0739654\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the \"Wired Antarctica\" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e TM; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "ERS-1; Coastal; Terminus; LABORATORY; Subglacial; Glacier; Not provided; Thwaites Glacier; Antarctica; LANDSAT; Internal Stratigraphy; West Antarctica; Internal Layers; Amundsen Sea; FIELD INVESTIGATION; FIELD SURVEYS; Glaciers; LANDSAT-5; Radar; Seismic", "locations": "Coastal; Antarctica; Thwaites Glacier; Amundsen Sea; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Catania, Ginny; Markowski, Michael; Macgregor, Joseph A.; Andrews, Alan G.; Fudge, T. J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e EUROPEAN REMOTE SENSING SATELLITE (ERS) \u003e ERS-1; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-5", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica", "uid": "p0000143", "west": null}, {"awards": "0542164 Taylor, Michael", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper", "datasets": [{"dataset_uid": "600060", "doi": "10.15784/600060", "keywords": "Antarctica; Atmosphere; Meteorology; Radiosonde; South Pole", "people": "Taylor, Michael", "repository": "USAP-DC", "science_program": null, "title": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper", "url": "https://www.usap-dc.org/view/dataset/600060"}], "date_created": "Fri, 21 Oct 2011 00:00:00 GMT", "description": "A focused plan is presented to investigate the role and importance of short period (\u003c1 hour) gravity waves on the dynamics of the Antarctic Mesosphere and Lower Thermosphere (MLT) region (~80-100 km). Excited primarily by deep convection, frontal activity, topography, and strong wind shears in the lower atmosphere, these waves transport energy and momentum upwards where they have a profound influence on the MLT dynamics. Most of the wave forcing is expected to occur at mid-and low-latitudes where such sources predominate. However, short-period waves (exhibiting similar characteristics to mid-latitude events) have now been detected in copious quantities from research sites on the Antarctic Peninsula and the coastal regions exhibiting strong anisotropy in their dominant horizontal motions (and hence their momentum fluxes). Radiosonde measurements have established the existence of ubiquitous gravity wave activity at South Pole but, to date, there have been no detailed measurements of the properties of short-period waves at MLT heights deep in the Antarctic interior. In particular, the South Pole Station is uniquely situated to investigate the filtering and penetration of these waves into the MLT region, a substantial fraction of which may be ducted waves traveling over vast geographic distances (several thousand km). Novel image measurements at South Pole Station combined with existing measurement programs will provide an unprecedented capability for quantifying the role of these gravity waves on the regional MLT dynamics over central Antarctica. This research also contributes to the training and education of both the graduate and undergraduate students.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Taylor, Michael", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Quantifying the Role of Short-Period Gravity Waves on the Antarctic Mesospheric Dynamics Using an Advanced Mesospheric Temperature Mapper", "uid": "p0000684", "west": -180.0}, {"awards": "0636970 Tulaczyk, Slawek; 0636719 Joughin, Ian", "bounds_geometry": null, "dataset_titles": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "datasets": [{"dataset_uid": "601439", "doi": "10.15784/601439", "keywords": "Altimetry; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Icesat; Laser Altimetry; Subglacial Lake", "people": "Tulaczyk, Slawek; Fricker, Helen; Smith, Ben; Joughin, Ian", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Active Subglacial Lake Inventory from ICESat Altimetry", "url": "https://www.usap-dc.org/view/dataset/601439"}], "date_created": "Wed, 27 Jul 2011 00:00:00 GMT", "description": "Tulaczyk/0636970\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA\u0027s represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e GLAS", "is_usap_dc": false, "keywords": "ICESAT; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Smith, Ben; Joughin, Ian; Tulaczyk, Slawek; SMITH, BENJAMIN", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Elevation Change Anomalies in West Antarctica and Dynamics of Subglacial Water Transport Beneath Ice Streams and their Tributaries", "uid": "p0000115", "west": null}, {"awards": "0424589 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-137 -74,-132.1 -74,-127.2 -74,-122.3 -74,-117.4 -74,-112.5 -74,-107.6 -74,-102.7 -74,-97.8 -74,-92.9 -74,-88 -74,-88 -74.65,-88 -75.3,-88 -75.95,-88 -76.6,-88 -77.25,-88 -77.9,-88 -78.55,-88 -79.2,-88 -79.85,-88 -80.5,-92.9 -80.5,-97.8 -80.5,-102.7 -80.5,-107.6 -80.5,-112.5 -80.5,-117.4 -80.5,-122.3 -80.5,-127.2 -80.5,-132.1 -80.5,-137 -80.5,-137 -79.85,-137 -79.2,-137 -78.55,-137 -77.9,-137 -77.25,-137 -76.6,-137 -75.95,-137 -75.3,-137 -74.65,-137 -74))", "dataset_titles": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams; Archive of data; Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau; Ku-band Radar Echograms; Radar Depth Sounder Echograms and Ice Thickness; Snow Radar Echograms", "datasets": [{"dataset_uid": "601049", "doi": "10.15784/601049", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Radar; Snow", "people": "Gogineni, Prasad; Allen, Chris; Paden, John; Li, Jilu; Rodriguez, Fernando; Leuschen, Carl", "repository": "USAP-DC", "science_program": null, "title": "Snow Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601049"}, {"dataset_uid": "600384", "doi": "10.15784/600384", "keywords": "Airborne Radar; Antarctica; Basler; Glaciers/ice Sheet; Glaciers/Ice Sheet; Kamb Ice Stream; Radar; Siple Coast; Whillans Ice Stream", "people": "Paden, John; Hale, Richard", "repository": "USAP-DC", "science_program": null, "title": "Airborne radar profiles of the Whillans, Bindschadler, and Kamb Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600384"}, {"dataset_uid": "002497", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Archive of data", "url": "https://www.cresis.ku.edu/data/accumulation"}, {"dataset_uid": "601047", "doi": "10.15784/601047", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MCoRDS; Navigation; Radar", "people": "Gogineni, Prasad; Li, Jilu; Allen, Chris; Leuschen, Carl; Paden, John; Rodriguez, Fernando", "repository": "USAP-DC", "science_program": null, "title": "Radar Depth Sounder Echograms and Ice Thickness", "url": "https://www.usap-dc.org/view/dataset/601047"}, {"dataset_uid": "601048", "doi": "10.15784/601048", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ku-Band; Navigation; Radar", "people": "Paden, John; Allen, Chris; Li, Jilu; Leuschen, Carl; Gogineni, Prasad; Rodriguez, Fernando", "repository": "USAP-DC", "science_program": null, "title": "Ku-band Radar Echograms", "url": "https://www.usap-dc.org/view/dataset/601048"}, {"dataset_uid": "601411", "doi": "10.15784/601411", "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "people": "Blankenship, Donald D.; Mulvaney, Robert; Cavitte, Marie G. P; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Young, Duncan A.; Schroeder, Dustin", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "url": "https://www.usap-dc.org/view/dataset/601411"}], "date_created": "Wed, 01 Jun 2011 00:00:00 GMT", "description": "This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbr\u00e6. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.\u003cbr/\u003e\u003cbr/\u003eThe intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. \u003cbr/\u003e\u003cbr/\u003eAs lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.", "east": -88.0, "geometry": "POINT(-112.5 -77.25)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Remote Sensing; Not provided; Pine Island; Ice Sheet; DHC-6; Antarctic; Thwaites Region; Antarctica; Mass Balance; Accumulation; Velocity; Insar", "locations": "Antarctica; Antarctic; Pine Island; Thwaites Region", "north": -74.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Braaten, David; Joughin, Ian; Steig, Eric J.; Das, Sarah; Paden, John; Gogineni, Prasad", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; Not provided", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": null, "south": -80.5, "title": "Center for Remote Sensing of Ice Sheets (CReSIS)", "uid": "p0000102", "west": -137.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet", "datasets": [{"dataset_uid": "609489", "doi": "10.7265/N56T0JK2", "repository": "USAP-DC", "science_program": null, "title": "High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet", "url": "http://www.usap-dc.org/view/dataset/609489"}], "date_created": "Sun, 20 Feb 2011 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ASAID; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Grounding Line Hydrostatic Line; Oceans", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bindschadler, Robert; Choi, Hyeungu", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0337567 Jacobel, Robert", "bounds_geometry": "POLYGON((130 -78,133 -78,136 -78,139 -78,142 -78,145 -78,148 -78,151 -78,154 -78,157 -78,160 -78,160 -79.2,160 -80.4,160 -81.6,160 -82.8,160 -84,160 -85.2,160 -86.4,160 -87.6,160 -88.8,160 -90,157 -90,154 -90,151 -90,148 -90,145 -90,142 -90,139 -90,136 -90,133 -90,130 -90,130 -88.8,130 -87.6,130 -86.4,130 -85.2,130 -84,130 -82.8,130 -81.6,130 -80.4,130 -79.2,130 -78))", "dataset_titles": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica; Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "datasets": [{"dataset_uid": "609380", "doi": "10.7265/N5ZC80SH", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Kamb Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Glaciological Investigations of the Bulge and Trunk of Kamb Ice Stream, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609380"}, {"dataset_uid": "609475", "doi": "10.7265/N5G73BMS", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; ITASE; South Pole; Taylor Dome", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "ITASE", "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "url": "https://www.usap-dc.org/view/dataset/609475"}], "date_created": "Wed, 20 Oct 2010 00:00:00 GMT", "description": "This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream\u003cbr/\u003ethat is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling\u003cbr/\u003ecomponent will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one\u003cbr/\u003eundergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available\u003cbr/\u003eto the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.", "east": 160.0, "geometry": "POINT(145 -84)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Ice; Antarctic Glaciations; Radar; Antarctic Ice Sheet; Radar Echo Sounder; Ice Sheet Thickness; Ice Stream; Ice Sheet Elevation; Not provided; Radar Echo Sounding; Ice Stratigraphy; Antarctica; West Antarctic Ice Sheet; Continental Ice Sheet; Ice Cap; Antarctic; US ITASE; FIELD SURVEYS; Ice Thickness; FIELD INVESTIGATION", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Collaborative Research: Is Ice Stream C Restarting? Glaciological Investigations of the \u0027Bulge\u0027 and the Trunk of Ice Stream C, West Antartica", "uid": "p0000192", "west": 130.0}, {"awards": "0840733 Murr, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 30 Jul 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The overall goal of this project is to increase understanding of the conjugate nature of the polar ionospheres, which in part helps understanding the multi-scale global solar wind, magnetosphere, and ionosphere system. The project utilizes numerous types of ionospheric remote sensing instrumentation, including: terrestrial GPS receivers, GPS satellite occultation receivers, all-sky imagers, riometers, and magnetometers currently deployed in the Arctic and Antarctic to estimate the 3-D time histories of the ionospheric electron density and also to estimate the polar wind in these polar regions. Furthermore, additional GPS instrumentation will be deployed in Antarctica to increase the number and improve the spatial distribution of GPS receivers in this region. Import aspects of this investigation are: (1) utilization of a large array of instrumentation in the Arctic and Antarctic regions to provide the maximum number of measurements of the ionosphere, (2) the modification and deployment of commercial-off-the-shelf GPS receivers in remote Antarctic locations to improve spatial distribution of GPS measurements, (3) development of a new estimation algorithm for estimating the polar wind, and (4) estimation of 3-D electron density time histories and conductances in conjugate polar ionospheres. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate and undergraduate students.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": null, "paleo_time": null, "persons": "Murr, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Imaging, Estimation, and Analysis of Density Distributions in the Conjugate Polar Ionospheres", "uid": "p0000671", "west": -180.0}, {"awards": "0529815 Smith, Kenneth", "bounds_geometry": "POLYGON((-68.12004 -52.65918,-65.348168 -52.65918,-62.576296 -52.65918,-59.804424 -52.65918,-57.032552 -52.65918,-54.26068 -52.65918,-51.488808 -52.65918,-48.716936 -52.65918,-45.945064 -52.65918,-43.173192 -52.65918,-40.40132 -52.65918,-40.40132 -53.972709,-40.40132 -55.286238,-40.40132 -56.599767,-40.40132 -57.913296,-40.40132 -59.226825,-40.40132 -60.540354,-40.40132 -61.853883,-40.40132 -63.167412,-40.40132 -64.480941,-40.40132 -65.79447,-43.173192 -65.79447,-45.945064 -65.79447,-48.716936 -65.79447,-51.488808 -65.79447,-54.26068 -65.79447,-57.032552 -65.79447,-59.804424 -65.79447,-62.576296 -65.79447,-65.348168 -65.79447,-68.12004 -65.79447,-68.12004 -64.480941,-68.12004 -63.167412,-68.12004 -61.853883,-68.12004 -60.540354,-68.12004 -59.226825,-68.12004 -57.913296,-68.12004 -56.599767,-68.12004 -55.286238,-68.12004 -53.972709,-68.12004 -52.65918))", "dataset_titles": "Expedition Data; Expedition data of LMG0514A", "datasets": [{"dataset_uid": "001484", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0902"}, {"dataset_uid": "002668", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0514A", "url": "https://www.rvdata.us/search/cruise/LMG0514A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed \"Iceberg Alley\". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (\u003c 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. \u003cbr/\u003eThe proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.", "east": -40.40132, "geometry": "POINT(-54.26068 -59.226825)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.65918, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Ken", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.79447, "title": "Free Drifting Icebergs: Influence of Floating Islands on Pelagic Ecosystems in the Weddell Sea.", "uid": "p0000551", "west": -68.12004}, {"awards": "9317588 Lawver, Lawrence", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9507", "datasets": [{"dataset_uid": "002227", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9507"}, {"dataset_uid": "002590", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9507", "url": "https://www.rvdata.us/search/cruise/NBP9507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Neotectonic Evolution of Antarctic Peninsula/Scotia Sea Region: Multi-Beam, Sidescan Sonar, Seismic, Magnetics and Gravity Studies", "uid": "p0000809", "west": null}, {"awards": "9816616 Trivelpiece, Wayne", "bounds_geometry": "POLYGON((-70.860664 -52.350334,-69.5007142 -52.350334,-68.1407644 -52.350334,-66.7808146 -52.350334,-65.4208648 -52.350334,-64.060915 -52.350334,-62.7009652 -52.350334,-61.3410154 -52.350334,-59.9810656 -52.350334,-58.6211158 -52.350334,-57.261166 -52.350334,-57.261166 -53.6353506,-57.261166 -54.9203672,-57.261166 -56.2053838,-57.261166 -57.4904004,-57.261166 -58.775417,-57.261166 -60.0604336,-57.261166 -61.3454502,-57.261166 -62.6304668,-57.261166 -63.9154834,-57.261166 -65.2005,-58.6211158 -65.2005,-59.9810656 -65.2005,-61.3410154 -65.2005,-62.7009652 -65.2005,-64.060915 -65.2005,-65.4208648 -65.2005,-66.7808146 -65.2005,-68.1407644 -65.2005,-69.5007142 -65.2005,-70.860664 -65.2005,-70.860664 -63.9154834,-70.860664 -62.6304668,-70.860664 -61.3454502,-70.860664 -60.0604336,-70.860664 -58.775417,-70.860664 -57.4904004,-70.860664 -56.2053838,-70.860664 -54.9203672,-70.860664 -53.6353506,-70.860664 -52.350334))", "dataset_titles": "Expedition data of LMG0009; Expedition data of LMG0108A", "datasets": [{"dataset_uid": "002692", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0108A", "url": "https://www.rvdata.us/search/cruise/LMG0108A"}, {"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9816616 Trivelpiece Long-term seabird research conducted at Admiralty Bay, which is located on King George Island in the Antarctic Peninsula region, has documented annual variability in the life history parameters of the breeding biology and ecology of the Adelie, gentoo and chinstrap penguins. Twenty-year records acquired on these species, including survival and recruitment, population size and breeding success, and diets and foraging ecology have enabled scientists to test key hypotheses regarding the linkage between these predator parameters and variability in the Antarctic marine ecosystem. This project will focus on understanding the linkages between the physical environment and the population biology of penguins, in particular, sea ice coverage and its impact on krill availability as a food source for penguins. Krill is a key food web species in the Antarctic oceans and accounts for nearly one hundred percent of the prey eaten by dominant predators such as baleen whales, seals and penguins. Analysis of long-term data sets has suggested that years of heavy winter sea ice favor krill recruitment, as larval krill find refuge and food in the sea ice habitat. It has also been observed that years of heavy sea ice favor Adelie penguin recruitment and not that of chinstrap penguins. Aspects of the work include analysis of diet samples, shipboard krill sampling, survival and recruitment studies of penguins, satellite tracking of penguins during the breeding season, and analysis of satellite sea ice images. Penguins are the key species used to monitor the impact of commercial fisheries activities in the region, so this study will provide useful information to the Convention for the Conservation of Antarctic Marine Living Resources, which is the part of the Antarctic Treaty System which focuses on fisheries management.", "east": -57.261166, "geometry": "POINT(-64.060915 -58.775417)", "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": -52.350334, "nsf_funding_programs": null, "paleo_time": null, "persons": "Trivelpiece, Wayne; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.2005, "title": "Penguin-Krill-Ice Interactions: The Impact of Environmental Variability on Penguin Demography", "uid": "p0000616", "west": -70.860664}, {"awards": "9814383 Domack, Eugene", "bounds_geometry": "POLYGON((-70.90625 -52.35392,-69.456459 -52.35392,-68.006668 -52.35392,-66.556877 -52.35392,-65.107086 -52.35392,-63.657295 -52.35392,-62.207504 -52.35392,-60.757713 -52.35392,-59.307922 -52.35392,-57.858131 -52.35392,-56.40834 -52.35392,-56.40834 -53.615031,-56.40834 -54.876142,-56.40834 -56.137253,-56.40834 -57.398364,-56.40834 -58.659475,-56.40834 -59.920586,-56.40834 -61.181697,-56.40834 -62.442808,-56.40834 -63.703919,-56.40834 -64.96503,-57.858131 -64.96503,-59.307922 -64.96503,-60.757713 -64.96503,-62.207504 -64.96503,-63.657295 -64.96503,-65.107086 -64.96503,-66.556877 -64.96503,-68.006668 -64.96503,-69.456459 -64.96503,-70.90625 -64.96503,-70.90625 -63.703919,-70.90625 -62.442808,-70.90625 -61.181697,-70.90625 -59.920586,-70.90625 -58.659475,-70.90625 -57.398364,-70.90625 -56.137253,-70.90625 -54.876142,-70.90625 -53.615031,-70.90625 -52.35392))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001985", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0003"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the region recently occupied by the Larsen Ice Shelf in the Antarctic Peninsula. Over the last 10 years, scientists have observed a dramatic decay and disintegration of floating ice shelves along the northern end of the Antarctic Peninsula. Meteorological records and satellite observations indicate that this catastrophic decay is related to regional warming of nearly 3 degrees C in the last 50 years. While such retreat of floating ice shelves is unprecedented in historic records, current understanding of the natural variability of ice shelf systems over the last few thousand years is not understood well. This award supports a program of marine geologic research directed at filling this knowledge gap by developing an understanding of the dynamics of the northern Larsen Ice Shelf during the Holocene epoch (the last 10,000 years). The Larsen Ice Shelf is located in the NW Weddell Sea along the eastern side of the Antarctic Peninsula and is currently undergoing a rapid, catastrophic retreat as documented by satellite imagery over the past five years. While the region of the northern Antarctic Peninsula has experienced a pronounced warming trend over the last 40 years, the links between this warming and global change (i.e. greenhouse warming) are not obvious. Yet the ice shelf is clearly receding at a rate unprecedented in historic time, leaving vast areas of the seafloor uncovered and in an open marine setting. This project will collect a series of short sediment cores within the Larsen Inlet and in areas that were at one time covered by the Larsen Ice Shelf. By applying established sediment and fossil criteria to the cores we hope to demonstrate whether the Larsen Ice Shelf has experienced similar periods of retreat and subsequent advance within the last 10,000 years. Past work in various regions of the Antarctic has focused on depositional models for ice shelves that allow one to discern the timing of ice shelf retreat/advance in areas of the Ross Sea, Antarctic Peninsula, and Prydz Bay. This research will lead to a much improved understanding of the dynamics of ice shelf systems and their role in past and future climate oscillations.", "east": -56.40834, "geometry": "POINT(-63.657295 -58.659475)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35392, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.96503, "title": "Paleohistory of the Larsen Ice Shelf: Evidence from the Marine Record", "uid": "p0000619", "west": -70.90625}, {"awards": "0338090 Madin, Laurence; 0338290 Kremer, Patricia", "bounds_geometry": "POLYGON((-69.9083 -52.7624,-68.96368 -52.7624,-68.01906 -52.7624,-67.07444 -52.7624,-66.12982 -52.7624,-65.1852 -52.7624,-64.24058 -52.7624,-63.29596 -52.7624,-62.35134 -52.7624,-61.40672 -52.7624,-60.4621 -52.7624,-60.4621 -54.01423,-60.4621 -55.26606,-60.4621 -56.51789,-60.4621 -57.76972,-60.4621 -59.02155,-60.4621 -60.27338,-60.4621 -61.52521,-60.4621 -62.77704,-60.4621 -64.02887,-60.4621 -65.2807,-61.40672 -65.2807,-62.35134 -65.2807,-63.29596 -65.2807,-64.24058 -65.2807,-65.1852 -65.2807,-66.12982 -65.2807,-67.07444 -65.2807,-68.01906 -65.2807,-68.96368 -65.2807,-69.9083 -65.2807,-69.9083 -64.02887,-69.9083 -62.77704,-69.9083 -61.52521,-69.9083 -60.27338,-69.9083 -59.02155,-69.9083 -57.76972,-69.9083 -56.51789,-69.9083 -55.26606,-69.9083 -54.01423,-69.9083 -52.7624))", "dataset_titles": "Data at U.S. JGOFS Data System; Expedition Data", "datasets": [{"dataset_uid": "000118", "doi": "", "keywords": null, "people": null, "repository": "JGOF", "science_program": null, "title": "Data at U.S. JGOFS Data System", "url": "http://usjgofs.whoi.edu/jg/dir/jgofs/"}, {"dataset_uid": "001573", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0602"}, {"dataset_uid": "001565", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0414"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students\u0027 quantitative skills. Both PI\u0027s will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.", "east": -60.4621, "geometry": "POINT(-65.1852 -59.02155)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7624, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kremer, Patricia; Madin, Larry; Halanych, Kenneth", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "JGOF", "repositories": "JGOF; R2R", "science_programs": null, "south": -65.2807, "title": "Collaborative Research: Salpa Thompsoni in the Southern Ocean: Bioenergetics, Population Dynamics and Biogeochemical Impact", "uid": "p0000227", "west": -69.9083}, {"awards": "0125526 Wise, Sherwood", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "002616", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000828", "west": null}, {"awards": "0636787 Robinson, Laura", "bounds_geometry": "POLYGON((-69.13317 -52.716503,-65.8622114 -52.716503,-62.5912528 -52.716503,-59.3202942 -52.716503,-56.0493356 -52.716503,-52.778377 -52.716503,-49.5074184 -52.716503,-46.2364598 -52.716503,-42.9655012 -52.716503,-39.6945426 -52.716503,-36.423584 -52.716503,-36.423584 -53.5798407,-36.423584 -54.4431784,-36.423584 -55.3065161,-36.423584 -56.1698538,-36.423584 -57.0331915,-36.423584 -57.8965292,-36.423584 -58.7598669,-36.423584 -59.6232046,-36.423584 -60.4865423,-36.423584 -61.34988,-39.6945426 -61.34988,-42.9655012 -61.34988,-46.2364598 -61.34988,-49.5074184 -61.34988,-52.778377 -61.34988,-56.0493356 -61.34988,-59.3202942 -61.34988,-62.5912528 -61.34988,-65.8622114 -61.34988,-69.13317 -61.34988,-69.13317 -60.4865423,-69.13317 -59.6232046,-69.13317 -58.7598669,-69.13317 -57.8965292,-69.13317 -57.0331915,-69.13317 -56.1698538,-69.13317 -55.3065161,-69.13317 -54.4431784,-69.13317 -53.5798407,-69.13317 -52.716503))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001510", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0805"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project uses radiocarbon in deep-sea corals to understand the Southern Ocean\u0027s role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean\u0027s biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world\u0027s oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources.", "east": -36.423584, "geometry": "POINT(-52.778377 -57.0331915)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.716503, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Dalziel, Ian W.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -61.34988, "title": "Glacial Radiocarbon Constraints from Drake Passage Deep-Sea Corals", "uid": "p0000528", "west": -69.13317}, {"awards": "0125480 Manley, Patricia", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "002618", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000830", "west": null}, {"awards": "9316710 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9993 -75.77948,-143.99945 -75.77948,-107.9996 -75.77948,-71.99975 -75.77948,-35.9999 -75.77948,-0.000049999999987 -75.77948,35.9998 -75.77948,71.99965 -75.77948,107.9995 -75.77948,143.99935 -75.77948,179.9992 -75.77948,179.9992 -76.012273,179.9992 -76.245066,179.9992 -76.477859,179.9992 -76.710652,179.9992 -76.943445,179.9992 -77.176238,179.9992 -77.409031,179.9992 -77.641824,179.9992 -77.874617,179.9992 -78.10741,143.99935 -78.10741,107.9995 -78.10741,71.99965 -78.10741,35.9998 -78.10741,-0.000050000000016 -78.10741,-35.9999 -78.10741,-71.99975 -78.10741,-107.9996 -78.10741,-143.99945 -78.10741,-179.9993 -78.10741,-179.9993 -77.874617,-179.9993 -77.641824,-179.9993 -77.409031,-179.9993 -77.176238,-179.9993 -76.943445,-179.9993 -76.710652,-179.9993 -76.477859,-179.9993 -76.245066,-179.9993 -76.012273,-179.9993 -75.77948))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002168", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a collaborative marine geological and geophysical project between the University of California, Santa Barbara, and the University of Alabama to study the glacial and tectonic history of the eastern Ross Sea and the Marie Byrd Land margin of West Antarctica. The goals of the project are (1) to conduct seismic imaging and piston coring to begin unraveling the history of the West Antarctic ice Sheet as recorded in the recent sediments of the continental shelf of the region, and (2) to acquire seismic images of the acoustic basement beneath the Cenozoic glacial deposits toward an understanding of the relationship between rift structure of the continental crust and Cenozoic glacial deposits of the region. This research will result in bathymetric, structural, sediment isopach, gravity and magnetic maps of the eastern Ross Sea and the Marie Byrd Land margin. This information will be integrated into an interpretation of the major glacial and structural features of the region. This project will result in a better understanding of the glacio-marine stratigraphy and glacial history of the eastern Ross Sea and Marie Byrd Land margin and, consequently, it will represent a significant contribution to the goals of the West Antarctic Ice Sheet initiative.", "east": 179.9992, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -75.77948, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis; Luyendyk, Bruce P.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.10741, "title": "Collaborative Research: Glacial Marine Stratigraphy in the Eastern Ross Sea and Western Marie Byrd Land, and Shallow Structure of the West Antarctic Rift", "uid": "p0000639", "west": -179.9993}, {"awards": "0650034 Smith, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0806; Expedition data of NBP0902", "datasets": [{"dataset_uid": "002649", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0806", "url": "https://www.rvdata.us/search/cruise/NBP0806"}, {"dataset_uid": "002650", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0902", "url": "https://www.rvdata.us/search/cruise/NBP0902"}, {"dataset_uid": "001484", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0902"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed \"Iceberg Alley\". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (\u003c 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. \u003cbr/\u003eThe proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Ken", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Free Drifting Icebergs: Influence of Floating Islands on Pelagic Ecosystems in the Weddell Sea.", "uid": "p0000840", "west": null}, {"awards": "0125562 Zachos, James", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "002617", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000829", "west": null}, {"awards": "0440775 Jacobs, Stanley", "bounds_geometry": null, "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Expedition data of NBP0702; NBP0702 surface sediment sample information and images", "datasets": [{"dataset_uid": "601473", "doi": "10.15784/601473", "keywords": "Amundsen Sea; Antarctica; Marine Geoscience; Marine Sediments; NBP0702; Photo; R/v Nathaniel B. Palmer; Seafloor Sampling; Sediment Description; Smith-Mcintyre Grab", "people": "Jacobs, Stanley; Leventer, Amy", "repository": "USAP-DC", "science_program": null, "title": "NBP0702 surface sediment sample information and images", "url": "https://www.usap-dc.org/view/dataset/601473"}, {"dataset_uid": "002645", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0702", "url": "https://www.rvdata.us/search/cruise/NBP0702"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Jacobs, Stanley; Giulivi, Claudia F.", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "AMD; Amd/Us; R/V NBP; NSF/USA; Amundsen Sea; USAP-DC", "locations": "Amundsen Sea", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": null, "title": "The Amundsen Continental Shelf and the Antarctic Ice Sheet", "uid": "p0000836", "west": null}, {"awards": "9220009 Jacobs, Stanley", "bounds_geometry": "POLYGON((-179.99 -52.3518,-143.9914 -52.3518,-107.9928 -52.3518,-71.9942 -52.3518,-35.9956 -52.3518,0.00299999999999 -52.3518,36.0016 -52.3518,72.0002 -52.3518,107.9988 -52.3518,143.9974 -52.3518,179.996 -52.3518,179.996 -54.91842,179.996 -57.48504,179.996 -60.05166,179.996 -62.61828,179.996 -65.1849,179.996 -67.75152,179.996 -70.31814,179.996 -72.88476,179.996 -75.45138,179.996 -78.018,143.9974 -78.018,107.9988 -78.018,72.0002 -78.018,36.0016 -78.018,0.00300000000001 -78.018,-35.9956 -78.018,-71.9942 -78.018,-107.9928 -78.018,-143.9914 -78.018,-179.99 -78.018,-179.99 -75.45138,-179.99 -72.88476,-179.99 -70.31814,-179.99 -67.75152,-179.99 -65.1849,-179.99 -62.61828,-179.99 -60.05166,-179.99 -57.48504,-179.99 -54.91842,-179.99 -52.3518))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002257", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9402"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project will be the first systematic oceanographic study of the continental shelves of the Amundsen and Bellings-hausen Seas, and will include temperature and salinity profiling, water sampling for ocean chemistry, and continuous precision bathymetry. Upwelling warm deep water covers the Amundsen and Bellings-hausen shelves and delivers significant amounts of heat to the sea ice and fringing ice shelves. The regional precipitation is heavy, and has historically maintained a perennial ice cover. However, within the last few years satellite images have shown that the ice has been receding dramatically, with large areas of open water persisting through the winter in sectors that earlier had been ice-covered. These anomalous ice distributions are likely to have been accompanied by altered surface water properties, and possibly changes in the deep vertical circulation. There are indications that the conditions favoring a reduction in the sea ice may migrate westward toward the Ross Sea, and may have influenced a gradual warming over recent decades on the western side of the Antarctic Peninsula. The project will make use of the R/V Nathaniel B. Palmer in two cruises; one in the late austral summer 1993-1994, and a subse- quent cruise in September and October to observe late winter conditions.", "east": 179.996, "geometry": "POINT(0.00299999999999 -65.1849)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.3518, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.018, "title": "Oceanography of the Amundsen and Bellingshausen Seas", "uid": "p0000648", "west": -179.99}, {"awards": "0338164 Sedwick, Peter", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0601", "datasets": [{"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "002619", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0601", "url": "https://www.rvdata.us/search/cruise/NBP0601"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Interactive Effects of Iron, Light and CO2 on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000831", "west": null}, {"awards": "9527876 Anderson, John", "bounds_geometry": "POLYGON((-179.9996 -70.29238,-143.99968 -70.29238,-107.99976 -70.29238,-71.99984 -70.29238,-35.99992 -70.29238,0 -70.29238,35.99992 -70.29238,71.99984 -70.29238,107.99976 -70.29238,143.99968 -70.29238,179.9996 -70.29238,179.9996 -71.048723,179.9996 -71.805066,179.9996 -72.561409,179.9996 -73.317752,179.9996 -74.074095,179.9996 -74.830438,179.9996 -75.586781,179.9996 -76.343124,179.9996 -77.099467,179.9996 -77.85581,143.99968 -77.85581,107.99976 -77.85581,71.99984 -77.85581,35.99992 -77.85581,0 -77.85581,-35.99992 -77.85581,-71.99984 -77.85581,-107.99976 -77.85581,-143.99968 -77.85581,-179.9996 -77.85581,-179.9996 -77.099467,-179.9996 -76.343124,-179.9996 -75.586781,-179.9996 -74.830438,-179.9996 -74.074095,-179.9996 -73.317752,-179.9996 -72.561409,-179.9996 -71.805066,-179.9996 -71.048723,-179.9996 -70.29238))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002067", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9902"}, {"dataset_uid": "002125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9801"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -70.29238, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85581, "title": "Mechanism and Timing of West Antarctic Ice Sheet Retreat at the End of the Last Glacial Maximum", "uid": "p0000624", "west": -179.9996}, {"awards": "0125922 Anderson, John", "bounds_geometry": "POLYGON((-69.84264 -52.35215,-68.086508 -52.35215,-66.330376 -52.35215,-64.574244 -52.35215,-62.818112 -52.35215,-61.06198 -52.35215,-59.305848 -52.35215,-57.549716 -52.35215,-55.793584 -52.35215,-54.037452 -52.35215,-52.28132 -52.35215,-52.28132 -53.546701,-52.28132 -54.741252,-52.28132 -55.935803,-52.28132 -57.130354,-52.28132 -58.324905,-52.28132 -59.519456,-52.28132 -60.714007,-52.28132 -61.908558,-52.28132 -63.103109,-52.28132 -64.29766,-54.037452 -64.29766,-55.793584 -64.29766,-57.549716 -64.29766,-59.305848 -64.29766,-61.06198 -64.29766,-62.818112 -64.29766,-64.574244 -64.29766,-66.330376 -64.29766,-68.086508 -64.29766,-69.84264 -64.29766,-69.84264 -63.103109,-69.84264 -61.908558,-69.84264 -60.714007,-69.84264 -59.519456,-69.84264 -58.324905,-69.84264 -57.130354,-69.84264 -55.935803,-69.84264 -54.741252,-69.84264 -53.546701,-69.84264 -52.35215))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "001602", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0502"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": -52.28132, "geometry": "POINT(-61.06198 -58.324905)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35215, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Wellner, Julia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.29766, "title": "Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000571", "west": -69.84264}, {"awards": "9220848 Bartek, Louis", "bounds_geometry": "POLYGON((-179.9996 -52.35472,-143.99968 -52.35472,-107.99976 -52.35472,-71.99984 -52.35472,-35.99992 -52.35472,0 -52.35472,35.99992 -52.35472,71.99984 -52.35472,107.99976 -52.35472,143.99968 -52.35472,179.9996 -52.35472,179.9996 -54.916322,179.9996 -57.477924,179.9996 -60.039526,179.9996 -62.601128,179.9996 -65.16273,179.9996 -67.724332,179.9996 -70.285934,179.9996 -72.847536,179.9996 -75.409138,179.9996 -77.97074,143.99968 -77.97074,107.99976 -77.97074,71.99984 -77.97074,35.99992 -77.97074,0 -77.97074,-35.99992 -77.97074,-71.99984 -77.97074,-107.99976 -77.97074,-143.99968 -77.97074,-179.9996 -77.97074,-179.9996 -75.409138,-179.9996 -72.847536,-179.9996 -70.285934,-179.9996 -67.724332,-179.9996 -65.16273,-179.9996 -62.601128,-179.9996 -60.039526,-179.9996 -57.477924,-179.9996 -54.916322,-179.9996 -52.35472))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002245", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9407"}, {"dataset_uid": "002265", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9307"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.", "east": 179.9996, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35472, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bartek, Louis", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.97074, "title": "Integrated Biostratigraphy and High Resolution Seismic Stratigraphy of the Ross Sea: Implications for Cenozoic Eustatic and Climatic Change", "uid": "p0000643", "west": -179.9996}, {"awards": "9614844 Jeffries, Martin", "bounds_geometry": "POLYGON((-180 -43.56557,-144 -43.56557,-108 -43.56557,-72 -43.56557,-36 -43.56557,0 -43.56557,36 -43.56557,72 -43.56557,108 -43.56557,144 -43.56557,180 -43.56557,180 -46.996716,180 -50.427862,180 -53.859008,180 -57.290154,180 -60.7213,180 -64.152446,180 -67.583592,180 -71.014738,180 -74.445884,180 -77.87703,144 -77.87703,108 -77.87703,72 -77.87703,36 -77.87703,0 -77.87703,-36 -77.87703,-72 -77.87703,-108 -77.87703,-144 -77.87703,-180 -77.87703,-180 -74.445884,-180 -71.014738,-180 -67.583592,-180 -64.152446,-180 -60.7213,-180 -57.290154,-180 -53.859008,-180 -50.427862,-180 -46.996716,-180 -43.56557))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002110", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9803"}, {"dataset_uid": "002003", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9901"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56557, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.87703, "title": "Dynamic/Thermodynamic Processes and Their Contribution to the Sea Ice Thickness Distribution and Radar Backscatter in the Ross Sea", "uid": "p0000628", "west": -180.0}, {"awards": "0338350 Dunbar, Robert; 0741411 Hutchins, David; 0338097 DiTullio, Giacomo; 0338157 Smith, Walker; 0127037 Neale, Patrick", "bounds_geometry": "POLYGON((173.31833 -46.5719,173.757539 -46.5719,174.196748 -46.5719,174.635957 -46.5719,175.075166 -46.5719,175.514375 -46.5719,175.953584 -46.5719,176.392793 -46.5719,176.832002 -46.5719,177.271211 -46.5719,177.71042 -46.5719,177.71042 -48.759516,177.71042 -50.947132,177.71042 -53.134748,177.71042 -55.322364,177.71042 -57.50998,177.71042 -59.697596,177.71042 -61.885212,177.71042 -64.072828,177.71042 -66.260444,177.71042 -68.44806,177.271211 -68.44806,176.832002 -68.44806,176.392793 -68.44806,175.953584 -68.44806,175.514375 -68.44806,175.075166 -68.44806,174.635957 -68.44806,174.196748 -68.44806,173.757539 -68.44806,173.31833 -68.44806,173.31833 -66.260444,173.31833 -64.072828,173.31833 -61.885212,173.31833 -59.697596,173.31833 -57.50998,173.31833 -55.322364,173.31833 -53.134748,173.31833 -50.947132,173.31833 -48.759516,173.31833 -46.5719))", "dataset_titles": "Expedition Data; Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea; Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "datasets": [{"dataset_uid": "001687", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0305"}, {"dataset_uid": "001545", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0608"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "601340", "doi": null, "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Geochemistry; NBP0601; Niskin Bottle; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Measurements", "people": "Smith, Walker; DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "url": "https://www.usap-dc.org/view/dataset/601340"}, {"dataset_uid": "001580", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0601"}, {"dataset_uid": "600036", "doi": "10.15784/600036", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "DiTullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600036"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. \u003cbr/\u003eThis project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": 177.71042, "geometry": "POINT(175.514375 -57.50998)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FRRF", "is_usap_dc": true, "keywords": "B-15J; OCEAN PLATFORMS; FIELD SURVEYS; R/V NBP", "locations": "B-15J", "north": -46.5719, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ditullio, Giacomo; Smith, Walker; Dryer, Jennifer; Neale, Patrick", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e OCEAN PLATFORMS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.44806, "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "p0000540", "west": 173.31833}, {"awards": "0632399 Jefferies, Stuart", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "datasets": [{"dataset_uid": "600152", "doi": "10.15784/600152", "keywords": "Antarctica; Cosmos; Satellite Remote Sensing; Sun", "people": "Jefferies, Stuart M.", "repository": "USAP-DC", "science_program": null, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "url": "https://www.usap-dc.org/view/dataset/600152"}], "date_created": "Wed, 10 Mar 2010 00:00:00 GMT", "description": "The proposal is to develop an instrument that can simultaneously measure the sound speed and magnetic fields at three heights in the solar atmosphere. The instrument will use magneto-optical filters tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), and 770 nm (K) to make measurements of Doppler velocities and longitudinal magnetic field. These lines form in the mid- and low-chromosphere and photosphere, respectively. In addition, the instrument will also use a Fabry-Perot etalon as a narrowband filter to measure the intensity variations of the 1083 nm (He I) line that is formed high in the chromosphere and which shows the location of the \"foot points\" of coronal holes. Together, the four lines will allow studying wave motions throughout the solar atmosphere. The instrument will record images of the Sun every 10 seconds with a spatial resolution of 1 arc-second. Thus, the project will be fostering the development of existing magneto-optical filter technology to a new level. Upon construction, the telescope will be tested at South Pole for a long period of uninterrupted observations. Both the local and global helioseismic analysis procedures will be utilized to identify and to characterize different types of waves present in the solar atmosphere. These observations will allow determining the structure and dynamics of the Sun\u0027s atmosphere through seismic measurements and, thus, improve the atmosphere models, assess the role of waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun\u0027s atmosphere couples to the interior. The broader impact of the proposed project is two fold. First, there is a potential benefit to the science and to the society because it is believed that the solar atmosphere is a \"home\" to many phenomena that can have a direct effect on the solar activity, including flares, coronal mass ejections, and the solar wind. Understanding the structure and dynamics of the solar atmosphere will therefore lead to a better understanding of the Sun-Earth connection. The collected data will be made available to other researchers at DVDs. The broader audience of general public will be reached through presentations at high schools, libraries, and community events, and news articles in the general press. Most of the research materials will also be placed in the Web.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Jefferies, Stuart M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tomographic Imaging of the Velocity and Magnetic Fields in the Sun\u0027s Atmosphere", "uid": "p0000526", "west": -180.0}, {"awards": "0440817 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "WAIS Divide Ice Core Images, Antarctica", "datasets": [{"dataset_uid": "609375", "doi": "10.7265/N5348H8T", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Optical Images; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McGwire, Kenneth C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Images, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609375"}], "date_created": "Wed, 10 Feb 2010 00:00:00 GMT", "description": "This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The \u003cbr/\u003eproject will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctica; Not provided; Ice Core Data; West Antarctica; LABORATORY; Ice Core; FIELD INVESTIGATION", "locations": "Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000182", "west": null}, {"awards": "0086645 Fountain, Andrew", "bounds_geometry": "POLYGON((161.04 -77.3,161.239 -77.3,161.438 -77.3,161.637 -77.3,161.836 -77.3,162.035 -77.3,162.234 -77.3,162.433 -77.3,162.632 -77.3,162.831 -77.3,163.03 -77.3,163.03 -77.378,163.03 -77.456,163.03 -77.534,163.03 -77.612,163.03 -77.69,163.03 -77.768,163.03 -77.846,163.03 -77.924,163.03 -78.002,163.03 -78.08,162.831 -78.08,162.632 -78.08,162.433 -78.08,162.234 -78.08,162.035 -78.08,161.836 -78.08,161.637 -78.08,161.438 -78.08,161.239 -78.08,161.04 -78.08,161.04 -78.002,161.04 -77.924,161.04 -77.846,161.04 -77.768,161.04 -77.69,161.04 -77.612,161.04 -77.534,161.04 -77.456,161.04 -77.378,161.04 -77.3))", "dataset_titles": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "datasets": [{"dataset_uid": "609421", "doi": "", "keywords": "Antarctica; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; LTER; LTER Mcmurdo Dry Valleys", "people": "Lyons, W. Berry; Basagic, Hassan; Nylen, Thomas; Fountain, Andrew; Langevin, Paul", "repository": "USAP-DC", "science_program": null, "title": "McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) Core Glacier Mass Balance Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609421"}], "date_created": "Mon, 31 Aug 2009 00:00:00 GMT", "description": "0086645\u003cbr/\u003eFountain\u003cbr/\u003e\u003cbr/\u003eThis award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of \"application of new expertise or new approaches to established research topics\". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The \"exploratory\" and \"high risk\" nature of the proposed work and its \"potential\" to make an important \"impact\" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.", "east": 163.03, "geometry": "POINT(162.035 -77.69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Glacier Surface; Antarctic; LABORATORY; Byrd Polar Research Center; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; Not provided; Glacier; Mass Balance; Snow Density; Ice Core; Taylor Glacier", "locations": "Antarctic; Antarctica; Taylor Glacier", "north": -77.3, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nylen, Thomas; Basagic, Hassan; Langevin, Paul; Lyons, W. Berry; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "SGER Proposal:Glaciological change in the McMurdo Dry Valleys, Antarctica", "uid": "p0000541", "west": 161.04}, {"awards": "0122520 Gogineni, S. Prasad", "bounds_geometry": "POLYGON((-110 -62,-105 -62,-100 -62,-95 -62,-90 -62,-85 -62,-80 -62,-75 -62,-70 -62,-65 -62,-60 -62,-60 -63.5,-60 -65,-60 -66.5,-60 -68,-60 -69.5,-60 -71,-60 -72.5,-60 -74,-60 -75.5,-60 -77,-65 -77,-70 -77,-75 -77,-80 -77,-85 -77,-90 -77,-95 -77,-100 -77,-105 -77,-110 -77,-110 -75.5,-110 -74,-110 -72.5,-110 -71,-110 -69.5,-110 -68,-110 -66.5,-110 -65,-110 -63.5,-110 -62))", "dataset_titles": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "datasets": [{"dataset_uid": "609414", "doi": "", "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar", "people": "Gogineni, Prasad", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Radar Echograms and Derived Ice Thickness Data from CReSIS", "url": "https://www.usap-dc.org/view/dataset/609414"}], "date_created": "Wed, 01 Jul 2009 00:00:00 GMT", "description": "0122520\u003cbr/\u003eGogineni\u003cbr/\u003e\u003cbr/\u003eSea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. \u003cbr/\u003e\u003cbr/\u003eRadar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.\u003cbr/\u003e\u003cbr/\u003eThe system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web", "east": -60.0, "geometry": "POINT(-85 -69.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e AIRSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": true, "keywords": "Radar Echo Sounding; Not provided; FIELD SURVEYS; Airborne Radar Sounding; Radar Echo Sounder; Antarctic Ice Sheet; LABORATORY; Antarctica; Ice Sheet Thickness; Antarctic; Ice Sheet; Synthetic Aperture Radar Imagery; Radar Altimetry; Ice Sheet Elevation; FIELD INVESTIGATION; Radar", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": -62.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gogineni, Prasad", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "ITR/SI+AP: A Mobile Sensor Web for Polar Ice Sheet Measurements", "uid": "p0000583", "west": -110.0}, {"awards": "0439759 Ballard, Grant", "bounds_geometry": "POLYGON((-180 -60,-177.5 -60,-175 -60,-172.5 -60,-170 -60,-167.5 -60,-165 -60,-162.5 -60,-160 -60,-157.5 -60,-155 -60,-155 -61.76,-155 -63.52,-155 -65.28,-155 -67.04,-155 -68.8,-155 -70.56,-155 -72.32,-155 -74.08,-155 -75.84,-155 -77.6,-157.5 -77.6,-160 -77.6,-162.5 -77.6,-165 -77.6,-167.5 -77.6,-170 -77.6,-172.5 -77.6,-175 -77.6,-177.5 -77.6,180 -77.6,178.5 -77.6,177 -77.6,175.5 -77.6,174 -77.6,172.5 -77.6,171 -77.6,169.5 -77.6,168 -77.6,166.5 -77.6,165 -77.6,165 -75.84,165 -74.08,165 -72.32,165 -70.56,165 -68.8,165 -67.04,165 -65.28,165 -63.52,165 -61.76,165 -60,166.5 -60,168 -60,169.5 -60,171 -60,172.5 -60,174 -60,175.5 -60,177 -60,178.5 -60,-180 -60))", "dataset_titles": "Access to data; Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science; Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "datasets": [{"dataset_uid": "601443", "doi": "10.15784/601443", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Penguin; Ross Sea; Seabirds", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin banding data 1994-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601443"}, {"dataset_uid": "001368", "doi": "", "keywords": null, "people": null, "repository": "CADC", "science_program": null, "title": "Access to data", "url": "http://data.prbo.org/apps/penguinscience/AllData/mammals"}, {"dataset_uid": "601444", "doi": "10.15784/601444", "keywords": "Adelie Penguin; Antarctica; Biota; Demography; Mark-Recapture; Monitoring; Penguin; Ross Island", "people": "Ballard, Grant", "repository": "USAP-DC", "science_program": null, "title": "Adelie penguin resighting data 1997-2021 from the California Avian Data Center hosted by Point Reyes Bird Observatory Conservation Science", "url": "https://www.usap-dc.org/view/dataset/601444"}], "date_created": "Tue, 19 May 2009 00:00:00 GMT", "description": "This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. The long-term changes occurring at these colonies are representative of changes throughout the Ross Sea, where 30% of all Adelie penguins reside, and are in some way related to changing climate. The recent grounding of two very large icebergs against Ross and Beaufort islands, with associated increased variability in sea-ice extent, has provided an unparalleled natural experiment affecting wild, interannual swings in colony productivity, foraging effort, philopatry and recruitment. Results of this natural experiment can provide insights into the demography and geographic population structuring of this species, having relevance Antarctic-wide in understanding its future responses to climate change as well as interpreting its amazingly well known Holocene history. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). An increased effort will focus on understanding factors that affect over-winter survival. The hypothesis is that the age structure of Cape Crozier has changed over the past thirty years and no longer reflects the smaller colonies nearby. Based on recent analyses, it appears that the Ross Island penguins winter in a narrow band of sea ice north of the Antarctic Circle (where daylight persists) and south of the southern boundary of the Antarctic Circumpolar Current (where food abounds). More extensive winter ice takes the penguins north of that boundary where they incur higher mortality. Thus, where a penguin winters may be due to the timing of its post-breeding departure (which differs among colonies), which affects where it first encounters sea ice on which to molt and where it will be transported by the growing ice field. Foraging effort and interference competition for food suggested as factors driving the geographic structuring of colonies. The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. Information will be related to sea-ice conditions as quantified by satellite images. Demographic and foraging-effort models will be used to synthesize results. The iceberg natural experiment is an unparalleled opportunity to investigate the demographics of a polar seabird and its response to climate change. The marked, interannual variability in apparent philopatry, with concrete data being collected on its causes, is a condition rarely encountered among studies of vertebrates. Broader impacts include collaborating with New Zealand and Italian researchers, involving high school teachers and students in the fieldwork and continuing a website to highlight results to both scientists and the general public.", "east": -155.0, "geometry": "POINT(-175 -68.8)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "CADC; USAP-DC", "science_programs": null, "south": -77.6, "title": "COLLABORATIVE: Geographic Structure of Adelie Penguin Colonies - Demography of Population Change", "uid": "p0000068", "west": 165.0}, {"awards": "0438777 Fritts, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "datasets": [{"dataset_uid": "600040", "doi": "10.15784/600040", "keywords": "Antarctica; Atmosphere; Meteorology; Radar", "people": "Fritts, David", "repository": "USAP-DC", "science_program": null, "title": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "url": "https://www.usap-dc.org/view/dataset/600040"}], "date_created": "Mon, 16 Mar 2009 00:00:00 GMT", "description": "This proposal is to continue operation and scientific studies with the middle-frequency (MF, 1-30 MHz) mesospheric radar deployed at the British Antarctic station Rothera in 1996. This system is now a key site in the Antarctic MF radar chain near 68 deg. S, which includes also MF radars at Syowa (Japan) and Davis (Australia) stations. This radar comprises the winds component of a developing instrument suite for the mesosphere-thermosphere (MLT) studies at Rothera - a focus of the new BAS 5-year plan, which also includes the Fe temperature lidar (formerly at South Pole) and the mesopause airglow imager for gravity wave studies (formerly at Halley). The Rothera MF radar has just had its antennas and electronics upgraded to achieve better signal-to-noise ratio and more continuous measurements in height and time. The main focus of the proposed research is to extend the knowledge of the polar mesosphere dynamics. The instrument suite at Rothera is ideally positioned for correlative interhemispheric studies with northern hemisphere sites at Poker Flat, Alaska (65 deg. N) and ALOMAR, Norway (69 deg. N) having comparable instrumentation. Further research efforts performed with continued funding will focus on: (1) multi-instrument collaborative studies at Rothera to quantify as fully as possible the dynamics, structure, and variability of the MLT at that location, (2) multi-site (and multi-instrument) studies of large-scale dynamics and variability in the Antarctic (together with the radars and other instrumentation at Davis and Syowa), and (3) interhemispheric studies employing instruments (e.g., the Na resonance lidar and MF radar) at Poker Flat and ALOMAR. It is expected that these studies will lead to a more detailed understanding of (1) mean, tidal, and planetary wave structures at polar latitudes, (2) seasonal, inter-annual, and short-term variability of these structures, (3) hemispheric differences in the tidal and planetary wave structures arising from different source and wave interaction conditions, and (4) the relative influences of gravity waves in the two hemispheres. Such studies will also contribute more generally to an increased awareness of the role of high-latitude processes in global atmospheric dynamics and variability.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Fritts, David", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Correlative Antarctic and Inter-Hemispheric Dynamics Studies Using the MF Radar at Rothera", "uid": "p0000021", "west": -180.0}, {"awards": "9911617 Blankenship, Donald; 9319379 Blankenship, Donald", "bounds_geometry": null, "dataset_titles": "Antarctic Aerogeophysics Data; Antarctic Subglacial Lake Classification Inventory; RBG - Robb Glacier Survey; SOAR-Lake Vostok Survey airborne radar data; SOAR-Lake Vostok Survey bed elevation data; SOAR-Lake Vostok Survey Gravity data; SOAR-Lake Vostok Survey ice thickness data; SOAR-Lake Vostok survey magnetic anomaly data; SOAR-Lake Vostok Survey surface elevation data", "datasets": [{"dataset_uid": "601604", "doi": "10.15784/601604", "keywords": "Airborne Radar; Antarctica; Bed Elevation; Geophysics; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Surface Elevation; Ice Thickness; Robb Glacier; Transantarctic Mountains", "people": "Young, Duncan A.; Blankenship, Donald D.; Bell, Robin; Buck, W. Roger", "repository": "USAP-DC", "science_program": null, "title": "RBG - Robb Glacier Survey", "url": "https://www.usap-dc.org/view/dataset/601604"}, {"dataset_uid": "601300", "doi": "10.1594/IEDA/306568", "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey airborne radar data", "url": "https://www.usap-dc.org/view/dataset/601300"}, {"dataset_uid": "601299", "doi": "10.1594/IEDA/306565", "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey bed elevation data", "url": "https://www.usap-dc.org/view/dataset/601299"}, {"dataset_uid": "601298", "doi": "10.1594/IEDA/306566", "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey surface elevation data", "url": "https://www.usap-dc.org/view/dataset/601298"}, {"dataset_uid": "601297", "doi": "10.1594/IEDA/306567", "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "people": "Studinger, Michael S.; Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey ice thickness data", "url": "https://www.usap-dc.org/view/dataset/601297"}, {"dataset_uid": "601296", "doi": " 10.1594/IEDA/306564", "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "url": "https://www.usap-dc.org/view/dataset/601296"}, {"dataset_uid": "601295", "doi": "10.1594/IEDA/306563", "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "people": "Bell, Robin; Studinger, Michael S.", "repository": "USAP-DC", "science_program": null, "title": "SOAR-Lake Vostok Survey Gravity data", "url": "https://www.usap-dc.org/view/dataset/601295"}, {"dataset_uid": "609240", "doi": "", "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Navigation; Potential Field; SOAR; Solid Earth", "people": "Dalziel, Ian W.; Morse, David L.; Blankenship, Donald D.; Holt, John W.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Aerogeophysics Data", "url": "https://www.usap-dc.org/view/dataset/609240"}, {"dataset_uid": "609336", "doi": "10.7265/N5CN71VX", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Lake", "people": "Holt, John W.; Carter, Sasha P.; Blankenship, Donald D.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Subglacial Lake Classification Inventory", "url": "https://www.usap-dc.org/view/dataset/609336"}], "date_created": "Fri, 06 Feb 2009 00:00:00 GMT", "description": "9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation\u0027s Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft\u0027s avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: \"Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies\" (Co-PI\u0027s Bell and Studinger, LDEO); and \"Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary\" (Co-PI\u0027s Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IMAGING RADAR SYSTEMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LIDAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e PROTON MAGNETOMETER", "is_usap_dc": true, "keywords": "Ice Sheet; Ice Sheet Elevation; Surface Winds; Snow Temperature; Atmospheric Pressure; Antarctic; West Antarctic Ice Sheet; Surface Temperature Measurements; FIELD INVESTIGATION; Surface Wind Speed Measurements; Subglacial Topography; Atmospheric Humidity Measurements; Not provided; Aerogeophysics; FIELD SURVEYS; GROUND STATIONS; Antarctica; SOAR; Snow Temperature Measurements; West Antarctica; Antarctic Ice Sheet; East Antarctic Plateau", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Carter, Sasha P.; Holt, John W.; Blankenship, Donald D.; Morse, David L.; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)", "uid": "p0000125", "west": null}, {"awards": "0225110 Garrott, Robert", "bounds_geometry": "POLYGON((163.1 -70.3,163.59 -70.3,164.08 -70.3,164.57 -70.3,165.06 -70.3,165.55 -70.3,166.04 -70.3,166.53 -70.3,167.02 -70.3,167.51 -70.3,168 -70.3,168 -70.98,168 -71.66,168 -72.34,168 -73.02,168 -73.7,168 -74.38,168 -75.06,168 -75.74,168 -76.42,168 -77.1,167.51 -77.1,167.02 -77.1,166.53 -77.1,166.04 -77.1,165.55 -77.1,165.06 -77.1,164.57 -77.1,164.08 -77.1,163.59 -77.1,163.1 -77.1,163.1 -76.42,163.1 -75.74,163.1 -75.06,163.1 -74.38,163.1 -73.7,163.1 -73.02,163.1 -72.34,163.1 -71.66,163.1 -70.98,163.1 -70.3))", "dataset_titles": "Weddell Seal data", "datasets": [{"dataset_uid": "000120", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Weddell Seal data", "url": "http://www.montana.edu/weddellseals/"}], "date_created": "Wed, 28 Jan 2009 00:00:00 GMT", "description": "The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (\u003e60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications.", "east": 168.0, "geometry": "POINT(165.55 -73.7)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -70.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Garrott, Robert; Siniff, Donald; Rotella, Jay", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -77.1, "title": "Patterns and Processes: Dynamics of the Erebus Bay Weddell Seal Population", "uid": "p0000109", "west": 163.1}, {"awards": "0440304 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "U.S. International Trans Antarctic Scientific Expedition web pages", "datasets": [{"dataset_uid": "000108", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "U.S. International Trans Antarctic Scientific Expedition web pages", "url": "http://www2.umaine.edu/USITASE/index.html"}], "date_created": "Tue, 13 Jan 2009 00:00:00 GMT", "description": "This award supports a project to perform ice radar studies of bedrock topography and internal layers along the second US ITASE traverse corridor extending from Taylor Dome to South Pole on the inland side of the Transantarctic Mountains. The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in locating additional radar and surface studies to characterize the drainage divides between major outlet glaciers flowing through the mountains and possible changes in them through time. Information from the radar on bed roughness and basal reflectivity, together with images of internal layer deformation will enable us to study changes in the character of ice flow as tributaries merge to trunk flow and velocities increase. Areas where wind scour and sublimation have brought old ice close to the surface will be investigated. Based on our results from the first ITASE traverse, it is also likely that there will be findings of opportunity, phenomena we have not anticipated that are revealed by the radar as the result of a discovery-based traverse. The interdisciplinary science goals of US ITASE are designed to accommodate a variety of interactive research programs and data collected are available to a broad scientific community. US ITASE also supports an extensive program of public outreach and the education and training of future scientists will be central to all activities of this proposal. St. Olaf College is an undergraduate liberal arts institution that emphasizes student participation in scientific research. This award supports two undergraduate students as well as a research associate and a graduate student who will be part of the US ITASE field team.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "US ITASE; Stratigraphy; Radar; Antarctica; FIELD SURVEYS; Us Itase Ii; Bed Topography; Not provided; Internal Layers; FIELD INVESTIGATION; Taylor Dome; Transantarctic Mountains; West Antarctica; Traverse", "locations": "Antarctica; West Antarctica; Transantarctic Mountains; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "Project website", "repositories": "Project website", "science_programs": null, "south": null, "title": "Radar Studies of Internal Stratigraphy and Bed Topography along the US ITASE-II Traverse", "uid": "p0000116", "west": null}, {"awards": "0440670 Hulbe, Christina; 0440636 Fahnestock, Mark", "bounds_geometry": "POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70))", "dataset_titles": "MOA-derived Structural Feature Map of the Ronne Ice Shelf; MOA-derived Structural Feature Map of the Ross Ice Shelf; Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "datasets": [{"dataset_uid": "600024", "doi": "", "keywords": null, "people": "Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600024"}, {"dataset_uid": "609497", "doi": "10.7265/N5PR7SXR", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MOA; MODIS; Ronne Ice Shelf", "people": "Hulbe, Christina; Ledoux, Christine", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ronne Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609497"}, {"dataset_uid": "601432", "doi": "10.15784/601432", "keywords": "Antarctica", "people": "Forbes, Martin; Ledoux, Christine; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ross Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601432"}], "date_created": "Thu, 25 Sep 2008 00:00:00 GMT", "description": "This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated \"sticky spot\" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA\u0027s IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.", "east": -130.0, "geometry": "POINT(-155 -78)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Fracture Patterns; Ross Ice Shelf; West Antarctic Ice Sheet; Not provided; Antarctica; TERRA; Ice Sheet; Ice Rise; LABORATORY; Ice-Stream Discharge; West Antarctica; Fracture Propagation; SATELLITES; Ice Stream Motion; Grounding Line; Ice Movement; Ice Stream; Whillans Ice Stream; Ice Stream Outlets; Basal Temperature Gradient; Numerical Model; Ice Thickness; Flow Features; Kamb Ice Stream; Antarctic Ice Sheet; Satellite Image Mosaics; Icesat; Grounding Line Migration; ICESAT", "locations": "Kamb Ice Stream; Whillans Ice Stream; Antarctica; Ross Ice Shelf; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "uid": "p0000096", "west": 180.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": "POINT(-178 -78)", "dataset_titles": "collection of nascent rift images and description of station deployment; Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica; Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica; Iceberg Firn Temperatures, Antarctica; Iceberg Harmonic Tremor, Seismometer Data, Antarctica; Iceberg Satellite imagery from stations and ice shelves (full data link not provided); Iceberg Tiltmeter Measurements, Antarctica; Ice Shelf Rift Time-Lapse Photography, Antarctica; Incorporated Research Institutions for Seismology; Nascent Iceberg Webcam Images available during the deployment period; Ross Ice Shelf Firn Temperature, Antarctica; The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.; This site mirrors the NSIDC website archive.", "datasets": [{"dataset_uid": "609352", "doi": "10.7265/N5M61H55", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; MacAyeal, Douglas; Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Firn Temperatures, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609352"}, {"dataset_uid": "609353", "doi": "10.7265/N5GF0RFF", "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "people": "Kim, Young-Jin; Bliss, Andrew; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Tiltmeter Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609353"}, {"dataset_uid": "609351", "doi": "10.7265/N5QV3JGV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "people": "Brunt, Kelly; MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609351"}, {"dataset_uid": "609350", "doi": "10.7265/N5VM496K", "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "people": "Okal, Emile; MacAyeal, Douglas; Aster, Richard; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609350"}, {"dataset_uid": "609349", "doi": "10.7265/N5445JD6", "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "people": "MacAyeal, Douglas; Okal, Emile; Aster, Richard; Bassis, Jeremy", "repository": "USAP-DC", "science_program": null, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609349"}, {"dataset_uid": "002504", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Nascent Iceberg Webcam Images available during the deployment period", "url": "https://amrc.ssec.wisc.edu/data/iceberg.html"}, {"dataset_uid": "001685", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Incorporated Research Institutions for Seismology", "url": "http://www.iris.edu/data/sources.htm"}, {"dataset_uid": "609347", "doi": "10.7265/N57W694M", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "people": "Brunt, Kelly; MacAyeal, Douglas; King, Matthew", "repository": "USAP-DC", "science_program": null, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609347"}, {"dataset_uid": "001684", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "This site mirrors the NSIDC website archive.", "url": "http://uwamrc.ssec.wisc.edu/"}, {"dataset_uid": "001639", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "collection of nascent rift images and description of station deployment", "url": "http://thistle.org/nascent/index.shtml"}, {"dataset_uid": "001598", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The files contain a short header (number of data samples, sample rate, start time, stop time, channel title)The time series data then follow the header above.", "url": "http://nsidc.org"}, {"dataset_uid": "609354", "doi": "10.7265/N5BP00Q3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "people": "Muto, Atsu; Sergienko, Olga; MacAyeal, Douglas; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609354"}, {"dataset_uid": "002568", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Iceberg Satellite imagery from stations and ice shelves (full data link not provided)", "url": "http://amrc.ssec.wisc.edu/"}], "date_created": "Fri, 19 Sep 2008 00:00:00 GMT", "description": "This award supports the study of the drift and break-up of Earth\u0027s largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an \"iceberg\" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.", "east": -178.0, "geometry": "POINT(-178 -78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e TEMPERATURE LOGGERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TEMPERATURE PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "SEISMOLOGICAL STATIONS; Pressure; AWS; Velocity Measurements; Firn Temperature Measurements; Ice Velocity; Seismology; Ice Sheet Elevation; Harmonic Tremor; Ice Shelf Temperature; Wind Speed; Iceberg; Ice Surface Elevation; Non-Volcanic Tremor; Not provided; Antarctic; Iceberg Tremor; Solar Radiation; Antarctic Ice Sheet; Ross Ice Shelf; Elevation; GPS; Temperature Profiles; Ice Shelf Rift Camera; GROUND STATIONS; Latitude; GROUND-BASED OBSERVATIONS; Ice Shelf Weather; FIELD INVESTIGATION; ARWS; Surface Elevation; Ice Shelf Flow; Antarctica; FIELD SURVEYS; Camera; Seismometer; Iceberg Weather (aws); Ice Movement; Photo; Wind Direction; Iceberg Snow Accumulation; Tremor And Slow Slip Events; AWS Climate Data; Location; Iceberg Drift; Iceberg Collisions; Iceberg Tilt; Atmospheric Pressure; Iceberg Seismicity; Firn Temperature", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; Kim, Young-Jin; Bliss, Andrew; Sergienko, Olga; Thom, Jonathan; Scambos, Ted; Muto, Atsu; Brunt, Kelly; King, Matthew; Parker, Tim; Okal, Marianne; Cathles, Mac; MacAyeal, Douglas", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e SEISMOLOGICAL STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "AMRDC; IRIS; NSIDC; Project website; USAP-DC", "science_programs": null, "south": -78.0, "title": "Collaborative Research of Earth\u0027s Largest Icebergs", "uid": "p0000117", "west": -178.0}, {"awards": "0238281 Marsh, Adam", "bounds_geometry": "POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))", "dataset_titles": "Marine Invertebrates of McMurdo Sound", "datasets": [{"dataset_uid": "600034", "doi": "10.15784/600034", "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Photo/video; Photo/Video; Southern Ocean", "people": "Marsh, Adam G.", "repository": "USAP-DC", "science_program": null, "title": "Marine Invertebrates of McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/600034"}], "date_created": "Mon, 09 Jun 2008 00:00:00 GMT", "description": "Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.\u003cbr/\u003eThese educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware.", "east": 167.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Marsh, Adam G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates", "uid": "p0000240", "west": 163.0}, {"awards": "0636899 Mende, Stephen", "bounds_geometry": null, "dataset_titles": "Antarctic Auroral Imaging", "datasets": [{"dataset_uid": "600070", "doi": "10.15784/600070", "keywords": "Antarctica; Atmosphere; Aurora; Cosmos; Photo/video; Photo/Video", "people": "Frey, Harald; Mende, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Auroral Imaging", "url": "https://www.usap-dc.org/view/dataset/600070"}], "date_created": "Tue, 01 Apr 2008 00:00:00 GMT", "description": "The proposed work would modify an existing 4-channel all-sky camera at South Pole in order to observe several types of auroras, and to distinguish the cusp reconnection aurora from the normal plasma sheet precipitation. The camera will simultaneously operate in four wavelength regions that allow a distinction between auroras that are created by higher energy electrons (\u003e 1 keV) and those created by low energy (\u003c500 eV) precipitation. The cusp is the location where plasma enters the magnetosphere through the process of magnetic reconnection. This reconnection occurs where the Interplanetary Magnetic Field (IMF) and the terrestrial magnetic field are oriented in opposite directions. Using the IMAGE (Imager for Magnetopause to Aurora Global Exploration) satellite ultraviolet optical data it has been shown that cusp precipitation can be seen in different regions, which depend on the orientation of the IMF. South Pole station is uniquely located for optical observations of the aurora because of the 24 hours of darkness during austral winter and the appearance of the auroral oval within the field of view of all-sky cameras.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "paleo_time": null, "persons": "Mende, Stephen; Frey, Harald", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Antarctic Auroral Imaging", "uid": "p0000361", "west": null}, {"awards": "0540915 Scambos, Ted", "bounds_geometry": "POLYGON((-57.9857 -48.444,-55.95557 -48.444,-53.92544 -48.444,-51.89531 -48.444,-49.86518 -48.444,-47.83505 -48.444,-45.80492 -48.444,-43.77479 -48.444,-41.74466 -48.444,-39.71453 -48.444,-37.6844 -48.444,-37.6844 -50.12802,-37.6844 -51.81204,-37.6844 -53.49606,-37.6844 -55.18008,-37.6844 -56.8641,-37.6844 -58.54812,-37.6844 -60.23214,-37.6844 -61.91616,-37.6844 -63.60018,-37.6844 -65.2842,-39.71453 -65.2842,-41.74466 -65.2842,-43.77479 -65.2842,-45.80492 -65.2842,-47.83505 -65.2842,-49.86518 -65.2842,-51.89531 -65.2842,-53.92544 -65.2842,-55.95557 -65.2842,-57.9857 -65.2842,-57.9857 -63.60018,-57.9857 -61.91616,-57.9857 -60.23214,-57.9857 -58.54812,-57.9857 -56.8641,-57.9857 -55.18008,-57.9857 -53.49606,-57.9857 -51.81204,-57.9857 -50.12802,-57.9857 -48.444))", "dataset_titles": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.; Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007; MODIS Mosaic of Antarctica (MOA)", "datasets": [{"dataset_uid": "000190", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "MODIS Mosaic of Antarctica (MOA)", "url": "http://nsidc.org/data/nsidc-0280.html"}, {"dataset_uid": "609466", "doi": "10.7265/N5N014GW", "keywords": "Ablation; Atmosphere; Glaciology; GPS; Meteorology; Oceans; Photo/video; Photo/Video; Sea Ice; Southern Ocean; Temperature", "people": "Thom, Jonathan; Bohlander, Jennifer; Scambos, Ted; Yermolin, Yevgeny; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007", "url": "https://www.usap-dc.org/view/dataset/609466"}, {"dataset_uid": "000189", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Atlas of the Cryosphere - View dynamic maps of snow, sea ice, glaciers, ice sheets, permafrost, and more.", "url": "http://nsidc.org/MMS/atlas/cryosphere_atlas_north.html"}], "date_created": "Thu, 16 Aug 2007 00:00:00 GMT", "description": "This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.", "east": -37.6844, "geometry": "POINT(-47.83505 -56.8641)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Air Temperature; Weddell Sea; Edge-Wasting; Ice Shelf Meltwater; TERRA; Antarctic; GPS; Iceberg; Ice Breakup; South Atlantic Ocean; AQUA; Tabular; Photo; Not provided; Icetrek; HELICOPTER; Antarctica", "locations": "Antarctic; Weddell Sea; Antarctica; South Atlantic Ocean", "north": -48.444, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e AQUA; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "NSIDC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -65.2842, "title": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves", "uid": "p0000003", "west": -57.9857}, {"awards": "0230469 Wise, Sherwood", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 31 Jul 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports the development of a standardized diatom image catalog or database. Diatoms are considered by many to be the most important microfossil group used today in the study of Antarctic Cenozoic marine deposits south of the Polar Front, from the near shore to deep sea. These microfossils, with walls of silica called frustules, are produced by single-celled plants (algae of the Class Bacillariophyceae) in a great variety of forms. Consequently, they have great biostratigraphic importance in the Southern Ocean and elsewhere for determining the age of marine sediments. Also, paleoclimatic and paleoceanographic studies increasingly rely on fossil diatom data. Changing biogeographic distributions of given taxa indicate shifting paleoecological conditions and provide evidence of the surface productivity and temperatures of ancient oceans. The generality of conclusions, though, is limited by variation in species concepts among workers. The broad research community relies, directly or indirectly, on the accurate identification of diatom species. Current technology can be used to greatly improve upon the standard references that have been used in making these identifications.\u003cbr/\u003e\u003cbr/\u003eThis project will develop an interactive digital-image catalog of modern and Cenozoic fossil diatoms of the Southern Ocean called \"DiatomWare\" for use by specialists and educators as an aid in rapid, accurate, and consistent species identification. As such, this will be a researcher\u0027s resource. It will be especially useful where it is not possible to maintain standard library resources such as onboard research vessels or at remote stations such as McMurdo Station. Major Antarctic geological drilling initiatives such as the new SHALDRIL project and the pending ANDRILL project will benefit from this product because they will rely heavily on diatom biostratigraphy to achieve their research objectives. The DiatomWare image database will be modeled on NannoWare, which was released in October 2002 on CD-ROM as a publication of the International Nannoplankton Association. BugCam will be adapted and modified as necessary to run the DiatomWare database, which can then be run from desktop or laptop computers. Images and text for the database will be scanned from the literature or captured in digital form from light or scanning electron microscopes.\u003cbr/\u003e\u003cbr/\u003eThe software interface will include a number of data fields that can be accessed by the click of a mouse button. Primary information will be the images and descriptions of the holotypes. In addition, representative images of paratypes or hypotypes will be included whenever possible in plain transmitted, differential interference contrast light and, when available, as drawings and SEM images. Also included will be a 35-word or less English diagnosis (\"mini-description\"), the biostratigraphic range in terms of zones and linear time, bibliographic references, lists of species considered junior synonyms, and similar species. The list of similar species will be cross-referenced with their respective image files to enable quick access for direct visual comparison on the viewing screen. Multiple images can be brought to the viewing screen simultaneously, and a zoom feature will permit image examination at a wide range of magnifications. Buttons will allow range charts, a bibliography, and key public-domain publications from the literature to be called up from within the program. The DiatomWare/BugCam package will be distributed at a nominal cost through a major nonprofit society via CD-ROM and free to Internet users on the Worldwide Web. Quality control measures will include critical review of the finalized database by a network of qualified specialists. The completed database will include descriptions and images of between 350 and 400 species, including fossil as well as modern forms that have no fossil record.\u003cbr/\u003e\u003cbr/\u003eThe development of the proposed diatom image database will be important to all research fields that depend on accurate biostratigraphic dating and paleoenvironmental interpretation of Antarctic marine sediments and plankton. The database will also serve as a valuable teaching tool for micropaleontology students and their professors, will provide a rapid means of keying down species for micropaleontologists of varying experience and background, and will promote a uniformity of taxonomic concepts since it will be developed and continuously updated with the advice of a community of nannofossil fossil experts. Broad use of the database is anticipated since it will be widely available through the Internet and on CD-ROM for use on personal computers that do not require large amounts of memory, costly specialized programs, or additional hardware.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wise, Sherwood", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "DiatomWare: An Interactive Digital Image Catalog for Antarctic Cenozoic Diatoms", "uid": "p0000062", "west": null}, {"awards": "9725882 Raymond, Charles", "bounds_geometry": "POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678))", "dataset_titles": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "datasets": [{"dataset_uid": "609303", "doi": "10.7265/N52B8VZP", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Dome", "people": "Raymond, Charles; Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "url": "https://www.usap-dc.org/view/dataset/609303"}], "date_created": "Fri, 06 Jul 2007 00:00:00 GMT", "description": "9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.", "east": -138.3697, "geometry": "POINT(-140.02095 -81.7603)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ice Stream; Antarctica; Bed Geometry; GROUND-BASED OBSERVATIONS; Internal Layering; Internal Layer Geometry; Siple Dome; Shabtaie Ridge; Not provided; Engelhardt Ridge; Ice Stream Margins; Radar; Whillans Ice Stream; GPS; Bed Reflectivity; Macayeal Ice Stream; Surface Geometry", "locations": "Antarctica; Engelhardt Ridge; Macayeal Ice Stream; Shabtaie Ridge; Siple Dome; Whillans Ice Stream", "north": -80.1678, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Nereson, Nadine A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.3528, "title": "Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica", "uid": "p0000626", "west": -141.6722}, {"awards": "0229629 Anandakrishnan, Sridhar", "bounds_geometry": "POLYGON((-165 -82,-161.5 -82,-158 -82,-154.5 -82,-151 -82,-147.5 -82,-144 -82,-140.5 -82,-137 -82,-133.5 -82,-130 -82,-130 -82.2,-130 -82.4,-130 -82.6,-130 -82.8,-130 -83,-130 -83.2,-130 -83.4,-130 -83.6,-130 -83.8,-130 -84,-133.5 -84,-137 -84,-140.5 -84,-144 -84,-147.5 -84,-151 -84,-154.5 -84,-158 -84,-161.5 -84,-165 -84,-165 -83.8,-165 -83.6,-165 -83.4,-165 -83.2,-165 -83,-165 -82.8,-165 -82.6,-165 -82.4,-165 -82.2,-165 -82))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Jun 2007 00:00:00 GMT", "description": "This award supports a project to investigate the new-found, startling sensitivity of two major West Antarctic ice streams to tidal oscillations to learn the extent and character of the effect and its ramifications for future ice-stream behavior. Ice streams D, C and Whillans (B) all show strong but distinct tidal signals. The ice plain of Whillans is usually stopped outright, forward motion being limited to two brief periods each day, at high tide and on the falling tide. Motion events propagate across the ice plain at seismic wave velocities. Near the mouth of D, tides cause a diurnal variation of about 50% in ice-stream speed that propagates upglacier more slowly than on Whillans, and seismic data show that C experiences even slower upglacier propagation of tidal signals. Tidal influences are observed more than 100 km upglacier on C, more than 40 km upglacier on D, and may be responsible for fluctuations in basal water pressure reported 400 km upstream on Whillans, nearly the full length of the ice stream. During the first year, the spatial extent of this behavior will be measured on Whillans Ice Stream and ice stream D by five coordinated seismic and GPS instrument packages at 100-km spacing on each ice stream. These packages will be deployed by Twin Otter at sites selected by review of satellite imagery and will operate autonomously through a combination of solar and battery power for two lunar cycles to study the sensitivity of the ice stream motion to spring and neap tides. Additionally, existing data sets will be examined further for clues to the mechanisms involved, and preliminary models will be developed to reconcile the seemingly contrasting behaviors observed on the ice streams. The second and third field seasons will examine in greater detail the tidal behavior of Whillans (year 2) and D (year 3). Work will especially focus on detailed study of at least one source area for events on Whillans, assuming that source areas inferred from preliminary data remain active. Vertical motions have not yet been detected, but differential GPS will increase our detection sensitivity. Seismic instrumentation will greatly increase temporal resolution and the ability to measure the propagation speed and any spatial heterogeneity. Modeling will be refined as more is learned from the field experiments. The project should yield numerous broader impacts. The improved knowledge of ice-stream behavior from this study will contribute to assessment of the potential for rapid ice-sheet change affecting global sea level with societal consequences. Results will be disseminated through scientific publication and talks at professional meetings, as well as contacts with the press, university classes taught by the PIs, visits to schools and community groups, and other activities. Two graduate students will be educated through the project.", "east": -130.0, "geometry": "POINT(-147.5 -83)", "instruments": null, "is_usap_dc": false, "keywords": "Ice Stream; Tidal Motion; Vertical Motions; Seismic; West Antarctic; Ice Stream Motion; Global Sea Level; Modeling; Not provided", "locations": "West Antarctic", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anandakrishnan, Sridhar; Alley, Richard; Voigt, Donald E.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -84.0, "title": "Collaborative Research: Tidal Modulation of Ice Stream Flow", "uid": "p0000075", "west": -165.0}, {"awards": "0230149 McGwire, Kenneth", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 04 Jun 2007 00:00:00 GMT", "description": "This award supports the development of novel methods for digital image analysis of glacial ice cores that are stored at the National Ice Core Laboratory (NICL) in Denver, Colorado. Ice cores are a critical source of information on how Earth has changed over time, since indicators of local climate (snow accumulation, temperature), regional characteristics (wind-blown materials such as sea salt, dust and pollen), global processes (e.g., CO2, methane), and even extraterrestrial influences (cosmogenic isotopes) are stored in the ice on a common time scale. This project will develop a high-resolution optical scanning system for laboratory curation of ice core images, internet-based search and retrieval capabilities, a digital image analysis system specifically for ice core studies, and methods to integrate ice core image analysis with other dating methods. These tools will be developed and tested in conjunction with scientific investigations of NICL holdings. Optical scanning and analysis tools will improve understanding of the historical development of the ice collected from a particular location and will help to resolve challenges such as ice that has lost stratigraphic order through flow processes. \u003cbr/\u003eBy providing permanent online digital archives of ice core images, this project will greatly improve the documentation and availability of ice core data while reducing time and costs for subsequent scientific investigations. Using the internet, ice core scientists will be able to determine the appropriateness of specific NICL holdings for various scientific studies. By optically scanning ice cores as they are processed at NICL, any researcher will be able to examine an ice core in similar detail to the few investigators who were fortunate enough to observe it before modifications from sampling and storage. Re-examination of cores could be done decades later by anyone at any location, which is not possible now because only the interpretation of the original observer is recorded. Integration of digital image data into ice core analysis will speed discovery, allow collaborative interpretation, and enhance consistency of analysis to improve ice core dating, identification of melt layers, location of flow disturbances, and more. The equipment will be housed at NICL and will be available to the broad community, improving scientific infrastructure.\u003cbr/\u003eThis work will also have numerous broader impacts. Ice core science addresses fundamental questions of human interest related to global warming, abrupt climate change, biogeochemical cycling, and more. The principal investigators broadly disseminate their scientific findings through numerous outlets, ranging from meeting with government officials, chairing and serving on NRC panels, writing popular books and articles, publishing in scientific literature, teaching classes, talking to civic groups, and appearing on radio and television. The results from ice core analyses have directly informed policymakers and will continue to do so. Thus, by improving ice core science, this projectl will benefit society.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": false, "keywords": "Image; Ice Core; Not provided; Scanner; Stratigraphy", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Digital Optical Imaging of Ice Cores for Curation and Scientific Applications", "uid": "p0000735", "west": null}, {"awards": "0229573 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Antarctic Mean Annual Temperature Map", "datasets": [{"dataset_uid": "609318", "doi": "10.7265/N51C1TTV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Dixon, Daniel A.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Mean Annual Temperature Map", "url": "https://www.usap-dc.org/view/dataset/609318"}], "date_created": "Wed, 04 Apr 2007 00:00:00 GMT", "description": "This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOCOUPLES \u003e THERMOCOUPLES; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS", "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; West Antarctica; FIELD INVESTIGATION; West Antarctic Ice Sheet; Antarctic; Temperature; East Antarctic Plateau; FIELD SURVEYS; Antarctica; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; West Antarctica; West Antarctic Ice Sheet; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Science Management Office for the U. S. Component of the International Trans Antarctic Expedition (US ITASE SMO)A Collaborative Pgrm of Research from S. Pole to N. Victoria Land", "uid": "p0000199", "west": null}, {"awards": "9526566 Bindschadler, Robert", "bounds_geometry": null, "dataset_titles": "Decadal-Length Composite West Antarctic Air Temperature Records", "datasets": [{"dataset_uid": "609097", "doi": "10.7265/N55D8PS0", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Meteorology; Temperature; West Antarctica", "people": "Shuman, Christopher A.; Stearns, Charles R.", "repository": "USAP-DC", "science_program": null, "title": "Decadal-Length Composite West Antarctic Air Temperature Records", "url": "https://www.usap-dc.org/view/dataset/609097"}], "date_created": "Tue, 28 Nov 2006 00:00:00 GMT", "description": "This award is for support for a research program involving the use of passive microwave data to validate key paleoclimate indicators used in glaciologic research. The specific contributions of this research are: 1) to define the timing and spatial extent of hoar complexes, which may serve as visible, annual stratigraphic markers in ice cores, through a combination of satellite passive microwave data and field observations; and 2) to monitor temperature trends at the site with calibrated passive microwave brightness temperatures and to correlate these trends to proxy temperatures provided by oxygen and hydrogen stable isotope ratio profiles from snow pits and/or ice cores. The work will take place at Siple Dome, Antarctica as part of the field activities associated with the ice core drilling program there.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I", "is_usap_dc": true, "keywords": "West Antarctica; Near-Surface Air Temperatures; Surface Temperatures; Special Sensor Microwave/imager; Passive Microwave Brightness Temperatures; Scanning Multichannel Microwave Radiometer; SSM/I; SSMR; AWS Byrd Station; NIMBUS-7; Emissivity Modeling; Antarctica; West Antarctic Ice Sheet; Not provided; DMSP; AWS Siple; Automated Weather Station; AWS Lynn; AWS Lettau; AWS", "locations": "Antarctica; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bindschadler, Robert; Shuman, Christopher A.; Stearns, Charles R.", "platforms": "Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e DEFENSE METEOROLOGICAL SATELLITE PROGRAM (DMSP) \u003e DMSP; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e NIMBUS \u003e NIMBUS-7", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica", "uid": "p0000191", "west": null}, {"awards": "0126149 Liu, Hongxing", "bounds_geometry": null, "dataset_titles": "Access to Antarctic coastline coverage and reference documents; Access to Antarctic snow zone coverage and reference documents; Access to boundary file and reference documents; Access to ice velocity data and reference documents; Access to snow melt extent image files and reference documents", "datasets": [{"dataset_uid": "001779", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to ice velocity data and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001640", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to snow melt extent image files and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001350", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to boundary file and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001351", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic coastline coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001352", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic snow zone coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}], "date_created": "Tue, 15 Aug 2006 00:00:00 GMT", "description": "This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IFSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "DEM; Not provided; RADARSAT-1", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Liu, Hongxing; Jezek, Kenneth", "platforms": "Not provided; OTHER \u003e MODELS \u003e DEM; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques", "uid": "p0000204", "west": null}, {"awards": "0125570 Scambos, Ted; 0125276 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Fahnestock, Mark; Haran, Terry; Bauer, Rob; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}, {"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Cathles, Mac; Albert, Mary R.; Courville, Zoe", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map", "datasets": [{"dataset_uid": "609280", "doi": "10.7265/N5ZK5DM5", "repository": "USAP-DC", "science_program": null, "title": "MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map", "url": "http://www.usap-dc.org/view/dataset/609280"}], "date_created": "Wed, 02 Nov 2005 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MODIS; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Painter, Thomas; Scambos, Ted; Haran, Terry; Bohlander, Jennifer; Fahnestock, Mark", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "9909167 Rust, David", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Solar Magnetograms and Filtergrams", "datasets": [{"dataset_uid": "600022", "doi": "", "keywords": null, "people": "Rust, David M.", "repository": "USAP-DC", "science_program": null, "title": "Solar Magnetograms and Filtergrams", "url": "https://www.usap-dc.org/view/dataset/600022"}], "date_created": "Wed, 19 Oct 2005 00:00:00 GMT", "description": "This award provides funding for one year of data analysis of the solar images produced by the Flare Genesis Experiment telescope during a long-duration balloon flight over Antarctica in early 2000, near the peak of solar activity for this solar cycle. The telescope produced many thousands of images and maps of solar magnetic fields with unprecedented resolution. It is expected that the detailed analysis of the data will improve understanding of how energy stored in solar magnetic fields is converted to high temperatures and velocities associated with solar activity. This project is jointly supported by NASA, NSF/OPP and NSF/ATM.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Rust, David M.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Flare Genesis Experiment", "uid": "p0000245", "west": -180.0}, {"awards": "0232042 Finn, Carol", "bounds_geometry": "POLYGON((139.27539 -82.35733,142.369695 -82.35733,145.464 -82.35733,148.558305 -82.35733,151.65261 -82.35733,154.746915 -82.35733,157.84122 -82.35733,160.935525 -82.35733,164.02983 -82.35733,167.124135 -82.35733,170.21844 -82.35733,170.21844 -82.516831,170.21844 -82.676332,170.21844 -82.835833,170.21844 -82.995334,170.21844 -83.154835,170.21844 -83.314336,170.21844 -83.473837,170.21844 -83.633338,170.21844 -83.792839,170.21844 -83.95234,167.124135 -83.95234,164.02983 -83.95234,160.935525 -83.95234,157.84122 -83.95234,154.746915 -83.95234,151.65261 -83.95234,148.558305 -83.95234,145.464 -83.95234,142.369695 -83.95234,139.27539 -83.95234,139.27539 -83.792839,139.27539 -83.633338,139.27539 -83.473837,139.27539 -83.314336,139.27539 -83.154835,139.27539 -82.995334,139.27539 -82.835833,139.27539 -82.676332,139.27539 -82.516831,139.27539 -82.35733))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 16 Aug 2005 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth\u0027s oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. \u003cbr/\u003e\u003cbr/\u003eThis project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:\u003cbr/\u003e1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),\u003cbr/\u003e2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,\u003cbr/\u003e3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and\u003cbr/\u003e4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.\u003cbr/\u003e\u003cbr/\u003eHigh-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, \"draped\" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.", "east": 170.21844, "geometry": "POINT(154.746915 -83.154835)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAM", "is_usap_dc": false, "keywords": "Central Transantarctic Mountains; Aeromagnetic Data; HELICOPTER; DHC-6; Not provided", "locations": "Central Transantarctic Mountains", "north": -82.35733, "nsf_funding_programs": null, "paleo_time": null, "persons": "Finn, C. A.; FINN, CAROL", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided", "repositories": null, "science_programs": null, "south": -83.95234, "title": "Collaborative Research: Geophysical Mapping of the East Antarctic Shield Adjacent to the Transantarctic Mountains", "uid": "p0000249", "west": 139.27539}, {"awards": "9909518 Raymond, Charles", "bounds_geometry": "POLYGON((-154 -80,-152 -80,-150 -80,-148 -80,-146 -80,-144 -80,-142 -80,-140 -80,-138 -80,-136 -80,-134 -80,-134 -80.5,-134 -81,-134 -81.5,-134 -82,-134 -82.5,-134 -83,-134 -83.5,-134 -84,-134 -84.5,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-152 -85,-154 -85,-154 -84.5,-154 -84,-154 -83.5,-154 -83,-154 -82.5,-154 -82,-154 -81.5,-154 -81,-154 -80.5,-154 -80))", "dataset_titles": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "datasets": [{"dataset_uid": "609274", "doi": "10.7265/N5736NTS", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Coast", "people": "Conway, Howard; Raymond, Charles; Catania, Ginny", "repository": "USAP-DC", "science_program": null, "title": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "url": "https://www.usap-dc.org/view/dataset/609274"}], "date_created": "Fri, 03 Jun 2005 00:00:00 GMT", "description": "9909518 Raymond This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": -134.0, "geometry": "POINT(-144 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice Stream; West Antarctic Ice Sheet; Radarsat; Siple Dome; Radar; Ice Floe; Not provided; AVHRR; Siple Coast; Ice Stratigraphy; Margin Scars; NOAA POES; RAMP; GROUND-BASED OBSERVATIONS; Ice Flow; Accumulation Rate; Antarctic Ice Sheet; RADARSAT-1", "locations": "Siple Coast; Antarctic Ice Sheet; Siple Dome; West Antarctic Ice Sheet", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Conway, Howard; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research:History and Evolution of the Siple Coast Ice Stream Systems as Recorded by Former Shear-Margin Scars", "uid": "p0000275", "west": -154.0}, {"awards": "9909469 Scambos, Ted", "bounds_geometry": null, "dataset_titles": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "datasets": [{"dataset_uid": "609141", "doi": "10.7265/N5WS8R52", "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream", "people": "Catania, Ginny; Conway, Howard; Raymond, Charles; Scambos, Ted; Gades, Anthony", "repository": "USAP-DC", "science_program": null, "title": "Ice Motion and Topography Near Margin Areas of Kamb Ice Stream, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609141"}], "date_created": "Fri, 01 Aug 2003 00:00:00 GMT", "description": "9909469 Scambos This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Ice Velocity; Ice Acceleration; Ice Sheet Elevation; GROUND-BASED OBSERVATIONS; Ice Stream; Antarctic Ice Sheet; Ice Sheet; Ice Surface Elevation; Ice Position; Ice Surface; Ice Stream C Velocities; Ice Movement; Ice; Cryosphere", "locations": "Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted; Catania, Ginny; Conway, Howard; Gades, Anthony; Raymond, Charles", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: History and Evolution of the Siple Coast Ice Stream System as Recorded by Former Shear-Margin Scars", "uid": "p0000165", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}, {"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": null, "dataset_titles": "Digital Images of Thin Sections from Siple Dome; Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "datasets": [{"dataset_uid": "609127", "doi": "10.7265/N59Z92T4", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Images of Thin Sections from Siple Dome", "url": "https://www.usap-dc.org/view/dataset/609127"}, {"dataset_uid": "609413", "doi": "10.7265/N5XG9P2G", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core", "people": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609413"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; Glaciology; Ice Sheet; Siple; Ice Core; Stratigraphy; GROUND STATIONS; Siple Dome; WAISCORES; Trapped Air Bubbles; Photo; Snow; Density; Volcanic Deposits; Not provided; Ice Core Data; GROUND-BASED OBSERVATIONS; Siple Coast; Chemical Composition", "locations": "Siple Dome; Antarctica; Siple; Siple Coast", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Digital Imaging for Ice Core Analysis", "uid": "p0000011", "west": null}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": null, "dataset_titles": "Physical and Structural Properties of the Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609128", "doi": "10.7265/N5668B34", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Meese, Deb; Gow, Tony", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609128"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Stratigraphy; Ice Sheet; GROUND-BASED OBSERVATIONS; Density; Siple; Chemical Composition; Volcanic Deposits; Siple Coast; WAISCORES; Not provided; GROUND STATIONS; Pico; Ice Core; Tephra; Fabric; Glaciology; Snow", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gow, Tony; Meese, Deb", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical and Structural Properties of the Siple Dome Core", "uid": "p0000064", "west": null}, {"awards": "9526420 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "Siple Dome Cores Electrical Measurement Data", "datasets": [{"dataset_uid": "609133", "doi": "10.7265/N5DR2SDN", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Cores Electrical Measurement Data", "url": "https://www.usap-dc.org/view/dataset/609133"}], "date_created": "Thu, 08 May 2003 00:00:00 GMT", "description": "This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Densification; Siple Dome; Glaciology; Snow; Thermometry; WAISCORES; Electrical; Isotope; GROUND STATIONS; GROUND-BASED OBSERVATIONS; Not provided; Ice Sheet; Siple Coast; Ice Core; Siple; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Electrical and Optical Measurements on the Siple Dome Ice Core", "uid": "p0000163", "west": null}, {"awards": "9615167 Dunbar, Nelia; 9527373 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}, {"awards": "9316715 Taylor, Susan", "bounds_geometry": null, "dataset_titles": "Micrometeorites from the South Pole Water Well", "datasets": [{"dataset_uid": "609113", "doi": "10.7265/N5R49NQK", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmos; Geochemistry; Meteorite; Scanning Electron Microscope (SEM) Images; South Pole", "people": "Taylor, Susan", "repository": "USAP-DC", "science_program": null, "title": "Micrometeorites from the South Pole Water Well", "url": "https://www.usap-dc.org/view/dataset/609113"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "9316715 Taylor This award is for support to collect micrometeorites from the bottom of the new water well at South Pole Station, Antarctica. The large volume of firn and ice being melted provides the concentrating mechanism needed to collect large numbers of micrometeorites that occur in low concentrations in the ice. The first task of the project is to design a collection system to retrieve the micrometeorites from the bottom of the water well. The collector must be reliable, easy to operate, must collect all particles larger than 10 mm and should not contaminate the well\u0027s water quality. Following successful design and deployment of the collector, recovered particles will be catalogued and distributed to interested researchers. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e GRABBERS/TRAPS/COLLECTORS \u003e SEDIMENT TRAPS", "is_usap_dc": true, "keywords": "USAP-DC; Micrometeorites; SEM/EMAX; GROUND-BASED OBSERVATIONS; South Pole Water Well; Glass Spherules", "locations": "South Pole Water Well", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Susan", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Retrieval and Analysis of Extraterrestrial Particles from the Water Well at the South Pole Station, Antarctica", "uid": "p0000057", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Images of Antarctic Ice Shelves", "datasets": [{"dataset_uid": "609102", "doi": "10.7265/N5NC5Z4N", "repository": "USAP-DC", "science_program": null, "title": "Images of Antarctic Ice Shelves", "url": "http://www.usap-dc.org/view/dataset/609102"}], "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; AVHRR; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Sea Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raup, Bruce H.; Scambos, Ted; Bohlander, Jennifer", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0537827 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.; Access Arrival Heights Meteorological Observations; Access Building 189 Meteorological Observations; Access Building 69 Meteorological Observations; Access Building 71 Meteorological Observations; Access McMurdo Meteorological Observations; Access Neumayer Meteorological Observations; Access Palmer Meteorological Observations; Access South Pole Meteorological Observations", "datasets": [{"dataset_uid": "001296", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Neumayer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/neumayer/"}, {"dataset_uid": "001293", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 69 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building69/"}, {"dataset_uid": "001297", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Palmer Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/palmer/observations/"}, {"dataset_uid": "001298", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/surface_observations/"}, {"dataset_uid": "001292", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 189 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building189/"}, {"dataset_uid": "001291", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Arrival Heights Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/arrivalheights/"}, {"dataset_uid": "001294", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Building 71 Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/building71/"}, {"dataset_uid": "001295", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Meteorological Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/climatology/"}, {"dataset_uid": "001287", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic NOAA Polar Orbiting AVHRR HRPT GAC and LAC images.", "url": "ftp://amrc.ssec.wisc.edu"}], "date_created": "Thu, 12 Oct 2000 00:00:00 GMT", "description": "This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. \u003cbr/\u003e***", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR", "is_usap_dc": false, "keywords": "NOAA-14; FIXED OBSERVATION STATIONS; Antarctica; Not provided; Satellite Imagery; NOAA-15; Noaa Avhrr Lac; NOAA-12; Observation Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol; Snarski, Joey", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-12; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-14; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA-15", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Meteorological Research Center (2006-2009)", "uid": "p0000280", "west": -180.0}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": null, "dataset_titles": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "datasets": [{"dataset_uid": "609085", "doi": "10.7265/N5Z31WJQ", "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "url": "https://www.usap-dc.org/view/dataset/609085"}], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "Siple Dome; Antarctic; Glaciology; Radar; GROUND-BASED OBSERVATIONS; Ice Stream", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Jacobel, Robert", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Siple Dome Glaciology and Ice Stream History", "uid": "p0000190", "west": null}, {"awards": "0838834 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Access all real-time datasets; Access Antarctic Composite Images.; Access Antarctic Synoptic and METAR Observations.; Access McMurdo Radiosonde Observations; Access South Pole Radiosonde Observations; Archived METAR observational data; We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "datasets": [{"dataset_uid": "001382", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001386", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Archived METAR observational data", "url": "ftp://amrc.ssec.wisc.edu/archive/"}, {"dataset_uid": "001285", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Composite Images.", "url": "http://amrc.ssec.wisc.edu/data/view-data.php?action=list\u0026amp;amp;product=satellite/composite"}, {"dataset_uid": "001300", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access all real-time datasets", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001288", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/radiosonde/"}, {"dataset_uid": "001299", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001289", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/radiosonde/"}, {"dataset_uid": "001290", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "url": "ftp://amrc.ssec.wisc.edu/pub/shipobs/"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.\u003cbr/\u003e\u003cbr/\u003eAMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e GOES I-M IMAGER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e OLS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e VISSR; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e WET BULB THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADIOSONDES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AMSU-A; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS/2; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e MSU; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TOVS", "is_usap_dc": false, "keywords": "Shortwave Composite Satellite Images; Radiosonde Data; Antarctic; Noaa Hrpt Raw Data; Synoptic Data; Water Vapor Composite Satellite Images; SATELLITES; Satellite Imagery; Infrared Imagery; NOAA POES; Visible Composite Satellite Images; BUOYS; Antarctica; Ship/buoy Data; FIXED OBSERVATION STATIONS; Longwave Composite Satellite Images; Not provided; COASTAL STATIONS; Metar Weather Observations", "locations": "Antarctic; Antarctica", "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e COASTAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research Center (2009-2011)", "uid": "p0000264", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
One of the fundamental processes in plate tectonics is the rifting or separating of continental crust creating new seafloors which can widen and ultimately form new ocean basins, the latter is a process known as seafloor spreading. The Bransfield Strait, separating the West Antarctic Peninsula from the South Shetland Islands, formed and is presently widening as a result of the separation of continental crust. What is unique is that the system appears to be approaching the transition to seafloor spreading making this an ideal site to study the transitional process. Previous seafloor mapping and field surveys provide the regional structure of the basin; however, there exists a paucity of regional seismic studies documenting the tectonic and volcanic activity in the basin as a result of the rifting. This would be the first local-scale study of the seismicity and structure of the volcanoes in the center of the basin where crustal separation is most active. The new seismic data will enable scientists to compare current patterns of crustal separation and volcanism at the Bransfield Strait to other well-studied seafloor spreading centers. This collaborative international project, led by the Spanish and involving scientists from the U.S., Germany and other European countries, will monitor seismicity for one year on land and on the seafloor. An active seismic study conducted by the Spanish will image fault and volcanic structures that can be related to the distribution of earthquakes. Back-arc basins are found in subduction settings and form in two stages, an initial interval of continental rifting that transitions to a later stage of seafloor spreading. Studying the transitional process is important for understanding the dynamics and evolution of subduction zones, and in locations where back-arc rifting breaks continental crust, it is relevant to understanding the formation of passive continental margins. The Central Bransfield Basin is unusual in that the South Shetland Islands have lacked recent arc volcanism and it appears subduction is ceasing, but this system has broad significant because it appears to be nearing the transition from rifting to seafloor spreading. This award will support the U.S. component of an international initiative led by the Spanish Polar Committee to conduct a study of the seismicity and volcanic structure of the Central Bransfield Basin. The objective is to characterize the distribution of active extension across the basin and determine whether the volcanic structure and deformation of the rift are consistent with a back-arc basin that is transitioning from rifting to seafloor spreading. The U.S. component of the experiment will contribute a network of six hydroacoustic moorings to monitor regional seismicity and 15 short-period seismometers to study the distribution of tectonic and volcanic seismicity on Orca volcano, one of the most active volcanoes in the basin. An active seismic study across closely spaced multichannel seismic lines across the rift will provide the data necessary to link earthquakes with fault structures enabling a tomography study of Orca volcano and provide insight into how the volcano's structure relates to rifting. This research will constrain the distribution of active rifting across the Central Bransfield Basin and determine whether the patterns of faulting and the structure of volcanic portion of the rift are consistent with a diffuse zone of rifting or a single spreading center that is transitioning to the production of oceanic crust. The Bransfield Basin is an ideal site for a comparative study of seismic and hydroacoustic earthquake locations that will improve the understanding of the generation and propagation of T-wave signals and contribute to efforts to compare the result of T-wave studies with data from traditional solid-earth seismic studies. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Part I: Non-technical description: The crabeater seal is the most important predator of Antarctic krill in the western Antarctic Peninsula oceanic waters after the disappearance of large whales due to human hunting 100 years ago. The crabeater seals are expected to consume large quantities of krill due to their high abundance (about 7 million individuals), large body size (about 700 pounds in body weight), high metabolism and a diet specializing in krill. This species depends on sea ice presence all year long, living, reproducing, and diving to feed from that environment, making this marine mammal species a good indicator, or sentinel, of how the Antarctic ecosystem responds to a changing climate. As sea ice has been decreasing in the northern Antarctic Peninsula, this project aims to understand if the species food availability has changed in the last decades in response to environmental changes. In particular, the proposed work will concentrate on known populations of crabeater seals in northern (i.e., warmer, sub-polar) and southern (i.e., colder, polar) Antarctic Peninsula, 450 miles apart, making measurements on the abundance, physiology, metabolic needs and movement of the crabeater populations in both locations. The data will be combined to build models that will quantify the existing differences between northern and southern populations, as well as predict their future change, and compare present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom, benefitting NSF goals to facilitate collaborative geoscience research projects involving these two countries as well as aligning directly with U.S. Global Change Research Program (USGCRP) to better understand the forces shaping the global environment, both human and natural, and their impacts on society. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Part II: Technical description: Crabeater seals (Lobodon carcinophaga) are considered an excellent sentinel species through which to examine the effects of a changing climate on the extended Antarctic krill-dependent predator community and the structure of the entire ecosystem of the western Antarctic Peninsula. Over the last forty years, there have been significant changes in the temporal and spatial patterns of primary productivity, and shifts in the population dynamics of Antarctic krill, the dominant mid-trophic level species. The impact of such changes on year-round resident species of crabeater seals (the most important predator of Antarctic krill) is more difficult to understand as they are not associated with breeding colonies where their population fluctuations could be more readily observed. The proposed research is conceived under the premise that environmental change has accentuated the differences between the northern and southern western Antarctic Peninsula crabeater seal populations due to differential reductions in sea-ice and its possible effect on prey availability. To address this question, this research will combine measurements on animal movement, stable isotope analyses, whole-animal physiology, and novel survey technologies (small Unmanned Aircraft Systems, satellite imagery) to build models. The project is a collaboration between an international and interdisciplinary team from the United States and United Kingdom. These studies will be essential to detect past, and project future, changes in the ecology of this species in response to changes in sea ice when comparing present-day measurements with those collected by the British Antarctic Survey in the mid-1900s. To further increase polar literacy and education, Principal Investigators will train at least 2 graduate students and several undergraduates across two US institutions, as well as one UK-based post-doctoral researcher. Students involved with this project will gain invaluable research experience in the lab and will have a unique opportunity to participate in Antarctic fieldwork. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-Technical The future response of the East Antarctic Ice Sheet (EAIS) to climate change and its consequent effect on global sea level remains a pressing problem, with implications for societal well-being, the economy, and national security. Projections of future ice-sheet behavior rely in part on understanding gained from ice-sheet response to past climate change, which can be found in geologic records. This project uses geologic features produced at the base of the ice sheet to examine a large change in EAIS behavior and to place ages on when this change occurred. By comparison to climate records from the same time, the project results will allow assessment of ice-sheet response to a climate that likely was warmer than at present. Such information will improve understanding of possible ice-sheet responses to a warming climate, as well as the underlying mechanisms. A better assessment of the likely EAIS response to future warming climate will aid in setting national and international policy and improve public welfare, by promoting more accurate predictions of the amounts and rates of sea-level rise. This project will contribute to the education of young scientists, thereby increasing the STEM workforce, which is in the national interest. A general-audience book will be produced to explain the importance of Antarctica to the public. Technical Accurate, well-dated reconstructions of the behavior of the East Antarctic Ice Sheet (EAIS) afford insight into its response to future climate change. This project uses new insights in subglacial hydrology and erosion to identify and date a major missing piece of Antarctic glacial history, involving massive expansion of the EAIS over the Transantarctic Mountains. This expansion led to formation of an extensive erosional landscape that was characterized by subglacial meltwater and represents a significant shift in ice-sheet behavior. Understanding the age and reasons for such an expansion are important in part, because the subglacial meltwater must have been linked to the Wilkes Subglacial Basin – an area thought to be susceptible to large-scale ice collapse under warm climates. The project will constrain the extent and age of this surface through 1) detailed geomorphological mapping from imagery, 2) reassessment of existing chronologic data, and 3) new surface exposure dating of existing samples. Results will test the hypothesis that the scoured surface and the ice-sheet behavior that it represents is much younger than its traditionally assigned age of ≥14 Ma and thus relevant to current investigations into ice-sheet behavior under warmer-than-present climates. The work affords mentoring opportunities for students of all ages and will include the production of a book on the landscapes of the Transantarctic Mountains designed to introduce the public to the importance of Antarctica. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice penetrating radar is one of the primary tools that researchers use to study ice sheets and glaciers. With radar, it is possible to see a cross-section of the ice, revealing internal layers and the shape of the rocks under the ice. Among other things, this is important for calculating how much potential sea level change is locked up in the polar ice sheets, and how stable the ice sheets are likely to be in a warming world. This type of data is logistically challenging and expensive to collect. Historically, individual research groups have obtained funding to collect these data sets, and then the data largely stayed within that institution. There has been a recent push to make more and more data openly available, enabling the same datasets to be used by multiple research groups. However, it is still difficult to figure out what data is available because there is no centralized index. Additionally, each group releases data in a different format, which creates an additional hurdle to its use. This project addresses both of those challenges to data reuse by providing a unified tool for discovering where ice penetrating radar data already exists, then allowing the researcher to download and visualize the data. It is integrated into open-source mapping software that many in the research community already use, and makes it possible for non-experts to explore these datasets. This is particularly valuable for early-career researchers and for enabling interdisciplinary work. The US alone has spent many tens of millions of dollars on direct grants to enable the acquisition and analysis of polar ice penetrating radar data, and even more on the associated infrastructure and support costs. Unfortunately, much of these data is not publicly released, and even the data that has been released is not easily accessible. There is significant technical work involved in figuring out how to locate, download and view the data. This project is developing a tool that will both lower the barrier to entry for using this data and improve the workflows of existing users. Quantarctica and QGreenland have rapidly become indispensable tools for the polar research community, making diverse data sets readily available to researchers. However, ice penetrating radar is a major category of data that is not currently supported – it is possible to see the locations of existing survey lines, and the ice thickness maps that have been interpreted from their data, but it is not readily possible to see the radargrams themselves in context with all of the other information. This capability is important because there is far more visual information contained in a radargram than simply its interpreted basal elevation or ice thickness. This project is developing software that will enable researchers to to view radargram images and interpreted surface and basal horizons in context with the existing map-view datasets in Quantarctica and QGreenland. A data layer shows the locations of all known ice penetrating radar surveys, color-coded based on availability. This layer enables data discovery and browsing. The plugin itself interacts with the data layer, first to download selected data, then to visualize the radargrams along with a cursor that moves simultaneously along the radargram and along the map view, making it straightforward to determine the precise geolocation of radar features. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Lamont-Doherty Earth Observatory of Columbia University was awarded a multi-year grant (May 1, 2010- April 30, 2015) to develop an ice imaging system, or "IcePod," for use in measuring the surface and subsurface topography of ice sheets. IcePod will enable research on the effects of global climate change on ice sheets and the effects of sub-glacial water on potential sea-level rise. IcePod sensors are contained in a Common Science Support Pod and operated on NYANG LC-130 aircraft during routine and targeted missions over Greenland and Antarctica. The IcePod instrument package consists of ice-penetrating radar, infrared and visible cameras, laser altimeter, inertial measurement unit, GPS receiver and data acquisition system. IcePod will also enable other instruments to be used in the modular Common Science Support Pod, and will become a shared community research facility providing data to the science community. Funding will support activities in both Greenland and Antarctica needed to commission IcePod, to develop a data reduction flow and data delivery system for IcePod data, and to engineer a UPS to provide IcePod with clean, reliable power for system operation.
Part I, Non-technical Abstract Concerns that the West Antarctic Ice Sheet (WAIS) might be susceptible to releasing its ice as giant icebergs into the Southern Ocean due to a warming climate, raising global sea level, were first expressed more than 40 years ago. To best-assess this threat, scientists need to know whether such events occurred in the geologically recent past, during warm intervals of past glacial-interglacial cycles. Ocean drilling near the most vulnerable sector of the WAIS, in 2019, yielded seafloor geologic records demonstrating times when icebergs dropped large volumes of sands and pebbles, called ice-rafted detritus (IRD) in deep water of the Amundsen Sea. Occurring together with IRD that was eroded from bedrock beneath the ice sheets, there are abundant microfossils of diatoms (algal plankton), which indicate high biological productivity in the open ocean. The new sediment cores provide a complete, uninterrupted record of a time of dramatic fluctuations of ice sheet extent that occurred over the last 3 million years. Therefore, they provide the means to obtain clear answers to the question whether ice sheet collapse occurred in the past and offering clues to its potential future. This project will investigate sediment intervals where IRD coincides with evidence of high diatom production, to test whether these two criteria indicate rapid ice sheet collapse. Geochemical analysis of IRD pebbles will help trace the source of the icebergs to likely on-land sites. By analyzing conditions of high diatom and IRD accumulation in deep ocean sediment, where local coastal influences can be avoided, we will assess oceanographic and climatic conditions associated with past ice sheet collapse events. Diatoms provide powerful evidence of temperature and ocean productivity changes in the past, that, when linked to time, can translate into rates of ice sheet drawdown. These results will provide critical data for designing, constraining and testing the next suite computer models that can determine the likelihood and timing of future ice sheet collapse in a warming world. The project will include training of undergraduate and graduate students from diverse backgrounds, and the public will be introduced to Antarctic science and engaged through several different outreach efforts. Part 2, Technical Abstract New drillcores from the Amundsen Sea, Antarctica (IODP Expedition 379) contain a continuous record of oceanographic changes and iceberg rafted debris (IRD) spanning the last 5 million years. This study aims to identify the signature of retreat/collapse of the West Antarctic Ice Sheet (WAIS) in these continental margin, deep-sea sediments by quantitatively analyzing, in detail, diatom and IRD records across glacial-interglacial lithostratigraphic transitions to establish the timing and frequency of Late Pliocene and Pleistocene WAIS collapse events. The investigators will secure age constraints and diagnostic observations of marine paleoenvironmental conditions for selected interglacial intervals of cores from sites U1532 and U1533, using high resolution micropaleontology of diatom assemblages coupled with microstratigraphic analysis of IRD depositional events, while petrography, geochronology and thermochronology of iceberg rafted clasts will provide evidence of iceberg sources and pathways. Depositional paleotemperatures will be assessed via a new paleotemperature proxy based on quantitative assessment of morphologic changes in the dominant Southern Ocean diatom Fragilariopsis kerguelensis. Their results will contribute to parameterization of new ice sheet models that seek to reconstruct and forecast West Antarctic Ice Sheet behavior. This project will directly contribute to undergraduate education at an undergraduate-only college and at a public university that serves a demographic typified by first generation university students and underrepresented groups. Spanning geology, geochemistry, sedimentology, paleontology and paleoceanography, the proposed work will allow undergraduate students to develop diverse skills through hands-on research within a collaborative team that is dedicated to societally relevant research. The two graduate students will conduct original research and work alongside/mentor undergraduates, making for a well-rounded research experience that prepares them for success in future academic or employment sectors. The discoveries that come from this deep-sea record from West Antarctica will be communicated by students and investigators at national and international conferences and an array of public science outreach events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The evolution of surface and shallow subsurface meltwater across Antarctic ice shelves has important implications for their (in)stability, as demonstrated by the 2002 rapid collapse of the Larsen B Ice Shelf. It is vital to understand the causes of ice-shelf (in)stability because ice shelves buttress against the discharge of inland ice and therefore influence ice-sheet contributions to sea-level rise. Ice-shelf break-up may be triggered by stress variations associated with surface meltwater movement, ponding, and drainage. These variations may cause an ice shelf to flex and fracture. This four-year project will provide key geophysical observations to improve understanding of ice-shelf meltwater and its effects on (in)stability. The work will be conducted on the George VI Ice Shelf on the Antarctic Peninsula, where hundreds of surface lakes form each summer. Over a 27-month period, global positioning systems, seismometers, water pressure transducers, automatic weather stations, and in-ice thermistor strings will be deployed to record ice shelf flexure, fracture seismicity, water depths, and surface and subsurface melting, respectively, in and around several surface lakes on the George VI Ice Shelf, within roughly 20 km of the British Antarctic Survey's Fossil Bluff Station. Field data will be used to validate and extend the team's approach to modelling ice-shelf flexure and stress, and possible "Larsen-B style" ice-shelf instability and break-up. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public.
General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth's interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth's natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.
The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these — viscous flow — is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a "crystal orientation fabric" (COF). Historically, ice flow has been modeled using an equation, termed “Glen’s law”, that describes ice-flow rate as a function of temperature and stress. Glen’s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, “superplastic” conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 µm to 1000 µm will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30°C to -10°C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project is co-funded by a collaboration between the Directorate for Geosciences and Office of Advanced Cyberinfrastructure to support Artificial Intelligence/Machine Learning and open science activities in the geosciences. Machine learning model will be used in this project to predict the distributions of five zooplankton species in the western Antarctic Peninsula (wAP) based on oceanographic properties. The project will take advantage of a long-term series collected by the Palmer Long-Term Ecological Research (LTER) program that collects annual data on physics, chemistry, phytoplankton (or food), zooplankton and predators (seabirds, whales and seals). By analyzing this dataset and combining it with other data collected by national and international programs, this project will provide understanding and prediction of zooplankton distribution and abundance in the wAP. The machine learning models will be based on environmental properties extracted from remote sensing images thus providing ecosystem knowledge as it decreases human footprint in Antarctica. The relationship between species distribution and habitat are key for distinguishing natural variability from climate impacts on zooplankton and their predators. This research benefits NSF mission by expanding fundamental knowledge of Antarctic systems, biota, and processes as well as aligning with data and sample reuse strategies in Polar Research. The project will benefit society by supporting two female early-career scientists, a post-doctoral fellow and a graduate student. Polar literacy will be promoted through an existing partnership with Out Of School activities that target Science, Technology, Engineering and Mathematics (STEM) education, expected to reach 120,000 students from under-represented minorities in STEM annually. The project will also contribute to evaluate the ecosystem in the proposed Marine Protected Area in the wAP, subject to krill fishery. Results will be made available publicly through an interactive web application. The Principal Investigators propose to address three main questions: 1) Can geomorphic features, winter preconditioning and summer ocean conditions be used to predict the austral summer distribution of zooplankton species along the wAP? 2) What are the spatial and temporal patterns in modeled zooplankton species distribution along the wAP? And 3) What are the patterns of overlap in zooplankton and predator species? The model will generate functional relationships between zooplankton distribution and environmental variables and provide Zooplankton Distribution Models (ZDMs) along the Antarctic Peninsula. The Palmer LTER database will be combined with the NOAA AMLR data for the northern wAP, and KRILLBASE, made public by the British Antarctic Survey’s Polar Data Center. This project will generate 1) annual environmental spatial layers on the Palmer LTER resolution grid within the study region, 2) annual species-specific standardized zooplankton net data from different surveys, 3) annual species-specific predator sightings on a standardized grid, and 4) ecological model output. Ecological model output will include annual predictions of zooplankton species distributions, consisting of 3-dimensional fields (x,y,t) for the 5 main zooplankton groups, including Antarctic krill, salps and pteropods. Predictions will be derived from merging in situ survey data with environmental data, collected in situ or by remote sensing. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ice flow is resisted by frictional forces that keep a glacier from immediately sliding into the ocean. Friction comes in two varieties: internal friction within the ice column which resists ice deformation and basal friction which resists ice sliding over its bedrock substrate. Partitioning between internal and basal friction is difficult since both have similar expressions at the most common target for data collection—the ice-sheet surface. However, understanding this partitioning is important because the physical processes that control internal and basal friction act and evolve at different timescales. This project combines spaceborne remote sensing observations from the ice-sheet surface with ice-penetrating radar data that images the internal structure of the ice sheet in order to partition the contribution of each source of friction. Results will advance the fundamental understanding of ice flow and will strengthen projections of future sea-level rise. Broader Impacts of the project include facilitating data reuse for the ice-sheet research community; the strategy for distributing the software toolkit includes student mentorship and hackathon teaching. The researcher will expand the impact of existing ice-penetrating datasets by 1) developing new open-source algorithms for extraction of englacial stratigraphy; 2) creating stratigraphy data products that can be assimilated into future studies of ice motion; and 3) using statistical analyses to integrate radar datasets into larger-scale interpretations with remote sensing datasets of ice-surface velocity, altimetry, climate variables, and model-derived basal friction. The computational tools developed as part of this effort will be integrated and released as a reusable software toolkit for ice-penetrating radar data analysis. The toolkit will be validated and tested by deployment to cloud-hosted JupyterHub instances, which will serve as a singular interface to access radar and remote sensing data, load them into a unified framework, step through a predefined processing flow, and carry out statistical analyses. In some areas, the imaged englacial stratigraphy will deviate from the ice-dynamic setting expected based on surface measurements alone. There, the internal dynamics (or ice-dynamic history) are inconsistent with the surface dynamics, likely because internal friction is poorly constrained and misattributed to basal friction instead. This work will develop the data and statistical tools for constraining internal friction from ice-penetrating radar, making those data products and tools available for future work. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.
van der Veen, Cornelis; Stearns, Leigh; Paden, John
No dataset link provided
Van der Veen/1543530 The objective of this research is to gain better understanding of the West Antarctic ice flow in the transition region from grounded ice to floating ice shelves and investigate the conditions that can initiate and sustain major retreat of these glaciers. Several major Antarctic outlet glaciers and ice streams will be investigated using a suite of observational techniques and modeling tools. Glaciers include Thwaites Glacier, which has become a focal point in the discussion of West Antarctic retreat, Whillans Ice Stream as an example of the archetype ice stream, and Byrd Glacier, a major outlet glacier draining East Antarctica through the Transantarctic Mountains into the Ross Ice Shelf. This study will investigate whether the ongoing changes in these glaciers will lead to long-term mass loss (the onset of ice sheet collapse), or whether these glaciers will quickly stabilize with a new geometry. To adequately incorporate the dynamic behavior of outlet glaciers and ice streams requires inclusion of the relevant physical processes, and the development of regional models that employ a numerical grid with a horizontal grid spacing sufficiently refined to capture smaller-scale bed topographic features that may control the flow of these glaciers. This award revisits the issue of stability of marine-terminating glaciers whose grounding line is located on a retrograded bed slope. In particular, an attempt will be made to resolve the question whether observed rapid changes are the result of perturbations at the terminus or grounding line, or whether these changes reflect ice-dynamical forcing over the grounded reaches. High-resolution satellite imagery will be used to investigate ice-flow perturbations on smaller spatial scales than has been done before, to evaluate the importance of localized sites of high basal resistance on grounding-line stability. This collaborative project involves a range of modeling strategies including force-budget analysis, flow-band modeling, Full Stokes modeling for local studies, and using the Ice Sheet System Model developed at JPL for regional modeling. Broader Impacts include training two graduate students in computer simulations and ice sheet modeling algorithms. The work will also expand on a web-based interactive flowline model, so that it includes more realistic grounding line dynamics.
Arrigo, Kevin; Thomas, Leif N; Baumberger, Tamara; Resing, Joseph
No dataset link provided
Phytoplankton blooms throughout the world’s oceans support critical marine ecosystems and help remove carbon dioxide (CO2) from the atmosphere. Traditionally, it has been assumed that phytoplankton blooms in the Southern Ocean are stimulated by iron from either nearby land or sea-ice. However, recent work demonstrates that hydrothermal vents may be an additional iron source for phytoplankton blooms. This enhancement of phytoplankton productivity by different iron sources supports rich marine ecosystems and leads to the sequestration of carbon in the deep ocean. Our proposed work will uncover the importance of hydrothermal activity in stimulating a large phytoplankton bloom along the southern boundary of the Antarctic Circumpolar Current just north of the Ross Sea. It will also lead towards a better understanding of the overall impact of hydrothermal activity on the carbon cycle in the Southern Ocean, which appears to trigger local hotspots of biological activity which are a potential sink for atmospheric CO2. This project will encourage the participation of underrepresented groups in ocean sciences, as well as providing educational opportunities for high school and undergraduate students, through three different programs. Stanford University’s Summer Undergraduate Research in Geoscience and Engineering (SURGE) program provides undergraduates from different US universities and diverse cultural backgrounds the opportunity to spend a summer doing a research project at Stanford. The Stanford Earth Summer Undergraduate Research Program (SESUR) is for Stanford undergraduates who want to learn more about environmental science by performing original research. Finally, Stanford’s School of Earth, Energy, and Environmental Sciences High School Internship Program enables young scientists to serve as mentors, prepares high school students for college, and serves to strengthen the partnership between Stanford and local schools. Students present their results at the Fall AGU meeting as part of the AGU Bright STaRS program. This project will form the basis of at least two PhD dissertations. The Stanford student will participate in Stanford’s Woods Institute Rising Environmental Leaders Program (RELP), a year-round program that helps graduate students hone their leadership and communication skills to maximize the impact of their research. The graduate student will also participate in Stanford’s Grant Writing Academy where they will receive training in developing and articulating research strategies to tackle important scientific questions. This interdisciplinary program combines satellite and ship-based measurements of a large poorly understood phytoplankton bloom (the AAR bloom) in the northwestern Ross Sea sector of the Southern Ocean with a detailed modeling study of the physical processes linking deep dissolved iron (DFe) reservoirs to the surface phytoplankton bloom. Prior to the cruise, we will implement a numerical model (CROCO) for our study region so that we can better understand the circulation, plumes, turbulence, fronts, and eddy field around the AAR bloom and how they transport and mix hydrothermally produced DFe vertically. Post cruise, observations of the vertical distribution of 3He (combined with DMn and DFe), will be used as initial conditions for a passive tracer in the model, and tracer dispersal will be assessed to better quantify the role of the various turbulent processes in upwelling DFe-rich waters to the upper ocean. The satellite-based component of the program will characterize the broader sampling region before, during, and after our cruise. During the cruise, our automated software system at Stanford University will download and process images of sea ice concentration, Chl-a concentration, sea surface temperature (SST), and sea surface height (SSH) and send them electronically to the ship. Operationally, our goal is to use all available satellite data and preliminary model results to target shipboard sampling both geographically and temporally to optimize sampling of the AAR bloom. We will use available BGC-Argo float data to help characterize the AAR bloom. In collaboration with SOCCOM, we will deploy additional BGC-Argo floats (if available) during our transit through the study area to allow us to better characterize the bloom. The centerpiece of our program will be a 40-day process study cruise in austral summer. The cruise will consist of an initial “radiator” pattern of hydrographic surveys/sections along the AAR followed by CTDs to selected submarine volcanoes. When/if eddies are identified, they will be sampled either during or after the initial surveys. The radiator pattern, or parts thereof, will be repeated 2-3 times. Hydrographic survey stations will include vertical profiles of temperature, salinity, oxygen, oxidation-reduction potential, light scatter, and PAR (400-700 nm). Samples will be collected for trace metals, ligands, 3He, and total suspended matter. Where intense hydrothermal activity is identified, samples for pH and total CO2 will also be collected to characterize the hydrothermal system. Water samples will be collected for characterization of macronutrients, and phytoplankton physiology, abundance, species composition, and size. During transits, we will continuously measure atmospheric conditions, current speed and direction, and surface SST, salinity, pCO2, and fluorescence from the ship’s systems to provide detailed maps of these parameters. The ship will be used as a platform for conducting phytoplankton DFe bioassay experiments at key stations throughout the study region both inside and outside the bloom. We will also perform detailed comparisons of algal taxonomic composition, physiology, and size structure inside and outside the bloom to determine the potential importance of each community on local biogeochemistry. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The response of the Antarctic ice sheet to climate change is a central issue in projecting global sea-level rise. While much attention is focused on the ongoing rapid changes at the coastal margin of the West Antarctic Ice Sheet, obtaining records of past ice-sheet and climate change is the only way to constrain how an ice sheet changes over millennial timescales. Whether the West Antarctic Ice Sheet collapsed during the last interglacial period (~130,000 to 116,000 years ago), when temperatures were slightly warmer than today, remains a major unsolved problem in Antarctic glaciology. Hercules Dome is an ice divide located at the intersection of the East Antarctic and West Antarctic ice sheets. It is ideally situated to record the glaciological and climatic effects of changes in the West Antarctic Ice Sheet. This project will establish whether Hercules Dome experienced major changes in flow due to changes in the elevation of the two ice sheets. The project will also ascertain whether Hercules Domes is a suitable site from which to recover climate records from the last interglacial period. These records could be used to determine whether the West Antarctic Ice Sheet collapsed during that period. The project will support two early-career researchers and train students at the University of Washington. Results will be communicated through outreach programs in coordination the Ice Drilling Project Office, the University of Washington's annual Polar Science Weekend in Seattle, and art-science collaboration. This project will develop a history of ice dynamics at the intersection of the East and West Antarctic ice sheets, and ascertain whether the site is suitable for a deep ice-coring operation. Ice divides provide a unique opportunity to assess the stability of past ice flow. The low deviatoric stresses and non-linearity of ice flow causes an arch (a "Raymond Bump") in the internal layers beneath a stable ice divide. This information can be used to determine the duration of steady ice flow. Due to the slow horizontal ice-flow velocities, ice divides also preserve old ice with internal layering that reflects past flow conditions caused by divide migration. Hercules Dome is an ice divide that is well positioned to retain information of past variations in the geometry of both the East and West Antarctic Ice Sheets. This dome is also the most promising location at which to recover an ice core that can be used to determine whether the West Antarctic Ice Sheet collapsed during the last interglacial period. Limited ice-penetrating radar data collected along a previous scientific surface traverse indicate well-preserved englacial stratigraphy and evidence suggestive of a Raymond Bump, but the previous survey was not sufficiently extensive to allow thorough characterization or determination of past changes in ice dynamics. This project will conduct a dedicated survey to map the englacial stratigraphy and subglacial topography as well as basal properties at Hercules Dome. The project will use ground-based ice-penetrating radar to 1) image internal layers and the ice-sheet basal interface, 2) accurately measure englacial attenuation, and 3) determine englacial vertical strain rates. The radar data will be combined with GPS observations for detailed topography and surface velocities and ice-flow modeling to constrain the basal characteristics and the history of past ice flow. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or part under the American Rescue Plan Act of 2021 (Public Law 117-2). Part I: Non-technical description: Adélie penguin colonies are declining and disappearing from the western Antarctic Peninsula. However, not all colonies in a certain area decline or disappear at the same rate. This research project will evaluate the influence of terrestrial surface properties on Adélie penguin colonies, leveraging five decades of research on seabirds near Palmer Station where an Adélie colony on Litchfield Island became extinct in 2007 while other colonies nearby are still present. The researchers will combine information obtained from remote sensing, UAS (Unoccupied Aircraft System, or drones) high-resolution maps, reconstruction of past moss banks and modeling with machine learning tools to define suitable penguin and peatbank moss habitats and explore the influence of microclimate on their distributions. In particular, the researchers are asking if guano from penguin colonies could act as fertilizers of moss banks in the presence of localized wind patters that can carry airborne nitrogen to the mosses. Modeling will relate penguin and peatbank moss spatial patterns to environmental variables and provide a greater understanding of how continued environmental change could impact these communities. The project allows for documentation of terrestrial Antarctic ecosystems in support of seabirds and provisioning of such information to the broader science community that seeks to study penguins, educating graduate and undergraduate students and a post-doctoral researcher. The research team includes two young women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming), broadening participation in Antarctic research. Researchers will serve as student mentors through the Duke Bass Connections program entitled Biogeographic Assessment of Antarctic Coastal Habitats. This program supports an interdisciplinary team of graduate and undergraduate students collaborating with project faculty and experts on cutting-edge research bridging the classroom and the real world. Part II: Technical description: This research aims to understand the changes at the microclimate scale (meters) by analyzing present and past Adélie penguin colonies and moss peatbanks in islands around Palmer Station in the western Antarctic Peninsula – interlinked systems that are typically considered in isolation. By integrating in situ and remote data, this project will synthesize the drivers of biogeomorphology on small islands of the Antarctic Peninsula, a region of rapid change where plants and animals often co-occur and animal presence often determines the habitation of plants. A multi-disciplinary approach combine field measurements, remote sensing, UAS (Unoccupied Aircraft Systems) maps, paleoecology and modeling with machine learning to define suitable habitats and the influence of microclimates on penguin and peatbank distributions. The link between the two aspects of this study, peatbanks and penguins, is the potential source of nutrients for peat mosses from penguin guano. Peatbank and penguin distribution will be modeled and all models will be validated using in situ information from moss samples that will identify mechanistic processes. This project leverages 5 decades of seabird research in the area and high-definition remote sensing provided by the Polar Geospatial center to study the microclimate of Litchfield Island where an Adélie colony became extinct in 2007 when other colonies nearby are still present. The research team includes two early career women as Principal Investigators, one of them from an under-represented ethnic minority, first time Antarctic Principal Investigator, from an EPSCoR state (Wyoming). Researchers will serve as mentors for students through the Duke Bass Connections program entitled Biogeogrpahic Assessment of Antarctic Coastal Habitats which bridges the classroom and the real world. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea canyons play disproportionately important roles as oceanic biological hotspots and are critical for our understanding of many coastal ecosystems. Canyon-associated biological hotspots have persisted for thousands of years Along the Western Antarctic Peninsula, despite significant climate variability. Observations of currents over Palmer Deep canyon, a representative hotspot along the Western Antarctic Peninsula, indicate that surface phytoplankton blooms enter and exit the local hotspot on scales of ~1-2 days. This time of residence is in conflict with the prevailing idea that canyon associated hotspots are primarily maintained by phytoplankton that are locally grown in association with these features by the upwelling of deep waters rich with nutrients that fuel the phytoplankton growth. Instead, the implication is that horizontal ocean circulation is likely more important to maintaining these biological hotspots than local upwelling through its physical concentrating effects. This project seeks to better resolve the factors that create and maintain focused areas of biological activity at canyons along the Western Antarctic Peninsula and create local foraging areas for marine mammals and birds. The project focus is in the analysis of the ocean transport and concentration mechanisms that sustain these biological hotspots, connecting oceanography to phytoplankton and krill, up through the food web to one of the resident predators, penguins. In addition, the research will engage with teachers from school districts serving underrepresented and underserved students by integrating the instructors and their students completely with the science team. Students will conduct their own research with the same data over the same time as researchers on the project. Revealing the fundamental mechanisms that sustain these known hotspots will significantly advance our understanding of the observed connection between submarine canyons and persistent penguin population hotspots over ecological time, and provide a new model for how Antarctic hotspots function. To understand the physical mechanisms that support persistent hotspots along the Western Antarctic Peninsula (WAP), this project will integrate a modeling and field program that will target the processes responsible for transporting and concentrating phytoplankton and krill biomass to known penguin foraging locations. Within the Palmer Deep canyon, a representative hotspot, the team will deploy a High Frequency Radar (HFR) coastal surface current mapping network, uniquely equipped to identify the eddies and frontal regions that concentrate phytoplankton and krill. The field program, centered on surface features identified by the HFR, will include (i) a coordinated fleet of gliders to survey hydrography, chlorophyll fluorescence, optical backscatter, and active acoustics at the scale of the targeted convergent features; (ii) precise penguin tracking with GPS-linked satellite telemetry and time-depth recorders (TDRs); (iii) and weekly small boat surveys that adaptively target and track convergent features to measure phytoplankton, krill, and hydrography. A high resolution physical model will generalize our field measurements to other known hotspots along the WAP through simulation and determine which physical mechanisms lead to the maintenance of these hotspots. The project will also engage educators, students, and members of the general public in Antarctic research and data analysis with an education program that will advance teaching and learning as well as broadening participation of under-represented groups. This engagement includes professional development workshops, live connections to the public and classrooms, student research symposia, and program evaluation. Together the integrated research and engagement will advance our understanding of the role regional transport pathways and local depth dependent concentrating physical mechanisms play in sustaining these biological hotspots. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The western portion of the Antarctic continent is very active in terms of plate tectonic processes that can produce significant variations in the Earths mantle temperature as well as partial melting of the mantle. In addition to these internal processes, the ice sheet in western Antarctica is melting due to Earths warming climate and adding water to the ocean. These changes in ice mass cause adjustments in rocks within the Earth's crust, allowing the surface to rebound in some locations and fall in others, altering the geographical pattern of sea-level change. However, the solid Earth response depends strongly on the strength of the rocks at a wide range of timescales which is not well-known and varies with temperature and other rock properties. This project has three primary goals. (1) It will assess how processes such as rifting, mantle upwelling and lithospheric instability have altered the lithosphere and underlying asthenosphere of western Antarctica, contributing to a planet-wide understanding of these processes. (2) It will use new measurements of mantle and crust properties to estimate the rate at which heat from the solid Earth flows into the base of the ice, which is important for modeling the rates at which the ice melts and flows. (3) It will places bounds on mantle viscosity, which is key for modeling the interaction of the solid Earth with changing ice and water masses and their implications for sea-level rise. To accomplish these goals, new resolution of crust and mantle structure will be obtained by analyzing seismic waves from distant earthquakes that have been recorded at numerous seismic stations in Antarctica. These analyses will include new combinations of seismic wave data that provide complementary information about mantle temperature, heat flow and viscosity. This project will provide educational and career opportunities to a Brown University graduate student, undergraduates from groups underrepresented in science who will come to Brown University for a summer research program, and other undergraduates. The project will bring together faculty and students for a seminar at Brown that explores the connections between the solid Earth and ice processes in Antarctica. Project research will be incorporated in outreach to local public elementary schools and high schools. This research addresses key questions about mantle processes and properties in western Antarctica. What are the relative impacts of rifting, mantle plumes, and lithospheric delamination in the evolution of the lithosphere and asthenosphere? Where is topography isostatically compensated, and where are dynamic processes such as plate flexure or tractions from 3-D mantle flow required? What are the bounds on heat flow and mantle viscosity, which represent important inputs to models of ice sheet evolution and its feedback from the solid Earth? To address these questions, this project will measure mantle and crust properties using seismic tools that have not yet been applied in Antarctica: regional-scale measurement of mantle attenuation from surface waves; Sp body wave phases to image mantle velocity gradients such as the lithosphere-asthenosphere boundary; and surface wave amplification and ellipticity. The resulting models of seismic attenuation and velocity will be jointly interpreted to shed new light on temperature, bulk composition, volatile content, and partial melt, using a range of laboratory-derived constitutive laws, while considering data from mantle xenoliths. To test the relative roles of rifting, mantle plumes, and delamination, and to assess isostatic support for Antarctic topography, the predictions of these processes will be compared to the new models of crust and mantle properties. To improve bounds on western Antarctic heat flow, seismic attenuation and velocity will be used in empirical comparisons and in direct modeling of vertical temperature gradients. To better measure mantle viscosity at the timescales of glacial isostatic adjustment, frequency-dependent viscosity will be estimated from the inferred mantle conditions. This project will contribute to the education and career development of the following: a Brown University Ph.D. student, Brown undergraduates, and undergraduates from outside the university will be involved through the Department of Earth, Environmental and Planetary Sciences (DEEPS) Leadership Alliance NSF Research Experience for Undergraduates (REU) Site which focuses on geoscience summer research experiences for underrepresented students. The project will be the basis for a seminar at Brown that explores the connections between the solid Earth and cryosphere in Antarctica and will contribute to outreach in local public elementary and high schools. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Melt from the Greenland and Antarctic ice sheets is increasingly contributing to sea-level rise. This ice sheet mass loss is primarily driven by the thinning, retreat, and acceleration of glaciers in contact with the ocean. Observations from the field and satellites indicate that glaciers are sensitive to changes at the ice-ocean interface and that the increase in submarine melting is likely to be driven by the discharge of meltwater from underneath the glacier known as subglacial meltwater plumes. The melting of glacier ice also directly adds a large volume of freshwater into the ocean, potentially causing significant changes in the circulation of ocean waters that regulate global heat transport, making ice-ocean interactions an important potential factor in climate change and variability. The ability to predict, and hence adequately respond to, climate change and sea-level rise therefore depends on our knowledge of the small-scale processes occurring in the vicinity of subglacial meltwater plumes at the ice-ocean interface. Currently, understanding of the underlying physics is incomplete; for example, different models of glacier-ocean interaction could yield melting rates that vary over a factor of five for the same heat supply from the ocean. It is then very difficult to assess the reliability of predictive models. This project will use comprehensive laboratory experiments to study how the melt rates of glaciers in the vicinity of plumes are affected by the ice roughness, ice geometry, ocean turbulence, and ocean density stratification at the ice-ocean interface. These experiments will then be used to develop new and improved predictive models of ice-sheet melting by the ocean. This project builds bridges between modern experimental fluid mechanics and glaciology with the goal of leading to advances in both fields. As a part of this work, two graduate students will receive interdisciplinary training and each year two undergraduate students will be trained in experimental fluid mechanics to assist in this work and develop their own research projects. This project consists of a comprehensive experimental program designed for studying the melt rates of glacier ice under the combined influences of (1) turbulence occurring near and at the ice-ocean interface, (2) density stratification in the ambient water column, (3) irregularities in the bottom topology of an ice shelf, and (4) differing spatial distributions of multiple meltwater plumes. The objective of the experiments is to obtain high-resolution data of the velocity, density, and temperature near/at the ice-ocean interface, which will then be used to improve understanding of melt processes down to scales of millimeters, and to devise new, more robust numerical models of glacier evolution and sea-level rise. Specially, laser-based, optical techniques in experimental fluid mechanics (particle image velocity and laser-induced fluorescence) will be used to gather the data, and the experiments will be conducted using refractive-index matching techniques to eliminate changes in refractive indices that could otherwise bias the measurements. The experiments will be run inside a climate-controlled cold room to mimic field conditions (ocean temperature from 0-10 degrees C). The project will use 3D-printing to create different casting molds for making ice blocks with different types of roughness. The goal is to investigate how ice melt rate changes as a function of the properties of the plume, the ambient ocean water, and the geometric properties of the ice interface. Based on the experimental findings, this project will develop and test a new integral-plume-model coupled to a regional circulation model (MITgcm) that can be used to predict the effects of glacial melt on ocean circulation and sea-level rise. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Dunbar/1543454 Antarctic ice cores offer unparalleled records of earth?s climate back to almost one million years and perhaps beyond. Layers of volcanic ash (tephra) embedded in glacial ice can be used to establish an accurate ice core chronology. In order to use a visible or ultrafine volcanic ash layer as a time-stratigraphic marker, a unique geochemical fingerprint must be established, and this forms the basis of our research. This award will investigate the volcanic record in the 1751 m ice core that was completed at the South Pole during the 2015/16 field season. The core is in an ideal location to link the existing, established, volcanic records in East and West Antarctica, and therefore to connect and integrate those records, allowing the climate records of ice cores to be directly compared, as well as to focus research on the most widespread and significant volcanic eruptions from West Antarctica. Tephra derived from well-dated, large, tropical volcanic eruptions that may have had an impact on climate will also be studied. Recent success in identifying and analyzing very fine ash particles from these types of eruptions makes it likely that we will be able to pinpoint some of these eruptions, which will allow the sulfate peaks associated with these layers to be positively identified and dated. Volcanic forcing time series developed from earlier South Pole ice cores based on preserved sulfate were crucial for testing climate models, but without tephra analysis, the origin of these layers remains uncertain. Work on the tephra layers in the South Pole ice core has a number of significant specific objectives, some with practical applications to the basic science goals of Antarctic ice coring, and others that represent independent scientific contributions in their own right. These include: (1) providing independently dated time-intervals in the core, particularly for the deepest ice, (2) quantitatively linking tephra records across Antarctica with the goal of allowing direct and robust climate comparisons between these different parts of the continent, (3) providing information for large local eruptions, that will lead to direct estimates of eruption magnitude and dispersal patterns of Antarctic volcanoes, several of which will likely erupt again. The initial stages of the work will be carried out by identifying silicate-bearing horizons in the ice core, using several methods. Once found, silicate particles will be imaged so that morphological characteristics of the particles can be used to identify volcanic origin. Particles identified as tephra will then be chemically analyzed using electron microprobe and laser ablation ICP-MS. Samples that yield a robust chemical fingerprint will be statistically correlated to known eruptions, and this will be used to address the goals described above. Broader impacts of this project fall into the areas of education of future generation of researchers, outreach and international cooperation. These activities will continue to promote forward progress in integrating the Antarctic tephra record and more broadly tying it to the global volcanic record.
The Antarctic ice sheet is underlain by a dynamic water system that lubricates the flow of ice streams and outlet glaciers, provides a habitat for a diverse microbial ecosystem, and delivers freshwater and nutrients to the Southern Ocean. However, imaging this subglacial environment is difficult: Antarctica is a vast continent with ice up to four kilometers (2.5 miles) thick. To detect water at the ice-bed interface and in deeper groundwater reservoirs, this project will adapt a technique called electromagnetic sounding that is well-established on land and in the ocean for imaging fluids beneath the surface. Groundwater is estimated to be a significant part of the subglacial water budget in Antarctica, yet previous observational approaches have been unable to characterize its volume and distribution. This project will thus yield critical information about how ice-rock-water-ocean systems interact and inform our understanding of ice-sheet processes, global nutrient cycles, and freshwater flux to the ocean. The project will provide cross-disciplinary training for a graduate student and postdoctoral scientist, and develop an educational outreach program through the Birch Aquarium. Standard geophysical surveying techniques used in glaciology to image subglacial water (radio-echo sounding and active-source seismology) are not directly sensitive to water content. In contrast, ground-based electromagnetic (EM) methods are sensitive to water content through its impact on bulk conductivity. Although EM methods are well-established for high-precision mapping of hydrology in other geological environments, their application on ice sheets is in its infancy. The proposed work will adapt both passive- and active-source EM techniques to glaciological questions to quantify the three-dimensional structure of subglacial water beneath an ice stream and in a grounding zone. The project will perform a suite of synthetic inversion studies to determine the range of applications of EM techniques in glaciology and execute a field experiment on the Whillans Ice Plain to investigate two hypotheses about the subglacial water system based on previous observational and modeling results: (1) Subglacial Lake Whillans is underlain by a deep, saline groundwater reservoir; and (2) there is an estuary-like zone of mixing between fresh subglacial water and seawater near, and possibly landward, of the grounding line.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Climate change is promoting increased melting in Greenland and Antarctica, contributing to the global sea level rise. Understanding what drives the increase and the amount of meltwater from the ice sheets is paramount to improve our skills to project future sea level rise and associated consequences. Melting in Antarctica mostly occurs along ice shelves (tongues of ice floating in the water). They do not contribute directly to sea level when they melt but their disappearance allows the glaciers at the top to flow faster towards the ocean, increasing the contribution of Antarctica to sea level rise. Satellite data can only offer a partial view of what is happening, either because of limited coverage or because of the presence of clouds, which often obstruct the view in this part of the world. Models, on the other hand, can provide estimates but the spatial detail they can provide is still limited by many factors. This project will use artificial intelligence to overcome these problems and to merge satellite data and model outputs to generate daily maps of surface melting with unprecedented detail. These techniques are similar to those used in cell phones to sharpen images or to create landscapes that look “real” but are only existing in the “computer world,” but they have never been applied to melting in Antarctica for improving estimates of sea level rise. Meltwater in Antarctica has been shown to impact ice shelf stability through the fracturing and flexural processes. Image scarcity has often forced the community to use general climate and regional climate models to explore hydrological features. Notwithstanding models having been considerably refined over the past years, they still require improvements in capturing the processes driving the energy balance and, most importantly, the feedback among the drivers and the energy balance terms that drive the hydrological processes. Moreover, spatial resolution is still too coarse to properly capture hydrological processes, especially over ice shelves. Machine learning (ML) tools can help in this regard, especially when it is computationally infeasible to run physics-based models at desired resolutions in space and time, like in the case of ice shelf surface hydrology. This project will train Generative Adversarial Networks (GANs) with the outputs of a regional climate model and remote sensing data to generate unprecedented, high-resolution (100 m) maps of surface melting. Beside improving the spatial resolution, and hence providing a long-needed and crucial dataset to the polar community, the tool here proposed will be able to provide satellite-like maps on a daily basis, hence addressing also those issues related to the lack of spatial coverage. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSFGEO-NERC Collaborative Research: P2P: Predators to Plankton – Biophysical controls in Antarctic polynyas Part I: Non-technical description: The Ross Sea, a globally important ecological hotspot, hosts 25% to 45% of the world populations of Adélie and Emperor penguins, South Polar skuas, Antarctic petrels, and Weddell seals. It is also one of the few marine protected areas within the Southern Ocean, designed to protect the workings of its ecosystem. To achieve conservation requires participation in an international research and monitoring program, and more importantly integration of what is known about penguin as predators and the biological oceanography of their habitat. The project will acquire data on these species’ role within the local food web through assessing of Adélie penguin feeding grounds and food choices, while multi-sensor ocean gliders autonomously quantify prey abundance and distribution as well as ocean properties, including phytoplankton, at the base of the food web. Additionally, satellite imagery will quantify sea ice and whales, known penguin competitors, within the penguins’ foraging area. Experienced and young researchers will be involved in this project, as will a public outreach program that reaches more than 200 school groups per field season, and with an excess of one million visits to a website on penguin ecology. Lessons about ecosystem change, and how it is measured, i.e. the STEM fields, will be emphasized. Results will be distributed to the world scientific and management communities. Part II: Technical description: This project, in collaboration with the United Kingdom (UK) National Environmental Research Council (NERC), assesses food web structure in the southwestern Ross Sea, a major portion of the recently established Ross Sea Region Marine Protected Area that has been designed to protect the region’s food web structure, dynamics and function. The in-depth, integrated ecological information collected in this study will contribute to the management of this system. The southwestern Ross Sea, especially the marginal ice zone of the Ross Sea Polynya (RSP), supports global populations of iconic and indicator species: 25% of Emperor penguins, 30% of Adélie penguins, 50% of South Polar skuas, and 45% of Weddell seals. However, while individually well researched, the role of these members as predators has been poorly integrated into understanding of Ross Sea food web dynamics and biogeochemistry. Information from multi-sensor ocean gliders, high-resolution satellite imagery, diet analysis and biologging of penguins, when integrated, will facilitate understanding of the ‘preyscape’ within the intensively investigated biogeochemistry of the RSP. UK collaborators will provide state-of-the-art glider technology, glider programming, ballasting, and operation and expertise to evaluate the oceanographic conditions of the study area. Several young scientists will be involved, as well as an existing outreach program already developed that reaches annually more than 200 K-12 school groups and has more than one million website visits per month. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Predicting the response of ice sheets to changing climate and their contribution to sea level requires accurate representation in numerical models of basal conditions under the ice. There remain large data gaps for these basal boundary conditions under the East Antarctic Ice Sheet as well as in West Antarctica, including basal melt rates under ice shelves. This project will develop and test a prototype ground-based radar system to sound and image ice more than 4km thick, detect thin water films at the ice bed, and determine basal melt rates under ice shelves. The team will work with European partners (France, Italy, Germany) at Dome C to conduct deep-field Antarctic testing of the new radar. The project will build and test an L-band radar system (1.2-1.4GHz) with peak transmit power of 2kW. In addition to sounding and imaging thick ice, detection goals include resolving thin water films (>0.5mm). Such a system would target glaciological problems including site selection for ice in the 1.5-million-year age range, basal stress boundary conditions under grounded ice, and melt rates under floating shelves. By demonstrating feasibility, the project aims to influence sensor selection for satellite missions. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a "Polar Rock Box" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet’s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the "Polar Rock Box" program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Meteorological Research and Data Center (AMRDC) project will create an Antarctic meteorological observational data repository and archive system based on an open source platform to manage data from submission to end-user retrieval. The new archival system will host both currently available datasets and campaign meteorological datasets deposited by other Antarctic investigators. The project will also engage undergraduate and graduate students in order to provide them with meaningful experiences that can translate to several science, technology, engineering, and mathematics (STEM) career paths. This project targets four main tasks as a starting point toward meeting existing recommendations and creating a more sustainable Antarctic meteorological enterprise: 1. Designation of the Antarctic Meteorological Research and Data Center (AMRDC), 2. Distribution of Automatic Weather Station (AWS) observations on GTS in WMO BUFR format, 3. Establish a steering committee for the AMRDC, and 4. Diagnostic case studies of Antarctic meteorological events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The emperor penguin is an iconic seabird that is found in colonies distributed around the entirety of the Antarctic coastline. Emperor penguins are an important indicator species for the health of the Southern Ocean because their reliance on sea ice for major parts of their life cycle means that their population can be influenced by changes in the extent and duration of sea ice around Antarctica. Although baseline data exists on emperor penguin distributions and overall population size, data on how population size varies at individual colonies is limited to only a few locations. Thus, knowledge about how changes in local or regional environmental conditions impacts local or global population status is poorly understood. By combining established methods in satellite remote sensing with ground and aerial surveys of several colonies across the continent, this project will generate population estimates for the 54 known emperor penguin colonies. Decadal scale population trend data will be combined with environmental variables (e.g., sea ice extent and duration among others) to reveal which conditions influence population fluctuations at regional and continental scales. The project will engage with international collaborators, train post-doctoral associates and future scientists, and develop citizen science and K-12 outreach programs. This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctica’s native animals face increasing stressors from warming oceans. A key unanswered question is how Antarctic life will respond. If warmer waters contribute to fish disease susceptibility, then iconic Antarctic predators they support, including penguins, seals, and killer whales, will suffer. A recent scientific cruise on the Antarctic peninsula encountered a population of crowned notothen fish that were plagued by pink, wart-like tumors that covered 10% to 30% of the body surface on about a third of the animals. Similar tumors had not previously been reported, suggesting that this might be a new disease that threatens Antarctic fish. The goal of proposed work is to identify the biological origins of the tumor and how it affects cell function and organismal physiology. The work is potentially transformative because it studies what might be a harbinger of Antarctic fish responses to global climate change. The project has several Broader Impacts. First, it will publicize the tumors. Because Antarctic researchers have never reported a tumor epidemic, the community must become aware of the outbreak and the tumor’s distinct diagnostic features. Second, dissemination of project results will stir further research to determine if this is an isolated event or is becoming a general phenomenon, and thus a broad concern for Antarctic ecosystems. Third, assays the project develops to detect the disease will enhance research infrastructure. Finally, work will broaden the nation’s scientific workforce by providing authentic research experiences for high school students and undergraduates from groups underrepresented in scientific research. The overall goal of proposed work is to identify the biological origins of the neoplasia and how it affects cell function and physiology. Aim 1 is to identify the pathogenic agent. Aim 1a is to test the hypothesis that a virus causes the neoplasia by isolating and sequencing viral nucleic acids from neoplasias and from animals that are not visibly affected. Aim 1b is to test neoplasias for bacteria, fungi, protozoa, or invertebrate parasites not present in healthy skin. Aim 2 is to learn how the disease alters the biology of affected cells. Aim 2a is to examine histological sections of affected and control tissues to see if the neoplasias are similar to previously reported skin diseases in temperate water fishes. Aim 2b is to examine the function of neoplastic cells by RNA-seq transcriptomics to identify genes that are differentially expressed in neoplasias and normal skin. Achieving these Aims will advance knowledge by identifying the causes and consequences of an outbreak of neoplasias in Antarctic fish. Proposed work is significant because it is the first to investigate a neoplasia cluster in Antarctic fish. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This EAGER award will explore the Distributed Acoustic Sensing emerging technology that transforms a single optical fiber into a massively multichannel seismic array. This technology may provide a scalable and affordable way to deploy dense seismic networks. Experimental Distributed Acoustic Sensing equipment will be tested in the Antarctic exploiting unused (dark) strands in the existing fiber-optic cable that connects the U.S. Amundsen-Scott South Pole Station to the Remote Earth Science and Seismological Observatory (SPRESSO) located about 7.5-km from the main station. Upon processing the seismic signals, the Distributed Acoustic Sensing may provide a new tool to structurally image firn, glacial ice, and glacial bedrock. Learning how Distributed Acoustic Sensing would work on the ice sheet, scientists can then check seismological signals propagating through the Earth's crust and mantle variously using natural icequakes and earthquakes events in the surrounding area. The investigators propose to convert at least 8 km of pre-existing fiber optic cable at the Amundsen-Scott South Pole station into more than 8000 sensors to explore the potential of Distributed acoustic sensing (DAS) as a breakthrough data engine for polar seismology. The DAS array will operate for about one year, allowing them to (1) evaluate and calibrate the performance of the DAS technology in the extreme cold, very low noise (including during the exceptionally quiet austral winter) polar plateau environment; (2) record and analyze local ambient and transient signals from ice, anthropogenic signals, ocean microseism, atmospheric and other processes, as well as to study local, regional, and teleseismic tectonic events; (3) structurally image the firn, glacial ice, glacial bed, crust, and mantle, variously using active sources, ambient seismic noise, and natural icequake and earthquake events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Enderlin/1643455 This award supports a project that will use a novel remote sensing method, which was initially developed to investigate melting of icebergs around Greenland, to examine spatial and temporal variations in ocean forcing around the Antarctic ice sheet periphery. Nearly three-quarters of the Antarctic ice sheet is fringed by regions of floating glacier ice called ice shelves. These ice shelves play an important role in modulating the flow of ice from the ice sheet interior towards the coast, similar to how dams regulate the downstream flow of water from reservoirs. Therefore, a reduction in ice shelf size due to changing air and ocean temperatures can have serious implications for the flux of glacier ice reaching the Antarctic coast, and thus, sea level change. Observations of recent ocean warming in the Amundsen Sea, thinning of the ice shelves, and increased ice flux from the West Antarctic ice sheet interior suggests that ice shelf destabilization triggered by ocean warming may already be underway in some regions. Although detailed observations are available in the Amundsen Sea region, our understanding of spatial and temporal variations in ocean conditions and their influence on ice shelf stability is limited by the scarceness of observations spanning the ice sheet periphery. The project will yield insights into variability in the submarine melting of ice shelves and will help advance the career of a female early-career scientist in a male-dominated field. The project will use repeat, very high-resolution (~0.5 m pixel width and length) satellite images acquired by the WorldView satellites, to estimate rates of iceberg melting in key coastal regions around Antarctica. The satellite images will be used to construct maps of iceberg surface elevation, which will be differenced in time to derive time series of iceberg volume change and area-averaged melt rates. Where ocean data are available, the melt rates will be compared to these data to assess whether variations in ocean temperature can explain observed iceberg melt variability. Large spatial gradients in melt rates will be compared to estimates of iceberg drift rates, which will be inferred from the repeat satellite images as well as numerically modeled drift rates produced by (unfunded) collaborators, to quantify the effects of water shear on iceberg melt rates. Spatial and temporal patterns in iceberg melting will also be compared to independently derived ice shelf thickness datasets. Overall, the analysis should yield insights into the effects of changes in ocean forcing on the submarine melting of Antarctic ice shelves and icebergs. The project does not require field work in Antarctica.
Part I: Nontechnical Earths warming climate has the potential to drive widespread collapse of glaciers and ice sheets across the planet, driving global sea-level rise. Understanding both the rate and magnitude of such changes is essential for predicting future sea-level and how it will impact infrastructure and property. Collapse of the ice sheets of Antarctica has the potential to raise global sea-level by up to 60 meters. However, not all regions of Antarctica are equally suspectable to collapse. One area with potential for collapse is the Wilkes Subglacial Basin in East Antarctica, a region twice the size of California's Central Valley. Geologic evidence indicates that the ice-sheet in this region has retreated significantly in response to past global warming events. While the geologic record clearly indicates ice-sheets in this area are vulnerable, the rate and magnitude of any future retreat will be influenced significantly by geology of the region. In particular, ice-sheets sitting above warm Earth will collapse more quickly during warming climate. Constraining the geologic controls on the stability of the ice-sheets of the Wilkes Subglacial Basin remains challenging since the ice-sheet hides the geology beneath kilometers of ice. As a step in understanding the potential for future ice loss in the Wilkes Subglacial Basin this project will conduct geophysical analysis of existing data to better constrain the geology of the region. These results will constrain new models designed to understand the tectonics that control the behavior of the ice-sheets in the region. These new models will highlight the geological properties that exert the most significant control on the future of the ice-sheets of the Wilkes Subglacial Basin. Such insights are critical to guide future efforts aimed at collecting in-situ observations needed to more fully constrain Antarctica's potential for future sea-level. Part II: Technical Description In polar environments, inward-sloping marine basins are susceptible to an effect known as the marine ice-sheet instability (MISI): run-away ice stream drainage caused by warm ocean water eroding the ice shelf from below. The magnitude and time-scale of the ice-sheet response strongly depend on the physical conditions along the ice-bed interface, which are, to a first order, controlled by the tectonic evolution of the basin. Topography, sedimentology, geothermal heat flux, and mantle viscosity all play critical roles in ice-sheet stability. However, in most cases, these solid-Earth parameters for regions susceptible to the MISI are largely unknown. One region with potential susceptibility to MISI is the Wilkes Subglacial Basin of East Antarctica. The project will provide an integrated investigation of the Wilkes Subglacial Basin, combining geophysical analyses with both mantle flow and ice-sheet modeling to understand the stability of the ice sheet in this region, and the associated potential sea level rise. The work will be focused on four primary objectives: (1) to develop an improved tectonic model for the region based on existing seismic observations as well as existing geophysical and geological data; (2) to use the new tectonic model and seismic data to estimate the thermal, density, and viscosity structure of the upper mantle and to develop a heat flow map for the WSB; (3) to simulate mantle flow and to assess paleotopography based on our density and viscosity constraints; and (4) to assess ice-sheet behavior by modeling (a) past ice-sheet stability using our paleotopography estimates and (b) future ice-sheet stability using our heat flow and mantle viscosity estimates. Ultimately, the project will generate improved images of the geophysical structure beneath the WSB that will allow us to assess the geodynamic origin for this region and to assess the influence of geologic parameters on past, current, and future ice-sheet behavior. These efforts will then highlight areas and geophysical properties that should be the focus of future geophysical deployments. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Antarctic Peninsula is warming and one of the consequences is a decrease in sea ice cover. Antarctic minke whales are the largest ice-obligate krill predator in the region, yet- little is known about their foraging behavior and ecology. The goals of the project are to use a suite of new technological tools to measure the underwater behavior of the whales and better understand how they exploit the sea ice habitat. Using video-recording motion-sensing tags, the underwater movements of the whales can be reconstructed and it can be determine where and when they feed. UAS (unmanned aerial systems) will be used to generate real-time images of sea ice cover that will be linked with tag data to determine how much time whales spend in sea ice versus open water, and how the behavior of the whales changes between these two habitats. Lastly, scientific echosounders will be used to characterize the prey field that the whales are exploiting and differences in krill availability inside and out of the ice will be investigated. All of this information is critical to understand the ecological role of Antarctic minke whales so that better predictions can be made regarding impacts of climate change not only on these animals, but on the structure and function of the Antarctic marine ecosystem. The project will promote the progress of science by elucidating the ecological role of a poorly known Antarctic predator and using this information to better understand the impact of changes that are occurring in Polar Regions. The educational and outreach program will increase awareness and understanding of minke whales, Antarctic marine ecosystems, sea ice, and the dynamics of climate change through the use of film, social media, and curriculum development for formal STEM educators. To understand how changes in sea ice will manifest in the demography of predators that rely on sea ice habitat requires knowledge of their behavior and ecology. The largest ice-dependent krill predator and most abundant cetacean in the Southern Ocean is the Antarctic minke whale (AMW)- yet, virtually nothing is known of its foraging behavior or ecological role. Thus, the knowledge to understand how climate-driven changes will affect these animals and therefore the dynamics of the ecosystem as a whole is lacking. The project will use multi-sensor and video recording tags, fisheries acoustics, and unmanned aerial systems to study the foraging behavior and ecological role of minke whales in the waters of the Antarctic Peninsula. The following research questions will be posed: 1. What is the feeding performance of AMWs? 2. How important is sea ice to the foraging behavior of AMW? 3. How do AMWs feed directly under sea ice? Proven tagging and analytical approaches to characterize the underwater feeding behavior and kinematics of minke whales will be used. Combined with quantitative measurements of the prey field, the energetic costs of feeding will be measured and it will be determined how minke whales optimize energy gain. Using animal-borne video recording tags and UAS technology it will also be determined how much feeding occurs directly under sea ice and how this mode differs from open water feeding. This knowledge will: (1) significantly enhance knowledge of the least-studied Antarctic krill predator; and (2) be made directly available to international, long-term efforts to understand how climate-driven changes will affect the structure and function of the Antarctic marine ecosystem. The educational and outreach efforts aim to increase awareness and understanding of: (i) the ecological role of minke whales around the Antarctic Peninsula; (ii) the effects of environmental change on an abundant but largely unstudied marine predator; (iii) the advanced methods and technologies used by whale researchers to study these cryptic animals and their prey; and (iv) the variety of careers in the ocean sciences by sharing the experiences of scientists and students. These educational aims will be achieved by delivering continuous near-real-time delivery of project events and data to informal audiences through social media channels as well as curricula and professional development programs that will provide formal STEM educators with specific standards-compliant lesson plans.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Collapse of the West Antarctic Ice Sheet (WAIS) could raise the global sea level by about 5 meters (16 feet) and the scientific community considers it the most significant risk for coastal environments and cities. The risk arises from the deep, marine setting of WAIS. Although scientists have been aware of the precarious setting of this ice sheet since the early 1970s, it is only now that the flow of ice in several large drainage basins is undergoing dynamic change consistent with a potentially irreversible disintegration. Understanding WAIS stability and enabling more accurate prediction of sea-level rise through computer simulation are two of the key objectives facing the polar science community today. This project will directly address both objectives by: (1) using state-of-the-art technologies to observe rapidly deforming parts of Thwaites Glacier that may have significant control over the future evolution of WAIS, and (2) using these new observations to improve ice-sheet models used to predict future sea-level rise. This project brings together a multidisciplinary team of UK and US scientists. This international collaboration will result in new understanding of natural processes that may lead to the collapse of the WAIS and will boost infrastructure for research and education by creating a multidisciplinary network of scientists. This team will mentor three postdoctoral researchers, train four Ph.D. students and integrate undergraduate students in this research project. The project will test the overarching hypothesis that shear-margin dynamics may exert powerful control on the future evolution of ice flow in Thwaites Drainage Basin. To test the hypothesis, the team will set up an ice observatory at two sites on the eastern shear margin of Thwaites Glacier. The team argues that weak topographic control makes this shear margin susceptible to outward migration and, possibly, sudden jumps in response to the drawdown of inland ice when the grounding line of Thwaites retreats. The ice observatory is designed to produce new and comprehensive constraints on englacial properties, including ice deformation rates, ice crystal fabric, ice viscosity, ice temperature, ice water content and basal melt rates. The ice observatory will also establish basal conditions, including thickness and porosity of the till layer and the deeper marine sediments, if any. Furthermore, the team will develop new knowledge with an emphasis on physical processes, including direct assessment of the spatial and temporal scales on which these processes operate. Seismic surveys will be carried out in 2D and 3D using wireless geophones. A network of broadband seismometers will identify icequakes produced by crevassing and basal sliding. Autonomous radar systems with phased arrays will produce sequential images of rapidly deforming internal layers in 3D while potentially also revealing the geometry of a basal water system. Datasets will be incorporated into numerical models developed on different spatial scales. One will focus specifically on shear-margin dynamics, the other on how shear-margin dynamics can influence ice flow in the whole drainage basin. Upon completion, the project aims to have confirmed whether the eastern shear margin of Thwaites Glacier can migrate rapidly, as hypothesized, and if so what the impacts will be in terms of sea-level rise in this century and beyond. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Undersea forests of seaweeds dominate the shallow waters of the central and northern coast of the western Antarctic Peninsula and provide critical structural habitat and carbon resources (food) for a host of marine organisms. Most of the seaweeds are chemically defended against herbivores yet support very high densities of herbivorous shrimp-like grazers (crustaceans, primarily amphipods) which greatly benefit their hosts by consuming filamentous and microscopic algae that otherwise overgrow the seaweeds. The amphipods benefit from the association with the chemically defended seaweeds by gaining an associational refuge from fish predation. The project builds on recent work that has demonstrated that several species of amphipods that are key members of crustacean assemblages associated with the seaweeds suffer significant mortality when chronically exposed to increased seawater acidity (reduced pH) and elevated temperatures representative of near-future oceans. By simulating these environmental conditions in the laboratory at Palmer Station, Antarctica, the investigators will test the overall hypothesis that ocean acidification and ocean warming will play a significant role in structuring crustacean assemblages associated with seaweeds. Broader impacts include expanding fundamental knowledge of the impacts of global climate change by focusing on a geographic region of the earth uniquely susceptible to climate change. This project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. This includes training graduate students and early career scientists with an emphasis on diversity, presentations to K-12 groups and the general public, and a variety of social media-based outreach programs. The project will compare population and assemblage-wide impacts of natural (ambient), carbon dioxide enriched, and elevated temperature seawater on assemblages of seaweed-associated crustacean grazers. Based on prior results, it is likely that some species will be relative "winners" and some will be relative "losers" under the changed conditions. The project will then aim to carry out measurements of growth, calcification, mineralogy, the incidence of molts, and biochemical and energetic body composition for two key amphipod "winners" and two key amphipod "losers". These measurements will allow an assessment of what factors drive species-specific enhanced or diminished performance under conditions of ocean acidification and sea surface warming. The project will expand on what little is known about prospective impacts of changing conditions on benthic marine Crustacea, in Antarctica, a taxonomic group that faces the additional physiological stressor of molting. The project is likely to provide additional insight on the indirect regulation of the seaweeds that comprise Antarctic undersea forests that provide key architectural components of the coastal marine ecosystem. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth's last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100°E-160°E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.
Howat/1543501 This award will provide support to map the topography of the Antarctic continent at high spatial resolution and precision to measure ice sheet change, constrain models, correct satellite observations and support logistics. Antarctica remains the most poorly mapped landmass on Earth, yet, accurate and complete surface topography is essential for a wide range of scientific and logistical activities. The group will use a combination of very high-resolution satellite imagery, existing ground and airborne survey data and the NSF's supercomputer infrastructure to construct the Reference Elevation Model of Antarctica (REMA): a continuous, time-stamped reference surface that will be one to two orders of magnitude higher resolution than currently available. REMA will be constructed from stereoscopic, submeter resolution imagery collected by the WorldView satellite constellation, obtained at no cost in partnership with the National Geospatial Intelligence Agency and the NSF-supported Polar Geospatial Center (PGC). The high spatial and radiometric resolution of the imagery enables photogrammetric digital elevation model (DEM) extraction over low contrast terrains such as snow, ice and shadows. These DEM's have horizontal and vertical offsets of up to several meters that can be reduced to the DEM relative accuracy of 0.2 meter with a single ground control point. We will use available control points from ground and lidar surveys to register individual DEMs and optimized, least-squares co-registration to provide control between overlapping DEM's over large regions. REMA will have a posting of 10 meters and accuracy better than 1 meter. It will be distributed openly by the Polar Geospatial Center. This project will involve substantial undergraduate participation, providing training in geospatial science and remote sensing, and REMA will be used extensively for the outreach programs of the Byrd Polar and Climate Research Center. This project does not require field work in Antarctica.
New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species' range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential ofclimate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan. Adelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species' response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award is to support measurements of the 14-billion-year cosmic microwave background (CMB) light with the South Pole Telescope (SPT) to address some of the most basic and compelling questions in cosmology: What is the origin of the Universe? What is the Universe made of? What is the mass scale of the neutrinos? When did the first stars and galaxies form and how was the Universe reionized? What is the Dark Energy that is accelerating the expansion of the Universe? The SPT plays a unique role in the pursuit of these questions. Its siting is ideal for ultra-low-noise imaging surveys of the sky at the millimeter and sub-millimeter radio wavelengths. The SPT is supported by the NSF's Amundsen-Scott South Pole Station, which is the best operational site on Earth for mm-wave sky surveys. This unique geographical location allows SPT to obtain extremely sensitive 24/7 observations of targeted low Galactic foreground regions of the sky. The telescope's third-generation, SPT-3G receiver has 16,000 detectors configured for polarization-sensitive observations in three millimeter-wave bands. The proposed operation includes five years of sky surveys to obtain ultra-deep measurements of a 1500 square degree field and to produce and publicly archive essential data products from the survey. The telescope's CMB temperatures and polarization power spectrum will play a central role in probing the nature of current tensions among cosmological parameter estimations from different data sets and determining if their explanation requires physics beyond the current LCDM model. The data will help constraining the Dark Energy properties that affect the growth of large structures through both the CMB lensing and abundance of galaxy clusters. The proposed operations also support SPT's critical role in the Event Horizon Telescope (EHT), a global array of telescopes to image the event horizon around the black hole at the center of Milky Way Galaxy. This award addresses and advances the science objectives and goals of the NSF's "Windows on the Universe: The Era of Multi-Messenger Astrophysics" program. The proposed research activity will also contribute to the training of the next generation of scientists by integrating graduate and undergraduate education with the technology development, astronomical observations, and scientific analyses of SPT data. Research and education are integrated by bringing research activities into the undergraduate classroom and sharing of forefront research with non-scientists extending it beyond the university through a well-established educational network that reaches a wide audience at all levels of the educational continuum. Through museum partnerships and new media, the SPT outreach and educational efforts reach large numbers of individuals while personalizing the experience. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. Project goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications.
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites and neighboring glaciers in the Amundsen Sea Embayment are rapidly losing mass in response to recent climate warming and related changes in ocean circulation. Mass loss from the Amundsen Sea Embayment could lead to the eventual collapse of the West Antarctic Ice Sheet, raising the global sea level by up to 2.5 meters (8 feet) in as short as 500 years. The processes driving the loss appear to be warmer ocean circulation and changes in the width and flow speed of the glacier, but a better understanding of these changes is needed to refine predictions of how the glacier will evolve. One highly sensitive process is the transitional flow of glacier ice from land onto the ocean to become a floating ice shelf. This flow of ice from grounded to floating is affected by changes in air temperature and snowfall at the surface; the speed and thickness of ice feeding it from upstream; and the ocean temperature, salinity, bathymetry, and currents that the ice flows into. The project team will gather new measurements of each of these local environmental conditions so that it can better predict how future changes in air, ocean, or the ice will affect the loss of ice to the ocean in this region. Current and anticipated near-future mass loss from Thwaites Glacier and nearby Amundsen Sea Embayment region is mainly attributed to reduction in ice-shelf buttressing due to sub-ice-shelf melting by intrusion of relatively warm Circumpolar Deep Water into sub-ice-shelf cavities. Such predictions for mass loss, however, still lack understanding of the dominant processes at and near grounding zones, especially their spatial and temporal variability, as well as atmospheric and oceanic drivers of these processes. This project aims to constrain and compare these processes for the Thwaites and the Dotson Ice Shelves, which are connected through upstream ice dynamics, but influenced by different submarine troughs. The team's specific objectives are to: 1) install atmosphere-ice-ocean multi-sensor remote autonomous stations on the ice shelves for two years to provide sub-daily continuous observations of concurrent oceanic, glaciologic, and atmospheric conditions; 2) measure ocean properties on the continental shelf adjacent to ice-shelf fronts (using seal tagging, glider-based and ship-based surveys, and existing moored and conductivity-temperature-depth-cast data), 3) measure ocean properties into sub-ice-shelf cavities (using autonomous underwater vehicles) to detail ocean transports and heat fluxes; and 4) constrain current ice-shelf and sub-ice-shelf cavity geometry, ice flow, and firn properties for the ice-shelves (using radar, active-source seismic, and gravimetric methods) to better understand the impact of ocean and atmosphere on the ice-sheet change. The team will also engage the public and bring awareness to this rapidly changing component of the cryosphere through a "Live from the Ice" social media campaign in which the public can follow the action and data collection from the perspective of tagged seals and autonomous stations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Gerbi/1643301 This award supports a project to develop software that will allow researchers considering seismic or radar field surveys to test, ahead of time, whether the data they plan to collect will have sufficient resolution to measure the natural variations in the mechanical properties of ice, which determine the response of flowing ice to changing climatic conditions. The mechanical properties of ice depend largely on the temperature and the orientation of the crystals that make up the ice. The most accurate method for measuring ice crystal orientation and temperature is through drilling and direct analysis of an ice core. However, this method is very costly, time-consuming, and limited in spatial coverage. Geophysical techniques, such as seismic and radar, can cover much more area, but we have little knowledge about the practical limitations of these techniques as they relate to calculating mechanical properties. This project addresses that knowledge gap through construction of a computational toolbox that will allow accurate assessment of the ability of geophysical surveys to image crystal orientation and ice temperature. Researchers can then use these tools to adjust the field survey plans to maximize the return on investment. By working to improve the efficiency and effectiveness of future geophysical work related to glacial flow, this proposal will improve scientists? ability to quantify sea-level variations within the larger context of climate change. The project includes building new user-friendly, publicly accessible software and instructional modules. The work will provide training for graduate and undergraduate students, who will play a role in research and develop instructional materials. Ice viscosity, the resistance of ice to flow, exerts significant control over ice velocity. Therefore, mapping ice viscosity is important for understanding the current and future behavior of glaciers and ice sheets. To do so, scientists must determine the temperature and crystal orientation fabric throughout the ice. Seismic and radar techniques can survey large areas quickly, and thus are promising, yet not fully tested, methods to efficiently measure the thermal and mechanical structure of flowing ice. As part of this project, scientists will develop and use a computational framework to quantify the degree to which seismic and radar techniques can resolve the crystal orientation fabric and temperature of streaming ice, and then test how sensitive ice flow is to the attendant uncertainty. To meet these goals, a numerical toolbox will be built which will allow the glacier/ice stream geometry and physical properties (temperature, crystal orientation fabric, density and acidity) to be varied. The toolbox will be capable of both creating synthetic radar and seismic profiles through forward modeling and inverting synthetic profiles to allow evaluation of how well geophysical techniques can image the original thermal and mechanical structure. These simulated radar and seismic data will allow scientists to better quantify the influence of the variability in mechanical properties of the ice on flow velocities and patterns. The results of this work will guide planning for future field campaigns, making them more effective and efficient. This project does not require fieldwork in the Antarctic.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The proposed project will investigate the coldest and driest parts of the Transantarctic Mountains (Ong Valley at Nimrod Glacier and Moraine Canyon at Amundsen Glacier) where the lack of running water and biological activity in the modern environment is thought to have preserved the landscape, essentially unchanged, for millions of years. Contrary to this common belief, it is hypothesized that the landscape does evolve, perhaps as fast as many surfaces in the Dry Valleys area where both loose soil and bedrock surfaces have been degrading at a rate of about 1-2 m/Myrs for the past several million years. The research team will rely on analysis of the both stable and radioactive cosmogenic isotopes that accumulate in near surface soil and bedrock. Collectively these measurements allow comparison of the long term landscape evolution to current processes and environmental drivers such as wind speed. The results of this work will improve understanding of the evolution of the Earth's surface and directly aid in evaluating imagery of Martian geomorphology. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.
Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish's habitat and the fish's behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid's freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.
Nontechnical description of proposed research: This project will apply cutting-edge seismic imaging methods to existing seismic data to study the three-dimensional structure of the Earth beneath the ice-covered Antarctic continent. The study will improve understanding of Earth structure and hotspots and geologically recent and ancient rift systems. The results will be useful for models of ice movement and bedrock elevation changes due to variation in ice sheet thickness. The results will also help guide future seismic data collection. The researchers will transfer existing software from the high-performance computers at The University of Rhode Island to the Alabama supercomputer facilities. The project will also broaden public understanding of scientific research in Antarctica by engaging with the students and teachers in Socorro County, New Mexico to discuss career opportunities in science, technology, engineering, and mathematics (STEM), the Earth Sciences, and the importance of computers in scientific research. Project personnel from Alabama will visit Socorro and share research with students at New Mexico Tech and at the Socorro High School. The project will also train undergraduate and graduate students in the expanding field of computational seismology, by applying these approaches to study Antarctic geology. Technical description of proposed research: The project seeks to better resolve the three-dimensional Antarctic mantle structure and viscosity and to identify locations of ancient rifts within the stable East Antarctic lithosphere. To accomplish this, the researchers will utilize full-waveform tomographic inversion techniques that combine long-period ambient noise data with earthquake constraints to more accurately resolve structure than traditional tomographic approaches. The proposed research will be completed using the Alabama supercomputer facilities and the programs and methodology developed at The University of Rhode Island. The new tomographic results will be useful in assessing lithospheric structure beneath Dronning Maud Land as well as the Wilkes and Aurora Subglacial Basins in East Antarctica, where previous rifting episodes and mid-lithospheric discontinuities will be explored. In West Antarctica, the work will elucidate the easternmost extent of the West Antarctic Rift System as well as rifted structure and possible compositional variations within the Weddell Sea. The accuracy of existing Antarctic seismic models will be quantified through model validation approaches. The researchers will highlight regions of Antarctica where tomographic resolution is still lacking and where future deployments would improve resolution.
This project will involve examination of Glossopteridales, fossil plants from Upper Permian deposits, in samples from the central Transantarctic Mountains and Southern Victoria Land, Antarctica. The glossopterids are an important fossil group because they are possible ancestors to the flowering plants. Permian sedimentary rocks (295-270 Ma before present) are important because they record a time of rapid biotic change, as the Late Paleozoic Age ended and the Mesozoic greenhouse environment began. The proposed research will rely entirely on specimens collected during recent field excursions to the central Transantarctic Mountains (CTM; 2010?2011) and southern Victoria Land (SVL; 2012?2013). Only a few of the specimens have been studied, but already have yielded anatomically well-preserved glossopterids with a complete pollen cone, which has never been found before. Additionally, several seed-bearing structures, which have never before been observed in Antarctica, have been found in both CTM and SVL. The project will allow comparison of whole-plant fossil glossopterids from the CTM with other paleo-latitudes, and will document the floral diversity within and between two depositional basins (CTM & SVL) during a time of global change, with the overall goal of linking environmental changes with fossil morphology. Broader impacts: The Broader Impacts of this project will include mentoring undergraduates in research projects, at an institution with a substantial minority enrollment. Public outreach will focus on involving middle/high school students through the ?Expanding Your Horizons? programs in Kansas and Missouri, as well as interactive presentations at schools in the Kansas City Area. The lead PI is an early-career scientist at an institution that serves minorities.
Blankenship: 9319369 Bell: 9319854 Behrendt: 9319877 This award supports a project to conduct an integrated geophysical survey over a large portion of the West Antarctic Ice Sheet (WAIS) toward an understanding of the dynamic behavior of the ice sheet and the nature of the lithosphere beneath the ice sheet. West Antarctica is characterized by two kinds of the Earth s most dynamic systems, a continental rift (the West Antarctic Rift System) and a marine based ice sheet (the WAIS). Active continental rift systems, caused by divergent plate motions, result in thinned continental crust. Associated with the thin crust are fault-bounded sedimentary basins, active volcanism, and elevated heat flow. Marine ice sheets are characterized by rapidly moving streams of ice, penetrating and draining a slowly moving ice reservoir. Evidence left by past marine ice sheets indicates that they may have a strongly non- linear response to long-term climate change which results in massive and rapid discharges of ice. Understanding the evolution of the ice stream system and its interaction with the interior ice is the key to understanding this non-linear response. Subglacial geology and ice dynamics are generally studied in isolation, but evidence is mounting that the behavior of the West Antarctic ice streams may be closely linked to the nature of the underlying West Antarctic rift system. The fast moving ice streams appear to glide on a lubricating layer of water-saturated till. This till requires easily eroded sediment and a source of water, both of which may be controlled by the geology of the rift system; the sediments from the fault-bounded basins and the water from the elevated heat flux associated with active lithospheric extension. This project represents an interdisciplinary aerogeophysical study to characterize the lithosphere of the West Antarctic rift system beneath critical regions of the WAIS. The objective is to determine the effects of the rift architect ure, as manifested by the distribution of sedimentary basins and volcanic constructs, on the ice stream system. The research tool is a unique geophysical aircraft with laser altimetry, ice penetrating radar, aerogravity, and aeromagnetic systems integrated with a high precision kinematic GPS navigation system. It is capable of imaging both the surface and bed of the ice sheet while simultaneously measuring the gravity and magnetic signature of the subglacial lithosphere. Work to be done under this award will build on work already completed in the southern sector of central West Antarctica and it will focus on the region of the Byrd Subglacial Basin and Ice Stream D. The ice sheet in these regions is completely covered by satellite imagery and so this project will be integrated with remote sensing studies of the ice stream. The changing dynamics of Ice Stream D, as with other West Antarctic ice streams, seem to be correlated with changes in the morphological provinces of the underlying rift system. The experimental targets proceed from the divide of the interior ice, downstream through the onset of streaming to the trunk of Ice Stream D. This study will be coordinated with surface glaciological investigations of Ice Stream D and will be used to guide cooperative over-snow seismic investigations of the central West Antarctic rift system. The data will also be used to select a site for future deep ice coring along the crest of the WAIS. These data represent baseline data for long term global change monitoring work and represent crucial boundary conditions for ice sheet modeling efforts.
9725374 Bell The goal of this project is to develop a Web-based Antarctic gravity database to globally facilitate scientific use of gravity data in Antarctic studies. This compilation will provide an important new tool to the Antarctic Earth science community from the geologist placing field observations in a regional context to the seismologist studying continental scale mantle structure. The gravity database will complement the parallel projects underway to develop new continental bedrock (BEDMAP) and magnetic (ADMAP) maps of Antarctica. An international effort will parallel these ongoing projects in contacting the Antarctic geophysical community, identifying existing data sets, agreeing upon protocols for the use of data contributed to the database and finally assembling a new continental scale gravity map. The project has three principal stages. The first stage will be to investigate the accuracy and resolution of currently available high resolution satellite derived gravity data and quantify spatial variations in both accuracy and resolution. The second stage of this project will be to develop an interactive method of accessing existing satellite, shipboard, land based, and airborne gravity data via a Web based interface. The Lamont-Doherty Earth Observatory RIDGE Multi-beam bathymetry database will be used as a template for this project. The existing online RIDGE database allows users to access the raw data, the gridded data and raster images of the seafloor topography. A similar structure will be produced for the existing Antarctic gravity data. The third stage of this project will be to develop an international program to compile existing gravity data south of 60 S. This project will be discussed with leaders of both the ADMAP and BEDMAP efforts and the appropriate working groups of SCAR. A preliminary map of existing gravity data will be presented at the Antarctic Earth Science meeting in Wellington in 1999. A gravity working group meeting will be held in conjunction with the Wellington meeting to reach a consensus on the protocols for placing data into the database. By the completion of the project, existing gravity data will be identified and international protocols for placing this data in the on-line database will have been defined. The process of archiving the gravity data into the database will be an ongoing project as additional data become available.
Melting of snow and ice at the surface of the Antarctic ice sheet can lead to the formation of meltwater lakes, an important precursor to ice-shelf collapse and accelerated ice-sheet mass loss. Understanding the present state of Antarctic surface melt provides a baseline to gauge how quickly melt impacts could evolve in the future and to reduce uncertainties in estimates of future sea-level rise. This project will use a suite of complimentary measurements from Earth-observing satellites, ground observations, and numerical climate and ice-shelf models to enhance understanding of surface melt and lakes, as well as the processes linking these systems. The project directly supports the scientific training of a postdoctoral associate and several undergraduate researchers. In addition, it will promote public scientific literacy and the broadening of quantitative skills for high-school students through the development and implementation of an educational unit in a partnership with an education and outreach expert and two high school teachers. Accurate prediction of sea-level contributions from Antarctica critically requires understanding current melting and supraglacial lake conditions. This project will quantify Antarctic surface melt and supraglacial lakes, and the linkages between the two phenomena. Scatterometer data will enable generation of a 19-year multi-sensor melt time series. Synthetic aperture radar data will document melt conditions across all Antarctic ice shelves at the highest spatial resolution to date (40 m). Multispectral satellite imagery will be used to delineate and measure the depth of supraglacial lakes--for the first time studying the spatial and temporal variations of Antarctic supraglacial lakes. Melt and lake observations will be compared to identify agreement and disagreement. Melt observations will be used to evaluate biases in a widely used, reanalysis-driven, regional climate model. This model will then be used to examine climatic and glaciological variables associated with supraglacial lakes. Finally, in situ observations and climate model output will drive a numerical model that simulates the entire lifecycle of surface melt and possible subsequent lake formation.
Part I: Nontechnical One of the most interesting historical records that science can provide is contained in the ice of Antarctica. Layer by layer over hundreds of thousands of years, snow has precipitated on the ice sheet, become compacted, and turned into additional ice. Any dust or other impurities in the air or snow have been precipitated as well and thus each snowfall leaves a snapshot record of the atmosphere that existed at or near the time of deposition. A detailed chronology of volcanic eruptions can be obtained from the ice layers where ash and other volcanic products were deposited. Normally, the analysis of volcanic layers requires the physical extraction of a core from the ice sheet; however, chronologies from cores have discontinuities and are difficult, time-consuming, and expensive to obtain. Borehole logging is a measurement method where one lowers instrumentation into a drilled hole in the ice, whether or not core has been retrieved. To date, this technology has only been used to measure optical systems to identify volcanic ash and other impurity layers. In this program, a profiling technology will be developed that measures the conductivity of the ice. A radio-frequency emitter lowered into the borehole will create a return signal that changes depending on the local conductivity, which depends on the concentration of dissolved ions. For example, dissolved sulfates are a critical marker of volcanic activity that may not be coincident with deposited ash. Other dissolved ions, such as chloride, can be indicative of other processes. It is expected that this borehole profiling instrument will be able to help rapidly identify volcanic eruptions that had potentially global impact, distinguish between different dissolved ions via their frequency dependencies, and assist in establishing chronologies between different ice cores and boreholes. Part II: Technical Description Borehole logging of the polar ice sheets is one of the most important methods that earth scientists have to identify and date volcanic eruptions. However, current technology only indicates the presence and depth of ash from an eruption. In order to extract more detailed information, one must obtain an ice core, and laboriously measure each section in the laboratory using electrical conductivity or dielectric measurements to determine the presence or absence of dissolved sulfate and its location relative to the corresponding ash, if any. This program will investigate and demonstrate a borehole logging-compatible radio-frequency dielectric sensor to detect and measure spikes in dissolved major ions chemistry in ice, particularly in intervals corresponding to volcanically produced sulfates. The sulfate layers are one of the primary signatures of volcanic products. However, other ions, such as chlorides, calcium, and others are also commonly seen in ice, and the dielectric logging technology of this program would also measure these. It is expected that certain sets of ions will be distinguishable by their frequency dependencies. This technique could guide other investigators, who are using conventional core scanning and sampling methods, to regions of special interest in corresponding core. We plan to construct a ring-based electrode system and test this system on a variety of artificial ice boreholes and ice cores. This unit will not include a pressure vessel or other borehole logger packing. We will test different means of applying electrical signals including short pulses and periodic waves. We will further utilize differential measurements with low noise circuits and filters to achieve maximum sensitivity. We will correlate the signals extracted with known molarities of sulfates and other ions and measured ECM records. We will perform scaled-down experiments using real ice cores stored in Bay?s lab at UC Berkeley. This will permit testing of different designs in ice with natural impurities and polycrystalline structure. This small collection includes cores from a variety of locations in Antarctica and Greenland, and a variety of ages as old as a million years.
Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.
Current oceanographic interest in the interaction of relatively warm water of the Southern Ocean Circumpolar Deep Water ( CDW) as it moves southward to the frigid waters of the Antarctic continental shelves is based on the potential importance of heat transport from the global ocean to the base of continental ice shelves. This is needed to understand the longer term mass balance of the continent, the stability of the vast Antarctic ice sheets and the rate at which sea-level will rise in a warming world. Improved observational knowledge of the mechanisms of how warming CDW moves across the Antarctic Circumpolar Current (ACC) is needed. Understanding this dynamical transport, believed to take place by the eddy flux of time-varying mesoscale circulation features, will improve coupled ocean-atmospheric climate models. The development of the next generation of coupled ocean-ice- climate models help us understand future changes in atmospheric heat fluxes, glacial and sea-ice balance, and changes in the Antarctic ecosystems. A recurring obstacle to our understanding is the lack of data in this distant region. In this project, a number of subsurface profiling EM-APEX floats adapted to operate under sea ice will be launched on up to 4 cruises of opportunity to the Pacific sector during Austral summer. The floats will be launched south of the Polar Front and measure shear, turbulence, temperature, and salinity to 2000m depth for up to 2 year missions while following the CDW layer.
Beginning with the discovery of a "curious valley" in 1903 by Captain Scott, the McMurdo Dry Valleys (MDV) in Antarctica have been impacted by humans, although there were only three brief visits prior to 1950. Since the late 1950's, human activity in the MDV has become commonplace in summer, putting pressure on the region's fragile ecosystems through camp construction and inhabitation, cross-valley transport on foot and via vehicles, and scientific research that involves sampling and deployment of instruments. Historical photographs, put alongside information from written documentation, offer an invaluable record of the changing patterns of human activity in the MDV. Photographic images often show the physical extent of field camps and research sites, the activities that were taking place, and the environmental protection measures that were being followed. Historical photographs of the MDV, however, are scattered in different places around the world, often in private collections, and there is a real danger that many of these photos may be lost, along with the information they contain. This project will collect and digitize historical photographs of sites of human activity in the MDV from archives and private collections in the United States, New Zealand, and organize them both chronologically and spatially in a GIS database. Sites of past human activities will be re-photographed to provide comparisons with the present, and re-photography will assist in providing spatial data for historical photographs without obvious location information. The results of this analysis will support effective environmental management into the future. The digital photo archive will be openly available through the McMurdo Dry Valleys Long Term Ecological Research (MCM LTER) website (www.mcmlter.org), where it can be used by scientists, environmental managers, and others interested in the region. The central question of this project can be reformulated as a hypothesis: Despite an overall increase in human activities in the MDV, the spatial range of these activities has become more confined over time as a result of an increased awareness of ecosystem fragility and efforts to manage the region. To address this hypothesis, the project will define the spatial distribution and temporal frequency of human activity in the MDV. Photographs and reports will be collected from archives with polar collections such as the National Archives of New Zealand in Wellington and Christchurch and the Byrd Polar Research Center in Ohio. Private photograph collections will be accessed through personal connections, social media, advertisements in periodicals such as The Polar Times, and other means. Re-photography in the field will follow established techniques and will create benchmarks for future research projects. The spatial data will be stored in an ArcGIS database for analysis and quantification of the human footprint over time in the MDV. The improved understanding of changing patterns of human activity in the MDV provided by this historical photo archive will provide three major contributions: 1) a fundamentally important historic accounting of human activity to support current environmental management of the MDV; 2) defining the location and type of human activity will be of immediate benefit in two important ways: a) places to avoid for scientists interested in sampling pristine landscapes, and, b) targets of opportunity for scientists investigating the long-term environmental legacy of human activity; and 3) this research will make an innovative contribution to knowledge of the environmental history of the MDV.
This study aims to better understand salt accumulation in cold deserts and develop a model of salt transport by groundwater. Cold deserts, like the Antarctic McMurdo Dry Valleys (MDV), are similar to hot deserts in that they accumulate high concentrations of salts because there is not enough water to flush the salts out of the soils into the ocean. The accumulation of salt allows for the creation of brine-rich groundwater that freezes at much lower temperatures. Field work will focus on several groundwater features in the MDV including Don Juan Pond, a shallow lake that accumulates extremely high levels of salts and does not freeze until the temperature reaches -51 degrees C (-60 degrees F). The setting offers the potential to better understand this unique water environment including life at its extremes. It also serves as an analog environment for Mars, a planet that is entirely underlain by permafrost, similar to the MDV. This project will support a doctoral student at the University of Washington Department of Earth and Space Sciences, who will be trained in chemical analysis, chemical and physical modeling, and remote field work in a polar desert environment. Past research suggests that the movement of soluble ions in sediment and soil is controlled by the water activity, permeability, and the thermal regime; however, processes controlling the ionic redistribution in Antarctic environments are poorly constrained. This project aims to better understand the formation, salt redistribution, and water activity of pervasive brine-rich groundwater that is enriched in calcium chloride. A primary goal is to develop a brine thermal;reactive;transport model for the MDV region using data collected from the field to constrain model inputs and ground-truth model outputs. The model will develop a Pitzer-type thermodynamic, reactive transport model and couple it to a ground temperature model. The model will test mechanisms of groundwater formation in the MDV and the properties (e.g. composition, temperature, and water activity) of widespread shallow brine-rich waters. Water is an essential ingredient for life and defining processes that control the availability of water is critical for understanding the habitability of extreme environments, including Mars.
Earth's geologic record shows that the great ice sheets have contributed to rates of sea-level rise that have been much higher than those observed today. That said, some sectors of the current Antarctic ice sheet are losing mass at large and accelerating rates. One of the primary challenges for placing these recent and ongoing changes in the context of geologically historic rates, and for making projections decades to centuries into the future, is the difficulty of observing conditions and processes beneath the ice sheet. Whereas satellite observations allow tracking of the ice-surface velocity and elevation on the scale of glacier catchments to ice sheets, airborne ice-penetrating radar has been the only approach for assessing conditions on this scale beneath the ice. These radar observations have been made since the late 1960s, but, because many different instruments have been used, it is difficult to track change in subglacial conditions through time. This project will develop the technical tools and approaches required to cross-compare among these measurements and thus open up opportunities for tracking and understanding changes in the critical subglacial environment. Intertwined with the research and student training on this project will be an outreach education effort to provide middle school and high school students with improved resources and enhanced exposure to geophysical, glaciological, and remote-sensing topics through partnership with the National Science Olympiad. The radar sounding of ice sheets is a powerful tool for glaciological science with broad applicability across a wide range of cryosphere problems and processes. Radar sounding data have been collected with extensive spatial and temporal coverage across the West Antarctic Ice Sheet, including areas where multiple surveys provide observations that span decades in time or entire cross-catchment ice-sheet sectors. However, one major obstacle to realizing the scientific potential of existing radar sounding observations in Antarctica is the lack of analysis approaches specifically developed for cross-instrument interpretation. This project aims to directly address these barriers to full utilization of the collective Antarctic radar sounding record by developing a suite of processing and interpretation techniques to enable the synthesis of radar sounding data sets collected with systems that range from incoherent to coherent, single-channel to swath-imaging, and digital to optically-recorded radar sounders. The approaches will be assessed for two target regions: the Amundsen Sea Embayment and the Siple Coast. All pre- and post-processed sounding data produced by this project will be publically hosted for use by the wider research community. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Weddell seal is the southern-most mammal in the world, having a circumpolar distribution around Antarctica; the McMurdo Sound population in Antarctica is one of the best-studied mammal populations on earth. However, despite this, an understanding of how populations around the continent will fare under climate change is poorly understood. A complicating matter is the potential effects of a commercial enterprise in the Antarctic: a fishery targeting toothfish, which are important prey for Weddell seals. Although the species is easily detected and counted during the breeding season, no reliable estimates of continent-wide Weddell seal numbers exist, due to the logistic difficulties of surveying vast regions of Antarctica. Large-scale estimates are needed to understand how seal populations are responding to the fishery and climate change, because these drivers of change operate at scales larger than any single population, and may affect seals differently in different regions of the continent. We will take advantage of the ease of detectability of darkly colored seals when they the on ice to develop estimates of abundance from satellite images. This project will generate baseline data on the global distribution and abundance of Weddell seals around the Antarctic and will link environmental variables to population changes to better understand how the species will fare as their sea ice habitat continues to change. These results will help disentangle the effects of climate change and fishery operations, results that are necessary for appropriate international policy regarding fishery catch limits, impacts on the environment, and the value of marine protected areas. The project will also further the NSF goals of training new generations of scientists and of making scientific discoveries available to the general public. It will engage "arm-chair" scientists of all ages through connections with several non-governmental organizations and the general public. Anyone with access to the internet, including people who are physically unable to participate in field research directly, can participate in this project while simultaneously learning about multiple aspects of polar ecology through the project's interactive website. Specifically, this research project will: 1) Quantify the distribution of Weddell seals around Antarctica and 2) Determine the impact of environmental variables (such as fast ice extent, ocean productivity, bathymetry) on habitat suitability and occupancy. To do this, the project will crowd-source counting of seals on high-resolution satellite images via a commercial citizen science platform. Variation in seal around the continent will then be related to habitat variables through generalized linear models. Specific variables, such as fast ice extent will be tested to determine their influence on population variability through both space and time. The project includes a rigorous plan for ensuring quality control in the dataset including ground truth data from other, localized projects concurrently funded by the National Science Foundation's Antarctic Science Program.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal wioll be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Ross Ice Shelf is the largest existing ice shelf in Antarctica, and is currently stabilizing significant portions of the land ice atop the Antarctic continent. An ice shelf begins where the land ice goes afloat on the ocean, and as such, the Ross Ice Shelf interacts with the ocean and seafloor below, and the land ice behind. Currently, the Ross Ice Shelf slows down, or buttresses, the fast flowing ice streams of the West Antarctic Ice Sheet (WAIS), a marine-based ice sheet, which if melted, would raise global sea level by 3-4 meters. The Ross Ice Shelf average ice thickness is approximately 350 meters, and it covers approximately 487,000 square kilometers, an area slightly larger than the state of California. The Ross Ice Shelf has disappeared during prior interglacial periods, suggesting in the future it may disappear again. Understanding the dynamics, stability and future of the West Antarctic Ice Sheet therefore requires in-depth knowledge of the Ross Ice Shelf. The ROSETTA-ICE project brings together scientists from 4 US institutions and from the Institute of Geological and Nuclear Sciences Limited, known as GNS Science, New Zealand. The ROSETTA-ICE data on the ice shelf, the water beneath the ice shelf, and the underlying rocks, will allow better predictions of how the Ross Ice Shelf will respond to changing climate, and therefore how the WAIS will behave in the future. The interdisciplinary ROSETTA-ICE team will train undergraduate and high school students in cutting edge research techniques, and will also work to educate the public via a series of vignettes integrating ROSETTA-ICE science with the scientific and human history of Antarctic research. The ROSETTA-ICE survey will acquire gravity and magnetics data to determine the water depth beneath the ice shelf. Radar, LIDAR and imagery systems will be used to map the Ross Ice Shelf thickness and fine structure, crevasses, channels, debris, surface accumulation and distribution of marine ice. The high resolution aerogeophysical data over the Ross Ice Shelf region in Antarctica will be acquired using the IcePod sensor suite mounted externally on an LC-130 aircraft operating from McMurdo Station, Antarctica. Field activities will include ~36 flights on LC-130 aircraft over two field seasons in Antarctica. The IcePod instrument suite leverages the unique experience of the New York Air National Guard operating in Antarctica for NSF scientific research as well as infrastructure and logistics. The project will answer questions about the stability of the Ross Ice Shelf in future climate, and the geotectonic evolution of the Ross Ice Shelf Region, a key component of the West Antarctic Rift system. The comprehensive benchmark data sets acquired will enable broad, interdisciplinary analyses and modeling, which will also be performed as part of the project. ROSETTA-ICE will illuminate Ross ice sheet-ice shelf-ocean dynamics as the system nears a critical juncture but still is intact. Through interacting with an online data visualization tool, and comparing the ROSETTA-ICE data and results from earlier studies, we will engage students and young investigators, equipping them with new capabilities for the study of critical earth systems that influence global climate.
Proposal Title: Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica (working title changed from submitted title) Institutions: UT-San Antonio; Columbia University; Naval Postgraduate School; Woods Hole Oceanographic Institute; UC@Boulder The one place on Earth consistently showing increases in sea ice area, duration, and concentration is the Ross Sea in Antarctica. Satellite imagery shows about half of the Ross Sea increases are associated with changes in the austral fall, when the new sea ice is forming. The most pronounced changes are also located near polynyas, which are areas of open ocean surrounded by sea ice. To understand the processes driving the sea ice increase, and to determine if the increase in sea ice area is also accompanied by a change in ice thickness, this project will conduct an oceanographic cruise to the polynyas of the Ross Sea in April and May, 2017, which is the austral fall. The team will deploy state of the art research tools including unmanned airborne systems (UASs, commonly called drones), autonomous underwater vehicles (AUVs), and remotely operated underwater vehicles (ROVs). Using these tools and others, the team will study atmospheric, oceanic, and sea ice properties and processes concurrently. A change in sea ice production will necessarily change the ocean water below, which may have significant consequences for global ocean circulation patterns, a topic of international importance. All the involved institutions will be training students, and all share the goal of expanding climate literacy in the US, emphasizing the role high latitudes play in the Earth's dynamic climate. The main goal of the project is to improve estimates of sea ice production and water mass transformation in the Ross Sea. The team will fully capture the spatial and temporal changes in air-ice-ocean interactions when they are initiated in the austral fall, and then track the changes into the winter and spring using ice buoys, and airborne mapping with the newly commissioned IcePod instrument system, which is deployed on the US Antarctic Program's LC-130 fleet. The oceanographic cruise will include stations in and outside of both the Terra Nova Bay and Ross Ice Shelf polynyas. Measurements to be made include air-sea boundary layer fluxes of heat, freshwater, and trace gases, radiation, and meteorology in the air; ice formation processes, ice thickness, snow depth, mass balance, and ice drift within the sea ice zone; and temperature, salinity, and momentum in the ocean below. Following collection of the field data, the team will improve both model parameterizations of air-sea-ice interactions and remote sensing algorithms. Model parameterizations are needed to determine if sea-ice production has increased in crucial areas, and if so, why (e.g., stronger winds or fresher oceans). The remote sensing validation will facilitate change detection over wider areas and verify model predictions over time. Accordingly this project will contribute to the international Southern Ocean Observing System (SOOS) goal of measuring essential climate variables continuously to monitor the state of the ocean and ice cover into the future.
Intellectual Merit: Evidence from the eastern Ross Sea continental shelf indicates that the West Antarctic Ice Sheet advanced and retreated during the last glacial cycle, but it is unclear whether the ice sheet advanced to the shelf edge or just to the middle shelf. These two end-member scenarios offer different interpretations as to why, how, and when the West Antarctic Ice Sheet oscillated. The PI proposes to acquire seismic, multibeam, and core data from Whales Deep, to evaluate the timing and duration of two advances of grounded ice to the outer and middle shelf of the Whales Deep Basin, a West Antarctic Ice Sheet paleo ice stream trough in eastern Ross Sea. Grounding events are represented by seismically resolvable Grounding Zone Wedges. The PI will collect radiocarbon dates on in situ benthic foraminifera from the grounding zone diamict as well as ramped pyrolysis radiocarbon dates on acid insoluble organics from open-marine mud overlying the grounding zone diamict. Using these data the PI will calculate the duration of the two grounding events. Furthermore, the PI will test a numerical model prediction that West Antarctic Ice Sheet retreat must have involved melting at the marine terminus of the ice sheet. Pore-water from the grounding zone diamict will be extracted from piston cores to determine salinity and δ18O values that should indicate if significant melting occurred at the grounding line. Broader impacts: The data collected will provide constraints on the timing and pattern of Last Glacial Maximum advance and retreat that can be incorporated into interpretations of ice-surface elevation changes. The proposed activities will provide valuable field and research training to undergraduate/graduate students and a Louisiana high-school science teacher. The research will be interactively shared with middle- and high-school science students and with visitors to the LSU Museum of Natural Science Weekend-Science Program.
The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert. The McMurdo Long Term Ecological Research (LTER) project has been observing these ecosystems since 1993 and this award will support key long-term measurements, manipulation experiments, synthesis, and modeling to test current theories on ecosystem structure and function. Data collection is focused on meteorology and physical and biological dimensions of soils, streams, lakes, glaciers, and permafrost. The long-term measurements show that biological communities have adapted to the seasonally cold, dark, and arid conditions that prevail for all but a short period in the austral summer. Physical (climate and geological) drivers impart a dynamic connectivity among portions of the Dry Valley landscape over seasonal to millennial time scales. For instance, lakes and soils have been connected through cycles of lake-level rise and fall over the past 20,000 years while streams connect glaciers to lakes over seasonal time scales. Overlaid upon this physical system are biotic communities that are structured by the environment and by the movement of individual organisms within and between the glaciers, streams, lakes, and soils. The new work to be conducted at the McMurdo LTER site will explore how the layers of connectivity in the McMurdo Dry Valleys influence ecosystem structure and function. This project will test the hypothesis that increased ecological connectivity following enhanced melt conditions within the McMurdo Dry Valleys ecosystem will amplify exchange of biota, energy, and matter, homogenizing ecosystem structure and functioning. This hypothesis will be tested with new and continuing experiments that examine: 1) how climate variation alters connectivity among landscape units, and 2) how biota are connected across a heterogeneous landscape using state-of-the-science tools and methods including automated sensor networks, analysis of seasonal satellite imagery, biogeochemical analyses, and next-generation sequencing. McMurdo LTER education programs and outreach activities will be continued, and expanded with new programs associated with the 200th anniversary of the first recorded sightings of Antarctica. These activities will advance societal understanding of how polar ecosystems respond to change. McMurdo LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science, and lead the development of international environmental stewardship protocols for human activities in the region.
Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Intellectual Merit: Ice free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000). This project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp. Broader impacts: The proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.
Intellectual Merit: The PIs propose to continue and expand GPS and seismic for ANET-POLENET Phase 2 to advance understanding of geodynamic processes and their influence on the West Antarctic Ice Sheet. ANET-POLENET science themes include: 1) determining ice mass change since the last glacial maximum, including modern ice mass balance; 2) solid earth influence on ice sheet dynamics; and 3) tectonic evolution of West Antarctica and feedbacks with ice sheet evolution. Nine new remote continuous GPS stations, to be deployed in collaboration with U.K. and Italian partners, will augment ANET-POLENET instrumentation deployed during Phase 1. Siting is designed to better constrain uplift centers predicted by GIA models and indicated by Phase 1 results. ANET-POLENET Phase 2 builds on Phase 1 scientific, technological, and logistical achievements including 1) seismic images of crust and mantle structure that resolve the highly heterogeneous thermal and viscosity structure of the Antarctic lithosphere and underlying mantle; 2) newly identified intraplate glacial, volcanic, and tectonic seismogenic processes; 3) improved estimates of intraplate vertical and horizontal crustal motions and refinement of the Antarctic GPS reference frame; and 4) elucidation of controls on glacial isostatic adjustment-induced crustal motions due to laterally varying earth structure. The PIs present a nominal plan to reduce ANET by approximately half to a longer-term community "backbone network" in the final 2 years of this project. Broader impacts: Monitoring and understanding mass change and dynamic behavior of the Antarctic ice sheet using in situ GPS and seismological studies will help improve understanding of how Antarctic ice sheets respond to a warming world and how will this response impacts sea-level and other global changes. Seismic and geodetic data collected by the backbone ANET-POLENET network are openly available to the scientific community. ANET-POLENET is integral in the development and realization of technological and logistical innovations for year-round operation of instrumentation at remote polar sites, helping to advance scientifically and geographically broad studies of the polar regions. The ANET-POLENET team will establish a training initiative to mentor young polar scientists in complex, multidisciplinary and internationally collaborative research. ANET-POLENET will continue the broad public outreach to the public about polar science through the polenet.org website, university lectures, and K-12 school visits. This research involves multiple international partners.
Worldwide publicity surrounding the calving of an iceberg the size of Delaware in July 2017 from the Larsen C Ice Shelf on the eastern side of the Antarctic Peninsula presents a unique and time-sensitive opportunity for research and education on polar ecosystems in a changing climate. The goal of this project was to convene a workshop, drawing from the large fund of intellectual capital in the US and international Antarctic research communities. The two-day workshop was designed to bring scientists with expertise in Antarctic biological, ecological, and ecosystem sciences to Florida State University to share knowledge, identify important research knowledge gaps, and outline strategic plans for research.
Major outcomes from the project were as follows. The international workshop to share and review knowledge concerning the response of Antarctic ecosystems to ice-shelf collapse was held at the Florida State University Coastal and Marine Laboratory (FSUCML) on 18-19 November 2017. Thirty-eight U.S. and international scientists attended the workshop, providing expertise in biological, ecological, geological, biogeographical, and glaciological sciences. Twenty-six additional scientists were either not able to attend or were declined because of having reached maximum capacity of the venue or for not responding to our invitation before the registration deadline.
The latest results of ice-shelf research were presented, providing an overview of the current scientific knowledge and understanding of the biological, ecological,
geological and cryospheric processes associated with ice-shelf collapse and its
ecosystem-level consequences. In addition, several presentations focused on future plans to investigate the impacts of the recent Larsen C collapse. The following presentations were given at the meeting:
1) Cryospheric dynamics and ice-shelf collapse – past and future (M. Truffer,
University of Alaska, Fairbanks)
2) The geological history and geological impacts of ice-shelf collapse on the Antarctic Peninsula (Scottt Ishman, Amy Leventer)
3) Pelagic ecosystem responses to ice-shelf collapse (Mattias Cape, Amy Leventer)
4) Benthic ecosystem response to ice-shelf collapse (Craig Smith, Pavica Sršen, Ann Vanreusel)
5) Larsen C and biotic homogenization of the benthos (Richard Aronson, James
McClintock, Kathryn Smith, Brittany Steffel)
6) British Antarctic Survey: plans for Larsen C investigations early 2018 and in the
future (Huw Griffiths)
7) Feedback on the workshop “Climate change impacts on marine ecosystems:
implications for management of living resources and conservation” held 19-22
September 2017, Cambridge, UK (Alex Rogers)
8) Past research activities and plans for Larsen field work by the Alfred Wegener
Institute, Germany (Charlotte Havermans, Dieter Piepenburg.
One of the salient points emerging from the presentations and ensuing discussions was that, given our poor abilities to predict ecological outcomes of ice-shelf collapses, major cross-disciplinary efforts are needed on a variety of spatial and temporal scales to achieve a broader, predictive understanding of ecosystem
consequences of climatic warming and ice-shelf failure. As part of the workshop, the FSUCML Polar Academy Team—Dr. Emily Dolan, Dr. Heidi Geisz, Barbara Shoplock, and Dr. Jeroen Ingels—initiated AntICE: "Antarctic Influences of Climate Change on Ecosystems" (AntICE). They reached out to various groups of school children in the local area (and continue to do so). The AntICE Team have been interacting with these children at Wakulla High School and Wakulla Elementary in Crawfordville; children from the Cornerstone Learning Community, Maclay Middle School, Gilchrist Elementary, and the School of Arts and Sciences in Tallahassee; and the Tallahassee-area homeschooling community to educate them about Antarctic ecosystems and ongoing climate change. The underlying idea was to
make the children aware of climatic changes in the Antarctic and their effect on
ecosystems so they, in turn, can spread this knowledge to their communities, family
and friends – acting as ‘Polar Ambassadors’. We collaborated with the Polar-ICE
project, an NSF-funded educational project that established the Polar Literacy
Initiative. This program developed the Polar Literacy Principles, which outline
essential concepts to improve public understanding of Antarctic and Arctic
ecosystems. In the Polar Academy work, we used the Polar Literacy principles, the
Polar Academy Team’s own Antarctic scientific efforts, and the experience of the FSU outreach and education program to engage with the children. We focused on the importance of Antarctic organisms and ecosystems, the uniqueness of its biota and the significance of its food webs, as well as how all these are changing and will
change further with climate change. Using general presentations, case studies,
scientific methodology, individual experiences, interactive discussions and Q&A
sessions, the children were guided through the many issues Antarctic ecosystems
are facing. Over 300 'Polar ambassadors' attended the interactive lectures and
afterwards took their creativity to high latitudes by creating welcome letters, displays, dioramas, sculptures, videos and online media to present at the scientific workshop. Over 50 projects were created by the children (Please see supporting files for images). We were also joined by a photographer, Ryan David Reines, to document the event. More information, media and links to online outreach products are available at https://marinelab.fsu.edu/labs/ingels/outreach/polar-academy/
Marine communities along the western Antarctic Peninsula are highly productive ecosystems which support a diverse assemblage of charismatic animals such as penguins, seals, and whales as well as commercial fisheries such as that on Antarctic krill. Fjords (long, narrow, deep inlets of the sea between high cliffs) along the central coast of the Peninsula appear to be intense, potentially climate sensitive, hotspots of biological production and biodiversity, yet the structure and dynamics of these fjord ecosystems are very poorly understood. Because of this intense biological activity and the charismatic fauna it supports, these fjords are also major destinations for a large Antarctic tourism industry. This project is an integrated field and modeling program to evaluate physical oceanographic processes, glacial inputs, water column community dynamics, and seafloor bottom community structure and function in these important yet little understood fjord systems. These Antarctic fjords have characteristics that are substantially different from well-studied Arctic fjords, likely yielding much different responses to climate warming. This project will provide major new insights into the dynamics and climate sensitivity of Antarctic fjord ecosystems, highlighting contrasts with Arctic sub-polar fjords, and potentially transforming our understanding of the ecological role of fjords in the rapidly warming west Antarctic coastal marine landscape. The project will also further the NSF goal of training new generations of scientists, providing scientific training for undergraduate, graduate, and postdoctoral students. This includes the unique educational opportunity for undergraduates to participate in research cruises in Antarctica and the development of a novel summer graduate course on fjord ecosystems. Internet based outreach activities will be enhanced and extended by the participation of a professional photographer who will produce magazine articles, websites, radio broadcasts, and other forms of public outreach on the fascinating Antarctic ecosystem. This project will involve a 15-month field program to test mechanistic hypotheses concerning oceanographic and glaciological forcing, and phytoplankton and benthic community response in the Antarctic fjords. Those efforts will be followed by a coupled physical/biological modeling effort to evaluate the drivers of biogeochemical cycles in the fjords and to explore their potential sensitivity to enhanced meltwater and sediment inputs. Fieldwork over two oceanographic cruises will utilize moorings, weather stations, and glacial, sea-ice and seafloor time-lapse cameras to obtain an integrated view of fjord ecosystem processes. The field team will also make multiple shipboard measurements and will use towed and autonomous underwater vehicles to intensively evaluate fjord ecosystem structure and function during spring/summer and autumn seasons. These integrated field and modeling studies are expected to elucidate fundamental properties of water column and sea bottom ecosystem structure and function in the fjords, and to identify key physical-chemical-glaciological forcing in these rapidly warming ecosystems.
Agglutinated foraminifera (forams for short) are early-evolving, single-celled organisms. These "living fossils" construct protective shells using sediment grains held together by adhesive substances that they secrete. During shell construction, agglutinated forams display amazing properties of selection - for example, some species build their shells of clear quartz grains, while other species use only grains of a specific size. Understanding how these single cells assemble complex structures may contribute to nanotechnology by enabling people to use forams as "cellular machines" to aid in the construction of nano-devices. This project will analyze the genomes of at least six key foram species, and then "mine" these genomes for technologically useful products and processes. The project will focus initially on the adhesive materials forams secrete, which may have wide application in biomedicine and biotechnology. Furthermore, the work will further develop a molecular toolkit which could open up new avenues of research on the physiology, ecology, and population dynamics of this important group of Antarctic organisms. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. Educational experiences related to the "thrill of scientific exploration and discovery" for students and the general public will be provided through freely-available short films and a traveling art/science exhibition. The project will also provide hands-on research opportunities for undergraduate students. Explorers Cove, situated on the western shore of McMurdo Sound, harbors a unique population of foraminiferan taxa at depths accessible by scuba diving that otherwise are primarily found in the deep sea. The project will use next-generation DNA sequencing and microdissection methods to obtain and analyze nuclear and mitochondrial genomes from crown members of two species each from three distinct, early-evolving foraminiferal groups. It will also use next generation sequencing methods to characterize the in-situ prokaryotic assemblages (microbiomes) of one of these groups and compare them to reference sediment microbiomes. The phyogenomic studies of the targeted Antarctic genera will help fill significant gaps in our current understanding of early foram evolution. Furthermore, comparative genomic analyses of these six species are expected to yield a better understanding of the physiology of single-chambered agglutinated forams, especially the bioadhesive proteins and regulatory factors involved in shell composition and morphogenesis. Additionally, the molecular basis of cold adaptation in forams will be examined, particularly with respect to key proteins.
Recent discoveries of widespread liquid water and microbial ecosystems below the Antarctic ice sheets have generated considerable interest in studying Antarctic subglacial environments. Understanding subglacial hydrology, the persistence of life in extended isolation and the evolution and stability of subglacial habitats requires an integrated, interdisciplinary approach. The collaborative project, Minimally Invasive Direct Glacial Exploration (MIDGE) of the Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys will integrate geophysical measurements, molecular microbial ecology and geochemical analyses to explore a unique Antarctic subglacial system known as Blood Falls. Blood Falls is a hypersaline, subglacial brine that supports an active microbial community. The subglacial brine is released from a crevasse at the surface of the Taylor Glacier providing an accessible portal into an Antarctic subglacial ecosystem. Recent geochemical and molecular analyses support a marine source for the salts and microorganisms in Blood Falls. The last time marine waters inundated this part of the McMurdo Dry Valleys was during the Late Tertiary, which suggests the brine is ancient. Still, no direct samples have been collected from the subglacial source to Blood Falls and little is known about the origin of this brine or the amount of time it has been sealed below Taylor Glacier. Radar profiles collected near Blood Falls delineate a possible fault in the subglacial substrate that may help explain the localized and episodic nature of brine release. However it remains unclear what triggers the episodic release of brine exclusively at the Blood Falls crevasse or the extent to which the brine is altered as it makes its way to the surface. The MIDGE project aims to determine the mechanism of brine release at Blood Falls, evaluate changes in the geochemistry and the microbial community within the englacial conduit and assess if Blood Falls waters have a distinct impact on the thermal and stress state of Taylor Glacier, one of the most studied polar glaciers in Antarctica. The geophysical study of the glaciological structure and mechanism of brine release will use GPR, GPS, and a small passive seismic network. Together with international collaborators, the 'Ice Mole' team from FH Aachen University of Applied Sciences, Germany (funded by the German Aerospace Center, DLR), MIDGE will develop and deploy innovative, minimally invasive technologies for clean access and brine sample retrieval from deep within the Blood Falls drainage system. These technologies will allow for the collection of samples of the brine away from the surface (up to tens of meters) for geochemical analyses and microbial structure-function experiments. There is concern over the contamination of pristine subglacial environments from chemical and biological materials inherent in the drilling process; and MIDGE will provide data on the efficacy of thermoelectric probes for clean access and retrieval of representative subglacial samples. Antarctic subglacial environments provide an excellent opportunity for researching survivability and adaptability of microbial life and are potential terrestrial analogues for life habitats on icy planetary bodies. The MIDGE project offers a portable, versatile, clean alternative to hot water and mechanical drilling and will enable the exploration of subglacial hydrology and ecosystem function while making significant progress towards developing technologies for minimally invasive and clean sampling of icy systems.
Intellectual Merit: The PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region. Broader impacts: Data from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork.
Hamilton/1246400 This award supports an integrated field observation, remote sensing and numerical modeling study of the McMurdo Shear Zone (SZ). The SZ is a 5-10 km wide strip of heavily crevassed ice that separates the McMurdo and Ross ice shelves, and is an important region of lateral support for the Ross Ice Shelf. Previous radar and remote sensing studies reveal an enigmatic picture of the SZ in which crevasses detected at depth have no apparent surface expression, and have orientations which are possibly inconsistent with the observed flow field. In the proposed work, we seek to test the hypothesis that the SZ is a zone of chaotic Lagrangian mixing with (intersecting) buried crevasses which leads to rheological instability, potentially allowing large scale velocity discontinuities. The work will involve detailed field-based observations of crevasse distributions and structure using ground-penetrating radar, and GPS and remote sensing observations of the flow and stress field in the SZ. Because of the hazardous nature of the SZ, the radar surveys will be conducted largely with the aid of a lightweight robotic vehicle. Observations will be used to develop a finite element model of ice shelf shear margin behavior. The intellectual merit of this project is an increased understanding of ice shelf shear margin dynamics. Shear margins play a key role in ice shelf stability, and ice shelves in turn modulate the flux of ice from the ice sheet across the grounding line to the ocean. Insights from this project will improve large-scale models being developed to predict ice sheet evolution and future rates of sea level rise, which are topics of enormous societal concern. The broader impacts of the project include an improved basis for US Antarctic Program logistics planning as well as numerous opportunities to engage K-12 students in scientific discovery. Intensified crevassing in the shear zone between the Ross and McMurdo ice shelves would preclude surface crossing by heavy traverse vehicles which would lead to increased costs of delivering fuel to South Pole and a concomitant loss of flight time provided by heavy-lift aircraft for science missions on the continent. Our multidisciplinary research combining glaciology, numerical modeling, and robotics engineering is an engaging way to show how robotics can assist scientists in collecting hazardous field measurements. Our outreach activities will leverage Dartmouth's current NSF GK-12 program, build on faculty-educator relationships established during University of Maine's recent GK-12 program, and incorporate project results into University of Maine's IDEAS initiative, which integrates computational modeling with the existing science curriculum at the middle school level. This award has field work in Antarctica.
Meltwater lakes that sit on top of Antarctica's floating ice shelves have likely contributed to the dramatic changes seen in Antarctica's glacial ice cover over the past two decades. In 2002, the 1,600-square-kilometer Larsen B Ice Shelf located on the Eastern side of the Antarctic Peninsula, for example, broke into thousands of small icebergs, which subsequently floated away as a result of the formation of more than 2,000 meltwater lakes on its surface over the prior decade. Our research project addresses the reasons why surface lakes form on Antarctic ice shelves and how these surface lakes subsequently contribute to the forces that may contribute to ice-shelf breakup like that of the Larsen B. Our project focuses primarily on making precise global positioning system (GPS) measurements of ice-shelf bending in response to the filling and draining of a surface lake on the McMurdo Ice Shelf. The observed vertical displacements (on the order of tens of centimeters) in response to lake filling will be used to calibrate and test computer simulation models that predict the response of ice shelves to surface lakes more generally and in a variety of future climate conditions. Our project will make hourly measurements of both vertical ice-shelf movements (using GPS surveying instruments) and of temperature and sunlight conditions (that drive melting) around a surface lake located close to the McMurdo Station airfield. Following this initial data-gathering effort, computer simulations and other more theoretical analysis will be undertaken to determine the suitability of the chosen McMurdo Ice Shelf surface lake as a field-laboratory for continued study. Ultimately, the research will contribute to understanding of the glaciological processes that link climate change to rising sea level. A successful outcome of the research will allow glaciologists to better assess the processes that promote or erode the influence Antarctic ice shelves have in controlling the transfer of ice from the interior of Antarctica into the ocean. The project will undertake two outreach activities: (1) web-posting of a field-activity journal and (2) establishing an open-access glaciological teaching and outreach web-sharing site for the International Glaciological Society. The proposed project seeks to experimentally verify a theory of ice-shelf instability proposed to explain the explosive break-up of Larsen B Ice Shelf in 2002. This theory holds that the filling and draining of supraglacial lakes on floating ice shelves induces sufficient flexure stress within the ice to (a) induce upward/downward propagating fractures originating at the base/surface of the ice shelf that (b) dissect the ice shelf into fragments that tend to have widths less than about half the ice thickness. The significance of narrow widths is that they promote capsize of the ice-shelf fragments during the break-up process. This capsize releases large amounts of gravitational potential energy (comparable to thousands of kilotons of TNT for the Larsen B Ice Shelf) thereby promoting explosiveness of the Larsen B event. The observational motivation for experimentally verifying the surface-lake mechanism for ice-shelf breakup is based on the fact that >2,000 surface lakes developed on the Larsen B Ice Shelf in the decade prior to its break up, and that these lakes were observed (via satellite imagery) to drain in a coordinated fashion during the day prior to the initiation of the break up. The field-observation component of the project will focus on a supraglacial lake on the McMurdo Ice Shelf where there is persistent summer season surface melting. The lake will be studied during a single provisional field season to determine whether grooming of surrounding surface streams and shorelines with heavy construction equipment will allow surface water to be manually encouraged to fill the lake. If successfully encouraged to develop, the McMurdo Ice Shelf surface lake will allow measurements of key ice-shelf flexure and stress variables needed to develop the theory of ice-shelf surface lakes without having to access the much more logistically demanding surface lakes of ice-shelves located elsewhere in Antarctica. Data to be gathered during the 6-week provisional field season include: energy- and water-balance parameters determining how the surface lake grows and fills, and various global positioning system measurements of the vertical bending of the ice sheet in response to the changing meltwater load contained within the surface lake. These data will be used to (1) constrain a computer model of viscoelastic flexure and possible fracture of the ice shelf in response to the increasing load of meltwater in the lake, and (2) determine whether continued study of the incipient surface-meltwater lake features on the McMurdo Ice Shelf provides a promising avenue for constraining the more-general behavior of surface meltwater lakes on other ice shelves located in warmer parts of Antarctica. Computer models constrained by the observational data obtained from the field project will inform energy- and water-balance models of ice shelves in general, and allow more accurate forecasts of changing ice-shelf conditions surrounding the inland ice of Antarctica. The project will create the first-ever ground-based observations useful for spawning the development of models capable of predicting viscoelastic and fracture behavior of ice shelves in response to supraglacial lake evolution, including slow changes due to energy balance effects, as well as fast changes due to filling and draining.
The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP). The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.
Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available.
This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.
This project will investigate the marine component of the Totten Glacier and Moscow University Ice Shelf, East Antarctica. This system is of critical importance because it drains one-eighth of the East Antarctic Ice Sheet and contains a volume equivalent to nearly 7 meters of potential sea level rise, greater than the entire West Antarctic Ice Sheet. This nearly completely unexplored region is the single largest and least understood marine glacial system that is potentially unstable. Despite intense scrutiny of marine based systems in the West Antarctic Ice Sheet, little is known about the Totten Glacier system. This study will add substantially to the meager oceanographic and marine geology and geophysics data available in this region, and will significantly advance understanding of this poorly understood glacial system and its potentially sensitive response to environmental change. Independent, space-based platforms indicate accelerating mass loss of the Totten system. Recent aerogeophysical surveys of the Aurora Subglacial Basin, which contains the deepest ice in Antarctica and drains into the Totten system, have provided the subglacial context for measured surface changes and show that the Totten Glacier has been the most significant drainage pathway for at least two previous ice flow regimes. However, the offshore context is far less understood. Limited physical oceanographic data from the nearby shelf/slope break indicate the presence of Modified Circumpolar Deep Water within a thick bottom layer at the mouth of a trough with apparent access to Totten Glacier, suggesting the possibility of sub-glacial bottom inflow of relatively warm water, a process considered to be responsible for West Antarctic Ice Sheet grounding line retreat. This project will conduct a ship-based marine geologic and geophysical survey of the region, combined with a physical oceanographic study, in order to evaluate both the recent and longer-term behavior of the glacial system and its relationship to the adjacent oceanographic system. This endeavor will complement studies of other Antarctic ice shelves, oceanographic studies near the Antarctic Peninsula, and ongoing development of ice sheet and other ocean models.
Intellectual Merit: The PIs propose to complement the ANDRILL marine record with a terrestrial project that will provide chronological control for past fluctuations of the West Antarctic Ice Sheet (WAIS) and alpine glaciers in McMurdo Sound. The project will develop high-resolution maps of drifts deposited from grounded marine-based ice and alpine glaciers on islands and peninsulas in McMurdo Sound. In addition, the PIs will acquire multi-clast/multi-nuclide cosmogenic analyses of these mapped drift sheets and alpine moraines and use regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession. The PIs will make use of geological records for ice sheet and alpine glacier fluctuations preserved on the flanks of Mount Discovery, Black Island, and Brown Peninsula. Drifts deposited from grounded, marine-based ice will yield spatial constraints for former advances and retreats of the WAIS. Moraines from alpine glaciers, hypothesized to be of interglacial origin, could yield a first-order record of hydrologic change in the region. Synthesizing the field data, the team proposes to improve the resolution of existing regional-scale climate models for the Ross Embayment. The overall approach and anticipated results will provide the first steps towards linking the marine and terrestrial records in this critical sector of Antarctica. Broader impacts: Results from the proposed work will be integrated with outreach programs at Boston University, Columbia University, and Worcester State University. The team will actively collaborate with the American Museum of Natural History to feature this project prominently in museum outreach. The team will also include a PolarTREC teacher as a member of the research team. The geomorphological results will be presented in 3D at Boston University?s Antarctic Digital Image Analyses Lab. The research will form the basis of a PhD dissertation at Boston University.
This project aims to identify which portions of the glacial cover in the Antarctic Peninsula are losing mass to the ocean. This is an important issue to resolve because the Antarctic Peninsula is warming at a faster rate than any other region across the earth. Even though glaciers across the Antarctic Peninsula are small, compared to the continental ice sheet, defining how rapidly they respond to both ocean and atmospheric temperature rise is critical. It is critical because it informs us about the exact mechanisms which regulate ice flow and melting into the ocean. For instance, after the break- up of the Larsen Ice Shelf in 2002 many glaciers began to flow rapidly into the sea. Measuring how much ice was involved is difficult and depends upon accurate estimates of volume and area. One way to increase the accuracy of our estimates is to measure how fast the Earth's crust is rebounding or bouncing back, after the ice has been removed. This rebound effect can be measured with very precise techniques using instruments locked into ice free bedrock surrounding the area of interest. These instruments are monitored by a set of positioning satellites (the Global Positioning System or GPS) in a continuous fashion. Of course the movement of the Earth's bedrock relates not only to the immediate response but also the longer term rate that reflects the long vanished ice masses that once covered the entire Antarctic Peninsula?at the time of the last glaciation. These rebound measurements can, therefore, also tell us about the amount of ice which covered the Antarctic Peninsula thousands of years ago. Glacial isostatic rebound is one of the complicating factors in allowing us to understand how much the larger ice sheets are losing today, something that can be estimated by satellite techniques but only within large errors when the isostatic (rebound) correction is unknown. The research proposed consists of maintaining a set of six rebound stations until the year 2016, allowing for a longer time series and thus more accurate estimates of immediate elastic and longer term rebound effects. It also involves the establishment of two additional GPS stations that will focus on constraining the "bull's eye" of rebound suggested by measurements over the past two years. In addition, several more geologic data points will be collected that will help to reconstruct the position of the ice sheet margin during its recession from the full ice sheet of the last glacial maximum. These will be based upon the coring of marine sediment sequences now recognized to have been deposited along the margins of retreating ice sheets and outlets. Precise dating of the ice margin along with the new and improved rebound data will help to constrain past ice sheet configurations and refine geophysical models related to the nature of post glacial rebound. Data management will be under the auspices of the UNAVCO polar geophysical network or POLENET and will be publically available at the time of station installation. This project is a small scale extension of the ongoing LARsen Ice Shelf, Antarctica Project (LARISSA), an IPY (International Polar Year)-funded interdisciplinary study aimed at understanding earth system connections related to the Larsen Ice Shelf and the northern Antarctic Peninsula.
Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.
Pettit/1565576 This award supports a Rapid Response Research (RAPID) project to observe the current weakened state of the Scar Inlet Ice Shelf, and potentially capture data during its anticipated disintegration. The Scar Inlet Ice Shelf (SIIS) is the southern remnant of the former Larsen B Ice Shelf, which disintegrated in March of 2002. Since then, the SIIS has weakened significantly but has not yet broken up. Cooler conditions than those seen prior to 2006 have reduced the chance of a disintegration in recent years, although a single warm season is likely to be enough to trigger such an event. The predicted "Super El Nino" for this austral summer may have significant effects on Antarctica's weather, potentially leading to a break-up or disintegration this year. Given the very weak state of the SIIS, it is urgent that we act now to better understand the processes involved in shelf disintegration or break-up of ice shelves. The goal of this work is to collect several key data sets, publish initial observations and preliminary conclusions, and then make the complete data record available to all scientists. Extreme changes in the stress conditions on the SIIS resulted from both the loss of the Larsen B ice plate and the continued inflow of ice from three large glaciers (Flask, Leppard, and Starbuck). The SIIS now has a number of large rifts and it is expected to break up or disintegrate in the very near future. Past research has made use of satellite data and weather instruments, establishing many of the current ideas regarding ice shelf break-ups and ice shelf weakening. Additional ground-based data to be collected under this study will test a number of hypotheses regarding pre-disintegration characteristics, triggering mechanisms, fracturing processes, runaway feedback effects, and stabilizing mechanisms. The project will collect extensive multi-instrument field observations of the SIIS and possibly capture a major disintegration event. In collaboration with the British Antarctic Survey, a team of 4 people will be deployed via Twin Otter for up to 4 weeks to a site with a broad view of the shelf and will install several temporary observing instruments there. The study derives its intellectual merit from the role of the Antarctic Peninsula as a microcosm of how other parts of Antarctica might evolve and de-glaciate in the next few centuries. The broader impacts include an opportunity to educate the public about the anticipated collapse of this remnant ice shelf and its relationship to future changes in Antarctica. The potential for wide media coverage (through a connection with the National Geographic) will underscore the critical changes scientists are observing in the crysophere driven by climate change. This proposal requires field work in Antarctica.
Previous studies of the Indo-Pacific region of Antarctica show that the margin of the ice sheet in this region has advanced and retreated into deep interior basins many times in the past. The apparent instability of this region makes it an important target for study in terms of understanding the future of the East Antarctic ice sheet and sea level rise. This project will study a number of processes that control the ice-shelf stability of this region, with the aim of improving projections of the rate and magnitude of future sea-level rise. This project will engage a range of students and train this next generation of scientists in the complex, interdisciplinary issue of ice-ocean interaction. The project will integrate geophysical data collected from aircraft over three critical sections of the East Antarctic grounding line (Totten Glacier, Denman Glacier, and Cook Ice Shelf) with an advanced ocean model. Using Australian and French assets, the team will collect new data around Denman Glacier and Cook Ice Shelf whereas analysis of Totten Glacier will be based on existing data. The project will assess three hypotheses to isolate the processes that drive the differences in observed grounding line thinning among these three glaciers: 1. bathymetry and large-scale ocean forcing control cavity circulation; 2. ice-shelf draft and basal morphology control cavity circulation; 3. subglacial freshwater input across the grounding line controls cavity circulation. The key outcomes of this new project will be to: 1. evaluate of ice-ocean coupling in areas of significant potential sea-level contribution; 2. relate volume changes of grounded and floating ice to regional oceanic heat transport and sub-ice shelf ocean dynamics in areas of significant potential sea-level and meridional overturning circulation impacts; and 3. improve boundary conditions to evaluate mass, heat, and freshwater budgets of East Antarctica's continental margins.
Paragraph for Laypersons: This research focuses on the history of rock glaciers and buried glacial ice in the McMurdo Dry Valleys region of Antarctica. Rock glaciers are flowing mixtures of ice and sediments common throughout alpine and high-latitude regions on Earth and Mars. Despite similar appearances, rock glaciers can form under highly variable environmental and hydrological conditions. The main research questions addressed here are: 1) what environmental and climatological conditions foster long-term preservation of rock glaciers in Antarctica, 2) what role do rock glaciers play in Antarctic landscape evolution and the local water cycle, and 3) what can rock glaciers reveal about the extent and timing of previous glacial advances? The project will involve two Antarctic field seasons to image the interior of Antarctic rock glaciers using ground-penetrating radar, to gather ice cores for chemical analyses, and to gather surface sediments for dating. The Dry Valleys host the world?s southernmost terrestrial ecosystem (soil, stream and lake micro-organisms and mosses); rock glaciers and ground-ice are an important and poorly-studied source of meltwater and nutrients for these ecosystems. This research will shed light on the glacial and hydrological history of the Dry Valleys region and the general environmental conditions the foster rock glaciers, features that generally occur in warmer and/or wetter locations. The research will provide support for five graduate/undergraduate students, who will actively gather data in the field, followed by interpretation, dissemination and presentation of the data. Additionally, the researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities. A series of time-lapse images of hydrological processes, and videos of researchers in the field, will serve as a dramatic centerpiece in community and school presentations. Paragraph for Scientific Community: Rock glaciers are common in the McMurdo Dry Valleys, but are concentrated in a few isolated regions: western Taylor Valley, western Wright Valley, Pearse Valley and Bull Pass. The investigators hypothesize that the origin and age of these features varies by region: that rock glaciers in Pearse and Taylor valley originated as buried glacier ice, whereas rock glaciers in Wright Valley formed through permafrost processes, such as mobilization of ice-rich talus. To address these hypotheses, the project will: 1) develop relative and absolute chronologies for the rock glaciers through field mapping and optically stimulated luminescence dating of overlying sediments, 2) assess the origin of clean-ice cores through stable isotopic analyses, and 3) determine if present-day soil-moisture and temperature conditions are conducive to rock glacier formation/preservation. The proposed research will provide insight into the spatial and temporal distribution of buried glacier ice and melt-water-derived ground ice in the McMurdo Dry Valleys, with implications for glacial history, as well as the potential role of rock glaciers in the regional hydrologic cycle (and the role of ground-ice as a source for moisture and nutrient for local ecosystems). The project will provide general constraints on the climatic and hydrologic conditions that foster permafrost rock glaciers, features that generally occur under warmer and wetter conditions than those found in the present-day McMurdo Dry Valleys. The application of OSL and cosmogenic exposure dating is novel to rock glaciers, geomorphic features that have proven difficult to date, despite their ubiquity in Antarctica and their potential scientific importance. The research will provide support for five graduate/undergraduate students, who will participate in the field work, followed by interpretation, dissemination and presentation of the data. The researchers will participate in a range of educational activities including outreach with local K-12 in the Lowell, MA region, such as summer workshops and classroom visits with hands-on activities.
Ocean acidification (OA) poses a serious threat, particularly to organisms that precipitate calcium carbonate from seawater. One organism with an aragonite shell that is a key to high latitude ecosystems is the pteropod. With OA, the pteropod shell will thin because the aragonite is highly soluble. As the shell thins, it changes the mass distribution and buoyancy of the animal, which will affect locomotion and through it, all locomotion dependent behavior such as foraging, mating, predator avoidance and migratory patterns. A lower shell weight will be counterbalanced by a smaller mucus web potentially decreasing ingestion rates and carbon flux rates. This interdisciplinary research relies on biological studies of swimming behavior of the pteropod mollusk Limacina helicina in their natural environments with fluid mechanics analyses of swimming hydrodynamics via 3D tomographic particle-image velocimetry and computational fluid dynamics (CFD). This work will: (a) determine how the L. helicina uses its 'wings' (parapodia) to propel itself; (b) examine whether its locomotory kinematics provide efficient propulsion; (c) identify the factors that influence swimming trajectory and 'wobble'; and (d) synthesize all data and insights into guidelines for the potential use of pteropod swimming behavior as a bioassay for OA. The loss of these sentinels of anthropogenic increases in CO2 may result in an ecological shift since thecosome pteropods are responsible for ingesting nearly half the primary production in the Southern Ocean and also serve as a primary food resource to upper trophic levels like fish. Since locomotory data can be gathered immediately, the bioassay being developed in this proposal may serve as an early warning of the impending onset of OA effects on this important member of the plankton. Students and researchers will collaborate in a rich interdisciplinary research environment by working with a biological oceanographer, a fluid mechanics expert and a CFD expert coupled with the teamsmanship needed for work in the Antarctic. By setting up a one-of-a-kind 3D tomography system for visualizing flow around planktonic organisms in Norway and at Palmer Station, we increase international exchange of state-of-the-art techniques. The educational impact of the current research will be multiplied by including in the research team, undergraduate students, high-school students and underrepresented minorities in addition to graduate students.
Alley/1542778 This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice. The intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate.
Intellectual Merit: To understand Antarctica's geodynamic development, origin of the Transantarctic Mountains (TAMs) and the Wilkes Subglacial Basin (WSB) must be determined. Current constraints on the crustal thickness and seismic velocity structure beneath the TAMs and the WSB are limited, leading to uncertainties over competing geologic models that have been suggested to explain their formation. The PI proposes to broaden the investigation of this region with a new seismic deployment, the Transantarctic Mountains Northern Network (TAMNNET), a 15-station array across the northern TAMs and the WSB that will fill a major gap in seismic coverage. Data from TAMNNET will be combined with that from other previous and ongoing seismic initiatives and will be analyzed using proven modeling techniques to generate a detailed image of the seismic structure beneath the TAMs and the WSB. These data will be used to test three fundamental hypotheses: the TAMs are underlain by thickened crust, the WSB is characterized by thin crust and thick sedimentary layers, and slow seismic velocities are prevalent along strike beneath the TAMs. Results from the proposed study will provide new information about the nature and formation of the Antarctic continent and will help to advance our understanding of important global processes, such as mountain building and basin formation. The proposed research also has important implications for other fields of Antarctic science. Constraints on the origin of the TAMs uplift are critical for climate and ice sheet models, and new information acquired about variations in the thermal and lithospheric structure beneath the TAMs and the WSB will be used to estimate critical ice sheet boundary conditions. Broader impacts: This project incorporates three educational strategies to promote the integration of teaching and research. Graduate students will be trained in Antarctic tectonics and seismic processing through hands-on fieldwork and data analysis techniques. Through NSF's PolarTREC program, the PI will work with K-12 educators. The PI will develop a three-week summer field program for recent high school graduates and early-career undergraduate students from Minority-Serving Institutions in Alabama. Teaching materials and participant experiences will be shared with individuals outside the program via a course website. Following the summer program, participants who were particularly engaged will be offered internship opportunities to analyze TAMNNET data. In successive years, the students could assist with fieldwork and could be recruited into the graduate program under the PI's supervision. Ultimately, this program would not only serve to educate undergraduates but would also generate a pipeline of underrepresented students into the geosciences.
Marine mammals that inhabit high latitude environments have evolved unique mechanisms to execute a suite of energetically-costly life history events (CLHEs) within a relatively short timeframe when conditions are most favorable. Understanding the intrinsic and extrinsic factors that regulate CLHEs is particularly important in species such as Weddell seals, as both reproduction and molt are associated with large reductions in foraging effort, and the timing and outcome of each appears linked with the other. The long-term mark recapture program on Erebus Bay's Weddell seals provides a unique opportunity to examine CLHEs in a known-history population. The proposed work will monitor physiological condition, pregnancy status, and behavior at various times throughout the year to determine if molt timing is influenced by prior reproductive outcome, and if it, in turn, influences future reproductive success. These data will then be used to address the demographic consequences of trade-offs between CLHEs in Weddell seals. The impact of environmental conditions and CLHE timing on population health will also be modeled so that results can be extended to other climates and species. An improved understanding of the interactions between CLHEs and the environment is important in predicting the response of organisms from higher trophic levels to climate change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of graduate students and a post-doctoral researcher and will further foster an extensive public outreach collaboration.
This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.
0539578<br/>Alley <br/>This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.
Intellectual Merit: The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. Broader impacts: This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K 12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.
Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.
1043649/Braun This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.
Abstract The Ross Sea is believed to contributes a huge portion (~1/3) of the primary productivity of the Southern Ocean and is home to a similar large portion of the top predators (e.g. 38% of Adelie, 28% of Emperor penguins) of the Antarctic sea ice ecosystem. The trophic pathways in this system are complex in both space and time. One scenario for the Ross Sea ecosystem is that diatoms are grazed by krill, which are in turn the preferred food of fish, penguins and other predators. Phaeocystis colonies, on the other hand lead to grazing by pteropods and other organisms that are a non-favoured food source for top predators. Remotely sensed chlorophyll, indicating all phytoplankton, is then suggested to be a relatively poor predictor of penguin foraging efforts. This is also consistent with notion that algal species composition is very important to penguin grazing pressure, mediated by krill, and perhaps resulting in selective depletion. This collaborative research sets out to use an autonomous glider, equipped with a range of sensors, and informed by satellite chlorophyll imagery to be combined with 3-dimenisonal active penguin tracking to their preferred foraging sites. The effect of localized grazing pressure of krill on the appearance and disappearance of algal blooms will also be followed. Overall the objective of the research is to reconcile and explain several years of the study of the foraging habits and strategies of (top predator) penguins at the Cape Crozier site (Ross Island), with the dynamics of krill and their supporting algal food webs. The use of a glider to answer a primarily ecological questions is subject to moderate to high risk, and is potentially transformative.
Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student?s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.
Intellectual Merit: The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. Broader impacts: The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM "Explore Your World" website with images and findings from their field season.
Intellectual Merit: The PIs propose a two-year project to map the distribution of climate-sensitive landforms throughout Northern Victoria Land between the Convoy Range and Cape Adare. This work will produce geospatial products to aid their geomorphic work on ice sheet stability and landscape evolution. Specifically, the PI will investigate the potential for extensive surface melting and ice-sheet retreat with modest warming in areas north of the Convoy Range in Northern Victoria Land. The hypothesis is that if key landform elements of the Dry Valleys assemblage are lacking in NVL it suggests a major variation in current climate conditions, and perhaps changes in climate evolution. The proposed work will also benefit the broader research community, as it will demonstrate the potential for using geospatial imagery in geomorphic research and produce geospatial products that can be used by other researchers. Broader impacts: This work will help the research community better leverage the investment being made in the Polar Geospatial Center (PGC) and will help further demonstrate the significance of satellite imagery for doing ?virtual? field work in the Polar regions. More effective use of satellite imagery by field scientists in Antarctica will help reduce the logistical footprint on the Continent. The proposed research will support one graduate student at Boston University who will be trained in image analysis, map production, Antarctic geomorphology, and geospatial technologies. The proposed work will help to forge stronger links between PGC and Boston University?s Digital Image Analyses Lab (DIAL).
Intellectual Merit: The PIs propose to investigate the impact of earth surface processes on the application of cosmogenic exposure dating in Antarctica by combining multi-nuclide techniques, detailed field experiments, rock-mechanic studies, and climate modeling. They will analyze cosmogenic-nuclide inventories for a suite of six alpine-moraine systems in inland regions of the McMurdo Dry Valleys. This area is ideally suited for this study because 1) the targeted alpine moraine sequences are critically important in helping to reconstruct past temperature and precipitation values over the last several million years, 2) the production rates for cosmogenic nuclides are typically high and well-known, and 3) the complexity of surface processes is relatively low. Their work has two specific goals: to evaluate the effects of episodic geomorphic events in modulating cosmogenic inventories in surface rocks in polar deserts and to generate an alpine glacier chronology that will serve as a robust record of regional climate variation over the last several million years. A key objective is to produce a unique sampling strategy that yields consistent exposure-age results by minimizing the effects of episodic geomorphic events that obfuscate cosmogenic-nuclide chronologies. They will link their moraine chronology with regional-scale atmospheric models developed by collaborators at University of Massachusetts Amherst. Broader impacts: This research is interdisciplinary and includes two early career scientists. Results of this work will be used to enhance undergraduate education by engaging two female students in Antarctic field and summer research projects. Extended outreach includes development of virtual Antarctic field trips for Colgate University?s Ho Tung Visualization Laboratory and Boston University?s Antarctic Digital Image Analyses Laboratory. The PIs will continue to work with the Los Angeles Valley Community College, which serves students of mostly Hispanic origin as part of the PolarTREC program. This project will contribute to the collaboration between LDEO and several New York City public high schools within the Lamont-Doherty Secondary School Field Program.
The albedo, or reflection coefficient, is a measure of the diffuse reflectivity of an irradiated surface. With the sunlit atmosphere as a light source, and sea-ice as a diffuse reflecting surface, the albedo would be the fraction of incident light that is returned to the atmosphere. A perfect (white) reflecting surface would have an albedo of 1; a perfect (black) absorbing surface would have an albedo of 0. The albedo of sea-ice is needed to assess the solar energy budget of the marginal ice zone, to compute the partial solar bands in radiation budgets in general circulation and earth system models, and is also needed to interpret remote sensing imagery data products. Applications requiring albedos further into the near IR, out to 2500nm, are assumed or approximated. Modern spectral radiometers, such as will be used in this campaign on a Southern Ocean voyage from Hobart to Antarctica, can extend these measurements of albedo from 350 to 2500nm, allowing earlier estimates to be verified, or corrected. Surfaces to be encountered on this research cruise are expected to include open water, grease ice, nila ice, pancake ice, young grey ice, young grey-white ice, along with first year ice. The presence of variable amounts of snow on these surfaces is also of interest. Light absorbing impurities in the snow and ice, including black carbon and organic matter (brown carbon) are different from those found in Arctic Sea ice, the Antarctic being so remote from combustion sources. This may allow better understanding of the seasonal cycles, energy budgets and their recent trends in spatial extent and thickness. The project will also broaden the educational experiences of both US and Australian students participating in the measurement campaign
This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.
The mesosphere and lower thermosphere (MLT), at an altitude between 80 and 120 km above the Earth's surface, is a highly dynamic region that couples the lower terrestrial atmosphere (troposphere and stratosphere) with the upper atmosphere near-Earth space environment (thermosphere and ionosphere). Of particular importance in this region are both the upward propagating thermally forced atmospheric tides and global scale planetary waves. Both of these phenomena transport heat and momentum from the lower atmosphere into the upper atmosphere. Studies in recent years have indicated that the Arctic and Antarctic MLT possess a rich spectrum waves and may be more sensitive to global change than the lower atmosphere. The primary goal of this research is to observe, quantify, model, and further understand the spatial-temporal structure and variability of the MLT circulation above Antarctica and its commonalities with the Arctic. A secondary goal is to quantify and understand the deposition of mass into the upper atmosphere through the ablation of meteors and the resulting effect on local and regional aeronomic processes. This includes the effect of meteor flux, temperature and dynamics on the seasonal distribution of sodium over the South Pole. Meteor radar was installed at the South Pole Amundsen-Scott station and has been running continuously since January 2002. A new sodium nightglow imager will be installed at the South Pole to infer the sodium abundance in the MLT. Observations from this instrument will be combined with the South Pole Fabry-Perot interferometer temperature measurements and the meteor radar wind and meteor flux measurements to improve our understanding of the sodium chemistry and dynamics. These observations will be interpreted using sophisticated numerical models and interpreted in conjunction with Arctic measurements along with current linear and nonlinear atmospheric models to advance the current understanding of processes important to the MLT region. This research also contributes to the training and education of the graduate and undergraduate students, a postdoc and early career tenure track faculty.
Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent. Broader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.
Intellectual Merit: Until recently, wetted soils in the Dry Valleys were generally only found adjacent to streams and lakes. Since the warm austral summer of 2002, numerous ?wet spots? have been observed far from shorelines on relatively flat valley floor locations and as downslope fingers of flow on valley walls. The source of the water to wet these soils is unclear, as is the spatial and temporal pattern of occurrence from year to year. Their significance is potentially great as enhanced soil moisture may change the thermodynamics, hydrology, and erosion rate of surface soils, and facilitate transport of materials that had previously been stable. These changes to the soil active layer could significantly modify permafrost and ground ice stability within the Dry Valleys. The PIs seek to investigate these changes to address two competing hypotheses: that the source of water to these ?wet spots? is ground ice melt and that the source of this water is snowmelt. The PIs will document the spatiotemporal dynamics of these wet areas using high frequency remote sensing data from Quickbird and Wordview satellites to document the occurrence, dimensions, and growth of wet spots during the 2010-11 and 2011-12 austral summers. They will test their hypotheses by determining whether wet spots recur in the same locations in each season, and they will compare present to past distribution using archived imagery. They will also determine whether spatial snow accumulation patterns and temporal ablation patterns are coincident with wet spot formation. Broader impacts: One graduate student will be trained on this project. Findings will be reported at scientific meetings and published in peer reviewed journals. They will also develop a teaching module on remote sensing applications to hydrology for the Modular Curriculum for Hydrologic Advancement and an innovative prototype project designed to leverage public participation in mapping wet spots and snow patches across the Dry Valleys through the use of social media and mobile computing applications.
Intellectual Merit: Weddell seals (Leptonychotes weddellii) locate and capture sparsely distributed and mobile prey under shore-fast ice throughout the year, including the austral winter when ambient light levels are very low and access to breathing holes is highly limited. This is one of the most challenging environments occupied by an aquatic mammalian predator, and it presents unique opportunities to test hypotheses concerning: 1) behavioral strategies and energetic costs for foraging and 2) sensory modalities used for prey capture under sea ice. To accomplish these objectives, we will attach digital video and data recorders to the backs of free-ranging Weddell seals during the autumn, winter and early spring. These instruments simultaneously record video of prey pursuit and capture and three-dimensional movements, swimming performance, ambient light level and other environmental variables. Energetic costs for entire dives and portions of dives will be estimated from stroking effort and our published relationship between swimming performance and energetics for Weddell seals. The energetic cost of different dive types will be evaluated for strategies that maximize foraging efficiency, range (distance traveled), and duration of submergence. The proposed study will provide a more thorough understanding of the role of vision and changing light conditions in foraging behavior, sensory ecology, energetics and habitat use of Weddell seals and the distribution of encountered prey. It also will provide new insights into survival strategies that allow Weddell seals to inhabit the Antarctic coastal marine ecosystem throughout the year. <br/><br/>Broader Impacts: The proposed study will train two graduate students and a Post-doctoral Fellow. Outreach activities will include interviews, written material and photographs provided to print and electronic media, project web sites, high school email exchanges from McMurdo Station, hosting visiting artists at our field camp, and public lectures. We will provide a weekly summary of our research findings to teachers and students in elementary school programs through our websites, one of which received an educational award. Our previous projects have attracted an extraordinary amount of press coverage that effectively brings scientific research to the public. This coverage and the video images generated by our work excite the imagination and help instill an interest in science and wildlife conservation in children and adults.
MacAyeal/0944248<br/><br/>This award supports a project to develop a better understanding of the processes and conditions that trigger ice shelf instability and explosive disintegration. A significant product of the proposed research will be the establishment of parameterizations of micro- and meso-scale ice-shelf surface processes needed in large scale ice-sheet models designed to predict future sea level rise. The proposed research represents a 3-year effort to conduct numerical model studies of 6 aspects of surface-water evolution on Antarctic ice shelves. These 6 model-study areas include energy balance models of melting ice-shelf surfaces, with treatment of surface ponds and water-filled crevasses, distributed, Darcian water flow modeling to simulate initial firn melting, brine infiltration, pond drainage and crevasse filling, ice-shelf surface topography evolution modeling by phase change (surface melting and freezing), surface-runoff driven erosion and seepage flows, mass loading and flexure effects of ice-shelf and iceberg surfaces; feedbacks between surface-water loads and flexure stresses; possible seiche phenomena of the surface water, ice and underlying ocean that constitute a mechanism for, inducing surface crevassing., surface pond and crevasse convection, and basal crevasse thermohaline convection (as a phenomena related to area 5 above). The broader impacts of the proposed work bears on the socio-environmental concerns of climate change and sea-level rise, and will contribute to the important goal of advising public policy. The project will form the basis of a dissertation project of a graduate student whose training will contribute to the scientific workforce of the nation and the PI and graduate student will additionally participate in a summer science-enrichment program for high-school teachers organized by colleagues at the University of Chicago.
Abstract<br/>This award supports a seismological study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project will perform a passive seismic experiment deploying twenty-three seismic stations over the GSM to characterize the structure of the crust and upper mantle, and determine the processes driving uplift. The outcomes will also offer constraints on the terrestrial heat flux, a key variable in modeling ice sheet formation and behavior. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. <br/>Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this seismic experiment, NSF is also supporting an aerogeophysical survey of the GSM under award number 0632292. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach.
This award supports an aerogeophysical study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project would perform a combined gravity, magnetics, and radar study to achieve a range of goals including: advancing our understanding of the origin and evolution of the polar ice sheets and subglacial lakes; defining the crustal architecture of East Antarctica, a key question in the earth's history; and locating the oldest ice in East Antarctica, which may ultimately help find ancient climate records. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this study, NSF is also supporting a seismological survey of the GSM under award number 0537371. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach including a focus on groups underrepresented in the earth sciences.
Intellectual Merit: Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. Broader impacts: An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.
Bell/0636883<br/><br/>This award support a project to study the role that subglacial water plays in the overall stability of major ice sheets. An estimated 22,000 km3 of water is currently stored within Antarctica's subglacial lakes. Movement of this water occurs through a complex and largely inferred drainage system in both East and West Antarctica. Geomorphic evidence for the catastrophic drainage of subglacial lakes documents repeated events. These major flood events appear to have drained the largest subglacial lakes situated in the relatively stable interior of the East Antarctic ice sheet. Emerging evidence suggests there is a close connection between significant subglacial lakes and the onset of the Recovery Ice Stream one of the largest in East Antarctica. Our preliminary analysis of the Recovery Lakes region, East Antarctica suggests a direct linkage between lakes and streaming ice flow, specifically the 800 km long Recovery Ice Stream and its tributaries. Located just upslope of the Recovery Ice Stream, the Recovery Lakes Region is composed of 3 well-defined lakes and a fourth, ambiguous, 'lake-like' feature. While other large lakes have a localized impact on ice surface slope, the Recovery Lakes Region lakes are coincident with an abrupt regional change in the ice sheet surface slope. Satellite imagery demonstrates that the downslope margin of this lake area contains distinct flow strips and crevasses: both indicative of increasing ice velocities. The discovery of a series of large lakes coincident with the onset of rapid ice flow in East Antarctica clearly links subglacial lakes and ice sheet dynamics for the first time. The evidence linking the onset of streaming in the Recovery Drainage Ice Stream to the series of large subglacial lakes raises the fundamental question: How can subglacial lakes trigger the onset of ice streaming? We advance two possible mechanisms: (i) Subglacial lakes can produce accelerated ice flow through the drainage of lake water beneath the ice sheet downslope of the lakes. (ii) Subglacial lakes can produce accelerated ice flow accelerated ice flow by modifying the basal thermal gradient via basal accretion over the lakes so when the ice sheet regrounds basal melting dominates. To evaluate the contribution of lake water and the changing basal thermal gradient, we propose an integrated program incorporating satellite imagery analysis, a series of reconnaissance aerogeophysical profiles over the Recovery Lake Region and the installation of continuous GPS sites over the Recovery Lakes. This analysis and new data will enable us (1) to produce a velocity field over the Recovery Lakes Region, (2) to map the ice thickness changes over the lakes due to acceleration triggered thinning, basal melting and freezing, (3) determine the depth and possible the tectonic origin of the Recovery Lakes and (4) determine the stability of these lakes over time. These basic data sets will enable us to advance our understanding of how subglacial lakes trigger the onset of streaming. The intellectual merit of this project is that it will be the first systematic analysis of ice streams triggering the onset of ice streams. This work has profound implications for the modeling of ice sheet behavior in the future, the geologic record of abrupt climate changes and the longevity of subglacial lakes. The broader impacts of the project are programs that will reach students of all ages through undergraduates involved in the research, formal presentations in teacher education programs and ongoing public outreach efforts at major science museums. Subglacial Antarctic lake environments are emerging as a premier, major frontier for exploration during the IPY 2007-2009.
This award supports a project that is part of the West Antarctic Ice Sheet Divide (WAIS Divide) program; which is a multi-disciplinary multi-institutional program to investigate the causes of natural changes in climate, the influence of the West Antarctic ice sheet on sea level, and the biology of deep ice. The WAIS Divide core will be unique among Antarctic ice cores in that it will have discernable annual layers for the last 40,000 years. A critical element of the program is to determine the age of the ice so that the climate proxies measured on the core can be interpreted in terms of age, not just depth. This project will make electrical measurements that can identify the annual layers. This information will be combined with information from other investigators to develop an annually resolved timescale over the last 40,000 years. This timescale will be the foundation on which the recent climate records are interpreted. Electrical measurements will also be used to produce two-dimensional images of the ice core stratigraphy; allowing sections of the core with abnormal stratigraphy to be identified. The broader impacts of this project include exposing a diverse group of undergraduate and graduate students to ice core research and assisting the Smithsonian National Museum of Natural History in Washington, D.C to develop a paleoclimate/ice core display.
Catania 0739654<br/><br/>This award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the "Wired Antarctica" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.
A focused plan is presented to investigate the role and importance of short period (<1 hour) gravity waves on the dynamics of the Antarctic Mesosphere and Lower Thermosphere (MLT) region (~80-100 km). Excited primarily by deep convection, frontal activity, topography, and strong wind shears in the lower atmosphere, these waves transport energy and momentum upwards where they have a profound influence on the MLT dynamics. Most of the wave forcing is expected to occur at mid-and low-latitudes where such sources predominate. However, short-period waves (exhibiting similar characteristics to mid-latitude events) have now been detected in copious quantities from research sites on the Antarctic Peninsula and the coastal regions exhibiting strong anisotropy in their dominant horizontal motions (and hence their momentum fluxes). Radiosonde measurements have established the existence of ubiquitous gravity wave activity at South Pole but, to date, there have been no detailed measurements of the properties of short-period waves at MLT heights deep in the Antarctic interior. In particular, the South Pole Station is uniquely situated to investigate the filtering and penetration of these waves into the MLT region, a substantial fraction of which may be ducted waves traveling over vast geographic distances (several thousand km). Novel image measurements at South Pole Station combined with existing measurement programs will provide an unprecedented capability for quantifying the role of these gravity waves on the regional MLT dynamics over central Antarctica. This research also contributes to the training and education of both the graduate and undergraduate students.
Tulaczyk/0636970<br/><br/>This award supports a project to study elevation change anomalies (henceforth ECAs), which are oval-shaped, 5-to-10 km areas observed in remote sensing images in several locations within the Ross Sea sector of the West Antarctic Ice Sheet (WAIS). Within these anomalies, surface elevation changes at rates of up to ~1 to ~2 cm per day, significantly faster than in surrounding regions. These anomalies are thought to result from filling and draining of multi-kilometer-scale subglacial water pockets. The intellectual merit of this project is that these ECA's represent an unprecedented window into the elusive world of water drainage dynamics beneath the modern Antarctic ice sheet. Although subglacial water fluxes are small compared to normal terrestrial conditions, they play an important role in controlling fast ice streaming and, potentially, stability of the ice sheet. The dearth of observational constraints on sub-ice sheet water dynamics represents one of the most important limitations on progress in quantitative modeling of ice streams and ice sheets. Such models are necessary to assess future ice sheet mass balance and to reconstruct the response of ice sheets to past climate changes. The dynamic sub-ice sheet water transport indicated by the ECAs may have also implications for studies of subglacial lakes and other subglacial environments, which may harbor life adapted to such extreme conditions. The broader impacts of this project are that it will provide advanced training opportunities to one postdoctoral fellow (UW), two female doctoral students (UCSC), who will enhance diversity in polar sciences, and at least three undergraduate students (UCSC). Project output will be relevant to broad scientific and societal interests, such as the future global sea level changes and the response of Polar Regions to climate changes. Douglas Fox, a freelance science journalist, is interested in joining the first field season to write feature articles to popular science magazines and promote the exposure of this project, and Antarctic Science in general, to mass media.
This award is for the continuation of the Center for Remote Sensing of Ice Sheets (CReSIS), an NSF Science and Technology Center (STC) established in June 2005 to study present and probable future contributions of the Greenland and Antarctic ice sheets to sea-level rise. The Center?s vision is to understand and predict the role of polar ice sheets in sea level change. In particular, the Center?s mission is to develop technologies, to conduct field investigations, to compile data to understand why many outlet glaciers and ice streams are changing rapidly, and to develop models that explain and predict ice sheet response to climate change. The Center?s mission is also to educate and train a diverse population of graduate and undergraduate students in Center-related disciplines and to encourage K-12 students to pursue careers in science, technology, engineering and mathematics (STEM-fields). The long-term goals are to perform a four-dimensional characterization (space and time) of rapidly changing ice-sheet regions, develop diagnostic and predictive ice-sheet models, and contribute to future assessments of sea level change in a warming climate. In the first five years, significant progress was made in developing, testing and optimizing innovative sensors and platforms and completing a major aircraft campaign, which included sounding the channel under Jakobshavn Isbræ. In the second five years, research will focus on the interpretation of integrated data from a suite of sensors to understand the physical processes causing changes and the subsequent development and validation of models. Information about CReSIS can be found at http://www.cresis.ku.edu.<br/><br/>The intellectual merits of the STC are the multidisciplinary research it enables its faculty, staff and students to pursue, as well as the broad education and training opportunities it provides to students at all levels. During the first phase, the Center provided scientists and engineers with a collaborative research environment and the opportunity to interact, enabling the development of high-sensitivity radars integrated with several airborne platforms and innovative seismic instruments. Also, the Center successfully collected data on ice thickness and bed conditions, key variables in the study of ice dynamics and the development of models, for three major fast-flowing glaciers in Greenland. During the second phase, the Center will collect additional data over targeted sites in areas undergoing rapid changes; process, analyze and interpret collected data; and develop advanced process-oriented and ice sheet models to predict future behavior. The Center will continue to provide a rich environment for multidisciplinary education and mentoring for undergraduate students, graduate students, and postdoctoral fellows, as well as for conducting K-12 education and public outreach. The broader impacts of the Center stem from addressing a global environmental problem with critical societal implications, providing a forum for citizens and policymakers to become informed about climate change issues, training the next generation of scientists and engineers to serve the nation, encouraging underrepresented students to pursue careers in STEM-related fields, and transferring new technologies to industry. Students involved in the Center find an intellectually stimulating atmosphere where collaboration between disciplines is the norm and exposure to a wide variety of methodologies and scientific issues enriches their educational experience. The next generation of researchers should reflect the diversity of our society; the Center will therefore continue its work with ECSU to conduct outreach and educational programs that attract minority students to careers in science and technology. The Center has also established a new partnership with ADMI that supports faculty and student exchanges at the national level and provides expanded opportunities for students and faculty to be involved in Center-related research and education activities. These, and other collaborations, will provide broader opportunities to encourage underrepresented students to pursue STEM careers. <br/><br/>As lead institution, The University of Kansas (KU) provides overall direction and management, as well as expertise in radar and remote sensing, Uninhabited Aerial Vehicles (UAVs), and modeling and interpretation of data. Five partner institutions and a DOE laboratory play critical roles in the STC. The Pennsylvania State University (PSU) continues to participate in technology development for seismic measurements, field activities, and modeling. The Center of Excellence in Remote Sensing, Education and Research (CERSER) at Elizabeth City State University (ECSU) contributes its expertise to analyzing satellite data and generating high-level data products. ECSU also brings to the Center their extensive experience in mentoring and educating traditionally under-represented students. ADMI, the Association of Computer and Information Science/Engineering Departments at Minority Institutions, expands the program?s reach to underrepresented groups at the national level. Indiana University (IU) provides world-class expertise in CI and high-performance computing to address challenges in data management, processing, distribution and archival, as well as high-performance modeling requirements. The University of Washington (UW) provides expertise in satellite observations of ice sheets and process-oriented interpretation and model development. Los Alamos National Laboratory (LANL) contributes in the area of ice sheet modeling. All partner institutions are actively involved in the analysis and interpretation of observational and numerical data sets.
This award supports a project to test whether Kamb Ice Stream (formerly Ice Stream C (ISC)), an ice stream<br/>that is thought to have stopped ~150 years ago, may be already in the process of restarting. If yes, it will help establish what is the rate of ice stream reactivation and what mechanisms are controlling this rate. If there is no evidence for ongoing ice stream reactivation, the physical controls that are preventing it will be examined and alternative scenarios for near-future evolution of this ice stream will be explored. One such scenario is an increase in ice diversion toward the neighboring Whillans Ice Stream. Such diversion may help prevent a complete stoppage of Whillans Ice Stream,which has been slowing down for at least the last 24 years. This project will consist of two components: (1) field observations of bed properties,geometry of internal radar reflectors, as well as surface strain rates and velocity/topography changes using Ice-Penetrating Radar and differential Global Positioning System, (2) numerical modeling study of near future(~100-1000 years) evolution of Kamb Ice Stream. The field component will be focused on the bulge-to-trunk transition, which is located at the present time just downstream of the so-called camp UpC. Reactivation of Kamb Ice Stream should be reflected in a downstream migration of the bulge-trunk transition at possibly high rates (bulge migration rates of ~km/yr occur on surging mountain glaciers). The modeling<br/>component will be used to generate predictions regarding the near-future behavior of Kamb Ice Stream. This project will provide training opportunities for at least two undergraduate students (per year) at St. Olaf College and for one<br/>undergraduate student (per year) at UCSC. This collaboration will bring together scientists from three different types of US institutions: (1) a liberal arts college (St.Olaf College), (2) a public research university (UCSC) and (3) a NASA research laboratory (JPL). The project will also help build a new glaciological research program at UCSC. Project results will be incorporated into undergraduate and graduate courses at UCSC and will be made available<br/>to the general public and educators through downloadable graphics and animations posted on the research website of the UCSC PI. Field data resulting from the project will be posted in the Antarctic Glaciological Data Center for use by other investigators.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The overall goal of this project is to increase understanding of the conjugate nature of the polar ionospheres, which in part helps understanding the multi-scale global solar wind, magnetosphere, and ionosphere system. The project utilizes numerous types of ionospheric remote sensing instrumentation, including: terrestrial GPS receivers, GPS satellite occultation receivers, all-sky imagers, riometers, and magnetometers currently deployed in the Arctic and Antarctic to estimate the 3-D time histories of the ionospheric electron density and also to estimate the polar wind in these polar regions. Furthermore, additional GPS instrumentation will be deployed in Antarctica to increase the number and improve the spatial distribution of GPS receivers in this region. Import aspects of this investigation are: (1) utilization of a large array of instrumentation in the Arctic and Antarctic regions to provide the maximum number of measurements of the ionosphere, (2) the modification and deployment of commercial-off-the-shelf GPS receivers in remote Antarctic locations to improve spatial distribution of GPS measurements, (3) development of a new estimation algorithm for estimating the polar wind, and (4) estimation of 3-D electron density time histories and conductances in conjugate polar ionospheres. The fieldwork and analysis efforts associated with this project are highly suitable for involvement and research training of graduate and undergraduate students.
This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed "Iceberg Alley". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (< 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. <br/>The proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.
This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites.
9816616 Trivelpiece Long-term seabird research conducted at Admiralty Bay, which is located on King George Island in the Antarctic Peninsula region, has documented annual variability in the life history parameters of the breeding biology and ecology of the Adelie, gentoo and chinstrap penguins. Twenty-year records acquired on these species, including survival and recruitment, population size and breeding success, and diets and foraging ecology have enabled scientists to test key hypotheses regarding the linkage between these predator parameters and variability in the Antarctic marine ecosystem. This project will focus on understanding the linkages between the physical environment and the population biology of penguins, in particular, sea ice coverage and its impact on krill availability as a food source for penguins. Krill is a key food web species in the Antarctic oceans and accounts for nearly one hundred percent of the prey eaten by dominant predators such as baleen whales, seals and penguins. Analysis of long-term data sets has suggested that years of heavy winter sea ice favor krill recruitment, as larval krill find refuge and food in the sea ice habitat. It has also been observed that years of heavy sea ice favor Adelie penguin recruitment and not that of chinstrap penguins. Aspects of the work include analysis of diet samples, shipboard krill sampling, survival and recruitment studies of penguins, satellite tracking of penguins during the breeding season, and analysis of satellite sea ice images. Penguins are the key species used to monitor the impact of commercial fisheries activities in the region, so this study will provide useful information to the Convention for the Conservation of Antarctic Marine Living Resources, which is the part of the Antarctic Treaty System which focuses on fisheries management.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the region recently occupied by the Larsen Ice Shelf in the Antarctic Peninsula. Over the last 10 years, scientists have observed a dramatic decay and disintegration of floating ice shelves along the northern end of the Antarctic Peninsula. Meteorological records and satellite observations indicate that this catastrophic decay is related to regional warming of nearly 3 degrees C in the last 50 years. While such retreat of floating ice shelves is unprecedented in historic records, current understanding of the natural variability of ice shelf systems over the last few thousand years is not understood well. This award supports a program of marine geologic research directed at filling this knowledge gap by developing an understanding of the dynamics of the northern Larsen Ice Shelf during the Holocene epoch (the last 10,000 years). The Larsen Ice Shelf is located in the NW Weddell Sea along the eastern side of the Antarctic Peninsula and is currently undergoing a rapid, catastrophic retreat as documented by satellite imagery over the past five years. While the region of the northern Antarctic Peninsula has experienced a pronounced warming trend over the last 40 years, the links between this warming and global change (i.e. greenhouse warming) are not obvious. Yet the ice shelf is clearly receding at a rate unprecedented in historic time, leaving vast areas of the seafloor uncovered and in an open marine setting. This project will collect a series of short sediment cores within the Larsen Inlet and in areas that were at one time covered by the Larsen Ice Shelf. By applying established sediment and fossil criteria to the cores we hope to demonstrate whether the Larsen Ice Shelf has experienced similar periods of retreat and subsequent advance within the last 10,000 years. Past work in various regions of the Antarctic has focused on depositional models for ice shelves that allow one to discern the timing of ice shelf retreat/advance in areas of the Ross Sea, Antarctic Peninsula, and Prydz Bay. This research will lead to a much improved understanding of the dynamics of ice shelf systems and their role in past and future climate oscillations.
Salps are planktonic grazers that have a life history, feeding biology and population dynamic strikingly different from krill, copepods or other crustacean zooplankton. Salps can occur in very dense population blooms that cover large areas and have been shown to have major impacts due to the their grazing and the production of fast-sinking fecal pellets. Although commonly acknowledged as a major component of the Southern Ocean zooplankton community, often comparable in biomass and distribution to krill, salps have received relatively little attention. Although extensive sampling has documented the seasonal abundance of salps in the Southern Ocean, there is a paucity of data on important rates that determine population growth and the role of this species in grazing and vertical flux of particulates. This proposed study will include: measurements of respiration and excretion rates for solitary and aggregate salps of all sizes; measurements of ingestion rates, including experiments to determine the size or concentration of particulates that can reduce ingestion; and determination of growth rates of solitaries and aggregates. In addition to the various rate measurements, this study will include quantitative surveys of salp horizontal and vertical distribution to determine their biomass and spatial distribution, and to allow a regional assessment of their effects. Measurements of the physical characteristics of the water column and the quantity and quality of particulate food available for the salps at each location will also be made. Satellite imagery and information on sea-ice cover will be used to test hypotheses about conditions that result in high densities of salps. Results will be used to construct a model of salp population dynamics, and both experimental and modeling results will be interpreted within the context of the physical and nutritional conditions to which the salps are exposed. This integrated approach will provide a good basis for understanding the growth dynamics of salp blooms in the Southern Ocean. Two graduate students will be trained on this project, and cruise and research experience will be provided for two undergraduate students. A portion of a website allowing students to be a virtual participant in the research will be created to strengthen students' quantitative skills. Both PI's will participate in teacher-researcher workshops, and collaboration with a regional aquarium will be developed in support of public education.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
This project uses radiocarbon in deep-sea corals to understand the Southern Ocean's role in modulating global climate. A key site of deep-water formation, the Southern Ocean is critical to exchange of heat and carbon between the deep-ocean and atmosphere. Changes in it may be linked to low atmospheric CO2 during the last glacial maximum through increased biologic carbon draw down or decreased air-sea CO2 exchange. Testing these hypotheses is challenging because of the scarcity of suitable records of the Southern Ocean's biogeochemistry and circulation. The aragonitic skeletons of deep-sea corals may offer insight because they are well suited for radiocarbon analyses-reflective of the 14C content of the past water column--while also allowing for timing of events through U-series age measurements. Overall, these measurements will put new constraints on the extent of air-sea gas exchange, polar water-column stratification, and the flux of Southern-sourced deep water to the rest of the world's oceans. As a part of this work, new sections of the Drake Passage sea floor will be mapped and imaged, along with the present and past distributions of deep-sea corals and their habitats. <br/><br/><br/><br/>A significant broader impact of this work is characterizing the functioning of what may be a key control of atmospheric CO2 content, which could prove important for fully understanding the impacts of continued CO2 emissions and developing mitigation strategies. As well, the work will characterize deep marine ecologies that are poorly understood, but increasingly exploited as fisheries resources.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
This award supports a collaborative marine geological and geophysical project between the University of California, Santa Barbara, and the University of Alabama to study the glacial and tectonic history of the eastern Ross Sea and the Marie Byrd Land margin of West Antarctica. The goals of the project are (1) to conduct seismic imaging and piston coring to begin unraveling the history of the West Antarctic ice Sheet as recorded in the recent sediments of the continental shelf of the region, and (2) to acquire seismic images of the acoustic basement beneath the Cenozoic glacial deposits toward an understanding of the relationship between rift structure of the continental crust and Cenozoic glacial deposits of the region. This research will result in bathymetric, structural, sediment isopach, gravity and magnetic maps of the eastern Ross Sea and the Marie Byrd Land margin. This information will be integrated into an interpretation of the major glacial and structural features of the region. This project will result in a better understanding of the glacio-marine stratigraphy and glacial history of the eastern Ross Sea and Marie Byrd Land margin and, consequently, it will represent a significant contribution to the goals of the West Antarctic Ice Sheet initiative.
This project seeks to examine the importance of icebergs to the pelagic ecosystem of the North-West Weddell Sea. Atmospheric warming has been associated with retreating glaciers and the increasing prevalence of icebergs in the Southern Ocean over the last decade. The highest concentration of icebergs occurs in the NW Weddell Sea, where they drift in a clockwise pattern to the northeast, following the contours of the Antarctic Peninsula through an area dubbed "Iceberg Alley". Little is known about the impact of free-drifting icebergs on the pelagic ecosystem of the Weddell Sea or on the Southern Ocean as a whole. It is hypothesized that as drifting islands, icebergs of small to intermediate size (< 10 km in largest dimension) impart unique physical, chemical and biological characteristics to the surrounding water. Three general questions will be asked to address this hypothesis: 1) What are the dynamics (approximate size, abundance and spatial distribution) of free-drifting icebergs on temporal scales of days to months, based on correlation of field measurements with imagery derived from satellite sensors? 2) What is the relationship between the size of free-drifting icebergs and the structure of the associated pelagic communities? 3) What is the estimated combined impact of free-drifting icebergs in the NW Weddell Sea on the biological characteristics of the pelagic zone? This interdisciplinary study will use standard oceanographic sampling coupled with unique methodology for staging shipboard data from all types of sensors and survey methods to determine the sphere of influence for a diverse set of biological factors as a function of iceberg size. The exploratory research proposed here will provide critical data on the effects of atmospheric warming in the Antarctic Peninsula region. The recent prevalence of free drifting icebergs in the Southern Ocean should have a pronounced enrichment effect on the surrounding pelagic ecosystem, altering community dynamics. Enhanced primary production associated with these icebergs could influence the global carbon cycle since the Southern Ocean is considered a major sink for excess CO2 from the atmosphere. <br/>The proposed research will include an innovative education component through the Ocean Exploration Center (OEC), whose focus is to provide a comprehensive view of the oceans, intelligible to non-scientists and researchers alike, with direct access to state-of-the-art databases and selected websites. The OEC will allow users to access content which has been classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. The results from this iceberg project will be incorporated into the Antarctic Research division of the OEC, providing databases documenting the impact of free-drifting icebergs on the surrounding pelagic ecosystem. These data then will be extrapolated to evaluate the impact of icebergs on the ecosystem of the Weddell Sea. Graduate students, undergraduates, teachers and volunteers are an important part of the proposed field and laboratory work.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
This collaborative study between Columbia University and the Southampton Oceanography Centre will investigate the dynamics of warm water intrusions under antarctic floating ice shelves. The study will focus on the Amundsen Sea and Pine Island Glacier, and will document how this water gains access to the continental shelf, transports heat into the ice shelf cavities via deep, glacially-scoured troughs, and rises beneath the ice to drive basal melting. The resulting seawater-meltwater mixtures upwell near the ice fronts, contributing to the formation of atypical coastal polynyas with strong geochemical signatures. Multidecadal freshening downstream is consistent with thinning ice shelves, which may be triggering changes inland, increasing the flow of grounded ice into the sea. This work will be carried out in combination with parallel modeling, remote sensing and data based projects, in an effort to narrow uncertainties about the response of West Antarctic Ice Sheet to climate change. Using state-of-the-art facilities and instruments, this work will enhance knowledge of water mass production and modification, and the understanding of interactions between the ocean circulation, sea floor and ice shelves. The data and findings will be reported to publicly accessible archives and submitted for publication in the scientific literature. The information obtained should prove invaluable for the development and validation of general circulation models, needed to predict the future role of the Antarctic Ice Sheet in sea level change.
This project will be the first systematic oceanographic study of the continental shelves of the Amundsen and Bellings-hausen Seas, and will include temperature and salinity profiling, water sampling for ocean chemistry, and continuous precision bathymetry. Upwelling warm deep water covers the Amundsen and Bellings-hausen shelves and delivers significant amounts of heat to the sea ice and fringing ice shelves. The regional precipitation is heavy, and has historically maintained a perennial ice cover. However, within the last few years satellite images have shown that the ice has been receding dramatically, with large areas of open water persisting through the winter in sectors that earlier had been ice-covered. These anomalous ice distributions are likely to have been accompanied by altered surface water properties, and possibly changes in the deep vertical circulation. There are indications that the conditions favoring a reduction in the sea ice may migrate westward toward the Ross Sea, and may have influenced a gradual warming over recent decades on the western side of the Antarctic Peninsula. The project will make use of the R/V Nathaniel B. Palmer in two cruises; one in the late austral summer 1993-1994, and a subse- quent cruise in September and October to observe late winter conditions.
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.
Anderson OPP 9527876 Abstract This award supports continuation of a long term investigation of the continental shelf sediments that is aimed at examining the configuration of the West Antarctic Ice Sheet during the last glacial maximum, the events and mechanisms involved in its retreat, and the timing of retreat. The project involves: 1) characterizing variations in the ice sheet grounding zone in a latitudinal transect extending from Ross Sea to Bransfield Basin, 2) reconstructing conditions at the ice/bed interface prior to and after ice sheet retreat, and 3) radiometrically dating ice sheet retreat along this transect. Detailed sea floor imagery (multibeam and deep-tow side-scan sonar), high resolution seismic reflection profiles, and sediment cores will be used to map and characterize prior grounding zones. Of particular concern are features that indicate the amount and organization (channelization) of basal meltwater and the extent of bed deformation that occurred in different ice streams. The timing of ice sheet retreat provides information about the link between Northern and Southern hemisphere ice expansion, and the role of eustasy in ice sheet decoupling. This research should lead to better predictive models to determine which ice streams are most unstable and likely, therefore, to serve as Oweak linksO in the long term behavior of West Antarctic Ice Sheet.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.
This award supports an integrated seismic, sedimentologic, and paleontologic investigation of glacio-marine stratigraphy of the Ross Sea continental shelf. The purpose of this work is to acquire seismic images and sediment cores of the glacial sediments toward a better understanding of the Cenozoic history of glaciation in the Ross Sea region. This investigation will utilize high resolution seismic profiling data to locate regions where the Pleistocene glacial till is thin or perhaps absent. Piston coring at these locations, if the till is penetrated, will provide sedimentary records of Cenozoic depositional environments and could provide important clues to fluctuations of the Antarctic Ice Sheets. The seismic profiling will provide a direct record of the grounding history of the Ross Ice Shelf during the Pleistocene and it will also allow first order correlations of Cenozoic sedimentary units that are represented by sediments recovered in the piston cores. This work will provide important proxy records of the history of both the West Antarctic Ice Sheet and the East Antarctic Ice Sheet and this, in turn, will provide important constraints to climate models.
This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models.
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. <br/>This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.
The proposal is to develop an instrument that can simultaneously measure the sound speed and magnetic fields at three heights in the solar atmosphere. The instrument will use magneto-optical filters tuned to the solar absorption lines at 422 nm (Ca I), 589 nm (Na D2), and 770 nm (K) to make measurements of Doppler velocities and longitudinal magnetic field. These lines form in the mid- and low-chromosphere and photosphere, respectively. In addition, the instrument will also use a Fabry-Perot etalon as a narrowband filter to measure the intensity variations of the 1083 nm (He I) line that is formed high in the chromosphere and which shows the location of the "foot points" of coronal holes. Together, the four lines will allow studying wave motions throughout the solar atmosphere. The instrument will record images of the Sun every 10 seconds with a spatial resolution of 1 arc-second. Thus, the project will be fostering the development of existing magneto-optical filter technology to a new level. Upon construction, the telescope will be tested at South Pole for a long period of uninterrupted observations. Both the local and global helioseismic analysis procedures will be utilized to identify and to characterize different types of waves present in the solar atmosphere. These observations will allow determining the structure and dynamics of the Sun's atmosphere through seismic measurements and, thus, improve the atmosphere models, assess the role of waves in heating the chromosphere/corona and driving the solar wind, and better understand how the Sun's atmosphere couples to the interior. The broader impact of the proposed project is two fold. First, there is a potential benefit to the science and to the society because it is believed that the solar atmosphere is a "home" to many phenomena that can have a direct effect on the solar activity, including flares, coronal mass ejections, and the solar wind. Understanding the structure and dynamics of the solar atmosphere will therefore lead to a better understanding of the Sun-Earth connection. The collected data will be made available to other researchers at DVDs. The broader audience of general public will be reached through presentations at high schools, libraries, and community events, and news articles in the general press. Most of the research materials will also be placed in the Web.
This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The <br/>project will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.
0086645<br/>Fountain<br/><br/>This award supports a Small Grant for Exploratory Research (SGER) to study glaciological change in the McMurdo Dry Valleys, Antarctica under the category of "application of new expertise or new approaches to established research topics". The purpose of the project is to assess the application of classified imagery to the study of the magnitude and rate of change of glacier extent and lake area as an indicator of climate change. Because the rate of change of both glacier extent and lake area is small compared to the resolution of unclassified imagery, the increased resolution of classified imagery is clearly needed. Access to classified imagery with 1 meter or better resolution will provide a baseline measurement against which future changes can be compared. Maximum use will be made of archived imagery but if necessary, one request will be made for new imagery to supplement the existing archive. This work will support on-going field measurements which are part of the Long-Term Ecological Research (LTER) site in the McMurdo Dry Valleys but which are limited by logistic constraints to only a few measurements during limited times of the year. If successful, the information gained in this project will enable researchers to better direct their efforts to identify the important physical processes controlling the changes in the valleys. The information acquired in conducting this project will be made available to the public, using appropriate security procedures to declassify the data. The "exploratory" and "high risk" nature of the proposed work and its "potential" to make an important "impact" on the field of Antarctic glacier studies are all reasons that this work is appropriate to support as an SGER.
0122520<br/>Gogineni<br/><br/>Sea level has been rising over the last century. Although the immediate impact of sea level rise may be less severe than other effects of global climate change, the long-term consequences can be much more devastating since nearly 60% of the world population lives in coastal regions. Scientists have postulated that excess water is being released from polar ice sheets due to long-term, global climate change, but there are insufficient data to confirm these theories. Understanding the interactions between the ice sheets, oceans and atmosphere is essential to quantifying the role of ice sheets in sea level rise. Toward that end, this research project involves the innovative application of information technology in the development and deployment of intelligent radar sensors for measuring key glaciological parameters. <br/><br/>Radar instrumentation will consist of a synthetic aperture radar (SAR) that can operate in bistatic or monostatic mode. One important application of the SAR will be in the determination of basal conditions, particularly the presence and distribution of basal water. Basal water lubricates the ice/bed interface, enhancing flow, and increasing the amount of ice discharged into the ocean. Another application of the SAR will be to measure ice thickness and map internal layers in both shallow and deep ice. Information on near-surface internal layers will be used to estimate the average, recent accumulation rate, while the deeper layers provide a history of past accumulation and flow rates. A tracked vehicle and an automated snowmobile will be used to test and demonstrate the utility of an intelligent radar in glaciological investigations.<br/><br/>The system will be developed to collect, process and analyze data in real time and in conjunction with a priori information derived from archived sources. The combined real time and archived information will be used onboard the vehicles to select and generate an optimum sensor configuration. This project thus involves innovative research in intelligent systems, sounding radars and ice sheet modeling. In addition it has a very strong public outreach and education program, which include near-real-time image broadcasts via the world wide web
This project is an international collaborative investigation of geographic structuring, founding of new colonies, and population change of Adelie penguins (Pygoscelis adelia) nesting on Ross and Beaufort islands, Antarctica. The long-term changes occurring at these colonies are representative of changes throughout the Ross Sea, where 30% of all Adelie penguins reside, and are in some way related to changing climate. The recent grounding of two very large icebergs against Ross and Beaufort islands, with associated increased variability in sea-ice extent, has provided an unparalleled natural experiment affecting wild, interannual swings in colony productivity, foraging effort, philopatry and recruitment. Results of this natural experiment can provide insights into the demography and geographic population structuring of this species, having relevance Antarctic-wide in understanding its future responses to climate change as well as interpreting its amazingly well known Holocene history. This ongoing study will continue to consider the relative importance of resources that constrain or enhance colony growth (nesting habitat, access to food); the aspects of natural history that are affected by exploitative or interference competition among neighboring colonies (breeding success, foraging effort); climatic factors that influence the latter, especially sea ice patterns; and behavioral mechanisms that influence colony growth as a function of initial size and location (emigration, immigration). An increased effort will focus on understanding factors that affect over-winter survival. The hypothesis is that the age structure of Cape Crozier has changed over the past thirty years and no longer reflects the smaller colonies nearby. Based on recent analyses, it appears that the Ross Island penguins winter in a narrow band of sea ice north of the Antarctic Circle (where daylight persists) and south of the southern boundary of the Antarctic Circumpolar Current (where food abounds). More extensive winter ice takes the penguins north of that boundary where they incur higher mortality. Thus, where a penguin winters may be due to the timing of its post-breeding departure (which differs among colonies), which affects where it first encounters sea ice on which to molt and where it will be transported by the growing ice field. Foraging effort and interference competition for food suggested as factors driving the geographic structuring of colonies. The research includes a census of known-age penguins, studies of foraging effort and overlap among colonies; and identification of the location of molting and wintering areas. Information will be related to sea-ice conditions as quantified by satellite images. Demographic and foraging-effort models will be used to synthesize results. The iceberg natural experiment is an unparalleled opportunity to investigate the demographics of a polar seabird and its response to climate change. The marked, interannual variability in apparent philopatry, with concrete data being collected on its causes, is a condition rarely encountered among studies of vertebrates. Broader impacts include collaborating with New Zealand and Italian researchers, involving high school teachers and students in the fieldwork and continuing a website to highlight results to both scientists and the general public.
This proposal is to continue operation and scientific studies with the middle-frequency (MF, 1-30 MHz) mesospheric radar deployed at the British Antarctic station Rothera in 1996. This system is now a key site in the Antarctic MF radar chain near 68 deg. S, which includes also MF radars at Syowa (Japan) and Davis (Australia) stations. This radar comprises the winds component of a developing instrument suite for the mesosphere-thermosphere (MLT) studies at Rothera - a focus of the new BAS 5-year plan, which also includes the Fe temperature lidar (formerly at South Pole) and the mesopause airglow imager for gravity wave studies (formerly at Halley). The Rothera MF radar has just had its antennas and electronics upgraded to achieve better signal-to-noise ratio and more continuous measurements in height and time. The main focus of the proposed research is to extend the knowledge of the polar mesosphere dynamics. The instrument suite at Rothera is ideally positioned for correlative interhemispheric studies with northern hemisphere sites at Poker Flat, Alaska (65 deg. N) and ALOMAR, Norway (69 deg. N) having comparable instrumentation. Further research efforts performed with continued funding will focus on: (1) multi-instrument collaborative studies at Rothera to quantify as fully as possible the dynamics, structure, and variability of the MLT at that location, (2) multi-site (and multi-instrument) studies of large-scale dynamics and variability in the Antarctic (together with the radars and other instrumentation at Davis and Syowa), and (3) interhemispheric studies employing instruments (e.g., the Na resonance lidar and MF radar) at Poker Flat and ALOMAR. It is expected that these studies will lead to a more detailed understanding of (1) mean, tidal, and planetary wave structures at polar latitudes, (2) seasonal, inter-annual, and short-term variability of these structures, (3) hemispheric differences in the tidal and planetary wave structures arising from different source and wave interaction conditions, and (4) the relative influences of gravity waves in the two hemispheres. Such studies will also contribute more generally to an increased awareness of the role of high-latitude processes in global atmospheric dynamics and variability.
9911617 Blankenship This award, provided jointly by the Antarctic Geology and Geophysics Program, the Antarctic Glaciology Program, and the Polar Research Support Section of the Office of Polar Programs, provides funds for continuation of the Support Office for Aerogeophysical Research (SOAR). From July 1994 to July 2000, SOAR served as a facility to accomplish aerogeophysical research in Antarctica under an agreement between the University of Texas at Austin and the National Science Foundation's Office of Polar Programs (NSF/OPP). SOAR operated and maintained an aerogeophysical instrument package that consists of an ice-penetrating radar sounder, a laser altimeter, a gravimeter and a magnetometer that are tightly integrated with each other as well as with the aircraft's avionics and power packages. An array of aircraft and ground-based GPS receivers supported kinematic differential positioning using carrier-phase observations. SOAR activities included: developing aerogeophysical research projects with NSF/OPP investigators; upgrading of the aerogeophysical instrumentation package to accommodate new science projects and advances in technology; fielding this instrument package to accomplish SOAR-developed projects; and management, reduction, and analysis of the acquired aerogeophysical data. In pursuit of 9 NSF-OPP funded aerogeophysical research projects (involving 14 investigators from 9 institutions), SOAR carried out six field campaigns over a six-year period and accomplished approximately 200,000 line kilometers of aerogeophysical surveying over both East and West Antarctica in 377 flights. This award supports SOAR to undertake a one year and 8 month program of aerogeophysical activities that are consistent with continuing U.S. support for geophysical research in Antarctica. - SOAR will conduct an aerogeophysical campaign during the 200/01 austral summer to accomplish surveys for two SOAR-developed projects: "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Studies" (Co-PI's Bell and Studinger, LDEO); and "Collaborative Research: Seismic Investigation of the Deep Continental Structure Across the East-West Antarctic Boundary" (Co-PI's Weins, Washington U. and Anandakrishnan, U. Alabama). After configuration and testing of the survey aircraft in McMurdo, SOAR will conduct survey flights from an NSF-supported base adjacent to the Russian Station above Lake Vostok and briefly occupy one or two remote bases on the East Antarctic ice sheet. - SOAR will reduce these aerogeophysical data and produce profiles and maps of surface elevation, bed elevation, gravity and magnetic field intensity. These results will be provided to the respective project investigators within nine months of conclusion of field activities. We will also submit a technical manuscript that describes these results to a refereed scientific journal and distribute these results to appropriate national geophysical data centers within approximately 24 months of completion of field activities. - SOAR will standardize all previously reduced SOAR data products and transfer them to the appropriate national geophysical data centers by the end of this grant. - SOAR will convene a workshop to establish a community consensus for future U.S. Antarctic aerogeophysical research. This workshop will be co-convened by Ian Dalziel and Richard Alley and will take place during the spring of 2001. - SOAR will upgrade the existing SOAR in-field quality control procedures to serve as a web-based interface for efficient browsing of many low-level SOAR data streams. - SOAR will repair and/or refurbish equipment that was used during the 2000/01 field campaign. Support for SOAR is essential for accomplishing major geophysical investigations in Antarctica. Following data interpretation by the science teams, these data will provide valuable insights to the structure and evolution of the Antarctic continent.
The Erebus Bay Weddell seal population study in eastern McMurdo Sound, Antarctica was initiated in 1968 and represents one of the longest intensive field investigations of a long-lived mammal in existence. Over the thirty-four year period of this study a total of 15,636 animals have been tagged with 144,927 re-sighting records logged in the current database. As such, this study is an extremely valuable resource for understanding population dynamics of not only Weddell seals, but also other species of both terrestrial and marine mammals with similar life-history characteristics. With the retirement of the original investigator, Dr. Donald Siniff, this proposal represents an effort to transition the long-term studies to a new team of investigators. Dr. Robert Garrott and Dr. Jay Rotella propose building upon the foundation with two lines of investigation that combine use of the long-term database with new field initiatives. The continuity of the demographic data will be maintained by annually marking all pups born, replace lost or broken tags, and perform multiple mark-recapture censuses of the Erebus Bay seal colonies. The new data will be combined with the existing database and a progressively complex series of analyses will be performed using recently developed mark-recapture methods to decompose, evaluate, and integrate the demographic characteristics of the Erebus Bay Weddell seal population. These analyses will allow the testing of specific hypotheses about population regulation as well as temporal and spatial patterns of variation in vital rates among colonies within the population that have been posed by previous investigators, but have not been adequately evaluated due to data and analytical limitations. The primary new field initiative will involve an intensive study of mass dynamics of both pups and adult females as a surrogate measure for assessing annual variation in marine resources and their potential role in limiting and/or regulating the population. In conjunction with the collection of data on body mass dynamics the investigators will use satellite imagery to develop an extended time series of sea ice extent in McMurdo Sound. Regional extent of sea ice affects both regional primary productivity and availability of haul out areas for Weddell seals. Increased primary productivity may increase marine resources which would be expected to have a positive affect on Weddell seal foraging efficiency, leading to increased body mass. These data combined with the large proportion of known-aged seals in the current study population (>60%) will allow the investigators to develop a powerful database to test specific hypotheses about ecological processes affecting Weddell seals. Knowledge of the mechanisms that limit and/or regulate Weddell seal populations and the specific bio-physical linkages between climate, oceans, ice, and Antarctic food webs can provide important contributions to understanding of pinniped population dynamics, as well as contribute more generally to theoretical understanding of population, community, and ecosystem patterns and processes. Such knowledge can be readily applied elsewhere to enhance the ability of natural resource managers to effectively maintain assemblages of other large-mammal species and the ecological processes that they facilitate. Continuation of this long-term study may also contribute to understanding the potential impacts of human activities such as global climate warming and the commercial exploitation of Antarctic marine resources. And finally, the study can contribute significantly to the development and testing of new research and analytical methodologies that will almost certainly have many other applications.
This award supports a project to perform ice radar studies of bedrock topography and internal layers along the second US ITASE traverse corridor extending from Taylor Dome to South Pole on the inland side of the Transantarctic Mountains. The radar will provide information immediately available in the field on ice thickness and internal layer structure to help in the selection of core sites as the traverse proceeds. These data will also be useful in locating additional radar and surface studies to characterize the drainage divides between major outlet glaciers flowing through the mountains and possible changes in them through time. Information from the radar on bed roughness and basal reflectivity, together with images of internal layer deformation will enable us to study changes in the character of ice flow as tributaries merge to trunk flow and velocities increase. Areas where wind scour and sublimation have brought old ice close to the surface will be investigated. Based on our results from the first ITASE traverse, it is also likely that there will be findings of opportunity, phenomena we have not anticipated that are revealed by the radar as the result of a discovery-based traverse. The interdisciplinary science goals of US ITASE are designed to accommodate a variety of interactive research programs and data collected are available to a broad scientific community. US ITASE also supports an extensive program of public outreach and the education and training of future scientists will be central to all activities of this proposal. St. Olaf College is an undergraduate liberal arts institution that emphasizes student participation in scientific research. This award supports two undergraduate students as well as a research associate and a graduate student who will be part of the US ITASE field team.
This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated "sticky spot" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA's IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.
This award supports the study of the drift and break-up of Earth's largest icebergs, which were recently released into the Ross Sea of Antarctica as a result of calving from the Ross Ice Shelf. The scientific goals of the study are to determine the physics of iceberg motion within the dynamic context of ocean currents, winds, and sea ice, which determine the forces that drive iceberg motion, and the relationship between the iceberg and geographically and topographically determined pinning points on which the iceberg can ground. In addition, the processes by which icebergs influence the local environments (e.g., sea ice conditions near Antarctica, access to penguin rookeries, air-sea heat exchange and upwelling at iceberg margins, nutrient fluxes) will be studied. The processes by which icebergs generate globally far-reaching ocean acoustic signals that are detected within the global seismic (earthquake) sensing networks will also be studied. A featured element of the scientific research activity will be a field effort to deploy automatic weather stations, seismometer arrays and GPS-tracking stations on several of the largest icebergs presently adrift, or about to be adrift, in the Ross Sea. Data generated and relayed via satellite to home institutions in the Midwest will motivate theoretical analysis and computer simulation; and will be archived on an "iceberg" website (http://amrc.ssec.wisc.edu/amrc/iceberg.html) for access by scientists and the general public. At the most broad level, the study is justified by the fact that icebergs released by the Antarctic ice sheet represent the largest movements of fresh water within the natural environment (e.g., several of the icebergs to be studied, B15, C19 and others calved since 2000 CE, represent over 6000 cubic kilometers of fresh water-an amount roughly equivalent to 100 years of the flow of the Nile River). A better understanding of the impact of iceberg drift through the environment, and particularly the impact on ocean stratification and mixing, is essential to the understanding of the abrupt global climate changes witnessed by proxy during the ice age and of concern under conditions of future greenhouse warming. On a more specific level, the study will generate a knowledge base useful for the better management of Antarctic logistical resources (e.g., the shipping lanes to McMurdo Station) that can occasionally be influenced by adverse effects icebergs have on sea ice conditions.
Although the cold ocean ecosystems comprise seventy-two percent of the biosphere on Earth by volume, they remain sparsely inhabited and relatively unexploited, particularly in terms of metazoan phyla. Consequently, the few animals that can exist at this border of intracellular freezing represent ideal systems for exploring genomic-level processes of environmental adaptations. Understanding life at a margin of the biosphere is likely to convey significant insights into the essential genomic processes necessary for survival under intense selection pressures. This study of adaptive mechanisms in genomic networks focuses on an experimental system that faces a formidable challenge for viability at low water temperatures: embryonic development at sea water temperatures of -1.8 o C in two Antarctic echinoderms, the sea star Odontaster validus and the sea urchin Sterechinus neumayeri. The project strategy will quantify temperature effects on gene expression and protein turnover networks during early development using a Bayesian network analysis to identify clusters of genes and proteins whose expression levels are associated in fixed, synergistic interactions. Ultimately, there is a simple question to be addressed: Is it more or less difficult (complex) for an embryo to develop in an extreme environment? To answer this question, the research plan will decipher network topologies and subnet structuring to uncover gene connectivity patterns associated with embryo development in this polar environment. This is the new area of Environmental Genomics that the PI will explore by expanding his research experience into computational network analyses. Overall, there is a significant need for integrative biologists in the future development of environmental sciences, particularly for the application of genomic-scale technologies to answer ecological-scale questions. The educational goals of this CAREER proposal are focused at two levels in terms of interesting young students in the developing field of environmental genomics: 1) increasing the racial diversity of the scientists attracted to environmental research, and 2) increasing the awareness of career opportunities within environmental research.<br/>These educational objectives are incorporated into the research plan to engage students with the excitement of working in an extreme environment such as Antarctica and to interest them in the insights that genome-level research can reveal about how organisms are adapted to specific habitats. Working in a remote, extreme environment such as Antarctica is always a challenge. However, the adventurous nature of the work can be utilized to establish educational and outreach components of high interest to both undergraduate students and the public in general. The proposed plan will bring the experience of working in Antarctica to a larger audience through several means. These include the following: the project theme of environmental genomics will be incorporated into a new Bioinformatics curriculum currently being developed at the University of Delaware; an intern program will be implemented to involved minority undergraduate students in summer research in the United States and then to bring the students to Antarctica to participate in the research; and a K-12 education program will bring the excitement of working in Antarctica to the classrooms of thousands of children (U.S. and international) through a program produced with the Marine Science Public Education Office at the University of Delaware.
The proposed work would modify an existing 4-channel all-sky camera at South Pole in order to observe several types of auroras, and to distinguish the cusp reconnection aurora from the normal plasma sheet precipitation. The camera will simultaneously operate in four wavelength regions that allow a distinction between auroras that are created by higher energy electrons (> 1 keV) and those created by low energy (<500 eV) precipitation. The cusp is the location where plasma enters the magnetosphere through the process of magnetic reconnection. This reconnection occurs where the Interplanetary Magnetic Field (IMF) and the terrestrial magnetic field are oriented in opposite directions. Using the IMAGE (Imager for Magnetopause to Aurora Global Exploration) satellite ultraviolet optical data it has been shown that cusp precipitation can be seen in different regions, which depend on the orientation of the IMF. South Pole station is uniquely located for optical observations of the aurora because of the 24 hours of darkness during austral winter and the appearance of the auroral oval within the field of view of all-sky cameras.
This award supports a small grant for exploratory research to study the processes that contribute to the melting and break-up of tabular polar icebergs as they drift north. This work will enable the participation of a group of U.S. scientists in this international project which is collaborative with the Instituto Antartico Argentino. The field team will place weather instruments, firn sensors, and a video camera on the iceberg to measure the processes that affect it as it drifts north. In contrast to icebergs in other sectors of Antarctica, icebergs in the northwestern Weddell Sea drift northward along relatively predictable paths, and reach climate and ocean conditions that lead to break-up within a few years. The timing of this study is critical due to the anticipated presence of iceberg A43A, which broke off the Ronne Ice Shelf in February 2000 and which is expected to be accessible from Marambio Station in early 2006. It has recently been recognized that the end stages of break-up of these icebergs can imitate the rapid disintegrations due to melt ponding and surface fracturing observed for the Larsen A and Larsen B ice shelves. However, in some cases, basal melting may play a significant role in shelf break-up. Resolving the processes (surface ponding/ fracturing versus basal melt) and observing other processes of iceberg drift and break up in-situ are of high scientific interest. An understanding of the mechanisms that lead to the distintegration of icebergs as they drift north may enable scientists to use icebergs as proxies for understanding the processes that could cause ice shelves to disintegrate in a warming climate. A broader impact would thus be an ability to predict ice shelf disintegration in a warming world. Glacier mass balance and ice shelf stability are of critical importance to sea level change, which also has broader societal relevance.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports the development of a standardized diatom image catalog or database. Diatoms are considered by many to be the most important microfossil group used today in the study of Antarctic Cenozoic marine deposits south of the Polar Front, from the near shore to deep sea. These microfossils, with walls of silica called frustules, are produced by single-celled plants (algae of the Class Bacillariophyceae) in a great variety of forms. Consequently, they have great biostratigraphic importance in the Southern Ocean and elsewhere for determining the age of marine sediments. Also, paleoclimatic and paleoceanographic studies increasingly rely on fossil diatom data. Changing biogeographic distributions of given taxa indicate shifting paleoecological conditions and provide evidence of the surface productivity and temperatures of ancient oceans. The generality of conclusions, though, is limited by variation in species concepts among workers. The broad research community relies, directly or indirectly, on the accurate identification of diatom species. Current technology can be used to greatly improve upon the standard references that have been used in making these identifications.<br/><br/>This project will develop an interactive digital-image catalog of modern and Cenozoic fossil diatoms of the Southern Ocean called "DiatomWare" for use by specialists and educators as an aid in rapid, accurate, and consistent species identification. As such, this will be a researcher's resource. It will be especially useful where it is not possible to maintain standard library resources such as onboard research vessels or at remote stations such as McMurdo Station. Major Antarctic geological drilling initiatives such as the new SHALDRIL project and the pending ANDRILL project will benefit from this product because they will rely heavily on diatom biostratigraphy to achieve their research objectives. The DiatomWare image database will be modeled on NannoWare, which was released in October 2002 on CD-ROM as a publication of the International Nannoplankton Association. BugCam will be adapted and modified as necessary to run the DiatomWare database, which can then be run from desktop or laptop computers. Images and text for the database will be scanned from the literature or captured in digital form from light or scanning electron microscopes.<br/><br/>The software interface will include a number of data fields that can be accessed by the click of a mouse button. Primary information will be the images and descriptions of the holotypes. In addition, representative images of paratypes or hypotypes will be included whenever possible in plain transmitted, differential interference contrast light and, when available, as drawings and SEM images. Also included will be a 35-word or less English diagnosis ("mini-description"), the biostratigraphic range in terms of zones and linear time, bibliographic references, lists of species considered junior synonyms, and similar species. The list of similar species will be cross-referenced with their respective image files to enable quick access for direct visual comparison on the viewing screen. Multiple images can be brought to the viewing screen simultaneously, and a zoom feature will permit image examination at a wide range of magnifications. Buttons will allow range charts, a bibliography, and key public-domain publications from the literature to be called up from within the program. The DiatomWare/BugCam package will be distributed at a nominal cost through a major nonprofit society via CD-ROM and free to Internet users on the Worldwide Web. Quality control measures will include critical review of the finalized database by a network of qualified specialists. The completed database will include descriptions and images of between 350 and 400 species, including fossil as well as modern forms that have no fossil record.<br/><br/>The development of the proposed diatom image database will be important to all research fields that depend on accurate biostratigraphic dating and paleoenvironmental interpretation of Antarctic marine sediments and plankton. The database will also serve as a valuable teaching tool for micropaleontology students and their professors, will provide a rapid means of keying down species for micropaleontologists of varying experience and background, and will promote a uniformity of taxonomic concepts since it will be developed and continuously updated with the advice of a community of nannofossil fossil experts. Broad use of the database is anticipated since it will be widely available through the Internet and on CD-ROM for use on personal computers that do not require large amounts of memory, costly specialized programs, or additional hardware.
9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.
Anandakrishnan, Sridhar; Alley, Richard; Voigt, Donald E.
No dataset link provided
This award supports a project to investigate the new-found, startling sensitivity of two major West Antarctic ice streams to tidal oscillations to learn the extent and character of the effect and its ramifications for future ice-stream behavior. Ice streams D, C and Whillans (B) all show strong but distinct tidal signals. The ice plain of Whillans is usually stopped outright, forward motion being limited to two brief periods each day, at high tide and on the falling tide. Motion events propagate across the ice plain at seismic wave velocities. Near the mouth of D, tides cause a diurnal variation of about 50% in ice-stream speed that propagates upglacier more slowly than on Whillans, and seismic data show that C experiences even slower upglacier propagation of tidal signals. Tidal influences are observed more than 100 km upglacier on C, more than 40 km upglacier on D, and may be responsible for fluctuations in basal water pressure reported 400 km upstream on Whillans, nearly the full length of the ice stream. During the first year, the spatial extent of this behavior will be measured on Whillans Ice Stream and ice stream D by five coordinated seismic and GPS instrument packages at 100-km spacing on each ice stream. These packages will be deployed by Twin Otter at sites selected by review of satellite imagery and will operate autonomously through a combination of solar and battery power for two lunar cycles to study the sensitivity of the ice stream motion to spring and neap tides. Additionally, existing data sets will be examined further for clues to the mechanisms involved, and preliminary models will be developed to reconcile the seemingly contrasting behaviors observed on the ice streams. The second and third field seasons will examine in greater detail the tidal behavior of Whillans (year 2) and D (year 3). Work will especially focus on detailed study of at least one source area for events on Whillans, assuming that source areas inferred from preliminary data remain active. Vertical motions have not yet been detected, but differential GPS will increase our detection sensitivity. Seismic instrumentation will greatly increase temporal resolution and the ability to measure the propagation speed and any spatial heterogeneity. Modeling will be refined as more is learned from the field experiments. The project should yield numerous broader impacts. The improved knowledge of ice-stream behavior from this study will contribute to assessment of the potential for rapid ice-sheet change affecting global sea level with societal consequences. Results will be disseminated through scientific publication and talks at professional meetings, as well as contacts with the press, university classes taught by the PIs, visits to schools and community groups, and other activities. Two graduate students will be educated through the project.
This award supports the development of novel methods for digital image analysis of glacial ice cores that are stored at the National Ice Core Laboratory (NICL) in Denver, Colorado. Ice cores are a critical source of information on how Earth has changed over time, since indicators of local climate (snow accumulation, temperature), regional characteristics (wind-blown materials such as sea salt, dust and pollen), global processes (e.g., CO2, methane), and even extraterrestrial influences (cosmogenic isotopes) are stored in the ice on a common time scale. This project will develop a high-resolution optical scanning system for laboratory curation of ice core images, internet-based search and retrieval capabilities, a digital image analysis system specifically for ice core studies, and methods to integrate ice core image analysis with other dating methods. These tools will be developed and tested in conjunction with scientific investigations of NICL holdings. Optical scanning and analysis tools will improve understanding of the historical development of the ice collected from a particular location and will help to resolve challenges such as ice that has lost stratigraphic order through flow processes. <br/>By providing permanent online digital archives of ice core images, this project will greatly improve the documentation and availability of ice core data while reducing time and costs for subsequent scientific investigations. Using the internet, ice core scientists will be able to determine the appropriateness of specific NICL holdings for various scientific studies. By optically scanning ice cores as they are processed at NICL, any researcher will be able to examine an ice core in similar detail to the few investigators who were fortunate enough to observe it before modifications from sampling and storage. Re-examination of cores could be done decades later by anyone at any location, which is not possible now because only the interpretation of the original observer is recorded. Integration of digital image data into ice core analysis will speed discovery, allow collaborative interpretation, and enhance consistency of analysis to improve ice core dating, identification of melt layers, location of flow disturbances, and more. The equipment will be housed at NICL and will be available to the broad community, improving scientific infrastructure.<br/>This work will also have numerous broader impacts. Ice core science addresses fundamental questions of human interest related to global warming, abrupt climate change, biogeochemical cycling, and more. The principal investigators broadly disseminate their scientific findings through numerous outlets, ranging from meeting with government officials, chairing and serving on NRC panels, writing popular books and articles, publishing in scientific literature, teaching classes, talking to civic groups, and appearing on radio and television. The results from ice core analyses have directly informed policymakers and will continue to do so. Thus, by improving ice core science, this projectl will benefit society.
This award supports a science management office for a pilot ice-core drilling and analysis program to test the feasibility of obtaining well-dated, high-resolution isotope and chemistry records from East Antarctica. Shallow ice cores will be obtained from two locations: 1) ~100 km from South Pole towards the Pole of Inaccessibility, as an extension of the Byrd Station-to-South Pole ITASE traverse [International Trans Antarctic Scientific Expedition]; 2) at Taylor Dome, near the original deep coring site, and (3) possibly at AGO 3 and AGO 4 as part of a logistics traverse to these sites. All of the cores collected will be sampled at very high resolution (~1/2 cm) and analyzed for major ions. Results from this calibration work, along with those from another project that is analyzing stable isotopes will be used to help plan a program of larger scope, with the objective of mapping the spatial expression of climate variability in East Antarctica. Funds are also provided to organize a community workshop for coordination of the second phase of US ITASE and for one workshop per year for two years dedicated to writing and preparation of scientific papers from phase one of US ITASE. In addition, route selection activities for the follow-on traverse activities in East Antarctica will be conducted using satellite image mapping. A summary document will be produced and made available to the community to help with planning of related field programs (e.g. deep ice radar, firn radar profiling, atmospheric chemistry, ice coring, snow surface properties for satellite observations, ice surface elevation and mass balance).
This award is for support for a research program involving the use of passive microwave data to validate key paleoclimate indicators used in glaciologic research. The specific contributions of this research are: 1) to define the timing and spatial extent of hoar complexes, which may serve as visible, annual stratigraphic markers in ice cores, through a combination of satellite passive microwave data and field observations; and 2) to monitor temperature trends at the site with calibrated passive microwave brightness temperatures and to correlate these trends to proxy temperatures provided by oxygen and hydrogen stable isotope ratio profiles from snow pits and/or ice cores. The work will take place at Siple Dome, Antarctica as part of the field activities associated with the ice core drilling program there.
This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.
This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.
None
None
false
false
None
None
2005-11-02
Painter, Thomas; Scambos, Ted; Haran, Terry; Bohlander, Jennifer; Fahnestock, Mark
This award provides funding for one year of data analysis of the solar images produced by the Flare Genesis Experiment telescope during a long-duration balloon flight over Antarctica in early 2000, near the peak of solar activity for this solar cycle. The telescope produced many thousands of images and maps of solar magnetic fields with unprecedented resolution. It is expected that the detailed analysis of the data will improve understanding of how energy stored in solar magnetic fields is converted to high temperatures and velocities associated with solar activity. This project is jointly supported by NASA, NSF/OPP and NSF/ATM.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth's oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. <br/><br/>This project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:<br/>1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),<br/>2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,<br/>3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and<br/>4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.<br/><br/>High-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, "draped" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.
9909518 Raymond This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide "shutdown" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.
9909469 Scambos This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide "shutdown" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.
This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.
This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.
This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.
This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.
Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.
9316715 Taylor This award is for support to collect micrometeorites from the bottom of the new water well at South Pole Station, Antarctica. The large volume of firn and ice being melted provides the concentrating mechanism needed to collect large numbers of micrometeorites that occur in low concentrations in the ice. The first task of the project is to design a collection system to retrieve the micrometeorites from the bottom of the water well. The collector must be reliable, easy to operate, must collect all particles larger than 10 mm and should not contaminate the well's water quality. Following successful design and deployment of the collector, recovered particles will be catalogued and distributed to interested researchers. ***
This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.
This proposed work is the continued operation of the Antarctic Meteorological Research Center (AMRC) for three years through 2009. AMRC is a meteorological data acquisition and management system with nodes at McMurdo Station and at the University of Wisconsin, Madison. The system is a resource and archive for meteorological research and a test bed for improving operational synoptic forecasting. Its basis is a computer-based system for organizing, manipulating, and integrating antarctic environmental data, developed by the University of Wisconsin. It captures the flow of meteorological information from polar orbiting satellites, automatic weather stations, operational station synoptic observations, and research project data, producing a mosaic of antarctic satellite images on an operational basis. It also receives environmental data products, such as weather forecasts, from outside Antarctica, and acts as a repository for existing archived databases. The AMRC provides customized weather and climate information for a variety of antarctic users, including aircraft and ship operations of the US Antarctic Program. Currently the AMRC produces the Antarctic Composite Infrared Image, a mosaic of images from four geostationary and three polar-orbiting satellites, which is used for both forecasting and research purposes. In the current time period, AMRC will develop a data exploration/classification toolkit based on self-organizing maps to produce a new, satellite-based antarctic cloud climatology for regions. The AMRC will also be at the center of the evolving Antarctic-Internet Data Distribution (Antarctic-IDD) system, a reliable and formalized means of sharing and distributing Antarctic data among operational and research users. <br/>***
9316338 Jacobel This award is for support for a program of glaciological studies of Siple Dome and its surroundings between Ice Streams C and D. The purpose of the work is to characterize the dynamic environment and ice stratigraphy to aid in the assessment of Siple Dome as a potential deep ice core site, and to determine whether the configuration of ice stream flow in the region was different in the past than now. The work involves measurements of the configuration and continuity of internal layers in the ice, using radar echo sounding and determination of velocity field, based on standard GPS surveying. The goals of the work are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its past history and its potential future behavior, including possible effects on global sea level. This work is a collaborative project between the University of Washington, the University of Colorado and St. Olaf College. ***
Abstract<br/><br/>The Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.<br/><br/>AMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. <br/><br/><br/><br/>"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."