IEDA
Project Information
Antarctic Meteorological Research and Data Center
Short Title:
AMRDC
Start Date:
2020-07-01
End Date:
2025-07-01
Project Website(s)
Description/Abstract
The Antarctic Meteorological Research and Data Center (AMRDC) project will create an Antarctic meteorological observational data repository and archive system based on an open source platform to manage data from submission to end-user retrieval. The new archival system will host both currently available datasets and campaign meteorological datasets deposited by other Antarctic investigators. The project will also engage undergraduate and graduate students in order to provide them with meaningful experiences that can translate to several science, technology, engineering, and mathematics (STEM) career paths. This project targets four main tasks as a starting point toward meeting existing recommendations and creating a more sustainable Antarctic meteorological enterprise: 1. Designation of the Antarctic Meteorological Research and Data Center (AMRDC), 2. Distribution of Automatic Weather Station (AWS) observations on GTS in WMO BUFR format, 3. Establish a steering committee for the AMRDC, and 4. Diagnostic case studies of Antarctic meteorological events. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Person Role
Lazzara, Matthew Investigator and contact
Havens, Jeffrey F Co-Investigator
Funding
Antarctic Ocean and Atmospheric Sciences Award # 1951603
AMD - DIF Record(s)
Data Management Plan
Product Level:
0 (raw data)
Datasets
Repository Title (link) Format(s) Status
AMRDC AMRDC Repository Not Provided exist
Publications
  1. Zhou, Y., Zhai, P.-W., & Yang, Y. (2023). Evaluation of EPIC oxygen bands stability with radiative transfer simulations over the South Pole. Journal of Quantitative Spectroscopy and Radiative Transfer, 310, 108737. (doi:10.1016/j.jqsrt.2023.108737)
  2. Zou, X., Rowe, P. M., Gorodetskaya, I., Bromwich, D. H., Lazzara, M. A., Cordero, R. R., Zhang, Z., Kawzenuk, B., Cordeira, J. M., Wille, J. D., Ralph, F. M., & Bai, L. (2023). Strong Warming Over the Antarctic Peninsula During Combined Atmospheric River and Foehn Events: Contribution of Shortwave Radiation and Turbulence. Journal of Geophysical Research: Atmospheres, 128(16). Portico. (doi:10.1029/2022jd038138)
  3. Zhai, Z., Wang, Y., Lazzara, M. A., Keller, L. M., & Wu, Q. (2023). Snow Accumulation Variability at the South Pole From 1983 to 2020, Associated With Central Tropical Pacific Forcing. Journal of Geophysical Research: Atmospheres, 128(24). Portico. (doi:10.1029/2023jd039388)
  4. Turner, J., Lu, H., King, J. C., Carpentier, S., Lazzara, M., Phillips, T., & Wille, J. (2022). An Extreme High Temperature Event in Coastal East Antarctica Associated With an Atmospheric River and Record Summer Downslope Winds. Geophysical Research Letters, 49(4). Portico. https://doi.org/10.1029/2021gl097108 (doi:10.1029/2021gl097108)
  5. Keller, L. M., Maloney, K. J., Lazzara, M. A., Mikolajczyk, D. E., & Battista, S. D. (2022). An Investigation of Extreme Cold Events at the South Pole. Journal of Climate, 35(6), 1761–1772. https://doi.org/10.1175/jcli-d-21-0404.1 (doi:10.1175/jcli-d-21-0404.1)
  6. Smale, D., Strahan, S. E., Querel, R., Frieß, U., Nedoluha, G. E., Nichol, S. E., … McGaw, J. (2021). Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights, Antarctica (77.8°S, 166.7°E) during the 2019 Antarctic stratospheric sudden warming. Tellus B: Chemical and Physical Meteorology, 73(1), 1–18. (doi:10.1080/16000889.2021.1933783)
  7. Comparison of Ventilated and Unventilated Air Temperature Measurements in Inland Dronning Maud Land on the East Antarctic Plateau. (2021). Journal of Atmospheric and Oceanic Technology, 38(12), 2061–2070. (doi:10.1175/jtech-d-21-0107.1)
  8. Aartsen, M. G., Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Andeen, K. (2020). Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop. Physical Review D, 102(12). (doi:10.1103/physrevd.102.122001)
  9. Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélemy, L., Bergstrom, D. M., Berne, A., Binder, H., Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Codron, F., Datta, R., Di Battista, S., Favier, V., Francis, D., … Zou, X. (2024). The Extraordinary March 2022 East Antarctica “Heat” Wave. Part I: Observations and Meteorological Drivers. Journal of Climate, 37(3), 757–778. (doi:10.1175/jcli-d-23-0175.1)
  10. Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélemy, L., Bergstrom, D. M., Berne, A., Binder, H., Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Codron, F., Datta, R., Battista, S. D., Favier, V., Francis, D., … Zou, X. (2024). The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet. Journal of Climate, 37(3), 779–799. (doi:10.1175/jcli-d-23-0176.1)
  11. Hansen, N., Orr, A., Zou, X., Boberg, F., Bracegirdle, T. J., Gilbert, E., Langen, P. L., Lazzara, M. A., Mottram, R., Phillips, T., Price, R., Simonsen, S. B., & Webster, S. (2023). The importance of cloud phase when assessing surface melting in an offline coupled firn model over Ross Ice shelf, West Antarctica. (doi:10.5194/tc-2023-145)
  12. Hansen, N., Orr, A., Zou, X., Boberg, F., Bracegirdle, T. J., Gilbert, E., Langen, P. L., Lazzara, M. A., Mottram, R., Phillips, T., Price, R., Simonsen, S. B., & Webster, S. (2024). The importance of cloud properties when assessing surface melting in an offline-coupled firn model over Ross Ice shelf, West Antarctica. The Cryosphere, 18(6), 2897–2916. (doi:10.5194/tc-18-2897-2024)
Platforms and Instruments

This project has been viewed 108 times since May 2019 (based on unique date-IP combinations)