{"dp_type": "Dataset", "free_text": "Model"}
[{"awards": "1947562 van Gestel, Natasja", "bounds_geometry": ["POLYGON((-64.0898264 -64.7704833,-64.08444765 -64.7704833,-64.07906890000001 -64.7704833,-64.07369015 -64.7704833,-64.0683114 -64.7704833,-64.06293265 -64.7704833,-64.0575539 -64.7704833,-64.05217515 -64.7704833,-64.04679639999999 -64.7704833,-64.04141765 -64.7704833,-64.0360389 -64.7704833,-64.0360389 -64.77082025,-64.0360389 -64.77115719999999,-64.0360389 -64.77149415,-64.0360389 -64.7718311,-64.0360389 -64.77216805,-64.0360389 -64.772505,-64.0360389 -64.77284195,-64.0360389 -64.7731789,-64.0360389 -64.77351585,-64.0360389 -64.7738528,-64.04141765 -64.7738528,-64.04679639999999 -64.7738528,-64.05217515 -64.7738528,-64.0575539 -64.7738528,-64.06293265 -64.7738528,-64.0683114 -64.7738528,-64.07369015 -64.7738528,-64.07906890000001 -64.7738528,-64.08444765 -64.7738528,-64.0898264 -64.7738528,-64.0898264 -64.77351585,-64.0898264 -64.7731789,-64.0898264 -64.77284195,-64.0898264 -64.772505,-64.0898264 -64.77216805,-64.0898264 -64.7718311,-64.0898264 -64.77149415,-64.0898264 -64.77115719999999,-64.0898264 -64.77082025,-64.0898264 -64.7704833))"], "date_created": "Fri, 03 Jan 2025 00:00:00 GMT", "description": "This data set contains soil temperature, soil moisture, and soil conductivity data in the vicinity of Palmer Station. TEROS12 sensors are installed in 40 plots that are distributed along an increasing primary productivity gradient (i.e., with increasing distance from the Marr Ice Piedmont glacier). The sensors are comprised of 5 cm long metal pins that are inserted straight down into the soil and hence, data are collected from the upper 0-5 cm of the soil. There are 4 sites along the gradient (site 1 is closest to the glacier and site 4 is farthest from the glacier), with ten plots at each site. Half of the plots at each site are plots that contain an open-top chamber and the other half of the plots are control (unwarmed) plots. Plot ids will contain \"W\" for warmed plots and \"C\" for control plots. Raw data from the loggers (logged every 20 minutes), as well as an R Markdown file is provided to facilitate reading in and displaying the daily average soil moisture and temperature data at the plot and at the treatment level for each productivity site. Loggers and sensors were installed in December 2022 and were downloaded in November (sites 2-4) and in December (site 1) of 2024. ", "east": -64.0360389, "geometry": ["POINT(-64.06293265 -64.77216805)"], "keywords": "Antarctica; Antarctic Peninsula; Conductivity; Cryosphere; Palmer Station; Soil; Temperature", "locations": "Antarctica; Antarctic Peninsula; Palmer Station", "north": -64.7704833, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "van Gestel, Natasja", "project_titles": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "projects": [{"proj_uid": "p0010251", "repository": "USAP-DC", "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7738528, "title": "Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica", "uid": "601877", "west": -64.0898264}, {"awards": "1851022 Fudge, Tyler", "bounds_geometry": null, "date_created": "Fri, 22 Nov 2024 00:00:00 GMT", "description": "", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "projects": [{"proj_uid": "p0010211", "repository": "USAP-DC", "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Forward Diffusion Model used to calculate widening of volcanic layer widths", "uid": "601857", "west": null}, {"awards": "1947562 van Gestel, Natasja", "bounds_geometry": ["POLYGON((-64.0898264 -64.7704833,-64.08444765 -64.7704833,-64.07906890000001 -64.7704833,-64.07369015 -64.7704833,-64.0683114 -64.7704833,-64.06293265 -64.7704833,-64.0575539 -64.7704833,-64.05217515 -64.7704833,-64.04679639999999 -64.7704833,-64.04141765 -64.7704833,-64.0360389 -64.7704833,-64.0360389 -64.77082025,-64.0360389 -64.77115719999999,-64.0360389 -64.77149415,-64.0360389 -64.7718311,-64.0360389 -64.77216805,-64.0360389 -64.772505,-64.0360389 -64.77284195,-64.0360389 -64.7731789,-64.0360389 -64.77351585,-64.0360389 -64.7738528,-64.04141765 -64.7738528,-64.04679639999999 -64.7738528,-64.05217515 -64.7738528,-64.0575539 -64.7738528,-64.06293265 -64.7738528,-64.0683114 -64.7738528,-64.07369015 -64.7738528,-64.07906890000001 -64.7738528,-64.08444765 -64.7738528,-64.0898264 -64.7738528,-64.0898264 -64.77351585,-64.0898264 -64.7731789,-64.0898264 -64.77284195,-64.0898264 -64.772505,-64.0898264 -64.77216805,-64.0898264 -64.7718311,-64.0898264 -64.77149415,-64.0898264 -64.77115719999999,-64.0898264 -64.77082025,-64.0898264 -64.7704833))"], "date_created": "Mon, 18 Nov 2024 00:00:00 GMT", "description": "This data set contains the raw data for measurements of carbon fluxes at four field sites along a successional gradient near Palmer Station, Antarctica. At the beginning of the experiment, field site 1 (youngest site, closest to the glacier) was approximately 2 years since deglaciation, field site 2 about 30 years since deglaciation, field site 3 about 60 years since deglaciation, and Litchfield Island: hundreds of years since deglaciation. These sites have each: 5 control plots and 5 warmed plots (warmed via open-top chambers, OTC). Carbon flux measurements were taken weekly at most sites (40 plots total). A custom chamber connected to a LI-COR 6800 was placed on a stainless steel ring. Then measurements were taken over a 90 second or 120 second interval. Measurements were taken with a transparent chamber to obtain net ecosystem exchange (NEE; micromols CO2/m2/s), and then covered with dark cloth to obtain ecosystem respiration (ER) measurements. The incoming carbon fluxes was then obtained based on the NEE and ER.", "east": -64.0360389, "geometry": ["POINT(-64.06293265 -64.77216805)"], "keywords": "Antarctica; CO2; Cryosphere; Field Investigations; Palmer Station", "locations": "Antarctica; Palmer Station", "north": -64.7704833, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "van Gestel, Natasja", "project_titles": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming", "projects": [{"proj_uid": "p0010251", "repository": "USAP-DC", "title": "Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.7738528, "title": "2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment", "uid": "601853", "west": -64.0898264}, {"awards": "1643669 Petrenko, Vasilii", "bounds_geometry": ["POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))"], "date_created": "Thu, 24 Oct 2024 00:00:00 GMT", "description": "This is a data set containing measurements of [14CO] in firn air and ice core samples from Law Dome DE08-OH site, Antarctica. The firn air and ice core samples were collected at Law Dome in December 2018 and January 2019. The [14CO] data represent atmospheric values (with the in situ cosmogenic and procedural components removed). [14CO] measurements were conducted as described in Hmiel et al., 2024 (https://doi.org/10.5194/tc-18-3363-2024). The in situ cosmogenic [14CO] contribution was calculated using parameters and model also described in Hmiel et al. (2024). As [14CO] measurements in ice cores are complex, use of the data in a publication requires contacting Vasilii Petrenko (vasilii.petrenko@rochester.edu) to ensure correct understanding of the data. Depending on nature of use of the data, co-authorship may be appropriate. ", "east": 114.0, "geometry": ["POINT(113 -66.5)"], "keywords": "Antarctica; Carbon-14; Cryosphere; Firn Air; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Law Dome; Snow/ice; Snow/Ice", "locations": "Antarctica; Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Petrenko, Vasilii", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Law Dome firn air and ice core 14CO concentration", "uid": "601846", "west": 112.0}, {"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003eA similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. \r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e\r\n\u003cbr/\u003e\u003cbr/\u003e", "east": -36.11, "geometry": ["POINT(-38.055 66.25)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Sheet; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Greenland; Greenland; Antarctica", "north": 67.55, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 64.95, "title": "Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications", "uid": "601841", "west": -40.0}, {"awards": "2136938 Tedesco, Marco", "bounds_geometry": ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"], "date_created": "Mon, 07 Oct 2024 00:00:00 GMT", "description": "This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately.\r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThe data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Mod\u00e9le Atmosph\u00e9rique R\u00e8gional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. \r\n\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eA similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center.", "east": -57.0, "geometry": ["POINT(-62.75 -67.25999999999999)"], "keywords": "Antarctica; Climate Modeling; Cryosphere; Downscaling; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen C Ice Shelf; Machine Learning; MAR; Remote Sensing; Sea Level Rise; Snow/ice; Snow/Ice; Surface Melt", "locations": "Antarctica; Larsen C Ice Shelf", "north": -65.25, "nsf_funding_programs": "Polar Cyberinfrastructure", "persons": "Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; L\u00fctjens, Bj\u00f6rn; Tedesco, Marco", "project_titles": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning", "projects": [{"proj_uid": "p0010277", "repository": "USAP-DC", "title": "Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.27, "title": "Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications", "uid": "601842", "west": -68.5}, {"awards": "1643120 Iverson, Neal", "bounds_geometry": null, "date_created": "Mon, 16 Sep 2024 00:00:00 GMT", "description": "Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen\u2019s flow law, in which strain rate depends on stress raised to a power of n=3-4. In sharp contrast to this nonlinearity, we find by conducting large-scale, shear-deformation experiments to tertiary creep that temperate ice is linear-viscous (n\u22481.0) over common ranges of liquid water content and stress expected near glacier beds and in ice stream margins. This linearity is likely caused by diffusive pressure-melting and refreezing at grain boundaries and could help stabilize modeled responses of ice sheets to shrinkage-induced stress increases.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Iverson, Neal", "project_titles": "NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice", "projects": [{"proj_uid": "p0010197", "repository": "USAP-DC", "title": "NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Tertiary creep rates of temperate ice containing greater than 0.7% liquid water", "uid": "601833", "west": null}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": ["POINT(140.017 -66.66)"], "date_created": "Mon, 16 Sep 2024 00:00:00 GMT", "description": "Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated\u201d mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. \r\n\u003cbr/\u003e", "east": 140.017, "geometry": ["POINT(140.017 -66.66)"], "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "locations": "Antarctica; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "north": -66.66, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "jenouvrier, stephanie", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.66, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "uid": "601832", "west": 140.017}, {"awards": "0087144 Conway, Howard", "bounds_geometry": ["POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\\sim3000$ and $\\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly.", "east": -130.0, "geometry": ["POINT(-140 -84.25)"], "keywords": "Antarctica; Cryosphere; Siple Coast", "locations": "Antarctica; Siple Coast", "north": -83.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hoffman, Andrew; Conway, Howard; Christianson, Knut", "project_titles": "Glacial History of Ridge AB, West Antarctica", "projects": [{"proj_uid": "p0010470", "repository": "USAP-DC", "title": "Glacial History of Ridge AB, West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Impulse HF radar data from Conway Ridge", "uid": "601810", "west": -150.0}, {"awards": "1444690 Bell, Robin; 0958658 Bell, Robin; 1443534 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Wed, 22 May 2024 00:00:00 GMT", "description": "This Shallow Ice Radar (SIR) dataset is from the Frequency Modulated Continuous Wave (LFMCW) radar system on board the IcePod while deployed with the ROSETTA-Ice project during the austral summers of November 2015 - December 2017. SIR data was collected along the ROSETTA-Ice Survey Grid where possible. More detailed information is included in the ReadMe. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, using CReSIS 2013/14 MCoRDS scripts as a foundation. All levels of processed data are Matfiles as a result.\r\nIncluded in this dataset are the following: \r\n* SIR level1a Matfiles separated by ROSETTA-Ice Survey Grid Line Number;\r\n* SIR long-line images at 300dpi (PNGs) for easy data viewing, rendered in MATLAB from level1 data;\r\n* SIR internal reflector digitization picks (CSV), rendered manually using MATLAB picking scripts;\r\n* SIR digitization frame images (picked and un-picked) as JPGs output from picking process", "east": -150.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "locations": "Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Integrated System Science; Antarctic Instrumentation and Support", "persons": "Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Keeshin, Skye; Wearing, Martin; Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani; Bell, Robin", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130", "projects": [{"proj_uid": "p0010462", "repository": "USAP-DC", "title": "Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "uid": "601794", "west": 161.0}, {"awards": "0958658 Bell, Robin; 1443534 Bell, Robin; 1444690 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Mon, 20 May 2024 00:00:00 GMT", "description": "This Deep ICE (DICE) radar dataset is from the pulse-chirp depth sounding radar system on board the IcePod while deployed with the ROSETTA-Ice Project during the austral summers of November 2015 - December 2017. DICE data was collected along the ROSETTA-Ice Survey grid where possible. More detailed information is included in the ReadMe, including flight lines with data loss. DICE is a dual channel sensor with pulse-chirp rate of 1us and 3us, which means the data can be processed in four pulse/channel configurations: 1usCh1, 3usCh1, 1usCh2, and 3usCh2. The included dataset is 3usCh1 DICE, which is the preferred configuration. The preferred configuration is 3usCh1, which is included in this dataset. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, with CReSIS 2014 MCoRDS scripts as a foundation. As such, all processed levels of this data product are Matfiles. Included in this dataset are the following:\r\n* DICE level2a data Matfiles, separated by ROSETTA-Ice Survey Grid Line Number;\r\n* DICE long-line images at 300dpi (PNGs) for easy data viewing rendered in MATLAB from level2 data;\r\n* DICE Ice Base digitization picks, rendered manually using MATLAB picking script;\r\n* DICE digitization frame images (picked and un-picked) as JPGs output from picking process", "east": -150.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "locations": "Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Instrumentation and Support; Antarctic Astrophysics and Geospace Sciences", "persons": "Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130", "projects": [{"proj_uid": "p0010462", "repository": "USAP-DC", "title": "Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "uid": "601789", "west": 161.0}, {"awards": "1443534 Bell, Robin; 0958658 Bell, Robin; 1444690 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Fri, 17 May 2024 00:00:00 GMT", "description": "This LiDAR data is from the RIEGL VQ-580 Airborne Laser Scanner onboard IcePod while deployed with the ROSETTA-Ice Project during November 2015 - December 2017. This data was processed at Lamont-Doherty Earth Observatory using RIEGL\u0027s RiPROCESS Data Processing Software.\r\n\r\nLiDAR data was collected along the ROSETTA-Ice Survey Grid where possible. Survey flights with no data are listed in the ReadMe. Clouds have been removed where possible.\r\n", "east": -150.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "locations": "Antarctica; Ross Ice Shelf", "north": -77.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Integrated System Science; Antarctic Instrumentation and Support", "persons": "Locke, Caitlin; Bertinato, Christopher; Dhakal, Tejendra; Becker, Maya K; Starke, Sarah; Boghosian, Alexandra", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "uid": "601788", "west": 161.0}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": ["POLYGON((-97.5 -55,-92.05 -55,-86.6 -55,-81.15 -55,-75.7 -55,-70.25 -55,-64.8 -55,-59.35 -55,-53.9 -55,-48.449999999999996 -55,-43 -55,-43 -57.1,-43 -59.2,-43 -61.3,-43 -63.4,-43 -65.5,-43 -67.6,-43 -69.7,-43 -71.8,-43 -73.9,-43 -76,-48.45 -76,-53.9 -76,-59.35 -76,-64.8 -76,-70.25 -76,-75.7 -76,-81.15 -76,-86.6 -76,-92.05000000000001 -76,-97.5 -76,-97.5 -73.9,-97.5 -71.8,-97.5 -69.7,-97.5 -67.6,-97.5 -65.5,-97.5 -63.4,-97.5 -61.3,-97.5 -59.2,-97.5 -57.099999999999994,-97.5 -55))"], "date_created": "Thu, 09 May 2024 00:00:00 GMT", "description": "This dataset includes daily-averaged current speed and velocity data from the Regional Ocean Modeling System. Domain covers the West Antarctic Peninsula. Simulations are from the 2006, 2007, 2010, and 2011 seasons.", "east": -43.0, "geometry": ["POINT(-70.25 -65.5)"], "keywords": "Antarctica; Cryosphere; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "locations": "Antarctica; West Antarctic Shelf", "north": -55.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Gallagher, Katherine", "project_titles": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "projects": [{"proj_uid": "p0010349", "repository": "USAP-DC", "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 \u0026 2010-2011)", "uid": "601779", "west": -97.5}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": ["POLYGON((-97.5 -56,-92.2 -56,-86.9 -56,-81.6 -56,-76.3 -56,-71 -56,-65.7 -56,-60.4 -56,-55.1 -56,-49.800000000000004 -56,-44.5 -56,-44.5 -58,-44.5 -60,-44.5 -62,-44.5 -64,-44.5 -66,-44.5 -68,-44.5 -70,-44.5 -72,-44.5 -74,-44.5 -76,-49.8 -76,-55.1 -76,-60.4 -76,-65.7 -76,-71 -76,-76.3 -76,-81.6 -76,-86.9 -76,-92.19999999999999 -76,-97.5 -76,-97.5 -74,-97.5 -72,-97.5 -70,-97.5 -68,-97.5 -66,-97.5 -64,-97.5 -62,-97.5 -60,-97.5 -58,-97.5 -56))"], "date_created": "Thu, 09 May 2024 00:00:00 GMT", "description": "This dataset contains simulated krill trajectories from the Regional Ocean Modeling System (ROMS) in NETCDF format. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the ROMS framework with diel vertical migration behavior added to simulate Antarctic krill behavior. Time frames and diel vertical migration behaviors simulated are included in a .csv file. Data currently cover 4 austral summers: 2006, 2007, 2010, and 2011. Five different vertical migration behaviors were simulated, for a total of 20 simulations.", "east": -44.5, "geometry": ["POINT(-71 -66)"], "keywords": "Antarctica; Antarctic Krill; Cryosphere; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "locations": "Antarctica; West Antarctic Shelf", "north": -56.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Gallagher, Katherine", "project_titles": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "projects": [{"proj_uid": "p0010349", "repository": "USAP-DC", "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 \u0026 2010-2011", "uid": "601780", "west": -97.5}, {"awards": "1745043 Simkins, Lauren", "bounds_geometry": ["POINT(-100 -75)"], "date_created": "Thu, 11 Apr 2024 00:00:00 GMT", "description": "This dataset contains the elevation raster for Pine Island Bay and the raw elevation profiles used for each site. The transects are organized based on their orientation in relation to paleo-ice flow. They are spaced 500 meters apart, with elevation measurements extracted every 50 meters along each transect.", "east": -100.0, "geometry": ["POINT(-100 -75)"], "keywords": "Antarctica; Bed Roughness; Cryosphere; Geomorphology; Pine Island Bay", "locations": "Pine Island Bay; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Munevar Garcia, Santiago", "project_titles": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations", "projects": [{"proj_uid": "p0010269", "repository": "USAP-DC", "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Elevation transects from Pine Island Bay", "uid": "601774", "west": -100.0}, {"awards": "2044924 Barrett, John", "bounds_geometry": ["POLYGON((161.70776367188 -77.519802097166,161.899475097661 -77.519802097166,162.091186523442 -77.519802097166,162.282897949223 -77.519802097166,162.474609375004 -77.519802097166,162.666320800785 -77.519802097166,162.858032226566 -77.519802097166,163.049743652347 -77.519802097166,163.241455078128 -77.519802097166,163.433166503909 -77.519802097166,163.62487792969 -77.519802097166,163.62487792969 -77.54867059480199,163.62487792969 -77.57753909243799,163.62487792969 -77.606407590074,163.62487792969 -77.63527608771,163.62487792969 -77.664144585346,163.62487792969 -77.69301308298199,163.62487792969 -77.72188158061799,163.62487792969 -77.750750078254,163.62487792969 -77.77961857589,163.62487792969 -77.808487073526,163.433166503909 -77.808487073526,163.241455078128 -77.808487073526,163.049743652347 -77.808487073526,162.858032226566 -77.808487073526,162.666320800785 -77.808487073526,162.474609375004 -77.808487073526,162.282897949223 -77.808487073526,162.091186523442 -77.808487073526,161.899475097661 -77.808487073526,161.70776367188 -77.808487073526,161.70776367188 -77.77961857589,161.70776367188 -77.750750078254,161.70776367188 -77.72188158061799,161.70776367188 -77.69301308298199,161.70776367188 -77.664144585346,161.70776367188 -77.63527608771,161.70776367188 -77.606407590074,161.70776367188 -77.57753909243799,161.70776367188 -77.54867059480199,161.70776367188 -77.519802097166))"], "date_created": "Wed, 03 Apr 2024 00:00:00 GMT", "description": "Microbial communities are the primary drivers of carbon cycling in the McMurdo Dry Valleys of Antarctica. Dense microbial mats, consisting mainly of photosynthetic cyanobacteria, occupy aquatic areas associated with streams and lakes. Other microbial communities also occur at lower densities as patchy surface biological soil crusts (biocrusts) across the terrestrial landscape. Multispectral satellite data have been used to model microbial mat abundance in high-density areas like stream and lake margins, but no previous studies had investigated the lower detection limits of biocrusts. Here, we describe remote sensing and field-based survey and sampling approaches to study the detectability and distribution of biocrusts in the McMurdo Dry Valleys. Using a combination of multi- and hyperspectral tools and spectral linear unmixing, we modeled the abundances of biocrust in eastern Taylor Valley. Our spectral approaches can detect low masses of biocrust material in laboratory microcosms down to biocrust concentrations of 1% by mass. These techniques also distinguish the spectra of biocrust from both surface rock and mineral signatures from orbit. We found that biocrusts are present throughout the soils of eastern Taylor Valley and are associated with diverse underlying soil communities. The densest biocrust communities identified in this study had total organic carbon 5x greater than the content of typical arid soils. The most productive biocrusts were located downslope of melting snowpacks in unique soil ecosystems that are distinct from the surrounding arid landscape. There are similarities between the snowpack and stream sediment communities (high diversity of soil invertebrates) as well as their ecosystem properties (e.g., persistence of liquid water, high transfer of available nutrients, lower salinity from flushing) compared to the typical arid terrestrial ecosystem of the dry valleys. Our approach extends the capability of orbital remote sensing of photosynthetic communities out of the aquatic margins and into the drier soils which comprise most of this landscape. This interdisciplinary work is critical for measuring and monitoring terrestrial carbon stocks and predicting future ecosystem dynamics in this currently water-limited but increasingly dynamic Antarctic landscape, which is particularly climate-sensitive and difficult to access.\r\n", "east": 163.62487792969, "geometry": ["POINT(162.666320800785 -77.664144585346)"], "keywords": "Antarctica; Carbon; Cryosphere; McMurdo Dry Valleys; Snow", "locations": "McMurdo Dry Valleys; Antarctica", "north": -77.519802097166, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Barrett, John", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -77.808487073526, "title": "Hyperspectral reflectance values and biophysicochemical properties of biocrusts and soils in the Fryxell Basin, McMurdo Dry Valleys, Antarctica", "uid": "601773", "west": 161.70776367188}, {"awards": "1443677 Padman, Laurence; 9896041 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.161699999999996,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.138600000000004,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"], "date_created": "Wed, 27 Mar 2024 00:00:00 GMT", "description": "CATS2008_v2023 is an update of the original CATS2008 tide model (Howard et al., 2019 [https://doi.org/10.15784/601235]; Padman et al., 2002 [https://doi.org/10.3189/172756402781817752]). It introduces a new model file format, increased resolution, more accurate coastlines, and a simple scaling for ice shelf flexure near grounding lines. The changes included in the new CATS2008_v2023 model are: (1) The CATS2008 model has been interpolated to a finer grid (2 km for CATS2008_v2023 vs 4 km for CATS2008) to provide a better representation of coastlines and ice shelf grounding lines. (2) Coastlines have been adjusted to match BedMachine Antarctica v3 (Morlighem et al., 2020 [https://doi.org/10.1038/s41561-019-0510-8]; Morlighem, 2022 [https://doi.org/10.5067/FPSU0V1MWUB6]). Areas that were previously grounded and had no tidal constituent data in CATS2008 have been filled using MATLAB\u0027s \u2018regionfill\u2019 function, applied to the real and imaginary components of tidal constituents individually. An ocean mask matching BedMachine Antarctica v3 is provided in the model file to mask out grounded areas. (3) Water depth (water column thickness under ice shelves) has been adjusted to match BedMachine Antarctica v3. (4) An ice shelf flexure model has been included for estimating tidal deflections in grounding zones. Flexure is approximated by a forward 1D linear elastic model applied to BedMachine Antarctica v3 ice geometry, with elastic modulus E=4.8 GPa and Poisson\u0027s ratio nu=0.4. The ice flexure can be included as an option when using TMD3.0 (Greene et al., 2024 [https://doi.org/10.21105/joss.06018]) and pyTMD (Sutterley, 2024 [https://doi.org/10.5281/zenodo.10501349]) software packages. (5) The model is provided as a consolidated NetCDF file that can be used with TMD3.0 and pyTMD, but not with earlier TMD versions. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "locations": "Sea Surface; Antarctica; Southern Ocean", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana; Sutterley, Tyler", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}, {"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "uid": "601772", "west": -180.0}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 27 Feb 2024 00:00:00 GMT", "description": "1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically.\r\n\r\n\t2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate).\r\n\r\n\t3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation.\r\n\r\n\t4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Joanie, Van de Walle; Jenouvrier, Stephanie", "project_titles": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "projects": [{"proj_uid": "p0010283", "repository": "USAP-DC", "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "uid": "601770", "west": -180.0}, {"awards": "1914698 Hansen, Samantha", "bounds_geometry": ["POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))"], "date_created": "Wed, 24 Jan 2024 00:00:00 GMT", "description": "Recent investigations in polar environments have examined solid-Earth-ice-sheet feedbacks and have emphasized that glacial isostatic adjustment, tectonic, and geothermal forcings exert first-order control on the physical conditions at and below the ice-bed interface and must be taken into account when evaluating ice-sheet evolution. However, the solid-Earth structure beneath much of Antarctica is still poorly constrained given the sparse distribution of seismic stations across the continent and the generally low seismicity rate. One region of particular interest is the Wilkes Subglacial Basin (WSB) in East Antarctica. During the mid-Pliocene warm period, the WSB may have contributed 3-4 m to the estimated 20 m rise in sea-level, indicating that this region could also play an important role in future warming scenarios. However, the WSB may have experienced notable bedrock uplift since the Pliocene; therefore, past geologic inferences of instability may not serve as a simple analogue for the future.\r\n\r\nUsing records of ambient seismic noise recorded by both temporary and long-term seismic networks, along with a full-waveform tomographic inversion technique, we have developed improved images of the lithospheric structure beneath East Antarctica, including the WSB. Empirical Green\u2019s Functions with periods between 40 and 340 s have been extracted using a frequency-time normalization technique, and a finite-difference approach with a spherical grid has been employed to numerically model synthetic seismograms. Associated sensitivity kernels have also been constructed using a scattering integral method. Our results suggest the WSB is underlain by slow seismic velocities, with faster seismic structure beneath the adjacent Transantarctic Mountains and the Belgica Subglacial Highlands. This may indicate that the WSB is associated with a region of thinner lithosphere, possibly associated with prior continental rifting. The seismic heterogeneity highlighted in our model could have significant implications for understanding the geodynamic origin of WSB topography and its influence on ice-sheet behavior.\r\n\r\nThe model file and associated plotting scripts are provided.", "east": 180.0, "geometry": ["POINT(135 -77.5)"], "keywords": "Ambient Noise; Antarctica; East Antarctica; Geoscientificinformation; Seismic Tomography; Seismology", "locations": "Antarctica; East Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hansen, Samantha; Emry, Erica", "project_titles": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "projects": [{"proj_uid": "p0010204", "repository": "USAP-DC", "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Full Waveform Ambient Noise Tomography for East Antarctica", "uid": "601763", "west": 90.0}, {"awards": "2023303 Purkey, Sarah", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 31 Oct 2023 00:00:00 GMT", "description": "A global CFC Data product is derived used the Time-Corrected Method (TCM) in order to estimate CFCs and SF6 ocean concentration back to 1940. The Green\u0027s functions (GFs), describing the steady-state transport from the surface to the ocean interior, is solved, constrained by observations. From the GFs, we reconstruct global tracer concentrations (and associated uncertainties) in the ocean interior at annual resolution (1940\u20132021). The spatial resolution includes 50 neutral density levels that span the water column along World Ocean Circulation Experiment/Global Ocean Ship-Based Hydrographic Investigations Program lines. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; CFCs; GLODAP; Ocean Model; Ocean Ventilation; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Cimoli, Laura; Purkey, Sarah; Gebbie, Jack", "project_titles": "Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?", "projects": [{"proj_uid": "p0010220", "repository": "USAP-DC", "title": "Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Ocean CFC reconstructed data product", "uid": "601752", "west": -180.0}, {"awards": "0917509 Spencer, Matthew", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Wed, 18 Oct 2023 00:00:00 GMT", "description": "This data set consists of bubble-number densities in glacier ice, in units of bubbles per cubic centimeter, based on firn densification and grain-growth modeling under steady-state climate conditions.", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Spencer, Matthew", "project_titles": "Collaborative Research: Combined Physical Property Measurements at Siple Dome", "projects": [{"proj_uid": "p0000658", "repository": "USAP-DC", "title": "Collaborative Research: Combined Physical Property Measurements at Siple Dome"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Firn depth and bubble density for Siple Ice Core and other sites", "uid": "601746", "west": -149.0}, {"awards": "1643798 Emry, Erica; 1643873 Hansen, Samantha", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 16 Oct 2023 00:00:00 GMT", "description": "This dataset provides the shear wave velocity model resulting from a full-waveform inversion that was constrained using long-period empirical Green\u0027s functions extracted from ambient seismic noise. These results were presented by Emry and Hansen at the 2022 Fall Meeting of the American Geophysical Union.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Ambient Seismic Noise; Antarctica; Full-Waveform Inversion; Seismic Tomography; Shear Wave Velocity; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Emry, Erica", "project_titles": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography", "projects": [{"proj_uid": "p0010139", "repository": "USAP-DC", "title": "Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise", "uid": "601744", "west": -180.0}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Mon, 02 Oct 2023 00:00:00 GMT", "description": "This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset.\r\n\r\nLee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020).", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "locations": "Greenland; West Antarctic Ice Sheet; Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; M\u00fchl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "uid": "601736", "west": -112.05}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": ["POLYGON((-90 -55,-85.5 -55,-81 -55,-76.5 -55,-72 -55,-67.5 -55,-63 -55,-58.5 -55,-54 -55,-49.5 -55,-45 -55,-45 -57.5,-45 -60,-45 -62.5,-45 -65,-45 -67.5,-45 -70,-45 -72.5,-45 -75,-45 -77.5,-45 -80,-49.5 -80,-54 -80,-58.5 -80,-63 -80,-67.5 -80,-72 -80,-76.5 -80,-81 -80,-85.5 -80,-90 -80,-90 -77.5,-90 -75,-90 -72.5,-90 -70,-90 -67.5,-90 -65,-90 -62.5,-90 -60,-90 -57.5,-90 -55))"], "date_created": "Wed, 13 Sep 2023 00:00:00 GMT", "description": "These data represent simulated buoyant debris released along the West Antarctic Peninsula. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the Regional Ocean Modeling System (ROMS) framework. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. A total of 12 simulations were conducted, simulating debris fields from 4 potential sources: non-point sources, tourism, fishing, and research.", "east": -45.0, "geometry": ["POINT(-67.5 -67.5)"], "keywords": "Antarctica; Modeling; Regional Ocean Modeling System; West Antarctic Shelf", "locations": "West Antarctic Shelf; Antarctica", "north": -55.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Gallagher, Katherine", "project_titles": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "projects": [{"proj_uid": "p0010349", "repository": "USAP-DC", "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019", "uid": "601734", "west": -90.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid hemoglobin protein 3D modeling.", "uid": "601732", "west": -180.0}, {"awards": "2139002 Huth, Alexander", "bounds_geometry": ["POLYGON((-67 -66,-66.3 -66,-65.6 -66,-64.9 -66,-64.2 -66,-63.5 -66,-62.8 -66,-62.1 -66,-61.4 -66,-60.7 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.7 -70,-61.4 -70,-62.1 -70,-62.8 -70,-63.5 -70,-64.2 -70,-64.9 -70,-65.6 -70,-66.3 -70,-67 -70,-67 -69.6,-67 -69.2,-67 -68.8,-67 -68.4,-67 -68,-67 -67.6,-67 -67.2,-67 -66.8,-67 -66.4,-67 -66))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "This dataset contains a model (Elmer/Ice Fortran modules) to simulate rifting on ice shelves. The model combines the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. Additionally, it accounts for rift-flank boundary processes, including pressure on rift-flank walls from seawater, contact between flanks, and ice m\u00e9lange that may also transmit stress between flanks.\r\n\r\nThis dataset also contains the input data (Elmer restart files), input files (Elmer .sifs), and Slurm batch scripts to run five experiments. All experiments aim to simulate the final two years of rift propagation that led to the calving of tabular iceberg A68 from Larsen C ice shelf in 2017. However, each experiment differs in its treatment of rift-flank boundary processes, which affects the rift path.\r\n\r\nFor more information, see the associated publication (Huth et al., 2023).", "east": -60.0, "geometry": ["POINT(-63.5 -68)"], "keywords": "Antarctica; Glaciology; Iceberg; Ice Shelf Dynamics; Larsen C Ice Shelf; Model Data; Modeling", "locations": "Larsen C Ice Shelf; Antarctica", "north": -66.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Huth, Alexander", "project_titles": "OPP-PRF Calving, Icebergs, and Climate", "projects": [{"proj_uid": "p0010276", "repository": "USAP-DC", "title": "OPP-PRF Calving, Icebergs, and Climate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "uid": "601718", "west": -67.0}, {"awards": "1847173 Duddu, Ravindra", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 04 Jul 2023 00:00:00 GMT", "description": "This dataset contains the ABAQUS input files for simulating floating ice shelves with constant density assuming linear elastic rheology or elasto-visco-plastic rheology and ABAQUS user-defined elements subroutine for water-filled cohesive zone elements.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Gao, Yuxiang; Ghosh, Gourab; Jimenez, Stephen; Duddu, Ravindra", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Abaqus user-defined elements subroutine for cohesive zone model of hydrofracturing of surface crevasses in ice shelves", "uid": "601704", "west": -180.0}, {"awards": "1543445 Zhang, Jing", "bounds_geometry": ["POLYGON((-70.9 -65,-69.51 -65,-68.12 -65,-66.73 -65,-65.34 -65,-63.95 -65,-62.56 -65,-61.17 -65,-59.78 -65,-58.39 -65,-57 -65,-57 -65.5,-57 -66,-57 -66.5,-57 -67,-57 -67.5,-57 -68,-57 -68.5,-57 -69,-57 -69.5,-57 -70,-58.39 -70,-59.78 -70,-61.17 -70,-62.56 -70,-63.95 -70,-65.34 -70,-66.73 -70,-68.12 -70,-69.51 -70,-70.9 -70,-70.9 -69.5,-70.9 -69,-70.9 -68.5,-70.9 -68,-70.9 -67.5,-70.9 -67,-70.9 -66.5,-70.9 -66,-70.9 -65.5,-70.9 -65))"], "date_created": "Wed, 03 May 2023 00:00:00 GMT", "description": "This dataset includes the 3-km resolution budget terms of surface mass balance (SMB) and surface energy budget (SEB) for the Larsen C Ice Shelf during the melting season of 2017-18. The variables include the SMB budget terms of net surface mass balance, precipitation, runoff, blowing snow erosion, surface sublimation, and blowing snow sublimation, and the SEB budget terms of net surface energy budget, downwelling and upwelling longwave radiation, surface absorbed shortwave radiation, ground heat flux, and sensible / latent heat flux.", "east": -57.0, "geometry": ["POINT(-63.95 -67.5)"], "keywords": "Antarctica; Glaciology; Larsen C Ice Shelf; Model Data; Surface Energy Budget; Surface Mass Balance; WRF Model", "locations": "Antarctica; Larsen C Ice Shelf", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Zhang, Jing; Luo, Liping", "project_titles": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model", "projects": [{"proj_uid": "p0010408", "repository": "USAP-DC", "title": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf", "uid": "601685", "west": -70.9}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": ["POLYGON((-97.5 -56,-92.2 -56,-86.9 -56,-81.6 -56,-76.3 -56,-71 -56,-65.7 -56,-60.4 -56,-55.1 -56,-49.800000000000004 -56,-44.5 -56,-44.5 -58,-44.5 -60,-44.5 -62,-44.5 -64,-44.5 -66,-44.5 -68,-44.5 -70,-44.5 -72,-44.5 -74,-44.5 -76,-49.8 -76,-55.1 -76,-60.4 -76,-65.7 -76,-71 -76,-76.3 -76,-81.6 -76,-86.9 -76,-92.19999999999999 -76,-97.5 -76,-97.5 -74,-97.5 -72,-97.5 -70,-97.5 -68,-97.5 -66,-97.5 -64,-97.5 -62,-97.5 -60,-97.5 -58,-97.5 -56))"], "date_created": "Wed, 26 Apr 2023 00:00:00 GMT", "description": "This dataset contains passive particle trajectories from the Regional Ocean Modeling System (ROMS) in NETCDF format. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the ROMS framework. Time frames and particle release depths are included in a .csv file. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. Five different release depths were used across the 5 model years, for a total of 20 simulations.", "east": -44.5, "geometry": ["POINT(-71 -66)"], "keywords": "Antarctica; Physical Oceanography; Regional Ocean Modeling System; ROMS", "locations": "Antarctica; Antarctica", "north": -56.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Gallagher, Katherine", "project_titles": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "projects": [{"proj_uid": "p0010349", "repository": "USAP-DC", "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "uid": "601682", "west": -97.5}, {"awards": "1933764 Enderlin, Ellyn; 1643455 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 06 Apr 2023 00:00:00 GMT", "description": "This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "uid": "601679", "west": -180.0}, {"awards": "2152622 Morlighem, Mathieu", "bounds_geometry": ["POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.3,-100 -74.6,-100 -74.9,-100 -75.2,-100 -75.5,-100 -75.8,-100 -76.1,-100 -76.4,-100 -76.7,-100 -77,-101 -77,-102 -77,-103 -77,-104 -77,-105 -77,-106 -77,-107 -77,-108 -77,-109 -77,-110 -77,-110 -76.7,-110 -76.4,-110 -76.1,-110 -75.8,-110 -75.5,-110 -75.2,-110 -74.9,-110 -74.6,-110 -74.3,-110 -74))"], "date_created": "Wed, 25 Jan 2023 00:00:00 GMT", "description": "Data resulting from comparing model and observations of sliding-law parameter and airborne radar-derived basal reflectivity underneath Thwaites Glacier, Antarctica", "east": -100.0, "geometry": ["POINT(-105 -75.5)"], "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites; Thwaites Glacier", "locations": "Antarctica; Thwaites Glacier; Thwaites", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Das, Indrani", "project_titles": "NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET)", "projects": [{"proj_uid": "p0010400", "repository": "USAP-DC", "title": "NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -77.0, "title": "Sliding-Law Parameter and Airborne Radar-Derived Basal Reflectivity Data Underneath Thwaites Glacier, Antarctica", "uid": "601658", "west": -110.0}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": ["POLYGON((-97.5 -55,-92.05 -55,-86.6 -55,-81.15 -55,-75.7 -55,-70.25 -55,-64.8 -55,-59.35 -55,-53.9 -55,-48.449999999999996 -55,-43 -55,-43 -57.1,-43 -59.2,-43 -61.3,-43 -63.4,-43 -65.5,-43 -67.6,-43 -69.7,-43 -71.8,-43 -73.9,-43 -76,-48.45 -76,-53.9 -76,-59.35 -76,-64.8 -76,-70.25 -76,-75.7 -76,-81.15 -76,-86.6 -76,-92.05000000000001 -76,-97.5 -76,-97.5 -73.9,-97.5 -71.8,-97.5 -69.7,-97.5 -67.6,-97.5 -65.5,-97.5 -63.4,-97.5 -61.3,-97.5 -59.2,-97.5 -57.099999999999994,-97.5 -55))"], "date_created": "Fri, 13 Jan 2023 00:00:00 GMT", "description": "This dataset includes daily-averaged current speed and velocity data from the Regional Ocean Modeling System. Domain covers the West Antarctic Peninsula. Simulations are from the 2008, 2009, 2018, and 2019 seasons. ", "east": -43.0, "geometry": ["POINT(-70.25 -65.5)"], "keywords": "Antarctica; Model Data; Ocean Currents; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "locations": "Antarctica; West Antarctic Shelf", "north": -55.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Gallagher, Katherine", "project_titles": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "projects": [{"proj_uid": "p0010349", "repository": "USAP-DC", "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 \u0026 2018-2019)", "uid": "601656", "west": -97.5}, {"awards": "2138277 Gallagher, Katherine", "bounds_geometry": ["POLYGON((-97.5 -56,-92.2 -56,-86.9 -56,-81.6 -56,-76.3 -56,-71 -56,-65.7 -56,-60.4 -56,-55.1 -56,-49.800000000000004 -56,-44.5 -56,-44.5 -58,-44.5 -60,-44.5 -62,-44.5 -64,-44.5 -66,-44.5 -68,-44.5 -70,-44.5 -72,-44.5 -74,-44.5 -76,-49.8 -76,-55.1 -76,-60.4 -76,-65.7 -76,-71 -76,-76.3 -76,-81.6 -76,-86.9 -76,-92.19999999999999 -76,-97.5 -76,-97.5 -74,-97.5 -72,-97.5 -70,-97.5 -68,-97.5 -66,-97.5 -64,-97.5 -62,-97.5 -60,-97.5 -58,-97.5 -56))"], "date_created": "Fri, 13 Jan 2023 00:00:00 GMT", "description": "This dataset contains simulated krill trajectories from the Regional Ocean Modeling System (ROMS) in NETCDF format. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the ROMS framework with diel vertical migration behavior added to simulate Antarctic krill behavior. Time frames and diel vertical migration behaviors simulated are included in a .csv file. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. Five different vertical migration behaviors were simulated, for a total of 20 simulations. ", "east": -44.5, "geometry": ["POINT(-71 -66)"], "keywords": "Antarctica; Antarctic Krill; Model Data; Physical Oceanography; Regional Ocean Modeling System; ROMS; West Antarctic Shelf", "locations": "Antarctica; West Antarctic Shelf", "north": -56.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Gallagher, Katherine", "project_titles": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula", "projects": [{"proj_uid": "p0010349", "repository": "USAP-DC", "title": "OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 \u0026 2018-2019", "uid": "601655", "west": -97.5}, {"awards": "1744584 Klein, Andrew", "bounds_geometry": ["POLYGON((-78 -60,-74.6 -60,-71.2 -60,-67.8 -60,-64.4 -60,-61 -60,-57.6 -60,-54.2 -60,-50.8 -60,-47.400000000000006 -60,-44 -60,-44 -61.3,-44 -62.6,-44 -63.9,-44 -65.2,-44 -66.5,-44 -67.8,-44 -69.1,-44 -70.4,-44 -71.7,-44 -73,-47.4 -73,-50.8 -73,-54.2 -73,-57.6 -73,-61 -73,-64.4 -73,-67.8 -73,-71.2 -73,-74.6 -73,-78 -73,-78 -71.7,-78 -70.4,-78 -69.1,-78 -67.8,-78 -66.5,-78 -65.2,-78 -63.9,-78 -62.6,-78 -61.3,-78 -60))"], "date_created": "Fri, 06 Jan 2023 00:00:00 GMT", "description": "This dataset comprises a series of geotiff grids of modelled solar radiation (Wh m-2 day-1) for a portion of the Western Antarctic Peninsula. The grids were generated using the r.sun module in Grass GIS. In addition to the a geotiff grid representing the average daily global horizontal irradiance for an entire year, the dataset also includes geotiffs containing daily values of direct beam irradiance, diffuse irradiance, ground reflected irradiance, and global (total) irradiance (all in Wh m-2 day-1) as well as insolation time (hours). This dataset was created in support of projects ANT-1744550, -1744570, -1744584, and -1744602.", "east": -44.0, "geometry": ["POINT(-61 -66.5)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; GIS; GIS Data; LMG1904; R/v Laurence M. Gould; Solar Radiation", "locations": "Antarctica; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Klein, Andrew", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.0, "title": "Modelled Solar Irradiance for Western Antarctic Pennisula", "uid": "601651", "west": -78.0}, {"awards": "1744584 Klein, Andrew", "bounds_geometry": ["POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.8,-60 -62.6,-60 -63.4,-60 -64.2,-60 -65,-60 -65.8,-60 -66.6,-60 -67.4,-60 -68.2,-60 -69,-61 -69,-62 -69,-63 -69,-64 -69,-65 -69,-66 -69,-67 -69,-68 -69,-69 -69,-70 -69,-70 -68.2,-70 -67.4,-70 -66.6,-70 -65.8,-70 -65,-70 -64.2,-70 -63.4,-70 -62.6,-70 -61.8,-70 -61))"], "date_created": "Thu, 29 Dec 2022 00:00:00 GMT", "description": "This csv dataset contains modelled average global horizontal solar irradiance (KWh m-2 day-1) for the fifteen study sites associated with visited by projects ANT-1744550, -1744570, -1744584, and -1744602 during ARSV Laurence M. Gould cruise LMG 19-04 in April and May 2019.", "east": -60.0, "geometry": ["POINT(-65 -65)"], "keywords": "Antarctica; Average Global Horizontal Solar Irradiance; Biota; LMG1904; R/v Laurence M. Gould", "locations": "Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Klein, Andrew", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Average global horizontal solar irradiance at study sites", "uid": "601641", "west": -70.0}, {"awards": "1933764 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"], "date_created": "Mon, 24 Oct 2022 00:00:00 GMT", "description": "This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994\u20142100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994\u20142019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in \u201c.mat\u201d format, which can be read using MATLAB\u2019s \u201cload\u201d function or using Python with the Scipy \u201cscipy.io.loadmat\u201d function. ", "east": -62.0, "geometry": ["POINT(-62.55 -65.4)"], "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "locations": "Antarctic Peninsula; Antarctica; Crane Glacier", "north": -65.2, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.6, "title": "Crane Glacier centerline observations and modeling results ", "uid": "601617", "west": -63.1}, {"awards": "1744771 Balco, Gregory", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 02 Sep 2022 00:00:00 GMT", "description": "This dataset is a NetCDF file containing the results of a 5 MA ice sheet model run with parameter settings intended to enhance marine ice sheet instability processes. Uses the Penn State ice sheet model as described in DeConto et al. (2021) and Pollard \u0026 DeConto (2012). The model runs from 5 Ma to present and snapshots are recorded every 2000 years. Model grid resolution is 40 km. Only the model geometry (thickness, height, whether grounded) is saved in each snapshot. The purpose of the model run was to support a study into whether or not it is possible to distinguish models with different marine ice sheet instability parameterizations using geologic data. \r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Balco, Gregory; Buchband, Hannah; Halberstadt, Anna Ruth", "project_titles": "Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements", "projects": [{"proj_uid": "p0010342", "repository": "USAP-DC", "title": "Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "5 million year transient Antarctic ice sheet model run with \"sensitized\" marine ice margin instabilities", "uid": "601602", "west": -180.0}, {"awards": "1744771 Balco, Gregory", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 02 Sep 2022 00:00:00 GMT", "description": "This dataset is a NetCDF file containing the results of a 5 MA ice sheet model run with parameter settings intended to suppress marine ice sheet instability processes. Uses the Penn State ice sheet model as described in DeConto et al. (2021) and Pollard \u0026 DeConto (2012). The model runs from 5 Ma to present and snapshots are recorded every 2000 years. Model grid resolution is 40 km. Only the model geometry (thickness, height, whether grounded) is saved in each snapshot. The purpose of the model run was to support a study into whether or not it is possible to distinguish models with different marine ice sheet instability parameterizations using geologic data. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Balco, Gregory; Buchband, Hannah; Halberstadt, Anna Ruth", "project_titles": "Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements", "projects": [{"proj_uid": "p0010342", "repository": "USAP-DC", "title": "Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "5 million year transient Antarctic ice sheet model run with \"desensitized\" marine ice margin instabilities", "uid": "601601", "west": -180.0}, {"awards": "1644277 Aschwanden, Andy", "bounds_geometry": null, "date_created": "Thu, 14 Jul 2022 00:00:00 GMT", "description": "The Parallel Ice Sheet Model (PISM) is an open-source ice sheet model distributed under GPL-3.0. This version includes the orographic precipitation module and other improvements produced under NSF award 1644277.", "east": null, "geometry": null, "keywords": "Antarctica", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aschwanden, Andy", "project_titles": "Collaborative Research: Feedbacks between Orographic Precipitation and Ice Dynamics", "projects": [{"proj_uid": "p0010348", "repository": "USAP-DC", "title": "Collaborative Research: Feedbacks between Orographic Precipitation and Ice Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Parallel Ice Sheet Model (PISM) v2", "uid": "601589", "west": null}, {"awards": "1643436 Donohoe, Aaron", "bounds_geometry": ["POLYGON((-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 72,-180 54,-180 36,-180 18,-180 0,-180 -18,-180 -36,-180 -54,-180 -72,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -72,180 -54,180 -36,180 -18,180 0,180 18,180 36,180 54,180 72,180 90,180 90,180 90,180 90,180 90,180 90,180 90,180 90,180 90,180 90,-180 90))"], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "The partitioning of top of atmosphere radiation into surface and atmospheric contributions using the isotropic SW model over the CERES satellite record ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": 90.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Donohoe, Aaron", "project_titles": "What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System", "projects": [{"proj_uid": "p0010336", "repository": "USAP-DC", "title": "What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Partionining of CERES planetary albedo between atmospheric and surface reflection", "uid": "601579", "west": -180.0}, {"awards": "1844793 Aksoy, Mustafa", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 29 Mar 2022 00:00:00 GMT", "description": "This dataset includes density, temperature, grain size, and layer thickness measurements collected from various projects available on USAP-DC. Depth listings were recalculated to reflect measurements from the surface of the ice to the deep ice if they were not listed as such in the original dataset. Non-linear least-squares regression was performed on the data to find parameters to existing depth-dependent density and grain size models and the regression results are provided in this dataset. Data is made available in MATLAB and XLSX files. See \u201cinsituData_readMe\u201d for more details.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Ice Sheet", "locations": "Antarctic Ice Sheet; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aksoy, Mustafa; Kaurejo, Dua; Kar, Rahul", "project_titles": "Characterization of Antarctic Firn by Multi-Frequency Passive Remote Sensing from Space", "projects": [{"proj_uid": "p0010206", "repository": "USAP-DC", "title": "Characterization of Antarctic Firn by Multi-Frequency Passive Remote Sensing from Space"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "In-Situ Density, Temperature, Grain Size, and Layer Thickness data for the Antarctic Ice Sheet", "uid": "601551", "west": -180.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"], "date_created": "Tue, 15 Mar 2022 00:00:00 GMT", "description": "Multi-layer 3D models and videos of Tsco_18_08 from high-field microMRI data.", "east": -62.3, "geometry": ["POINT(-62.6 -64.85)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Notoxcellia Coronata; Notoxcellia Picta; Perkinsozoa; Xcellidae", "locations": "Antarctica; Antarctic Peninsula", "north": -64.7, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Lauridsen, Henrik; Desvignes, Thomas; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas", "uid": "601538", "west": -62.9}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": null, "date_created": "Fri, 04 Feb 2022 00:00:00 GMT", "description": "Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the \"forced divorce\" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. \r\n\r\nDescription of data processing:\r\nThis file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) ", "east": null, "geometry": null, "keywords": "Antarctica; Biota; Wandering Albatross", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross", "uid": "601518", "west": null}, {"awards": "1744789 Padman, Laurence; 1744792 Little, Christopher", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 01 Feb 2022 00:00:00 GMT", "description": "This dataset contains NetCDF files of two-dimensional gridded fields of hydrographic properties, Conservative Temperature (CT) and Absolute Salinity (SA), around Antarctica, depth-averaged for the depth range 300 m to min([water depth, 1000]) m from 38 CMIP6 models, the World Ocean Atlas 2018, and our own product developed from the World Ocean Database. These fields are designed to represent the hydrography of deeper water masses on the Antarctic Continental Shelf (ACS), where typical water depths are 400-600 m, and the intermediate-depth water off the continental shelf. The dataset includes a high-resolution polar-stereographic grid (2 x 2 km) of Southern Ocean geometry, including water depth, elevation of the land and ice-sheet surface (including ice shelves), a mask (identifying water, land and grounded ice, and ice shelves), and offshore distance from the continental shelf break. An example MATLAB script for accessing the grids and plotting them is included. The primary purpose of this dataset is to provide simplified 2-D hydrographic fields that can be used to assess the performance of climate models for the ACS, focusing on the depth range that affects most basal melting of Antarctica\u2019s ice shelves.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Antarctic Continental Shelf; CMIP6; Oceans; Physical Oceanography; Salinity; Southern Ocean; Temperature", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Little, Chris; Sun, Qiang; Padman, Laurence", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Gridded Values of Conservative Temperature and Absolute Salinity Around Antarctica averaged for the depth range 300 m to min([water depth, 1000]) m", "uid": "601516", "west": -180.0}, {"awards": "1744835 Wagner, Till", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 18 Jan 2022 00:00:00 GMT", "description": "Because of difficulties in adequately simulating their breakup, large Antarctic icebergs to date have either not been represented in models or represented but with no breakup scheme such that they consistently survive too long and travel too far compared with observations. Here, we introduce a representation of iceberg fracturing using a breakup scheme based on the \u201cfootloose mechanism.\u201d We optimize the parameters of this breakup scheme by forcing the iceberg model with an ocean state estimate and comparing the modeled iceberg trajectories and areas with the Antarctic Iceberg Tracking Database. We show that including large icebergs and a representation of their breakup substantially affects the iceberg meltwater distribution, with implications for the circulation and stratification of the Southern Ocean.\r\n\r\nThis data link includes the model developed for the study, including a link to the forcing fields needed to replicate the model results. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Footloose Mechanism; Iceberg Breakup; Iceberg Decay; Model; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Wagner, Till", "project_titles": "Modeling Giant Icebergs and Their Decay", "projects": [{"proj_uid": "p0010290", "repository": "USAP-DC", "title": "Modeling Giant Icebergs and Their Decay"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model of iceberg drift and decay including breakup", "uid": "601510", "west": -180.0}, {"awards": "1443585 Polito, Michael; 1443386 Emslie, Steven; 1443424 McMahon, Kelton; 1826712 McMahon, Kelton", "bounds_geometry": ["POLYGON((-37.33 -54.05,-37.192 -54.05,-37.054 -54.05,-36.916 -54.05,-36.778 -54.05,-36.64 -54.05,-36.502 -54.05,-36.364 -54.05,-36.226 -54.05,-36.088 -54.05,-35.95 -54.05,-35.95 -54.107,-35.95 -54.164,-35.95 -54.221,-35.95 -54.278,-35.95 -54.335,-35.95 -54.392,-35.95 -54.449,-35.95 -54.506,-35.95 -54.563,-35.95 -54.62,-36.088 -54.62,-36.226 -54.62,-36.364 -54.62,-36.502 -54.62,-36.64 -54.62,-36.778 -54.62,-36.916 -54.62,-37.054 -54.62,-37.192 -54.62,-37.33 -54.62,-37.33 -54.563,-37.33 -54.506,-37.33 -54.449,-37.33 -54.392,-37.33 -54.335,-37.33 -54.278,-37.33 -54.221,-37.33 -54.164,-37.33 -54.107,-37.33 -54.05))"], "date_created": "Thu, 13 Jan 2022 00:00:00 GMT", "description": "This data set contains radiometric dating measurements from two aquatic sediment cores excavated from two separate sites (Salisbury Plain and Gold Harbor) on South Georgia Island in February 2019. It also contains biological and geochemical sediment proxy values from both sediment cores, including total carbon (%), total nitrogen (%), number of penguin feathers and eggshell fragments, number of seal hairs, and \u03b413C and \u03b415N stable isotope values. Cores were sectioned at 1cm intervals, and radiometric dating analyses were conducted on sediment fractions \u003c850 \u00b5m by measuring for 210Pb and 226Ra (via 214Pb) by direct gamma counting using the high purity germanium planar detector in the Marine Geochemistry Laboratory at Louisiana State University (LSU). The 210Pbex profiles were used to calculate sedimentation rates using a steady state model that assumes constant rate of supply and constant sedimentation rate (Maiti et al., 2010). Geochemical analyses were performed on sediment fractions \u003c125 \u00b5m using an Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS) in the Stable Isotope Ecology Lab at LSU. Biological counts of feathers and hairs were determined by enumeration using a dissecting microscope of sediment fractions \u003e1000 \u00b5m. The data set also includes sediment core excavation site names and coordinates, date of excavation, sediment depth and age, and carbon to nitrogen isotopic ratios. Details of the data set and all relevant methods are provided in Kristan et al., 2021.", "east": -35.95, "geometry": ["POINT(-36.64 -54.335)"], "keywords": "Antarctica; Antarctic Fur Seal; Elemental Concentrations; King Penguin; Population Dynamics; South Atlantic Ocean; South Georgia Island; Stable Isotope Analysis; Sub-Antarctic", "locations": "South Atlantic Ocean; Antarctica; Sub-Antarctic; South Georgia Island", "north": -54.05, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton; Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -54.62, "title": "Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.", "uid": "601509", "west": -37.33}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"], "date_created": "Tue, 04 Jan 2022 00:00:00 GMT", "description": "Nucleic acid sequences, sequence alignments, model selection results, and phylogenetic trees from the phylogenetic placement of Notoxcellia species. ", "east": -62.3, "geometry": ["POINT(-62.7 -64.45)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "locations": "Antarctic Peninsula; Antarctica", "north": -63.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Varsani, Arvind; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Phylogenetic Analysis of Notoxcellia species.", "uid": "601501", "west": -63.1}, {"awards": "1929991 Pettit, Erin C", "bounds_geometry": ["POLYGON((-108 -74.5,-107.6 -74.5,-107.2 -74.5,-106.8 -74.5,-106.4 -74.5,-106 -74.5,-105.6 -74.5,-105.2 -74.5,-104.8 -74.5,-104.4 -74.5,-104 -74.5,-104 -74.6,-104 -74.7,-104 -74.8,-104 -74.9,-104 -75,-104 -75.1,-104 -75.2,-104 -75.3,-104 -75.4,-104 -75.5,-104.4 -75.5,-104.8 -75.5,-105.2 -75.5,-105.6 -75.5,-106 -75.5,-106.4 -75.5,-106.8 -75.5,-107.2 -75.5,-107.6 -75.5,-108 -75.5,-108 -75.4,-108 -75.3,-108 -75.2,-108 -75.1,-108 -75,-108 -74.9,-108 -74.8,-108 -74.7,-108 -74.6,-108 -74.5))"], "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This data set includes two grounding-line products of Thwaites Glacier and a series of offshore pinning points for 2014 and 2019/20. The grounding lines where delineated manually from height above flotation calculations using the bathymetry model from Jordan et al. (2020), the REMA digital surface elevation model (Howat et al., 2019) for the 2014 product and ICESat-2 surface altimetry data (Smith et al., 2019) for the 2019/20 product. More details about the processing, corrections and uncertainties can be found in our publication. We would appreciate if users who think the grounding-line products are useful for your own research would cite our manuscript.", "east": -104.0, "geometry": ["POINT(-106 -75)"], "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "locations": "Thwaites Glacier; Amundsen Sea; Antarctica; Antarctica; Thwaites Glacier", "north": -74.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Wild, Christian; Alley, Karen; Muto, Atsu; Truffer, Martin; Scambos, Ted; Pettit, Erin", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.5, "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "uid": "601499", "west": -108.0}, {"awards": "1433140 Domack, Eugene; 0732625 Leventer, Amy", "bounds_geometry": ["POLYGON((-69 -58,-67.7 -58,-66.4 -58,-65.1 -58,-63.8 -58,-62.5 -58,-61.2 -58,-59.9 -58,-58.6 -58,-57.3 -58,-56 -58,-56 -59,-56 -60,-56 -61,-56 -62,-56 -63,-56 -64,-56 -65,-56 -66,-56 -67,-56 -68,-57.3 -68,-58.6 -68,-59.9 -68,-61.2 -68,-62.5 -68,-63.8 -68,-65.1 -68,-66.4 -68,-67.7 -68,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60,-69 -59,-69 -58))"], "date_created": "Mon, 15 Nov 2021 00:00:00 GMT", "description": "This data set contains an age vs depth model and measurements of magnetic susceptibility, benthic foraminifera Bulimina aculeata d18O and d13C, bulk sediment GDGT data, and diatom assemblage data from USAP LMG13-11 JKC-1 sediment core (0-100 cm) archived at the Oregon State University ACC repository. All stable isotope and GDGT measurements were made at the University of South Florida College of Marine Science. Diatom assemblages were counted at Colgate University. The data set includes all replicate measurements. Details of the entire data set and all relevant methods are provided in Browne et al (submitted, 2021)", "east": -56.0, "geometry": ["POINT(-62.5 -63)"], "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "locations": "Antarctica; Antarctic Peninsula", "north": -58.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Shevenell, Amelia", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "LMG13-11 JKC-1 Paleoceanographic data", "uid": "601485", "west": -69.0}, {"awards": "1745043 Simkins, Lauren; 1745055 Stearns, Leigh; 1246353 Anderson, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "The dataset here allows exploration of the causes and significance of Antarctic grounding-line sinuosity by coupling observations of contemporary Antarctic grounding lines and paleo-grounding lines expressed as ice-marginal landforms on the Ross Sea continental shelf. Modern grounding lines are derived from the MEaSUREs Version 2 Differential Satellite Radar Interferometry dataset with spatial resolutions of 25-120 m spanning February 1992 to December 2014 (Rignot et al., 2016; Mouginot et al., 2017). The boundaries of individual grounding lines representative of individual glacial catchments (n=664) were delineated by the inflection points of the shear strain rate, \u03b5xy (c.f Van der Veen et al., 2011). Sinuosity was calculated as the ratio of the true length, orthogonal to ice-flow direction, of the grounding lines and the straight line length between end-points and in units of km/km. Raster data were extracted at 1-km points along each grounding line; the mean was calculated for each grounding line and merged in a table with sinuosity data. A dataset of 6,275 paleo-grounding lines expressed as ice-marginal landforms on the deglaciated western Ross Sea continental shelf are used in this study, originally published by Simkins et al., 2018. The ice-marginal landforms were mapped from multibeam echo sounder data that was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with 30-60% swath overlap (Cruise DOI: 10.7284/901477). The resulting bathymetry data was gridded at 20-40 m with decimeter vertical elevation resolution depending on water depth and sea-state. Sinuosity is calculated as a ratio of true (mapped) landform length, measured in the across paleo-ice flow direction at the crest of the landform, to the straight line distance between the mapped landform endpoints and in units of km/km. \r\n\r\nTo compare modern and paleo-grounding lines, we use a consistent length scale by segmenting the grounding lines into 2-km sections for the two datasets (modern, n=12,966; paleo, n=5,832), even though this eliminates grounding lines that are less than 2-km long and thus results in 1 modern and 3,873 paleo-grounding lines removed. The full-length and 2-km segmented groundings lines are provided as shapefiles \"InSAR_groundinglines_full\" and \"InSAR_groundinglines_2km\", the paleo-grounding lines are provided as shapefiles \"RossSea_icemarginal_full\" and \"RossSea_icemarginal_2km\", and points marking modern grounding lines retreat from repeat InSAR surveys are provided as shapefile \"InSAR_retreat_points\", all stored together in a geodatabase named \"Antarctic_groundinglines.gbd\". Additional grounding line metrics, including length, sinuosity, bed roughness, and bed slope for modern and paleo-grounding lines, and height-above-buoyancy gradient, ice-flow velocity, presence of pinning points and ice shelves are provided for modern grounding lines. \r\n\r\nThe published dataset was compiled and analyzed in the article \"Controls on circum-Antarctic grounding-line sinuosity \" by Simkins, L.M., Stearns, L.A., and Riverman, K.L, which will be submitted to a peer-review journal in November 2021.\r\n\r\nReferences\r\nMouginot, J., B. Scheuchl, and E. Rignot. 2017. MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. \r\n\r\nRignot, E., J. Mouginot, and B. Scheuchl. 2016. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. \r\n\r\nSimkins, L. M., Greenwood, S. L., \u0026 Anderson, J. B. (2018). Diagnosing ice sheet grounding line stability from landform morphology. The Cryosphere, 12(8), 2707-2726.\r\n\r\nVan der Veen, C. J., J. C. Plummer, \u0026 L. A. Stearns. (2011). Controls on the recent speed up of Jakobshavn Isbr\u00e6, West Greenland. Journal of Glaciology, 57(204), 770-782", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Bed Roughness; Bed Slope; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pinning Points", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Simkins, Lauren; Stearns, Leigh; Riverman, Kiya", "project_titles": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations; Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "projects": [{"proj_uid": "p0010269", "repository": "USAP-DC", "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations"}, {"proj_uid": "p0000395", "repository": "USAP-DC", "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Circum-Antarctic grounding-line sinuosity", "uid": "601484", "west": -180.0}, {"awards": "1745043 Simkins, Lauren; 1745055 Stearns, Leigh; 1246353 Anderson, John", "bounds_geometry": ["POLYGON((174 -75,174.4 -75,174.8 -75,175.2 -75,175.6 -75,176 -75,176.4 -75,176.8 -75,177.2 -75,177.6 -75,178 -75,178 -75.2,178 -75.4,178 -75.6,178 -75.8,178 -76,178 -76.2,178 -76.4,178 -76.6,178 -76.8,178 -77,177.6 -77,177.2 -77,176.8 -77,176.4 -77,176 -77,175.6 -77,175.2 -77,174.8 -77,174.4 -77,174 -77,174 -76.8,174 -76.6,174 -76.4,174 -76.2,174 -76,174 -75.8,174 -75.6,174 -75.4,174 -75.2,174 -75))"], "date_created": "Mon, 04 Oct 2021 00:00:00 GMT", "description": "Bathymetry from multibeam echo sounding data in Pennell Trough, Ross Sea, Antarctica was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with a 1\u00b0\u00d71\u00b0 beam width, swath angular coverage set to 62\u00b0\u00d762\u00b0, and 30-60% overlap between survey lines. All raw, ping-edited geophysical data collected on NBP15-02 can be accessed using the Marine Geoscience Data System (Cruise DOI: 10.7284/901477). The bathymetry dataset here is gridded at 20-m resolution with a water depth-dependent vertical resolution on the order of decimeters. Two shapefiles are provided for ice-marginal landforms and meltwater landforms observable in the bathymetry data. The purpose of collecting the bathymetry data on cruise NBP15-02 was to better understand the glacial history of the Ross Sea, and the dataset, inclusive of bathymetry data and shapefiles of glacial landforms, from Pennell Trough are used to understand impacts on subglacial channel morphology and organization during the deglaciation of the region following the Last Glacial Maximum. The published dataset was used and analyzed in the article \"Topographic controls on channelized meltwater in the subglacial environment\" by Simkins, L.M., Greenwood, S.L., Munevar Garcia, S., Eareckson, E.A., Anderson, J.B., and Prothro, L.O, which was published in Geophysical Research Letters in 2021 (DOI: 10.1029/2021GL094678).", "east": 178.0, "geometry": ["POINT(176 -76)"], "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "locations": "Pennell Trough; Ross Sea; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Prothro, Lindsay; Simkins, Lauren", "project_titles": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations; Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "projects": [{"proj_uid": "p0010269", "repository": "USAP-DC", "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations"}, {"proj_uid": "p0000395", "repository": "USAP-DC", "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "uid": "601474", "west": 174.0}, {"awards": "1643952 Grapenthin, Ronni; 1917149 Grapenthin, Ronni; 2039432 Grapenthin, Ronni", "bounds_geometry": ["POLYGON((166 -77.1,166.39 -77.1,166.78 -77.1,167.17 -77.1,167.56 -77.1,167.95 -77.1,168.34 -77.1,168.73 -77.1,169.12 -77.1,169.51 -77.1,169.9 -77.1,169.9 -77.18,169.9 -77.26,169.9 -77.34,169.9 -77.42,169.9 -77.5,169.9 -77.58,169.9 -77.66,169.9 -77.74,169.9 -77.82,169.9 -77.9,169.51 -77.9,169.12 -77.9,168.73 -77.9,168.34 -77.9,167.95 -77.9,167.56 -77.9,167.17 -77.9,166.78 -77.9,166.39 -77.9,166 -77.9,166 -77.82,166 -77.74,166 -77.66,166 -77.58,166 -77.5,166 -77.42,166 -77.34,166 -77.26,166 -77.18,166 -77.1))"], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "We use NASA\u0027s Jet Propulsion Laboratory\u0027s (JPL) GipsyX software in PPP mode with ambiguity resolution \r\napplied to 24 hour segments of data to generate daily position solutions. We use JPL\u0027s orbit and\r\nclock products and International GNSS Service (IGS) antenna phase center models. Where available, \r\nwe use JPL\u0027s second order ionospheric corrections, otherwise we fall back on those provided by the \r\nIGS. To correct tropospheric delays, we use the GPT2 model as implemented in GipsyX. Ocean tidal \r\nloading corrections utilize the TPXO7.2 and ATLAS model, a combination of hydrodynamic model and \r\naltimetry data, with respect to Earth\u0027s Center of Mass implemented in SPOTL. We obtain position \r\nsolutions for each station day in a fiducial-free reference frame, which we then transform into \r\nthe 2014 International Reference Frame using JPL\u0027s transformation coefficients and generate\r\ntimeseries of position change relative to the first epoch, given in the *.series files which \r\nare ASCII files with the following columns:\r\n\r\ndecimal year\r\ndisplacement east (m)\r\ndisplacement north (m)\r\ndisplacement up (m) \r\nsigma east (m)\r\nsigma north (m)\r\nsigma up (m)\r\neast-north covariance\r\neast-up covariance\r\nnorth-up covariance\r\nYear (YYYY)\r\nMonth (MM)\r\nDay (DD)\r\nHour (hh)\r\nMinute (mm)\r\nSecond (ss)\r\nSolution path\r\n \r\nWe generate position time series relative to stable Antarctic plate by removing the plate velocities \r\nmodeled by Argus et al (2010). These are provided in the *.npy files that be readily read into \r\npython scripts:\r\n\r\npos_ts = np.load(\u0027test.npy\u0027).flatten()[0]\r\n\r\npos_ts[\u0027itrf\u0027] provides the ITRF data as above\r\npos_ts[\u0027plate\u0027] provides the data with Antarctic plate motion removed. ", "east": 169.9, "geometry": ["POINT(167.95 -77.5)"], "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "locations": "Ross Island; Antarctica; Ross Island; Mount Erebus", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Grapenthin, Ronni", "project_titles": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "projects": [{"proj_uid": "p0010255", "repository": "USAP-DC", "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Erebus GPS timeseries ", "uid": "601471", "west": 166.0}, {"awards": null, "bounds_geometry": ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "This dataset includes:\r\n1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). \r\n2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). \r\n3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand.\r\n4) Tie points to constrain flow model used to develop JRI_2008 chronology.", "east": 54.9, "geometry": ["POINT(-1.4 -73.15)"], "keywords": "Antarctica; Antarctic Peninsula; Biomass Burning; Black Carbon; Dronning Maud Land; East Antarctic Plateau; Ice Core", "locations": "Dronning Maud Land; Antarctic Peninsula; Antarctica; East Antarctic Plateau", "north": -64.2, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Chellman, Nathan", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -82.1, "title": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "uid": "601464", "west": -57.7}, {"awards": "1543432 Hock, Regine", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "This dataset contains the total number of days per year with meltwater present at the surface across the Antarctic ice sheet and surrounding ice shelves derived from passive microwave satellite observations for each melt year from 1979/80 to 2019/20. This data comes from daily and near-daily SMMR, SSM/I, and SSMIS results at 25 km resolution at 19 GHz horizontal polarization. Each melt year starts on July 1 and ends June 30. The melt detection algorithm is described in Johnson and others (2020) and uses KMeans clustering analysis of the annual brightness temperature time series on each pixel to detect melt for that pixel and year. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Melt Days; Passive Microwave; Snow/ice; Snow/Ice; Surface Melt", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Johnson, Andrew; Hock, Regine; Fahnestock, Mark", "project_titles": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model", "projects": [{"proj_uid": "p0010408", "repository": "USAP-DC", "title": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic passive microwave Kmeans derived surface melt days, 1979-2020", "uid": "601457", "west": -180.0}, {"awards": "1443347 Condron, Alan", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 08 Jun 2021 00:00:00 GMT", "description": "Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. This dataset contains the results from multi-century (present\u20132250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. These results were published in Sadai et al., Science Advances, 2020, Vol. 6, eaaz1169\r\n\r\nPlease note that ALL the raw model data generated for this project is archived at Woods Hole Oceanographic Institution and the University of Massachusetts Amherst and freely available on request. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meltwater", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science", "persons": "Condron, Alan", "project_titles": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010007", "repository": "USAP-DC", "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming", "uid": "601449", "west": -180.0}, {"awards": "1443347 Condron, Alan", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 04 May 2021 00:00:00 GMT", "description": "This dataset contains the MITgcm model output data presented in Ashley, K.E. et al., 2021. This dataset includes simulated spatial changes in sea surface salinity (SSS), time series data of salinity, and scatter plot data of SSS changes against meltwater discharge.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Computer Model; Freshwater; Glaciers/ice Sheet; Glaciers/Ice Sheet; Model Data; Ocean Model; Oceans; Salinity", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Condron, Alan", "project_titles": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010007", "repository": "USAP-DC", "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Simulated changes in Southern Ocean salinity", "uid": "601442", "west": -180.0}, {"awards": "1443448 Schaefer, Joerg; 1443144 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 03 Feb 2021 00:00:00 GMT", "description": "Experiments were conducted using ECHAM5-HAM atmospheric aerosol - climate model at horizontal resolution of T42 (~2.8\u00b0 latitude \u00d7 2.8\u00b0 longitude) with 19 vertical levels to examine the relationship between the production of 10Be in the atmosphere and its deposition at the surface. Five experiments were conducted, using a) constant 10Be production but varying, observed climate b) climatological climate of the last 50 years but varying 10Be production, c) constant 10Be production with 50-years of varying climate for 0 ka, (d) 6 ka, and (e) 21 ka, using the TraCE21 simulation to provide boundary conditions. The results will be useful for comparison with 10Be concentration records obtained from the South Pole ice core and other Antarctic and Greenland records.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; South Pole", "locations": "Antarctica; South Pole; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Ding, Qinghua; Schaefer, Joerg; Steig, Eric J.", "project_titles": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole", "projects": [{"proj_uid": "p0010158", "repository": "USAP-DC", "title": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Simulations of 10Be over Antarctica", "uid": "601431", "west": -180.0}, {"awards": "1643795 Mikesell, Thomas", "bounds_geometry": ["POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))"], "date_created": "Fri, 15 Jan 2021 00:00:00 GMT", "description": "This data set includes observations of Rayleigh and Love wave group and phase velocity dispersion curves from ambient noise crosscorrelation functions. The data set includes the corresponding shear wave velocity model produced by joint inversion of these dispersion curves. This investigators developed a new crust and upper mantle model directly beneath the seismic stations used in this study. Data are in NetCDF and GeoCSV formats. The Python code used to generate the NetCDF files from the GeoCSV files is also contained in the data set.", "east": -98.0, "geometry": ["POINT(-116.25 -79.25)"], "keywords": "Antarctica; Crust; Moho; Seismic Tomography; Seismology; Seismometer; Shear Wave Velocity; Surface Wave Dispersion; West Antarctica", "locations": "Antarctica; West Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Mikesell, Dylan", "project_titles": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods", "projects": [{"proj_uid": "p0010155", "repository": "USAP-DC", "title": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "POLENET", "south": -83.5, "title": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "uid": "601423", "west": -134.5}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1\u03b1 and HIF-1\u03b2 subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 \u00b1 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 \u00b1 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1\u03b1 were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1\u03b1 increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Hypoxia response of hearts of Antarctic fishes", "uid": "601406", "west": null}, {"awards": "1842021 Campbell, Seth", "bounds_geometry": ["POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.6,-111 -83.2,-111 -83.8,-111 -84.4,-111 -85,-111 -85.6,-111 -86.2,-111 -86.8,-111 -87.4,-111 -88,-116.7 -88,-122.4 -88,-128.1 -88,-133.8 -88,-139.5 -88,-145.2 -88,-150.9 -88,-156.6 -88,-162.3 -88,-168 -88,-168 -87.4,-168 -86.8,-168 -86.2,-168 -85.6,-168 -85,-168 -84.4,-168 -83.8,-168 -83.2,-168 -82.6,-168 -82))"], "date_created": "Sat, 12 Dec 2020 00:00:00 GMT", "description": "The dataset includes initialization and output files of a numerical ice flow simulation of the Whillans and Mercer Ice Streams . The Ice Sheet System Model (ISSM) model was used to solve a 100-year transient stress balance solution of the region with ~10 kPA/yr friction increase downstream of the shear margin between the Whillans and Mercer ice streams. \r\n", "east": -111.0, "geometry": ["POINT(-139.5 -85)"], "keywords": "Antarctica; Glaciology; Ice Sheet Flow Model; Ice Shelf Dynamics; Mercer Ice Stream; Model Data; Snow/ice; Snow/Ice; Whillans Ice Stream", "locations": "Antarctica; Mercer Ice Stream; Whillans Ice Stream", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kaluzienski, Lynn", "project_titles": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence", "projects": [{"proj_uid": "p0010145", "repository": "USAP-DC", "title": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -88.0, "title": "Whillans and Mercer Shear Margin Ice Flow simulation in ISSM", "uid": "601404", "west": -168.0}, {"awards": "1842021 Campbell, Seth", "bounds_geometry": ["POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82))"], "date_created": "Sat, 12 Dec 2020 00:00:00 GMT", "description": "The dataset includes GPS coordinates for crevasse/fracture locations picked from 350MHz and 400Mhz frequency GPR dataset in the Whillans/Mercer Shear Margin along the SALSA traverse route with associated kinematic outputs for each feature (shear strain rate, vorticity, dilatation). GPS coordinates are in the Antarctic Polar Stereographic projection (EPSG:3031). ", "east": -111.0, "geometry": ["POINT(-139.5 -84.5)"], "keywords": "Antarctica; Crevasses; Glaciology; GPR; GPS; Ice Sheet Flow Model; Ice Shelf Dynamics; Snow/ice; Snow/Ice; Whillans Ice Stream", "locations": "Antarctica; Whillans Ice Stream", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kaluzienski, Lynn", "project_titles": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence", "projects": [{"proj_uid": "p0010145", "repository": "USAP-DC", "title": "RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "2017 GPR Observations of the Whillans and Mercer Ice Streams", "uid": "601403", "west": -168.0}, {"awards": "1743310 Kingslake, Jonathan", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 24 Oct 2020 00:00:00 GMT", "description": "This data set contains the results presented in Lai et al. (2020), including; the 125m-resolution fracture map, the spatial distribution of fracture depths and the required initial flaw size for hydrofracture, which is calculated using linear elastic fracture mechanics (LEFM) according to the ice-shelf stress fields and thickness. The dimensionless stress (Rxx_bar, defined in Lai et al. (2020)) governs how fractures behave. Using a dimensionless stress criteria we have determined which ice-shelf areas are vulnerable to hydrofracture if inundated with melt water (Rxx_bar \u003eRxx*_bar).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Computer Model; Fractures; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meltwater; Model Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lai, Ching-Yao", "project_titles": "Satellite observations and modelling of surface meltwater flow and its impact on ice shelves", "projects": [{"proj_uid": "p0010184", "repository": "USAP-DC", "title": "Satellite observations and modelling of surface meltwater flow and its impact on ice shelves"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Vulnerability of Antarctica\u2019s ice shelves to meltwater-driven fracture", "uid": "601395", "west": -180.0}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-58.62 -62.257,-58.6199 -62.257,-58.6198 -62.257,-58.6197 -62.257,-58.6196 -62.257,-58.6195 -62.257,-58.6194 -62.257,-58.6193 -62.257,-58.6192 -62.257,-58.6191 -62.257,-58.619 -62.257,-58.619 -62.2571,-58.619 -62.2572,-58.619 -62.2573,-58.619 -62.2574,-58.619 -62.2575,-58.619 -62.2576,-58.619 -62.2577,-58.619 -62.2578,-58.619 -62.2579,-58.619 -62.258,-58.6191 -62.258,-58.6192 -62.258,-58.6193 -62.258,-58.6194 -62.258,-58.6195 -62.258,-58.6196 -62.258,-58.6197 -62.258,-58.6198 -62.258,-58.6199 -62.258,-58.62 -62.258,-58.62 -62.2579,-58.62 -62.2578,-58.62 -62.2577,-58.62 -62.2576,-58.62 -62.2575,-58.62 -62.2574,-58.62 -62.2573,-58.62 -62.2572,-58.62 -62.2571,-58.62 -62.257))"], "date_created": "Sun, 11 Oct 2020 00:00:00 GMT", "description": "Many types of animal tissues are increasingly being used for stable isotope analysis, with their application dependent on the time frame they reflect and their availability for collection. Here, we investigated the isotopic values (\u03b413C and \u03b415N) of four tissues (feather, skin, toenail, and bone) collected from fledgling-period chick carcasses of three species of pygoscelid penguins to compare the variability and accuracy of the data among tissues. Samples were collected at 25 de Mayo/King George Island during the 2017/18 austral summer. Chick carcasses are commonly found at active penguin colonies, and \u201copportunistic sampling\u201d can easily be performed without disturbing nesting penguins. A total of 25\u201336 carcasses per species were sampled at active colonies of Ad\u00e9lie Pygoscelis adeliae, Gentoo P. papua, and Chinstrap P. antarcticus penguins. A linear mixed model showed that \u03b413C values varied significantly between tissues, presumably due to tissue-specific isotopic discrimination. In contrast, the only tissue with significantly different \u03b415N values was toenail. Stable isotope data revealed dietary differences among species, with Gentoo Penguins having higher average isotopic values in tissues compared to Ad\u00e9lie and Chinstrap penguins. In addition, Chinstrap Penguins showed a consistent, but not statistically significant, trend in having higher \u03b413C values compared to Ad\u00e9lie Penguins. Gentoo Penguins displayed the highest isotopic variability of any species for all tissues. Isotopic composition was most variable in skin in all three species making skin the least reliable tissue for isotope analysis, whereas isotopic values were least variable in toenails. Comparison of isotopic values between two bones (tibiotarsus and coracoid) showed no significant differences in isotopic values, indicating that when the same bone is not available for sampling from carcasses, sampling of any major skeletal element is likely to provide a meaningful comparison. These results allow for more informed opportunistic sampling to accurately estimate and compare penguin diet among species and between ancient and active colonies.", "east": -58.619, "geometry": ["POINT(-58.6195 -62.2575)"], "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "locations": "Antarctica; Stranger Point; 25 De Mayo/King George Island", "north": -62.257, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ciriani, Yanina; Emslie, Steven", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.258, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "uid": "601382", "west": -58.62}, {"awards": "1644187 Tulaczyk, Slawek", "bounds_geometry": ["POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9))"], "date_created": "Sat, 12 Sep 2020 00:00:00 GMT", "description": " The ANTAEM survey was carried out in the period November 12th to 28th, 2018, with the SkyTEM 312 system. Twenty-one missions (flights) were conducted over 11 production days of helicopter service, resulting in a total of approximately ~3400 line km of data. The SkyTEM system records data from take-off until landing resulting in multiple lines converging to the landing pads in McMurdo and at Marble Point. The production without overlapping lines adds up to approximately 2900 line km. The flight speed was approximately 120 km/h at a target flight altitude of ~50 m (sensor height), but the actual sensor height varies depending on the terrain. The surveys were carried out with a Bell 212 helicopter, which carried the SkyTEM sensor as a sling load. The SkyTEM system was configured in a standard two-moment setup (low moment, LM and high moment, HM). Areas with extremely resistive dry and/or frozen sediment/bedrock, and glacier ice often produce EM-signals with amplitudes below the detection level of the system. Data from these low signal environments cannot be inverted into resistivity models. Data with strong induced polarization effects cannot be inverted for resistivity either. These data were discharged in this standard data delivery. \r\n The EM-data and inversion result (resistivity models) are delivered in the SkyTEM2018_dat.xyz and SkyTEM2018_inv.xyz files respectably. The RECORD number in the two files links data and model together. EM-data and data uncertainty for data entering inversion. Info stated in file Header: NAN value, Data unit, Coordinate system, Gate times. The SkyTEM system uses at High-Low moment data recording cycle, therefore only a subset of the total 40 time gates are preset for each moment. The standard lateral constraints inversion (LCI), delivered in the SkyTEM2018_inv.xyz file, was carried out with a smooth 30 layered resistivity model discretized to a depth of 500 m. A depth of investigation (DOI) was estimated for each resistivity model.\r\n", "east": 168.5, "geometry": ["POINT(164.75 -77.6)"], "keywords": "Antarctica; Dry Valleys; Hydrology; Ice Shelf; McMurdo; Permafrost", "locations": "McMurdo; Antarctica; Dry Valleys", "north": -76.9, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Tulaczyk, Slawek", "project_titles": "Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica", "projects": [{"proj_uid": "p0010129", "repository": "USAP-DC", "title": "Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "ANTAEM project airborne EM resistivity data from McMurdo Region", "uid": "601373", "west": 161.0}, {"awards": "0125252 Padman, Laurence; 0125602 Padman, Laurence; 1443677 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -53,-144 -53,-108 -53,-72 -53,-36 -53,0 -53,36 -53,72 -53,108 -53,144 -53,180 -53,180 -56.7,180 -60.4,180 -64.1,180 -67.8,180 -71.5,180 -75.2,180 -78.9,180 -82.6,180 -86.3,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.3,-180 -82.6,-180 -78.9,-180 -75.2,-180 -71.5,-180 -67.8,-180 -64.1,-180 -60.4,-180 -56.7,-180 -53))"], "date_created": "Fri, 10 Jul 2020 00:00:00 GMT", "description": "The Antarctic Tide Gauge (AntTG) database provides tidal harmonic coefficients (amplitude and phase) for ocean surface height (tide-induced height perturbation relative to the seabed) at many coastal, ocean and ice shelf locations around Antarctica. The coefficients are provided for up to 8 tidal constituents (Q1, O1, P1, K1, N2 , M2, S2, K2) where data is available. These coefficients are primarily intended for users interested in validation of tide models for the Antarctic seas including the areas covered by the floating ice shelves (e.g., King and Padman, 2005; King et al., 2011; Stammer et al., 2014). The database is provided as single files in ASCII text and MATLAB *.mat formats, as well as in a KML package that can be viewed in Google Earth. \r\n\r\nSeveral different measurement systems were used to collect the data. The quality of database entries varies widely, from short records of unknown accuracy to very precise, long-term records from bottom pressure recorders in the ocean and GPS systems installed on ice shelves. This database provides sufficient quality control information (record length, time step, and measurement type) for a user to judge whether a tidal analysis at a particular site is likely to be useful for their application.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Oceans; Sea Surface Height; Tide Gauges; Tides", "locations": "Antarctica", "north": -53.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Arctic System Science; Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Padman, Laurence; King, Matt", "project_titles": "Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Tide Gauge Database, version 1", "uid": "601358", "west": -180.0}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Mt. Early and Sheridan Bluff (87\u00b0S) are the above ice expression of Earth\u2019s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method.", "east": -153.4, "geometry": ["POINT(-153.75 -87)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Panter, Kurt", "project_titles": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "projects": [{"proj_uid": "p0010105", "repository": "USAP-DC", "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "uid": "601331", "west": -154.1}, {"awards": "1656518 Gumport, Patricia; 1542885 Dunham, Eric", "bounds_geometry": null, "date_created": "Mon, 11 May 2020 00:00:00 GMT", "description": "We quantify sliding stability and rupture styles for a horizontal interface between an elastic layer and stiffer elastic half-space with a free surface on top and rate-and-state friction on the interface. Specific motivation (and model parameters) comes from quasi-periodic slow slip events on the Whillans Ice Plain in West Antarctica. We quantify the influence of layer thickness on sliding stability, specifically whether steady loading of the system produces steady sliding or sequences of stick-slip events. This dataset contains input files from different parts of parameter space to demonstrate different styles of slip (steady sliding, slow slip sequences, and fast slip sequences).", "east": null, "geometry": null, "keywords": "Antarctica; Computer Model; Glaciology; Model Data; Shear Stress; Solid Earth; Whillans Ice Stream", "locations": "Whillans Ice Stream; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Abrahams, Lauren", "project_titles": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data", "projects": [{"proj_uid": "p0010138", "repository": "USAP-DC", "title": "Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear", "uid": "601320", "west": null}, {"awards": "0636773 DeMaster, David; 1341669 DeMaster, David", "bounds_geometry": ["POLYGON((-71 -64,-70.4 -64,-69.8 -64,-69.2 -64,-68.6 -64,-68 -64,-67.4 -64,-66.8 -64,-66.2 -64,-65.6 -64,-65 -64,-65 -64.7,-65 -65.4,-65 -66.1,-65 -66.8,-65 -67.5,-65 -68.2,-65 -68.9,-65 -69.6,-65 -70.3,-65 -71,-65.6 -71,-66.2 -71,-66.8 -71,-67.4 -71,-68 -71,-68.6 -71,-69.2 -71,-69.8 -71,-70.4 -71,-71 -71,-71 -70.3,-71 -69.6,-71 -68.9,-71 -68.2,-71 -67.5,-71 -66.8,-71 -66.1,-71 -65.4,-71 -64.7,-71 -64))"], "date_created": "Mon, 11 May 2020 00:00:00 GMT", "description": "This data set is used to describe a new technique for assessing labile organic carbon (LOC) abundances and mean residence times in marine sediments. Radiocarbon is used to determine abundances of labile organic carbon and then a diagenetic organic carbon model, coupled with sediment biotrubation coefficients, is used to assess LOC mean residence times. ", "east": -65.0, "geometry": ["POINT(-68 -67.5)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "locations": "Marguerite Bay; Antarctica; Antarctic Peninsula", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Earth Sciences", "persons": "DeMaster, David; Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie", "project_titles": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000552", "repository": "USAP-DC", "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling"}, {"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "uid": "601319", "west": -71.0}, {"awards": "9911617 Blankenship, Donald; 9978236 Bell, Robin", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Bedrock Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Bedrock Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "locations": "Lake Vostok; Antarctica; East Antarctica", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}, {"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey bed elevation data", "uid": "601299", "west": 101.5}, {"awards": "1443471 Koutnik, Michelle", "bounds_geometry": ["POINT(-98.16 -89.99)"], "date_created": "Wed, 25 Mar 2020 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008\u2030 m-1 for \u03b418O. Advection adds approximately 1\u2030 for \u03b418O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10\u00b0C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4\u00b0C smaller than if the flow from upstream is not considered. ", "east": -98.16, "geometry": ["POINT(-98.16 -89.99)"], "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -89.99, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "projects": [{"proj_uid": "p0000200", "repository": "USAP-DC", "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -89.99, "title": "SPICEcore Advection", "uid": "601266", "west": -98.16}, {"awards": "1443677 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -68,-175.85 -68,-171.7 -68,-167.55 -68,-163.4 -68,-159.25 -68,-155.1 -68,-150.95 -68,-146.8 -68,-142.65 -68,-138.5 -68,-138.5 -69.7,-138.5 -71.4,-138.5 -73.1,-138.5 -74.8,-138.5 -76.5,-138.5 -78.2,-138.5 -79.9,-138.5 -81.6,-138.5 -83.3,-138.5 -85,-142.65 -85,-146.8 -85,-150.95 -85,-155.1 -85,-159.25 -85,-163.4 -85,-167.55 -85,-171.7 -85,-175.85 -85,180 -85,177.4 -85,174.8 -85,172.2 -85,169.6 -85,167 -85,164.4 -85,161.8 -85,159.2 -85,156.6 -85,154 -85,154 -83.3,154 -81.6,154 -79.9,154 -78.2,154 -76.5,154 -74.8,154 -73.1,154 -71.4,154 -69.7,154 -68,156.6 -68,159.2 -68,161.8 -68,164.4 -68,167 -68,169.6 -68,172.2 -68,174.8 -68,177.4 -68,-180 -68))"], "date_created": "Fri, 14 Feb 2020 00:00:00 GMT", "description": "This dataset contains a regional ocean-ice shelf model used to support and interpret the ROSETTA-Ice field program. A gzipped tar file containing the regional ROMS model code, configuration files, input files, and selected output files. The model simulation covers three years following a ten year spin up. Two sets of output files from the simulation are included. The first is the complete model output (T,S,u,v, etc.) averaged over 30 day intervals. The second is selected variable (T, S, and passive dye tracers) averaged over one day. Included Matlab scripts process these daily passive dye files into water masses and make a simple movie of the time evolution of the water mass distributions. For futher information, see the Supplemental Information of the associated publication (Tinto et al., 2019).\r\n\r\n", "east": 154.0, "geometry": ["POINT(-172.25 -76.5)"], "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "locations": "Ross Ice Shelf; Antarctica; Ross Sea; Ross Sea", "north": -68.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Springer, Scott; Howard, Susan L.; Padman, Laurence", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "uid": "601255", "west": -138.5}, {"awards": "1443534 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Fri, 10 Jan 2020 00:00:00 GMT", "description": "This dataset was produced for the manuscript \\\"Multi-decadal basal melt rates and structure of the Ross Ice Shelf, Antarctica using airborne ice penetrating radar\\\" by Das et al., 2020 in Journal of Geophysical Research-Earth Surface. It has total ice thickness, thickness of the LMI layer, strain induced thickness change, basal melt rates and the error estimate for basal melt rates.", "east": 161.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Das, Indrani; Padman, Laurence; Bell, Robin; Fricker, Helen; Hulbe, Christina; Siddoway, Christine; Dhakal, Tejendra; Frearson, Nicholas; Mosbeux, Cyrille; Cordero, Isabel; Siegfried, Matt; Tinto, Kirsty", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "uid": "601242", "west": -150.0}, {"awards": "9896041 Padman, Laurence; 1443677 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"], "date_created": "Thu, 19 Dec 2019 00:00:00 GMT", "description": "CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry.\r\n\nModel type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). \nGrid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) \nConstituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. \nUnits: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). \nCoordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. \nCitation: \"\u2026 an update to the inverse model described by Padman et al. [2002].\" \n\nSee CATS2008_README.pdf for further details.\r", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "locations": "Sea Surface; Antarctica", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}, {"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "uid": "601235", "west": -180.0}, {"awards": "1043700 Harry, Dennis", "bounds_geometry": ["POLYGON((-180 -70,-176.5 -70,-173 -70,-169.5 -70,-166 -70,-162.5 -70,-159 -70,-155.5 -70,-152 -70,-148.5 -70,-145 -70,-145 -71,-145 -72,-145 -73,-145 -74,-145 -75,-145 -76,-145 -77,-145 -78,-145 -79,-145 -80,-148.5 -80,-152 -80,-155.5 -80,-159 -80,-162.5 -80,-166 -80,-169.5 -80,-173 -80,-176.5 -80,180 -80,177.5 -80,175 -80,172.5 -80,170 -80,167.5 -80,165 -80,162.5 -80,160 -80,157.5 -80,155 -80,155 -79,155 -78,155 -77,155 -76,155 -75,155 -74,155 -73,155 -72,155 -71,155 -70,157.5 -70,160 -70,162.5 -70,165 -70,167.5 -70,170 -70,172.5 -70,175 -70,177.5 -70,-180 -70))"], "date_created": "Sun, 24 Nov 2019 00:00:00 GMT", "description": "Interpretation of major post-middle Miocene seismic reflections in the Ross Sea are provided in i) ASCII files containing Line, Trace, X, Y, and TWTT (two-way travel) picks and ii) netcdf grid files of structure and isochore maps in two-way travel time and depth or thickness. Data are in the Antarctic Polar Stereographic projection.", "east": -145.0, "geometry": ["POINT(-175 -75)"], "keywords": "Andrill; Antarctica; Marine Geoscience; Ross Sea; Seismic Interpretation; Seismic Reflection; Stratigraphy; Subsidence; Victoria Land Basin", "locations": "Antarctica; Ross Sea; Victoria Land Basin", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Harry, Dennis L.", "project_titles": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "projects": [{"proj_uid": "p0000467", "repository": "USAP-DC", "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -80.0, "title": "Ross Sea post-middle Miocene seismic interpretation", "uid": "601227", "west": 155.0}, {"awards": "1043528 Alley, Richard; 0539578 Alley, Richard", "bounds_geometry": ["POINT(-112.3 -79.43333333)"], "date_created": "Tue, 12 Nov 2019 00:00:00 GMT", "description": "This data set includes the fully updated (2017) bubble number-density measured at depths from 120 meters down to 1600 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006) and Fegyveresi and others (2011). Data also includes tabs for bubble size and shape data.", "east": -112.3, "geometry": ["POINT(-112.3 -79.43333333)"], "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "Antarctic; Antarctica; West Antarctic Ice Sheet", "north": -79.43333333, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "persons": "Fegyveresi, John; Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan; Voigt, Donald E.", "project_titles": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core; Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "projects": [{"proj_uid": "p0000027", "repository": "USAP-DC", "title": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core"}, {"proj_uid": "p0000038", "repository": "USAP-DC", "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.43333333, "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "uid": "601224", "west": -112.3}, {"awards": "1745137 Schroeder, Dustin", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 02 Oct 2019 00:00:00 GMT", "description": "These data accompany the paper \"Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes\" (MacKie et al., in review). This dataset contains 100 geostatistically generated subglacial topographic realizations for Antarctica. Data science techniques were used to calculate the probability of the occurrence of radar-detected lakes and altimetry-detected (active) lakes across the continent, using each topographic realization as a parameter. This generated 100 probability maps of the likelihood of radar-detected lake occurrence and 100 probability maps of active lake occurrence. Further statistics were used to generate 100 binary maps showing expected radar-detected lake locations. The ensemble of realizations can be used for uncertainty quantification.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Active Lakes; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Model Data; Snow/ice; Snow/Ice; Subglacial Lakes; Topography", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacKie, Emma; Schroeder, Dustin; Caers, Jef; Siegfried, Matt; Scheidt, Celine", "project_titles": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations", "projects": [{"proj_uid": "p0010058", "repository": "USAP-DC", "title": "CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic topographic and subglacial lake geostatistical simulations", "uid": "601213", "west": -180.0}, {"awards": "1341513 Maksym, Edward", "bounds_geometry": ["POLYGON((-180 -68,-179 -68,-178 -68,-177 -68,-176 -68,-175 -68,-174 -68,-173 -68,-172 -68,-171 -68,-170 -68,-170 -68.8,-170 -69.6,-170 -70.4,-170 -71.2,-170 -72,-170 -72.8,-170 -73.6,-170 -74.4,-170 -75.2,-170 -76,-171 -76,-172 -76,-173 -76,-174 -76,-175 -76,-176 -76,-177 -76,-178 -76,-179 -76,180 -76,179 -76,178 -76,177 -76,176 -76,175 -76,174 -76,173 -76,172 -76,171 -76,170 -76,170 -75.2,170 -74.4,170 -73.6,170 -72.8,170 -72,170 -71.2,170 -70.4,170 -69.6,170 -68.8,170 -68,171 -68,172 -68,173 -68,174 -68,175 -68,176 -68,177 -68,178 -68,179 -68,-180 -68))"], "date_created": "Fri, 30 Aug 2019 00:00:00 GMT", "description": "Layer Cakes for the PIPERS ice stations 4, 7, 8 and 9 (05/24, 05/29, 05/31, 06/02) with snow depth (both raw and interpolated), surface lidar scan and ice draft AUV scan aligned onto a common 100m x 100m grid, binned at 0.2m resolution.", "east": -170.0, "geometry": ["POINT(180 -72)"], "keywords": "Antarctica; Digital Elevation Model; Glaciology; Ice; Ice Thickness; Ice Thickness Distribution; LIDAR; NBP1704; PIPERS; Ross Sea; R/v Nathaniel B. Palmer; Sea Ice; Snow; Snow Depth; Surface Elevation", "locations": "Antarctica; Ross Sea", "north": -68.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Mei, M. Jeffrey; Maksym, Edward; Jeffrey Mei, M.", "project_titles": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "projects": [{"proj_uid": "p0010032", "repository": "USAP-DC", "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Sea Ice Layer Cakes, PIPERS 2017", "uid": "601207", "west": 170.0}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((150 -72,152 -72,154 -72,156 -72,158 -72,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,170 -72.3,170 -72.6,170 -72.9,170 -73.2,170 -73.5,170 -73.8,170 -74.1,170 -74.4,170 -74.7,170 -75,168 -75,166 -75,164 -75,162 -75,160 -75,158 -75,156 -75,154 -75,152 -75,150 -75,150 -74.7,150 -74.4,150 -74.1,150 -73.8,150 -73.5,150 -73.2,150 -72.9,150 -72.6,150 -72.3,150 -72))"], "date_created": "Wed, 31 Jul 2019 00:00:00 GMT", "description": "The Transantarctic Mountains (TAMs) are the largest non-collisional mountain range on Earth. Their origin, as well as the origin of the Wilkes Subglacial Basin (WSB) along the inland side of the TAMs, have been widely debated, and a key constraint to distinguish between competing models is the underlying crustal structure. Previous investigations have examined this structure but have primarily focused on a small region of the central TAMs near Ross Island, providing little along-strike constraint. In this study, we use data from the new Transantarctic Mountains Northern Network and from five stations operated by the Korea Polar Research Institute to investigate the crustal structure beneath a previously unexplored portion of the TAMs. Using S-wave receiver functions and Rayleigh wave phase velocities, crustal thickness and average crustal shear velocity (\uf8e5Vs) are resolved within \u00b14 km and \u00b10.1 km/s, respectively. The crust thickens from ~20 km near the Ross Sea coast to ~46 km beneath the northern TAMs, which is somewhat thicker than that imaged in previous studies beneath the central TAMs. The crust thins to ~41 km beneath the WSB.\uf8e5Vs ranges from ~3.1-3.9 km/s, with slower velocities near the coast. Our findings are consistent with a flexural origin for the TAMs and WSB, where these features result from broad flexure of the East Antarctic lithosphere and uplift along its western edge due to thermal conduction from hotter mantle beneath West Antarctica. Locally thicker crust may explain the ~1 km of additional topography in the northern TAMs compared to the central TAMs.", "east": 170.0, "geometry": ["POINT(160 -73.5)"], "keywords": "Antarctica; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -72.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins", "uid": "601194", "west": 150.0}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 22 Apr 2019 00:00:00 GMT", "description": "GENESIS global circulation model (GCM) outputs from a middle Eocene simulation parameterized with 2000 ppm pCO2, high obliquity, and no Antarctic ice.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate Model; Computer Model; Eocene; Genesis; Global Circulation Model; Modeling; Model Output; Seasonality; Temperature", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Judd, Emily", "project_titles": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "projects": [{"proj_uid": "p0010025", "repository": "USAP-DC", "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model", "uid": "601175", "west": -180.0}, {"awards": "1743326 Kingslake, Jonathan", "bounds_geometry": null, "date_created": "Fri, 22 Mar 2019 00:00:00 GMT", "description": "In February 2018, we hosted a workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability at Lamont-Doherty Earth Observatory, Palisades, New York. Funding for the workshop was provided by the\r\nU.S. National Science Foundation (NSF) Antarctic Glaciology Program (award number: 1743326). The\r\naims of the workshop were to: (1) establish the state-of-the-science of Antarctic surface hydrology; (2)\r\nidentify key science questions raised by observations and theoretical studies of Antarctic surface\r\nhydrology, and (3) move the community toward answering these questions by bringing together scientists\r\nwith diverse expertise. The workshop was motivated by the premise that significant gains in our\r\nunderstanding can be made if researchers with interests in this field are provided with an opportunity to\r\ncommunicate and develop collaborations across disciplines.\r\n\r\nHere we report on the organisation, attendance, and structure of the workshop, before summarizing key\r\nscience outcomes, research questions, and future priorities that emerged during the workshop within the\r\nfollowing four themes:\r\n1. Surface melting: controls and observations\r\n2. Water ponding and flow\r\n3. Impact of meltwater on ice-shelf stability\r\n4. Ice-sheet/climate modeling\r\n\r\nFinally, building on the emergent science questions, we propose a framework for prioritizing future work,\r\naimed at understanding and predicting the impact that surface meltwater will have on future Antarctic Ice\r\nSheet mass balance.", "east": null, "geometry": null, "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Sheet Stability; Ice Shelf; Report; Workshop", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kingslake, Jonathan; Trusel, Luke; Banwell, Alison; Bell, Robin; Das, Indrani; DeConto, Robert; Tedesco, Marco; Lenaerts, Jan; Schoof, Christian", "project_titles": "Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability", "projects": [{"proj_uid": "p0010021", "repository": "USAP-DC", "title": "Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Report on Antarctic surface hydrology workshop, LDEO, 2018", "uid": "601170", "west": null}, {"awards": "1443394 Pollard, David", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "The dataset consists of two tar files for two distinct sets of simulations. Each tar file contains a number of Netcdf files with model output for one simulation each, and also contains a DIF file (Directory Interchange Format, in xml form) with information on that part of the dataset.\r\n\r\nSet 1:\r\n\r\nThere are 4 Netcdf files with output from the PSU 3D Antarctic ice sheet model including \r\n ice melange, showing role of melange in potentially providing buttressing and \r\n possibly slowing down ice retreat in strong climate warming scenarios.\r\n \r\nSet two:\r\n\r\nThere are 2 Netcdf files with output from the PSU 3D Antarctic ice sheet model, for two future warming scenarios RCP4.5 and RCP8.5, contributing to oceanic meltwater discharge fields for future climate and ocean model simulations performed at Univ. Massachusetts by other PIs on the NSF project.\r\n \r\nMore details on file names and model fields is provided in \"Data Section\" of the Readme file.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctic; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Model; Meltwater; Model Data; Modeling; Model Output", "locations": "Antarctic; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Pollard, David", "project_titles": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010007", "repository": "USAP-DC", "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios", "uid": "601154", "west": -180.0}, {"awards": "1425989 Sarmiento, Jorge", "bounds_geometry": ["POLYGON((-180 -20,-144 -20,-108 -20,-72 -20,-36 -20,0 -20,36 -20,72 -20,108 -20,144 -20,180 -20,180 -27,180 -34,180 -41,180 -48,180 -55,180 -62,180 -69,180 -76,180 -83,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -83,-180 -76,-180 -69,-180 -62,-180 -55,-180 -48,-180 -41,-180 -34,-180 -27,-180 -20))"], "date_created": "Fri, 14 Dec 2018 00:00:00 GMT", "description": "This dataset include the budget terms for heat, carbon and phosphate storage tendency in \r\npre-industrial simulation and climate change simulation forced with atmospheric CO2 increasing at a rate of 1% per year run following 120 years of the pre-industrial simulation. \r\nThe results are zonally integrated. The dataset also include the meridional overturning circulation in the control and climate simulations. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Anthropogenic Heat; Atmosphere; Carbon Storage; Climate Change; Eddy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Heat Budget; Modeling; Model Output; Oceans; Paleoclimate; Snow/ice; Snow/Ice; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -20.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "persons": "Chen, Haidi", "project_titles": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)", "projects": [{"proj_uid": "p0000197", "repository": "USAP-DC", "title": "Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model output NOAA GFDL CM2_6 Cant Hant storage", "uid": "601144", "west": -180.0}, {"awards": "1341440 Jin, Meibing", "bounds_geometry": ["POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -49.5,180 -54,180 -58.5,180 -63,180 -67.5,180 -72,180 -76.5,180 -81,180 -85.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.5,-180 -81,-180 -76.5,-180 -72,-180 -67.5,-180 -63,-180 -58.5,-180 -54,-180 -49.5,-180 -45))"], "date_created": "Tue, 20 Nov 2018 00:00:00 GMT", "description": "", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Model Data; Oceans; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -45.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jin, Meibing", "project_titles": "Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin", "projects": [{"proj_uid": "p0000001", "repository": "USAP-DC", "title": "Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Ice-ocean-ecosystem model output", "uid": "601136", "west": -180.0}, {"awards": "1245915 Ray, Laura", "bounds_geometry": ["POLYGON((168.36 -78.03,168.384 -78.03,168.408 -78.03,168.432 -78.03,168.456 -78.03,168.48 -78.03,168.504 -78.03,168.528 -78.03,168.552 -78.03,168.576 -78.03,168.6 -78.03,168.6 -78.035,168.6 -78.04,168.6 -78.045,168.6 -78.05,168.6 -78.055,168.6 -78.06,168.6 -78.065,168.6 -78.07,168.6 -78.075,168.6 -78.08,168.576 -78.08,168.552 -78.08,168.528 -78.08,168.504 -78.08,168.48 -78.08,168.456 -78.08,168.432 -78.08,168.408 -78.08,168.384 -78.08,168.36 -78.08,168.36 -78.075,168.36 -78.07,168.36 -78.065,168.36 -78.06,168.36 -78.055,168.36 -78.05,168.36 -78.045,168.36 -78.04,168.36 -78.035,168.36 -78.03))"], "date_created": "Thu, 07 Jun 2018 00:00:00 GMT", "description": "This dataset is comprised of ground penetrating radar data (GSSI DZT format with DZG files for GPS location) of a 28 square km area conduced in the heavily crevassed McMurdo Shear Zone in two consecutive field seasons. A radar system comprised of a GSSI SIR-30 32-bit two-channel control unit and model 5103 \u201c400 MHz\u201d and Model 5106A \u201c200 MHz\u201d antenna units were used to conduct the GPR surveys. The radar system was mounted on a sled and towed by a robot. The robot surveyed the 5 x 5.7 km area on lines separated by 50-m and traveled from West to East and return. The 2014 survey was conducted between Oct 29, 2014 and Nov 9, 2014, and the 2015 survey was conducted between Oct 26, 2015 and Nov 1, 2015. The use of identical waypoints in each year provides an Eulerian sampling protocol, where sampled GPS locations remain fixed, but the ice moves between annual surveys. In 2014, the 400 MHz antenna imaged to a depth of 19 meters, and in 2015, the 400 MHz antenna imaged to a depth of 80 meters to examine englacial ice. In both years, the 200 MHz antenna imaged to a depth of 160 meters.", "east": 168.6, "geometry": ["POINT(168.48 -78.055)"], "keywords": "Antarctica; Firn; Folds; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": -78.03, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Ray, Laura; Arcone, Steven; Kaluzienski, Lynn; Koons, Peter; Lever, Jim; Walker, Ben", "project_titles": "Collaborative Research: Flow and Fracture Dynamics in an Ice Shelf Lateral Margin: Observations and Modeling of the McMurdo Shear Zone", "projects": [{"proj_uid": "p0000701", "repository": "USAP-DC", "title": "Collaborative Research: Flow and Fracture Dynamics in an Ice Shelf Lateral Margin: Observations and Modeling of the McMurdo Shear Zone"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.08, "title": "Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone", "uid": "601102", "west": 168.36}, {"awards": "1341585 Sorlien, Christopher", "bounds_geometry": ["POLYGON((-180 -73.22,-179.17 -73.22,-178.34 -73.22,-177.51 -73.22,-176.68 -73.22,-175.85 -73.22,-175.02 -73.22,-174.19 -73.22,-173.36 -73.22,-172.53 -73.22,-171.7 -73.22,-171.7 -73.765,-171.7 -74.31,-171.7 -74.855,-171.7 -75.4,-171.7 -75.945,-171.7 -76.49,-171.7 -77.035,-171.7 -77.58,-171.7 -78.125,-171.7 -78.67,-172.53 -78.67,-173.36 -78.67,-174.19 -78.67,-175.02 -78.67,-175.85 -78.67,-176.68 -78.67,-177.51 -78.67,-178.34 -78.67,-179.17 -78.67,180 -78.67,178.56 -78.67,177.12 -78.67,175.68 -78.67,174.24 -78.67,172.8 -78.67,171.36 -78.67,169.92 -78.67,168.48 -78.67,167.04 -78.67,165.6 -78.67,165.6 -78.125,165.6 -77.58,165.6 -77.035,165.6 -76.49,165.6 -75.945,165.6 -75.4,165.6 -74.855,165.6 -74.31,165.6 -73.765,165.6 -73.22,167.04 -73.22,168.48 -73.22,169.92 -73.22,171.36 -73.22,172.8 -73.22,174.24 -73.22,175.68 -73.22,177.12 -73.22,178.56 -73.22,-180 -73.22))"], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "This data set includes digital 1 km grids of sub-bottom \n\tstratigraphy of most of Ross Sea. In addition to acoustic basement (same as top\n\tsyn-rift sedimentary rocks in Central Trough and probably other basins), these\n\tgrids include Oligocene and Miocene horizons that are unconformities in most\n\tareas. A sea floor grid is also included. Except for the sea floor grid, the\n\tgrids are trimmed to be relatively close to control of interpreted seismic\n\tstratigraphy. The grids are provided in two way travel time and in depth. Math\n\tcan be performed on the corresponding time and depth grids to recreate the 3D\n\tinterval velocity model that was used. The velocity of the water used was 1450\n\tm/s. More detailed descriptions of the work are found in the Final NSF report\n\tfor PLR1341585 by C. Sorlien, B. Luyendyk, and D. Wilson. The grids are\n\tcontinuous so are merged with the sea floor where there is outcrop, or with\n\tbasement if there is onlap, or with a young unconformity where there is\n\tsub-bottom truncation. The filenames include the name of the horizon\n\t(unconformity) and whether they are in time or depth. \\\"etc.\\\" means there are\n\ttwo or more horizons that have been merged. Most of the horizons are named and\n\tdefined in the ANTOSTRAT (1995) atlas. The starting points for many of these\n\thorizons are ANTOSTRAT [1995] near DSDP sites 273, 272, and 270. In other areas\n\twe deviate from the interpretation of ANTOSTRAT [1995]. late Oligocene through\n\tmiddle Miocene horizons, interpreted very close to the ANTOSTRAT [1995] at DSDP\n\tSite 273 in Central Trough, are much deeper in our interpretation within Terror\n\tRift. These horizon grids usually include the sea floor where there is outcrop\n\tor acoustic basement (top syn-rift in some basins) where there is onlap. \n\n\n\tANTOSTRAT (1995), Seismic Stratigraphic Atlas of the Ross Sea, in Geology and\n\tSeismic Stratigraphy of the Antarctic Margin, edited by A. K. Cooper, Barker,\n\tP. F., Brancolini, G., 22 plates, American Geophysical Union, Washington,\n\tD.C.", "east": -171.7, "geometry": ["POINT(176.95 -75.945)"], "keywords": "Antarctica; Continental Margin; Geology/Geophysics - Other; Marine Geoscience; Miocene; Oligocene; Seismic Reflection", "locations": "Antarctica", "north": -73.22, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Sorlien, Christopher; Wilson, Douglas S.", "project_titles": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea", "projects": [{"proj_uid": "p0000271", "repository": "USAP-DC", "title": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.67, "title": "Ross Sea unconformities digital grids in depth and two-way time", "uid": "601098", "west": 165.6}, {"awards": "1245899 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"], "date_created": "Tue, 16 Jan 2018 00:00:00 GMT", "description": "Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene.", "east": 240.0, "geometry": ["POINT(-160 -77.5)"], "keywords": "Antarctica; Climate Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; McMurdo; Paleoclimate; Ross Sea", "locations": "Ross Sea; McMurdo; Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kowalewski, Douglas", "project_titles": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound", "projects": [{"proj_uid": "p0000391", "repository": "USAP-DC", "title": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Region Climate Model Output Plio-Pleistocene", "uid": "601080", "west": 160.0}, {"awards": "1141939 Lubin, Dan", "bounds_geometry": ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"], "date_created": "Tue, 12 Dec 2017 00:00:00 GMT", "description": "In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014).\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eThere are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water.\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eAncillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response.", "east": 167.0365, "geometry": ["POINT(166.67325 -77.54515)"], "keywords": "Antarctica; Atmosphere; Meteorology; Radiosounding; Ross Island", "locations": "Antarctica; Ross Island", "north": -77.5203, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Lubin, Dan", "project_titles": "Antarctic Cloud Physics: Fundamental Observations from Ross Island", "projects": [{"proj_uid": "p0000327", "repository": "USAP-DC", "title": "Antarctic Cloud Physics: Fundamental Observations from Ross Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.57, "title": "Shortwave Spectroradiometer Data from Ross Island, Antarctica", "uid": "601074", "west": 166.31}, {"awards": "1246317 Mittal, Rajat", "bounds_geometry": null, "date_created": "Wed, 27 Sep 2017 00:00:00 GMT", "description": "Spongiobranchaea australis is a gymnosome pteropod that is abundant in the Southern Ocean. Videos of specimens of S. Australis collected near Palmer Station in April 2014, were used to develop computational fluid dynamics models and simulations of swimming hydrodynamics conducted. The deposited movie shows the computed vortex structures for a swimming S. Australis.", "east": null, "geometry": null, "keywords": "Biota; Fish; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Mittal, Rajat", "project_titles": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification", "projects": [{"proj_uid": "p0000139", "repository": "USAP-DC", "title": "Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Hydrodynamics of Spongiobranchaea australis", "uid": "601058", "west": null}, {"awards": "1142007 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 03 Aug 2017 00:00:00 GMT", "description": "This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Tephra", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Kurbatov, Andrei V.", "project_titles": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "projects": [{"proj_uid": "p0000328", "repository": "USAP-DC", "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Antarctic Ice Core Tephra Analysis", "uid": "601038", "west": -180.0}, {"awards": "0839093 McConnell, Joseph", "bounds_geometry": ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"], "date_created": "Mon, 19 Jun 2017 00:00:00 GMT", "description": "Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate.", "east": 162.14059, "geometry": ["POINT(161.77742 -77.79978)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -77.73489, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Arienzo, Monica", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.86467, "title": "Holocene Black Carbon in Antarctica", "uid": "601034", "west": 161.41425}, {"awards": "1553824 Heine, John", "bounds_geometry": ["POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))"], "date_created": "Fri, 12 May 2017 00:00:00 GMT", "description": "Overall dataset and specific temperature data for a number of different rebreather models.", "east": 167.0, "geometry": ["POINT(165 -78.25)"], "keywords": "Antarctica; Diving; Global; Physical Oceanography", "locations": "Global; Antarctica", "north": -78.0, "nsf_funding_programs": null, "persons": "Heine, John", "project_titles": "Rebreather Testing for the United States Antarctic Scientific Diving Program", "projects": [{"proj_uid": "p0000377", "repository": "USAP-DC", "title": "Rebreather Testing for the United States Antarctic Scientific Diving Program"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Rebreather Testing for the United States Antarctic Scientific Diving Program", "uid": "601024", "west": 163.0}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"], "date_created": "Thu, 20 Apr 2017 00:00:00 GMT", "description": "Using data from the Transantarctic Mountains (TAMs) Northern Network, the shear wave velocity structure beneath the northern TAMs was investigated with surface wave tomography. Rayleigh wave phase velocities were calculated using a two-plane wave approximation and were then inverted for shear velocity structure. The resulting model shows a low velocity zone (~4.24 km/s) at ~160 km depth offshore and adjacent to Mt. Melbourne that extends inland and vertically upwards to ~100 km depth beneath the northern TAMs and Victoria Land. Another low velocity zone (~4.16-4.24 km/s) is also seen at ~150 km depth beneath Ross Island, and relatively slow velocities (~4.24-4.32 km/s) along the Terror Rift connect the two low velocity zones. This structure has been interpreted to reflect rift-related decompression melting along the TAMs front, which would provide thermal buoyancy to uplift the mountain range.", "east": 165.120012, "geometry": ["POINT(159.223506 -74.6349495)"], "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -73.032547, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains", "uid": "601018", "west": 153.327}, {"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"], "date_created": "Thu, 06 Apr 2017 00:00:00 GMT", "description": "Stretching ~3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAMs\u0027 subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw \u2265 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; \u03b4VP \u2248 -2.0%; \u03b4VS \u2248 -1.5% to -4.0%) and Terra Nova Bay (TNB; \u03b4VP \u2248 -1.5% to -2.0%; \u03b4VS \u2248 -1.0% to -4.0%) that extend to depths of ~200 and ~150 km, respectively. The RI and TNB slow anomalies also extend ~50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (\u03b4VP \u2248 0.5% to 2%; \u03b4VS \u2248 1.5% to 4.0%). A low velocity region (\u03b4VP \u2248 -1.5%), centered at ~150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.", "east": 165.120012, "geometry": ["POINT(159.223506 -74.6349495)"], "keywords": "Antarctica; Geology/Geophysics - Other; Model; Seismology; Solid Earth; Tomography; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -73.032547, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography", "uid": "601017", "west": 153.327}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \\\"bipolar seesaw\\\".\n\nWe present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "uid": "601015", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "A state-of-the-art continuous ice core analytical system was used to analyze samples from 0 to ~130 m depth of the recently collected intermediate core WDC05Q from West Antarctica. Interpretation of these records and publication of findings is ongoing.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.481, "nsf_funding_programs": null, "persons": "McConnell, Joseph", "project_titles": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "projects": [{"proj_uid": "p0000148", "repository": "USAP-DC", "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "uid": "601013", "west": -112.1115}, {"awards": "1043580 Reusch, David", "bounds_geometry": null, "date_created": "Tue, 10 Jan 2017 00:00:00 GMT", "description": null, "east": null, "geometry": null, "keywords": "Antarctica; Atmosphere; Atmospheric Model; Climate Model; Meteorology; Paleoclimate", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Reusch, David", "project_titles": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "projects": [{"proj_uid": "p0000447", "repository": "USAP-DC", "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "600386", "west": null}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": ["POINT(161.5 -77.5)"], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\nThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": ["POINT(161.5 -77.5)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -77.5, "nsf_funding_programs": null, "persons": "Willenbring, Jane", "project_titles": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "projects": [{"proj_uid": "p0000429", "repository": "USAP-DC", "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "600379", "west": 161.5}, {"awards": "1043649 Hock, Regine", "bounds_geometry": ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "The data contain the time series totals of SAR derived detrended surface velocities from Livingston Island, as well as GeoTiff files generated from intensity tracking of Synthetic Aperture Radar (SAR) imagery. The images include average annual velocity and ice thickness of King George Island, and average annual velocity, ice thickness, and a digital elevation model of Livingston Island.", "east": -57.5, "geometry": ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"], "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "locations": "Antarctica; Antarctic Peninsula", "north": -61.75, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Osmanoglu, Batuhan; Hock, Regine", "project_titles": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "projects": [{"proj_uid": "p0000054", "repository": "USAP-DC", "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.75, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "uid": "609667", "west": -61.0}, {"awards": "0839059 Powell, Ross", "bounds_geometry": ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -168.6, "geometry": ["POINT(-168.65 -82.35)"], "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "locations": "Ross Sea; Lake Whillans; Southern Ocean; Antarctica", "north": -82.3, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.4, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "600154", "west": -168.7}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": null, "persons": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "600169", "west": -112.08}, {"awards": "1043580 Reusch, David", "bounds_geometry": ["POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes.\nUsing contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change.\nThe previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate Model; Meteorology; Surface Melt", "locations": "Antarctica", "north": -47.0, "nsf_funding_programs": null, "persons": "Reusch, David", "project_titles": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "projects": [{"proj_uid": "p0000447", "repository": "USAP-DC", "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "600166", "west": -180.0}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Taylor Glacier", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "1142162 Stone, John", "bounds_geometry": ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public.", "east": -85.14, "geometry": ["POINT(-94.64 -81.755)"], "keywords": "Antarctica; Be-10; Chemistry:rock; Chemistry:Rock; Cosmogenic Dating; Glaciology; Nunataks; Sample/collection Description; Sample/Collection Description; Solid Earth; Whitmore Mountains", "locations": "Antarctica; Whitmore Mountains", "north": -81.07, "nsf_funding_programs": null, "persons": "Stone, John", "project_titles": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "projects": [{"proj_uid": "p0000335", "repository": "USAP-DC", "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.44, "title": "Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling", "uid": "600162", "west": -104.14}, {"awards": "1141973 Tedesco, Marco", "bounds_geometry": ["POLYGON((-94.7374 -56.9464,-89.23679 -56.9464,-83.73618 -56.9464,-78.23557 -56.9464,-72.73496 -56.9464,-67.23435 -56.9464,-61.73374 -56.9464,-56.23313 -56.9464,-50.73252 -56.9464,-45.23191 -56.9464,-39.7313 -56.9464,-39.7313 -59.19838,-39.7313 -61.45036,-39.7313 -63.70234,-39.7313 -65.95432,-39.7313 -68.2063,-39.7313 -70.45828,-39.7313 -72.71026,-39.7313 -74.96224,-39.7313 -77.21422,-39.7313 -79.4662,-45.23191 -79.4662,-50.73252 -79.4662,-56.23313 -79.4662,-61.73374 -79.4662,-67.23435 -79.4662,-72.73496 -79.4662,-78.23557 -79.4662,-83.73618 -79.4662,-89.23679 -79.4662,-94.7374 -79.4662,-94.7374 -77.21422,-94.7374 -74.96224,-94.7374 -72.71026,-94.7374 -70.45828,-94.7374 -68.2063,-94.7374 -65.95432,-94.7374 -63.70234,-94.7374 -61.45036,-94.7374 -59.19838,-94.7374 -56.9464))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to generate first-time validated enhanced spatial resolution (5-10 km) maps of surface melting over the Antarctic Peninsula for the period 1958 - to date from the outputs of a regional climate model and different downscaling techniques. These maps will be assessed and validated through new high spatial resolution (2.25 km) surface melting maps obtained from the QuikSCAT satellite for the period 1999 - 2009. The intellectual merit of this work is that it would be the first time that the outputs of a regional climate model would be used to study surface melting over Antarctica at such high spatial resolution and the first time that such results are validated by means of an observational tool that has such a large spatial coverage and high spatial resolution. The results generated in this study would also provide a first-time opportunity to study the melt distribution over the Peninsula and its correlation with climate drivers, such as the Southern Annual Mode (SAM) and the El Nino-Southern Oscillation (ENSO) at these unprecedented spatial scales. The enhanced resolution melting maps will also offer a unique opportunity to study melting trends and patterns over specific regions of the Peninsula, such as the Wilkins and the Larsen A and B ice shelves and evaluate whether the extreme melting observed during the recent collapses was unprecedented over the + 50 years. The broader impacts of the project are that it will integrate research and education by fully supporting one female undergrad student, a PhD student and partially supporting a PostDoc. The work will be done at a minority-serving institution and the PhD student who worked on the development of the high-resolution melting data set from QuikSCAT will become the PostDoc who will work on this project. Teaching and learning will be supported by incorporating research results into graduate and undergrad level courses and will be disseminated over the web and through appropriate channels. Results from this project will also benefit the society at large as they will improve our understanding of the links between atmospheric patterns and surface melting and they will contribute to improving estimates of sea level rise from the Antarctica continent.", "east": -39.7313, "geometry": ["POINT(-67.23435 -68.2063)"], "keywords": "Antarctica; Atmosphere; Climate; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Model", "locations": "Antarctica", "north": -56.9464, "nsf_funding_programs": null, "persons": "Tedesco, Marco", "project_titles": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations", "projects": [{"proj_uid": "p0000313", "repository": "USAP-DC", "title": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.4662, "title": "Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations", "uid": "600160", "west": -94.7374}, {"awards": "1043750 Chen, Jianli", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; GRACE; Potential Field; Satellite Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Chen, Jianli", "project_titles": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "projects": [{"proj_uid": "p0000415", "repository": "USAP-DC", "title": "Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements", "uid": "600159", "west": -180.0}, {"awards": "0839107 Powell, Ross", "bounds_geometry": ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -163.5, "geometry": ["POINT(-163.6 -84.25)"], "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "locations": "Southern Ocean; Antarctica", "north": -84.0, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "uid": "600155", "west": -163.7}, {"awards": "1043018 Pollard, David", "bounds_geometry": ["POINT(-85 -82)"], "date_created": "Thu, 03 Dec 2015 00:00:00 GMT", "description": "Ice-sheet model output of Antarctic Ice Sheet simulations spanning 30,000 years BP to 5000+ years in the future.", "east": -85.0, "geometry": ["POINT(-85 -82)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "locations": "Antarctica", "north": -82.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Pollard, David", "project_titles": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "projects": [{"proj_uid": "p0000194", "repository": "USAP-DC", "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.0, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "uid": "609639", "west": -85.0}, {"awards": "0934534 Sergienko, Olga", "bounds_geometry": ["POLYGON((-150 -75,-129 -75,-108 -75,-87 -75,-66 -75,-45 -75,-24 -75,-3 -75,18 -75,39 -75,60 -75,60 -76.5,60 -78,60 -79.5,60 -81,60 -82.5,60 -84,60 -85.5,60 -87,60 -88.5,60 -90,39 -90,18 -90,-3 -90,-24 -90,-45 -90,-66 -90,-87 -90,-108 -90,-129 -90,-150 -90,-150 -88.5,-150 -87,-150 -85.5,-150 -84,-150 -82.5,-150 -81,-150 -79.5,-150 -78,-150 -76.5,-150 -75))", "POLYGON((-75 84,-69.5 84,-64 84,-58.5 84,-53 84,-47.5 84,-42 84,-36.5 84,-31 84,-25.5 84,-20 84,-20 81.6,-20 79.2,-20 76.8,-20 74.4,-20 72,-20 69.6,-20 67.2,-20 64.8,-20 62.4,-20 60,-25.5 60,-31 60,-36.5 60,-42 60,-47.5 60,-53 60,-58.5 60,-64 60,-69.5 60,-75 60,-75 62.4,-75 64.8,-75 67.2,-75 69.6,-75 72,-75 74.4,-75 76.8,-75 79.2,-75 81.6,-75 84))"], "date_created": "Tue, 07 Jul 2015 00:00:00 GMT", "description": "This data set includes basal shear distributions inferred from surface observations - surface ice velocities (Joughin et al., 2010, Rignot et al., 2011), bed and surface elevations (Fretwell et al., 2013) under ten selected locations in Greenland and Antarctica. In Greenland, the locations were: 79\u00b0 North and Zachariae Glaciers, Jakobshan Isbrae, North East Greenland Ice Stream, Petermann Glacier. The Antarctica locations were Bindschadler Ice Stream, Lambert Ice Stream, MacAyeal Ice Stream, Pine Island Glacier, Thwaites Glacier, and an unnamed location around ~40\u00b0 E 84\u00b0 S.", "east": 60.0, "geometry": ["POINT(-45 -82.5)", "POINT(-47.5 72)"], "keywords": "Antarctica; Arctic; Bindschadler Ice Stream; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Lambert Ice Stream; Macayeal Ice Stream; Pine Island Glacier; Thwaites Glacier", "locations": "Bindschadler Ice Stream; Lambert Ice Stream; Thwaites Glacier; Pine Island Glacier; Macayeal Ice Stream; Greenland; Arctic; Antarctica", "north": 84.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sergienko, Olga", "project_titles": "COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model\u0027s adjoint to support sea level change assessment", "projects": [{"proj_uid": "p0000048", "repository": "USAP-DC", "title": "COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model\u0027s adjoint to support sea level change assessment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "uid": "609626", "west": -150.0}, {"awards": "0440701 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.125 -79.463)"], "date_created": "Mon, 08 Jun 2015 00:00:00 GMT", "description": "This data set shows the modeled surface temperature reconstruction from an inversion of the 300 m WDC05A borehole at the West Antarctic Divide Ice core site.", "east": -112.125, "geometry": ["POINT(-112.125 -79.463)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.463, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "project_titles": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "projects": [{"proj_uid": "p0000368", "repository": "USAP-DC", "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.463, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "uid": "609638", "west": -112.125}, {"awards": "0944653 Forster, Richard", "bounds_geometry": ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student\u0027s backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research.\n", "east": -110.0, "geometry": ["POINT(-114.7 -79.05)"], "keywords": "Airborne Radar; Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -78.1, "nsf_funding_programs": null, "persons": "Forster, Richard", "project_titles": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites", "projects": [{"proj_uid": "p0000079", "repository": "USAP-DC", "title": "Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites", "uid": "600146", "west": -119.4}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics.\n\nNon-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.\n", "east": 164.225, "geometry": ["POINT(163.5385 -77.82215)"], "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "locations": "Antarctica; Dry Valleys", "north": -77.6111, "nsf_funding_programs": null, "persons": "Levy, Joseph", "project_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "projects": [{"proj_uid": "p0000407", "repository": "USAP-DC", "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "600139", "west": 162.852}, {"awards": "1043657 Cassano, John", "bounds_geometry": ["POLYGON((163 -74.5,163.9 -74.5,164.8 -74.5,165.7 -74.5,166.6 -74.5,167.5 -74.5,168.4 -74.5,169.3 -74.5,170.2 -74.5,171.1 -74.5,172 -74.5,172 -74.9,172 -75.3,172 -75.7,172 -76.1,172 -76.5,172 -76.9,172 -77.3,172 -77.7,172 -78.1,172 -78.5,171.1 -78.5,170.2 -78.5,169.3 -78.5,168.4 -78.5,167.5 -78.5,166.6 -78.5,165.7 -78.5,164.8 -78.5,163.9 -78.5,163 -78.5,163 -78.1,163 -77.7,163 -77.3,163 -76.9,163 -76.5,163 -76.1,163 -75.7,163 -75.3,163 -74.9,163 -74.5))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Antarctic coastal polynas are, at the same time, sea-ice free sites and \u0027sea-ice factories\u0027. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night.\n\nCharacterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters.\n\nA key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames.\n", "east": 172.0, "geometry": ["POINT(167.5 -76.5)"], "keywords": "Antarctica; Atmosphere; Meteorology; Navigation; Oceans; Southern Ocean; Unmanned Aircraft", "locations": "Southern Ocean; Antarctica", "north": -74.5, "nsf_funding_programs": null, "persons": "Cassano, John; Palo, Scott", "project_titles": "Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "projects": [{"proj_uid": "p0000417", "repository": "USAP-DC", "title": "Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.5, "title": "Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica", "uid": "600125", "west": 163.0}, {"awards": "1043485 Curtice, Josh", "bounds_geometry": ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.\n", "east": 169.248, "geometry": ["POINT(166.324 -77.908945)"], "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "locations": "Antarctica; Southern Ocean; Ross Sea; WAIS", "north": -77.47989, "nsf_funding_programs": null, "persons": "Kurz, Mark D.; Curtice, Josh", "project_titles": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "projects": [{"proj_uid": "p0000194", "repository": "USAP-DC", "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.338, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "600123", "west": 163.4}, {"awards": "0732844 Anandakrishnan, Sridhar; 0758274 Parizek, Byron; 0632198 Anandakrishnan, Sridhar", "bounds_geometry": ["POLYGON((-110.06 -74.05,-109.582 -74.05,-109.104 -74.05,-108.626 -74.05,-108.148 -74.05,-107.67 -74.05,-107.192 -74.05,-106.714 -74.05,-106.236 -74.05,-105.758 -74.05,-105.28 -74.05,-105.28 -74.31,-105.28 -74.57,-105.28 -74.83,-105.28 -75.09,-105.28 -75.35,-105.28 -75.61,-105.28 -75.87,-105.28 -76.13,-105.28 -76.39,-105.28 -76.65,-105.758 -76.65,-106.236 -76.65,-106.714 -76.65,-107.192 -76.65,-107.67 -76.65,-108.148 -76.65,-108.626 -76.65,-109.104 -76.65,-109.582 -76.65,-110.06 -76.65,-110.06 -76.39,-110.06 -76.13,-110.06 -75.87,-110.06 -75.61,-110.06 -75.35,-110.06 -75.09,-110.06 -74.83,-110.06 -74.57,-110.06 -74.31,-110.06 -74.05))"], "date_created": "Mon, 03 Nov 2014 00:00:00 GMT", "description": "This data set consists of experimental output from a higher-order finite-element model that was utilized in conjunction with existing data sets to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica.", "east": -105.28, "geometry": ["POINT(-107.67 -75.35)"], "keywords": "Amundsen Sea; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Thwaites Glacier", "locations": "Amundsen Sea; Thwaites Glacier; Antarctica", "north": -74.05, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Parizek, Byron R.; Blankenship, Donald D.; Dupont, Todd K.; Holt, John W.", "project_titles": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System; IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island.", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}, {"proj_uid": "p0000699", "repository": "USAP-DC", "title": "IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.65, "title": "Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "uid": "609619", "west": -110.06}, {"awards": "0539578 Alley, Richard", "bounds_geometry": ["POINT(-112.3 -79.433333)"], "date_created": "Thu, 14 Aug 2014 00:00:00 GMT", "description": "This data set includes bubble number-density measured at depths from 120 meters to 560 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006).", "east": -112.3, "geometry": ["POINT(-112.3 -79.433333)"], "keywords": "Air Bubbles; Antarctica; Camera; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "locations": "Antarctica", "north": -79.433333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Alley, Richard; Fegyveresi, John", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -79.433333, "title": "Bubble Number-density Data and Modeled Paleoclimates", "uid": "609538", "west": -112.3}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"], "date_created": "Tue, 29 Apr 2014 00:00:00 GMT", "description": "This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability.", "east": -55.0, "geometry": ["POINT(-59 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "locations": "Antarctica; Antarctic Peninsula; Larsen B Ice Shelf", "north": -63.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacAyeal, Douglas", "project_titles": "Model Studies of Surface Water Behavior on Ice Shelves", "projects": [{"proj_uid": "p0000052", "repository": "USAP-DC", "title": "Model Studies of Surface Water Behavior on Ice Shelves"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Standing Water Depth on Larsen B Ice Shelf", "uid": "609584", "west": -63.0}, {"awards": "0838811 Sergienko, Olga", "bounds_geometry": ["POINT(0 -78)"], "date_created": "Mon, 14 Apr 2014 00:00:00 GMT", "description": "This data set consists of outputs of several numerical models simulating ice stream flow over undulated bed, interaction of ice stream flow, and subglacial and supraglacial hydraulic systems. All simulations are performed for idealized geometries using finite-element models.", "east": 0.0, "geometry": ["POINT(0 -78)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; Ice Thickness; Ice Velocity", "locations": "Antarctica", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sergienko, Olga", "project_titles": "Model Investigation of Ice Stream/Subglacial Lake Systems", "projects": [{"proj_uid": "p0000045", "repository": "USAP-DC", "title": "Model Investigation of Ice Stream/Subglacial Lake Systems"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Interaction of Ice Stream Flow with Heterogeneous Beds", "uid": "609583", "west": 0.0}, {"awards": "0538538 Sowers, Todd; 0944584 Sowers, Todd; 0538578 Brook, Edward J.", "bounds_geometry": ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"], "date_created": "Fri, 31 Jan 2014 00:00:00 GMT", "description": "This data set measures methane concentrations in ancient air trapped in the West Antarctic Ice Sheet (WAIS) Divide and Greenland Ice Sheet Project (GISP2) ice cores; presenting two, high-resolution ice core methane records of the past 2500 years, one from each pole. These measurements were used to reconstruct the methane Inter-Polar Difference (IPD) during the late Holocene. Also included are model results of methane emissions that were presented in the manuscript describing this data set.", "east": -38.5, "geometry": ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"], "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "locations": "Arctic; Antarctica; WAIS Divide", "north": 72.6, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mitchell, Logan E", "project_titles": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "projects": [{"proj_uid": "p0000025", "repository": "USAP-DC", "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4676, "title": "Late Holocene Methane Concentrations from WAIS Divide and GISP2", "uid": "609586", "west": -112.0865}, {"awards": "0838937 Costa, Daniel", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.\n", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Southern Ocean", "locations": "Ross Sea; Antarctica; Southern Ocean", "north": -75.0, "nsf_funding_programs": null, "persons": "Costa, Daniel", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600025", "west": 162.0}, {"awards": "1043740 Lenczewski, Melissa", "bounds_geometry": ["POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research.\nThis proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research.\n", "east": 168.0, "geometry": ["POINT(166.5 -78)"], "keywords": "Andrill; Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:rock; Chemistry:Rock; Drilling Fluid; Geochemistry; McMurdo; Ross Sea; Sediment Core", "locations": "Antarctica; McMurdo; Ross Sea", "north": -77.5, "nsf_funding_programs": null, "persons": "Lenczewski, Melissa", "project_titles": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "projects": [{"proj_uid": "p0000468", "repository": "USAP-DC", "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.5, "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "uid": "600129", "west": 165.0}, {"awards": "1139739 Hansen, Samantha", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent.\n\nBroader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Geology/Geophysics - Other; Lithosphere; Seismic Tomography; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "projects": [{"proj_uid": "p0000354", "repository": "USAP-DC", "title": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "uid": "600132", "west": -180.0}, {"awards": "1354231 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.\n", "east": -120.0, "geometry": ["POINT(-140 -77.5)"], "keywords": "Antarctica; Atmosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Model Data; Paleoclimate; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -70.0, "nsf_funding_programs": null, "persons": "Kowalewski, Douglas", "project_titles": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "projects": [{"proj_uid": "p0000463", "repository": "USAP-DC", "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "uid": "600140", "west": -160.0}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \u0027winter water\u0027 (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \u0027circumpolar deep water\u0027 (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \u0027grows in\u0027 during spring and summer after this water mass forms.\n\nThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.\n", "east": -64.0, "geometry": ["POINT(-71.5 -67)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -63.0, "nsf_funding_programs": null, "persons": "Hollibaugh, James T.", "project_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "projects": [{"proj_uid": "p0000359", "repository": "USAP-DC", "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "600105", "west": -79.0}, {"awards": "0944201 Hofmann, Gretchen", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This research examines the effects of ocean acidification on embryos and larvae of a contemporary calcifier in the coastal waters of Antarctica, the sea urchin Sterechinus neumayeri. The effect of future ocean acidification is projected to be particularly threatening to calcifying marine organisms in coldwater, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. Due to a high magnesium (Mg) content of their calcitic hard parts, echinoderms are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Thus, cold-water, high latitude species with a high Mg-content in their hard parts are considered to be the \u0027first responders\u0027 to chemical changes in the surface oceans. Studies in this proposal will use several metrics to examine the physiological plasticity of contemporary urchin embryos and larvae to CO2-acidified seawater, to mimic the scenarios defined by IPCC models and by analyses of future acidification predicted for the Southern Ocean. The research also will investigats the biological consequences of synergistic interactions of two converging climate change-related stressors - CO2- driven ocean acidification and ocean warming. Specifically the research will (1) assess the effect of CO2-acidified seawater on the development of early embryos and larvae, (2) using morphometrics, examine changes in the larval endoskeleton in response to development under the high-CO2 conditions of ocean acidification, (3) using a DNA microarray, profile changes in gene expression for genes involved in biomineralization and other important physiological processes, and (4) measure costs and physiological consequences of development under conditions of ocean acidification. The proposal will support the training of undergraduates, graduate students and a postdoctoral fellow. The PI also will collaborate with the UC Santa Barbara Gevirtz Graduate School of Education to link the biological effects of ocean acidification to the chemical changes expected for the Southern Ocean using the \u0027Science on a Sphere\u0027 technology. This display will be housed in an education and public outreach center, the Outreach Center for Teaching Ocean Science (OCTOS), a new state-of-the-art facility under construction at UC Santa Barbara.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Hofmann, Gretchen", "project_titles": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "projects": [{"proj_uid": "p0000352", "repository": "USAP-DC", "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri", "uid": "600112", "west": -160.0}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Grim, Jeffrey", "project_titles": "PostDoctoral Research Fellowship", "projects": [{"proj_uid": "p0000482", "repository": "USAP-DC", "title": "PostDoctoral Research Fellowship"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "uid": "600119", "west": null}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \u0027International Climate Park\u0027 in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.\n", "east": 159.41667, "geometry": ["POINT(159.29167 -76.7)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "locations": "Antarctica; Allan Hills", "north": -76.66667, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "projects": [{"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "600099", "west": 159.16667}, {"awards": "1043619 Hemming, Sidney", "bounds_geometry": ["POLYGON((-180 -63.997,-179.7982 -63.997,-179.5964 -63.997,-179.3946 -63.997,-179.1928 -63.997,-178.991 -63.997,-178.7892 -63.997,-178.5874 -63.997,-178.3856 -63.997,-178.1838 -63.997,-177.982 -63.997,-177.982 -66.3324,-177.982 -68.6678,-177.982 -71.0032,-177.982 -73.3386,-177.982 -75.674,-177.982 -78.0094,-177.982 -80.3448,-177.982 -82.6802,-177.982 -85.0156,-177.982 -87.351,-178.1838 -87.351,-178.3856 -87.351,-178.5874 -87.351,-178.7892 -87.351,-178.991 -87.351,-179.1928 -87.351,-179.3946 -87.351,-179.5964 -87.351,-179.7982 -87.351,180 -87.351,172.54273 -87.351,165.08546 -87.351,157.62819 -87.351,150.17092 -87.351,142.71365 -87.351,135.25638 -87.351,127.79911 -87.351,120.34184 -87.351,112.88457 -87.351,105.4273 -87.351,105.4273 -85.0156,105.4273 -82.6802,105.4273 -80.3448,105.4273 -78.0094,105.4273 -75.674,105.4273 -73.3386,105.4273 -71.0032,105.4273 -68.6678,105.4273 -66.3324,105.4273 -63.997,112.88457 -63.997,120.34184 -63.997,127.79911 -63.997,135.25638 -63.997,142.71365 -63.997,150.17092 -63.997,157.62819 -63.997,165.08546 -63.997,172.54273 -63.997,-180 -63.997))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars.\nBroader Impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields.", "east": 105.4273, "geometry": ["POINT(143.72265 -75.674)"], "keywords": "Antarctica; East Antarctica; Geochemistry; Ross Sea; Sample/collection Description; Sample/Collection Description; Solid Earth; Southern Ocean; West Antarctica", "locations": "East Antarctica; West Antarctica; Southern Ocean; Ross Sea; Antarctica", "north": -63.997, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "projects": [{"proj_uid": "p0000333", "repository": "USAP-DC", "title": "Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.351, "title": "East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains", "uid": "600124", "west": -177.982}, {"awards": "0732804 McPhee, Miles", "bounds_geometry": ["POINT(166.25 -77.42)"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \n\nBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \u0027Multidisciplinary Study of the Amundsen Sea Embayment\u0027 proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \u0027Polar Palooza\u0027 education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.\n", "east": 166.25, "geometry": ["POINT(166.25 -77.42)"], "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "locations": "Ross Island; McMurdo; Southern Ocean; Antarctica", "north": -77.42, "nsf_funding_programs": null, "persons": "McPhee, Miles G.", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.42, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "uid": "600072", "west": 166.25}, {"awards": "1043700 Harry, Dennis", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: This research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation. Broader impacts: The project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Andrill; Antarctica; Continental Rift; Geology/Geophysics - Other; Lithosphere; Model; Ross Sea; Solid Earth; Tectonic; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Ross Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Harry, Dennis L.", "project_titles": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "projects": [{"proj_uid": "p0000467", "repository": "USAP-DC", "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -90.0, "title": "Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History", "uid": "600128", "west": -180.0}, {"awards": "0944475 Kaplan, Michael", "bounds_geometry": ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica\u0027s inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed \u003c2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time.\nBroader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences.", "east": -149.7, "geometry": ["POINT(-174.25 -85.75)"], "keywords": "Antarctica; Cosmogenic Dating; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -84.1, "nsf_funding_programs": null, "persons": "Kaplan, Michael", "project_titles": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "projects": [{"proj_uid": "p0000459", "repository": "USAP-DC", "title": "Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.4, "title": "Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines", "uid": "600115", "west": 161.2}, {"awards": "0944489 Williams, Trevor", "bounds_geometry": ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences\n", "east": 163.0, "geometry": ["POINT(54 -68)"], "keywords": "Geochronology; George V Land; IODP U1356; IODP U1361; Marine Sediments; ODP1165; Prydz Bay; Solid Earth; Southern Ocean; Wilkes Land", "locations": "Prydz Bay; Southern Ocean; Wilkes Land; George V Land", "north": -58.0, "nsf_funding_programs": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "project_titles": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "projects": [{"proj_uid": "p0000353", "repository": "USAP-DC", "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "uid": "600116", "west": -55.0}, {"awards": null, "bounds_geometry": ["POLYGON((160.666667 -77.833333,160.681667 -77.833333,160.696667 -77.833333,160.711667 -77.833333,160.726667 -77.833333,160.741667 -77.833333,160.756667 -77.833333,160.771667 -77.833333,160.786667 -77.833333,160.801667 -77.833333,160.816667 -77.833333,160.816667 -77.8399997,160.816667 -77.8466664,160.816667 -77.8533331,160.816667 -77.8599998,160.816667 -77.8666665,160.816667 -77.8733332,160.816667 -77.8799999,160.816667 -77.8866666,160.816667 -77.8933333,160.816667 -77.9,160.801667 -77.9,160.786667 -77.9,160.771667 -77.9,160.756667 -77.9,160.741667 -77.9,160.726667 -77.9,160.711667 -77.9,160.696667 -77.9,160.681667 -77.9,160.666667 -77.9,160.666667 -77.8933333,160.666667 -77.8866666,160.666667 -77.8799999,160.666667 -77.8733332,160.666667 -77.8666665,160.666667 -77.8599998,160.666667 -77.8533331,160.666667 -77.8466664,160.666667 -77.8399997,160.666667 -77.833333))"], "date_created": "Mon, 18 Mar 2013 00:00:00 GMT", "description": "This data set is comprised of four surveyed valleys focusing on the depth to ground ice in the high-elevation Quartermain Mountains in the Beacon Valley area: University Valley, Farnell Valley, and two unnamed valleys north of University Valley, which we will call Valley North and Valley 2 North. To date it is only in the high-elevation Dry Valleys that the climatic conditions are dry and cold enough that cryotic (always below 0\u0026deg;C) yet dry soil is found over ice-cemented ground (McKay et al. 1998), (Bockheim 2007). The data provide a qualitative and quantitative contribution towards understanding the type and distribution of ground ice in the Quartermain Mountains at a high spatial resolution. The measurements can be used to improve and validate models of ice stability and distribution. This data set contains observations of depth to ice-cemented ground, based on 475 measurements at 147 sites. Note that the measurements represent the thickness of the active layer plus any dry permafrost layer, which is ubiquitous in this region, and not just the thickness of the active layer.", "east": 160.816667, "geometry": ["POINT(160.741667 -77.8666665)"], "keywords": "Antarctica; Critical Zone; Dry Valleys; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Permafrost; Soil", "locations": "Dry Valleys; Antarctica", "north": -77.833333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Marinova, Margarita M.; McKay, Christopher P.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -77.9, "title": "Depths to Ice-cemented Soils in High-elevation Quartermain Mountains, Dry Valleys, Antarctica", "uid": "609529", "west": 160.666667}, {"awards": "0837988 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))"], "date_created": "Wed, 13 Mar 2013 00:00:00 GMT", "description": "This data set includes ice core water isotope data from Antarctic ice cores covering the last 200 to 2000 years.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "locations": "WAIS Divide; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "projects": [{"proj_uid": "p0000180", "repository": "USAP-DC", "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "West Antarctica Ice Core and Climate Model Data", "uid": "609536", "west": -180.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": ["POINT(-136.404633 -82.39955)"], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This data set is a collection of video data of basal ice taken in a borehole on the Kamb Ice Stream in West Antarctica. Ice streams are an expression of the inherent instability of the West Antarctic Ice Sheet, and their behavior is a key control on the overall ice-sheet mass balance. Understanding the response of the ice sheet in a warming climate requires a thorough understanding of the internal dynamics of ice streams, in addition to the relevant ice-atmosphere and ice-ocean interactions in the region. The basal environment of the ice streams and of many glaciers is a key scientific interest, including conditions, mainly basal sliding, that lead to fast flow of the ice. The purpose of this data set is to present a review of the full range of original video recordings from the basal ice of the Kamb Ice Stream. Direct observations at the ice-stream bed are a crucial complement to modeling efforts predicting future scenarios in a warming climate.", "east": -136.404633, "geometry": ["POINT(-136.404633 -82.39955)"], "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "locations": "Kamb Ice Stream; Antarctica", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Engelhardt, Hermann", "project_titles": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "projects": [{"proj_uid": "p0000181", "repository": "USAP-DC", "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "uid": "609528", "west": -136.404633}, {"awards": "0839053 Ackley, Stephen", "bounds_geometry": ["POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models. Researchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet. A series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed.\n", "east": 165.7, "geometry": ["POINT(-142.083 -72.3165)"], "keywords": "Ice Core Records; Oceans; Oden; OSO1011; Sea Ice; Sea Ice Salinity; Sea Ice Thickness; Southern Ocean", "locations": "Southern Ocean", "north": -67.05, "nsf_funding_programs": null, "persons": "Ackley, Stephen", "project_titles": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "projects": [{"proj_uid": "p0000676", "repository": "USAP-DC", "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.583, "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "uid": "600106", "west": -89.866}, {"awards": "0838892 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Biota; Oceans; Ross Sea; Seals; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -75.0, "nsf_funding_programs": null, "persons": "Burns, Jennifer", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600101", "west": 162.0}, {"awards": "0838850 Gooseff, Michael", "bounds_geometry": ["POLYGON((-163.3 -77.62,-163.202 -77.62,-163.104 -77.62,-163.006 -77.62,-162.908 -77.62,-162.81 -77.62,-162.712 -77.62,-162.614 -77.62,-162.516 -77.62,-162.418 -77.62,-162.32 -77.62,-162.32 -77.631,-162.32 -77.642,-162.32 -77.653,-162.32 -77.664,-162.32 -77.675,-162.32 -77.686,-162.32 -77.697,-162.32 -77.708,-162.32 -77.719,-162.32 -77.73,-162.418 -77.73,-162.516 -77.73,-162.614 -77.73,-162.712 -77.73,-162.81 -77.73,-162.908 -77.73,-163.006 -77.73,-163.104 -77.73,-163.202 -77.73,-163.3 -77.73,-163.3 -77.719,-163.3 -77.708,-163.3 -77.697,-163.3 -77.686,-163.3 -77.675,-163.3 -77.664,-163.3 -77.653,-163.3 -77.642,-163.3 -77.631,-163.3 -77.62))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities.\n", "east": -162.32, "geometry": ["POINT(-162.81 -77.675)"], "keywords": "Antarctica; Critical Zone; Mps-1 Water Potential Sensor; Physical Properties; Soil Moisture; Soil Temperature", "locations": "Antarctica", "north": -77.62, "nsf_funding_programs": null, "persons": "Gooseff, Michael N.", "project_titles": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "projects": [{"proj_uid": "p0000489", "repository": "USAP-DC", "title": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.73, "title": "The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "uid": "600100", "west": -163.3}, {"awards": "0838830 Cottrell, Matthew", "bounds_geometry": ["POLYGON((-64.079666 -64.77966,-64.0757659 -64.77966,-64.0718658 -64.77966,-64.0679657 -64.77966,-64.0640656 -64.77966,-64.0601655 -64.77966,-64.0562654 -64.77966,-64.0523653 -64.77966,-64.0484652 -64.77966,-64.0445651 -64.77966,-64.040665 -64.77966,-64.040665 -64.783261,-64.040665 -64.786862,-64.040665 -64.790463,-64.040665 -64.794064,-64.040665 -64.797665,-64.040665 -64.801266,-64.040665 -64.804867,-64.040665 -64.808468,-64.040665 -64.812069,-64.040665 -64.81567,-64.0445651 -64.81567,-64.0484652 -64.81567,-64.0523653 -64.81567,-64.0562654 -64.81567,-64.0601655 -64.81567,-64.0640656 -64.81567,-64.0679657 -64.81567,-64.0718658 -64.81567,-64.0757659 -64.81567,-64.079666 -64.81567,-64.079666 -64.812069,-64.079666 -64.808468,-64.079666 -64.804867,-64.079666 -64.801266,-64.079666 -64.797665,-64.079666 -64.794064,-64.079666 -64.790463,-64.079666 -64.786862,-64.079666 -64.783261,-64.079666 -64.77966))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Light quality and availability are likely to change in polar ecosystems as ice coverage and thickness decrease. How microbes adjust to these and other changes will have huge impacts on the polar marine ecosystems. Little is known about photoheterotrophic prokaryotes, which are hypothesized to gain a metabolic advantage by harvesting light energy in addition to utilizing dissolved organic matter (DOM). Photoheterotrophy is not included in current models of carbon cycling and energy flow. This research will examine three questions: 1. Are photoheterotrophic microbes present and active in Antarctic waters in winter and summer? 2. Does community structure of photoheterotrophs shift between summer and winter? 3. Which microbial groups assimilate more DOM in light than in the dark? The research will test hypotheses about activity of photoheterotrophs in winter and in summer, shifts in community structure between light and dark seasons and the potentially unique impacts of photoheterotrophs on biogeochemical processes in the Antarctic. The project will directly support a graduate student, will positively impact the NSF REU program at the College of Marine and Earth Studies, and will include students from the nation\u0027s oldest historical minority college. The results will be featured during weekly tours of Lewes facilities (about 1000 visitors per year) and during Coast Day, an annual open-house that attracts about 10,000 visitors.", "east": -64.040665, "geometry": ["POINT(-64.0601655 -64.797665)"], "keywords": "Antarctic Peninsula; Biota; LTER Palmer Station; Microbiology; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean", "north": -64.77966, "nsf_funding_programs": null, "persons": "Cottrell, Matthew; Kirchman, David", "project_titles": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem", "projects": [{"proj_uid": "p0000473", "repository": "USAP-DC", "title": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.81567, "title": "Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem", "uid": "600097", "west": -64.079666}, {"awards": "0741301 O\u0027Brien, Kristin", "bounds_geometry": ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. \nThis collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education.\n", "east": -62.44, "geometry": ["POINT(-63.445 -63.695)"], "keywords": "Biota; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -63.29, "nsf_funding_programs": null, "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000483", "repository": "USAP-DC", "title": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.1, "title": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "uid": "600084", "west": -64.45}, {"awards": "1043779 Mellish, Jo-Ann", "bounds_geometry": ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk.\n", "east": 166.73334, "geometry": ["POINT(166.283335 -77.69653)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Sea Ice; Seals; Sea Surface; Southern Ocean", "locations": "Antarctica; Southern Ocean; Ross Sea; Sea Surface", "north": -77.51528, "nsf_funding_programs": null, "persons": "Mellish, Jo-Ann", "project_titles": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING", "projects": [{"proj_uid": "p0000343", "repository": "USAP-DC", "title": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87778, "title": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "uid": "600130", "west": 165.83333}, {"awards": "0636724 Blankenship, Donald", "bounds_geometry": ["POLYGON((-125 -73,-121.5 -73,-118 -73,-114.5 -73,-111 -73,-107.5 -73,-104 -73,-100.5 -73,-97 -73,-93.5 -73,-90 -73,-90 -74,-90 -75,-90 -76,-90 -77,-90 -78,-90 -79,-90 -80,-90 -81,-90 -82,-90 -83,-93.5 -83,-97 -83,-100.5 -83,-104 -83,-107.5 -83,-111 -83,-114.5 -83,-118 -83,-121.5 -83,-125 -83,-125 -82,-125 -81,-125 -80,-125 -79,-125 -78,-125 -77,-125 -76,-125 -75,-125 -74,-125 -73))"], "date_created": "Thu, 03 May 2012 00:00:00 GMT", "description": "This data set contains line-based radar-derived ice thickness and bed elevation data, collected as part of the Airborne Geophysical Survey of the Amundsen Embayment (AGASEA) expedition, which took place over Thwaites Glacier in West Antarctica from 2004 to 2005. The data set includes ice thickness, ice sheet bed elevation, and ice sheet surface elevation, derived from ice-penetrating radar and aircraft GPS positions. The data are spaced on a 15 km by 15 km grid over the entire catchment of the glacier, and sampled at approximately 15 meters along track. Most of the radar data used for this dataset has been processed using a 1-D focusing algorithm, to reduce the along track resolution to tens of meters, to improve boundary conditions for ice sheet models. \n\nData are available via FTP in space-delimited ASCII format.", "east": -90.0, "geometry": ["POINT(-107.5 -78)"], "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness", "locations": "Antarctica; Amundsen Sea", "north": -73.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Blankenship, Donald D.; Young, Duncan A.; Holt, John W.; Kempf, Scott D.", "project_titles": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -83.0, "title": "AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica", "uid": "609517", "west": -125.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-62.5 -63,-61 -63,-59.5 -63,-58 -63,-56.5 -63,-55 -63,-55 -63.7,-55 -64.4,-55 -65.1,-55 -65.8,-55 -66.5,-55 -67.2,-55 -67.9,-55 -68.6,-55 -69.3,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.3,-70 -68.6,-70 -67.9,-70 -67.2,-70 -66.5,-70 -65.8,-70 -65.1,-70 -64.4,-70 -63.7,-70 -63))"], "date_created": "Mon, 30 Apr 2012 00:00:00 GMT", "description": "This data set provides a 100 meter resolution surface topography Digital Elevation Model (DEM) of the Antarctic Peninsula. The DEM is based on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data.", "east": -55.0, "geometry": ["POINT(-62.5 -66.5)"], "keywords": "Antarctica; Antarctic Peninsula; ASTER; Digital Elevation Model; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Solid Earth", "locations": "Antarctic Peninsula; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Cook, Allison", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM", "uid": "609516", "west": -70.0}, {"awards": "0838722 Reiners, Peter", "bounds_geometry": ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.\n", "east": 75.08, "geometry": ["POINT(68.49 -70.49)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; ODP739; Prydz Bay; Solid Earth; Southern Ocean", "locations": "Prydz Bay; Southern Ocean; Antarctica; Gamburtsev Mountains", "north": -67.28, "nsf_funding_programs": null, "persons": "Gehrels, George; Reiners, Peter; Thomson, Stuart", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.7, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600093", "west": 61.9}, {"awards": "0739781 Blythe, Ann", "bounds_geometry": ["POLYGON((155.77667 -79.793335,156.208836 -79.793335,156.641002 -79.793335,157.073168 -79.793335,157.505334 -79.793335,157.9375 -79.793335,158.369666 -79.793335,158.801832 -79.793335,159.233998 -79.793335,159.666164 -79.793335,160.09833 -79.793335,160.09833 -79.8578345,160.09833 -79.922334,160.09833 -79.9868335,160.09833 -80.051333,160.09833 -80.1158325,160.09833 -80.180332,160.09833 -80.2448315,160.09833 -80.309331,160.09833 -80.3738305,160.09833 -80.43833,159.666164 -80.43833,159.233998 -80.43833,158.801832 -80.43833,158.369666 -80.43833,157.9375 -80.43833,157.505334 -80.43833,157.073168 -80.43833,156.641002 -80.43833,156.208836 -80.43833,155.77667 -80.43833,155.77667 -80.3738305,155.77667 -80.309331,155.77667 -80.2448315,155.77667 -80.180332,155.77667 -80.1158325,155.77667 -80.051333,155.77667 -79.9868335,155.77667 -79.922334,155.77667 -79.8578345,155.77667 -79.793335))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "This project studies formation of the TransAntarctic Mountains (TAM) through numerical modeling based on cooling histories of apatite mineral grains. The TAM are the highest and longest rift-related mountain range in the world. Various models for their uplift have been proposed, the most provocative of which is that they are not uplifted, but instead are the eroded remnant of a plateau. This project evaluates that hypothesis by collecting apatites from around Byrd Glacier for fission track thermochronology. Results will be combined with a kinematic and thermal model to determine the TAM\u0027s structural evolution. The plateau model, if correct, implies that the Byrd Glacier originated not as a glacier-carved valley through the TAM, but as a river system flowing in the opposite direction. Given that the Byrd Glacier is a key drainage for the East Antarctic ice sheet, this result has important implications for ice sheet models and interpretation of both regional geology and sediment records. The main broader impacts are undergraduate research and a new collaboration between a primarily undergraduate and a research institution. Students will be involved in the field program, sample analyses, and numerical modeling.", "east": 160.09833, "geometry": ["POINT(157.9375 -80.1158325)"], "keywords": "Antarctica; Fission Track Thermochronology; Geochemistry; Solid Earth; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -79.793335, "nsf_funding_programs": null, "persons": "Blythe, Ann Elizabeth; Huerta, Audrey D.", "project_titles": "Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau", "projects": [{"proj_uid": "p0000677", "repository": "USAP-DC", "title": "Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.43833, "title": "Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau", "uid": "600082", "west": 155.77667}, {"awards": "0538674 Winebrenner, Dale", "bounds_geometry": ["POINT(73.17 -78.47)"], "date_created": "Mon, 15 Aug 2011 00:00:00 GMT", "description": "This data set provides a modeled radar attenuation rate profile, showing the predicted contributions from pure ice and impurities to radar attenuation at the Vostok 5G ice core site in Antarctica, as well as the total attenuation rate and its formal uncertainty. The model data are based on borehole temperature logs, concentrations of major soluble ions measured from melted ice core samples, and information about the electrical conductivity of ice. Attenuation rates and their spatial variability are important constraints for radar studies of ice sheets. Parameters include depth, total attenuation rate, and attenuation rate contribution from pure ice, acidity, and salinity.\n\nData are available via FTP as a text file (.txt) with columns in comma separated value format.", "east": 73.17, "geometry": ["POINT(73.17 -78.47)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Radar Attenuation Rate; Vostok Ice Core", "locations": "Antarctica; Lake Vostok", "north": -78.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Macgregor, Joseph A.; Matsuoka, Kenichi; Studinger, Michael S.", "project_titles": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data", "projects": [{"proj_uid": "p0000090", "repository": "USAP-DC", "title": "Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.47, "title": "Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica", "uid": "609501", "west": 73.17}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))"], "date_created": "Sun, 20 Feb 2011 00:00:00 GMT", "description": "This data set provides grounding line and hydrostatic line locations for the Antarctic coastline and islands around Antarctica. The data are derived using customized software to combine data from Landsat-7 imagery and Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry, which were primarily collected between 1999 to 2003. The data set also includes elevations along each line, selected from six candidate digital elevation models. The data were developed as part of the Antarctic Surface Accumulation and Ice Discharge (ASAID) project. \r\n\r\nFunding trough NASA grant 509496.02.08.01.81\r\nData are provided in both ASCII text (.txt) and shapefile (.shp, .dbf, .shx) formats.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; ASAID; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Grounding Line Hydrostatic Line; Oceans", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bindschadler, Robert; Choi, Hyeungu", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -80.0, "title": "High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet", "uid": "609489", "west": -180.0}, {"awards": "0838729 Hemming, Sidney", "bounds_geometry": ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.", "east": 165.0, "geometry": ["POINT(48.9 -64)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; Solid Earth; Southern Ocean", "locations": "Gamburtsev Mountains; Antarctica; Southern Ocean", "north": -58.0, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600094", "west": -67.2}, {"awards": "0839084 Ortland, David", "bounds_geometry": ["POLYGON((-63 -59,-62 -59,-61 -59,-60 -59,-59 -59,-58 -59,-57 -59,-56 -59,-55 -59,-54 -59,-53 -59,-53 -59.6,-53 -60.2,-53 -60.8,-53 -61.4,-53 -62,-53 -62.6,-53 -63.2,-53 -63.8,-53 -64.4,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.4,-63 -63.8,-63 -63.2,-63 -62.6,-63 -62,-63 -61.4,-63 -60.8,-63 -60.2,-63 -59.6,-63 -59))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The project will employ a sophisticated meteor radar at the Brazilian Antarctic station Comandante Ferraz on King George Island for a number of synergetic research efforts of high interest to the international aeronomical community. The location of the radar will be at the tip of the Antarctic Peninsula - at a critical southern latitude of 62 degrees - to fill a current measurement gap from 54 to 68 degrees south. The radar will play a key role in Antarctic and inter-hemispheric studies of neutral atmosphere dynamics, defining global mesosphere and lower thermosphere structure and variability (from 80 to 105 km) and guiding advances of models accounting for the dynamics of this high-altitude region, including general circulation models, and climate and numerical weather prediction models. The unique radar measurement sensitivity will enable studies of: (1) the large-scale circulation and planetary waves, (2) the tidal structure and variability, (3) the momentum transport by small-scale gravity waves, (4) important, but unquantified, gravity wave - tidal interactions, (5) polar mesosphere summer echoes, and (6) meteor fluxes, head echoes, and non-specular trails, a number of which exhibit high latitudinal gradients at these latitudes. This radar will support extensive collaborations with U.S. and other scientists making measurements at other Antarctic and Arctic conjugate sites, including Brazilian scientists at C. Ferraz and U.S. and international colleagues having other instrumentation in the Antarctic, Arctic, and within South America. Links to the University of Colorado in the U.S., Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil and Universidad Nacional de La Plata in Argentina will provide unique research opportunities for graduate and undergraduate students in the U.S. and South America.", "east": -53.0, "geometry": ["POINT(-58 -62)"], "keywords": "Antarctica; Atmosphere; Meteorology; Meteor Radar", "locations": "Antarctica", "north": -59.0, "nsf_funding_programs": null, "persons": "Fritts, David; Janches, Diego", "project_titles": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island", "projects": [{"proj_uid": "p0000670", "repository": "USAP-DC", "title": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island", "uid": "600107", "west": -63.0}, {"awards": "0528728 Vernet, Maria", "bounds_geometry": ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -64.6, "geometry": ["POINT(-66.84 -66.405)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea", "north": -64.8, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.01, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600048", "west": -69.08}, {"awards": "0529087 Ross, Robin", "bounds_geometry": ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -61.0, "geometry": ["POINT(-66 -65.5)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -61.0, "nsf_funding_programs": null, "persons": "Quetin, Langdon B.; Ross, Robin Macurda", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600049", "west": -71.0}, {"awards": "0529666 Fritsen, Christian", "bounds_geometry": ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "locations": "Bellingshausen Sea; Sea Surface; Southern Ocean", "north": -39.23, "nsf_funding_programs": null, "persons": "Fritsen, Christian", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600050", "west": -180.0}, {"awards": "0739491 Sowers, Todd", "bounds_geometry": ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This data set contains depth profiles for delta carbon-13 (\u0026#948;13C) and delta deuterium (\u0026#948;D) of methane (CH\u003csub\u003e4\u003c/sub\u003e) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH\u003csub\u003e4\u003c/sub\u003e at South Pole Station (no depth-age model provided).\n\nData are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "South Pole; Antarctica", "north": 90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "projects": [{"proj_uid": "p0000162", "repository": "USAP-DC", "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Methane Isotopes in South Pole Firn Air, 2008", "uid": "609502", "west": -180.0}, {"awards": "0440666 Waddington, Edwin", "bounds_geometry": ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"], "date_created": "Sun, 20 Jun 2010 00:00:00 GMT", "description": "This data set contains radar internal layer and ice sheet topography data for two sites in Antarctica, along with associated model results from two studies. This project used geophysical inverse theory and a 2.5 D flowband ice-flow forward model to extract robust transient accumulation patterns from multiple deeper layers. Histories of divide migration, or the movement of the ice sheet and ice-surface evolution are also provided. The data used to solve the inverse problem, and the model solutions are provided. Internal layers, modern ice-surface velocities, and modern ice-sheet geometry at Taylor Mouth are available, as well as the pattern of accumulation inferred by Waddington et al. (2007).\n\nData are available via FTP in Matlab (.mat) format. Supporting information is available as text files (.rtf and .txt).", "east": 158.716667, "geometry": ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"], "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -77.783333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Waddington, Edwin D.; Koutnik, Michelle", "project_titles": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach", "projects": [{"proj_uid": "p0000018", "repository": "USAP-DC", "title": "Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.416667, "title": "Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica", "uid": "609473", "west": -111.816667}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": ["POINT(-112.09 -79.47)"], "date_created": "Tue, 15 Jun 2010 00:00:00 GMT", "description": "This data set contains the results of a model study of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. The model data are based on radar data collected by the Support Office of Aerogeophysical Research (SOAR) at the University of Texas, and the University of Washington, in 2000. The data include values for attenuation estimates for individual radar profiles.\n\nData are available via FTP in MATLAB (.mat) and Portable Document (.pdf) formats.", "east": -112.09, "geometry": ["POINT(-112.09 -79.47)"], "keywords": "Airborne Radar; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; WAIS Divide", "locations": "Antarctica; WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Raymond, Charles; Matsuoka, Kenichi", "project_titles": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "projects": [{"proj_uid": "p0000017", "repository": "USAP-DC", "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "uid": "609470", "west": -112.09}, {"awards": "0335330 Waddington, Edwin", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 15 Jun 2010 00:00:00 GMT", "description": "This data set consists of scripts and code designed for modeling the properties of boreholes in polar ice sheets, under a range of variations in the borehole geometry, firn layering, and camera pointing and position. The data set contains two folders. One includes two perl scripts and a piece of C code, along with directions for setting up and running a Monte Carlo model of photons traveling to and from a borehole in the firn. The second includes scripts for generating ray-tracing input files to be used with the POV-Ray package (a standard, free raytracing package) to generate simulated borehole video frames based on the results of the Monte Carlo model. The project was conducted between February 2005 and April 2010.\n\nThe codes to run the models are available via FTP, in Perlscript (.pl) and C code.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling Code", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hawley, Robert L.; Smith, Ben; Waddington, Edwin D.; Fudge, T. J.", "project_titles": "Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn", "projects": [{"proj_uid": "p0000016", "repository": "USAP-DC", "title": "Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Borehole Optical Stratigraphy Modeling, Antarctica", "uid": "609468", "west": -180.0}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.\n", "east": -54.0, "geometry": ["POINT(-59 -62)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel", "project_titles": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "projects": [{"proj_uid": "p0000082", "repository": "USAP-DC", "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "600044", "west": -64.0}, {"awards": "9024544 Andreas, Edgar", "bounds_geometry": ["POLYGON((-53.8 -61.2,-52.74 -61.2,-51.68 -61.2,-50.62 -61.2,-49.56 -61.2,-48.5 -61.2,-47.44 -61.2,-46.38 -61.2,-45.32 -61.2,-44.26 -61.2,-43.2 -61.2,-43.2 -62.22,-43.2 -63.24,-43.2 -64.26,-43.2 -65.28,-43.2 -66.3,-43.2 -67.32,-43.2 -68.34,-43.2 -69.36,-43.2 -70.38,-43.2 -71.4,-44.26 -71.4,-45.32 -71.4,-46.38 -71.4,-47.44 -71.4,-48.5 -71.4,-49.56 -71.4,-50.62 -71.4,-51.68 -71.4,-52.74 -71.4,-53.8 -71.4,-53.8 -70.38,-53.8 -69.36,-53.8 -68.34,-53.8 -67.32,-53.8 -66.3,-53.8 -65.28,-53.8 -64.26,-53.8 -63.24,-53.8 -62.22,-53.8 -61.2))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Location: Ice camp on perennial sea ice in the southwestern corner of the Weddell Sea, Antarctic\n\nThe first direct radiative and turbulent surface flux measurements ever made over floating Antarctic sea ice. The data are from Ice Station Weddell as it drifted in the western Weddell Sea from February to late May 1992.\n\nData Types:\n\nHourly measurements of the turbulent surface fluxes of momentum and sensible and latent heat by eddy covariance at a height of 4.65 m above snow-covered sea ice. Instruments were a 3-axis sonic anemometer/thermometer and a Lyman-alpha hygrometer.\n\nHourly, surface-level measurements of the four radiation components: in-coming and out-going longwave and shortwave radiation. Instruments were hemispherical pyranometers and pyrgeometers.\n\nHourly mean values of standard meteorological variables: air temperature, dew point temperature, wind speed and direction, barometric pressure, surface temperature. Instruments were a propeller-vane for wind speed and direction and cooled-mirror dew-point hygrometers and platinum resistance thermometers for dew-points and temperatures. Surface temperature came from a Barnes PRT-5 infrared thermometer.\n\nFlux Data\nThe entire data kit is bundled as a zip file named ISW_Flux_Data.zip\nThe main data file is comma delimited.\nThe README file is ASCII.\nThe associated reprints of publications are in pdf.\n\nRadiosounding data: On Ice Station Weddell, typically twice a day from 21 February through 4 June 1992 made with both tethered (i.e., only boundary-layer profiles) and (more rarely) free-flying sondes that did not measure wind speed. (168 soundings).\n\nISW Radiosoundings\nThe entire data kit is bundled as a zip file named ISW_Radiosounding.zip.\nThe README file is in ASCII.\nTwo summary files that include the list of sounding and the declinations are in ASCII.\nThe 168 individual sounding files are in ASCII.\nTwo supporting publications that describe the data and some analyses are in pdf.\n\nRadiosounding data collected from the Russian ship Akademic Fedorov from 26 May through 5 June 1992 at 6-hourly intervals as it approached Ice Station Weddell from the north. These soundings include wind vector, temperature, humidity, and pressure. (40 soundings)\n\nAkademic Federov Radiosoundings\nThe entire data kit is bundled as a zip file named Akad_Federov_Radiosounding.zip.\nThe README file is in ASCII.\nA summary file that lists the soundings is in ASCII.\nThe 40 individual sounding files are in ASCII.\nTwo supporting publications that describe the data and some analyses are in pdf.\n\n\nDocumentation:\n\nAndreas, E. L, and K. J. Claffey, 1995: Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research, 100, 4821\u20134831.\n\nAndreas, E. L, K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary-Layer Meteorology, 97, 459\u2013486.\n\nAndreas, E. L, R. E. Jordan, and A. P. Makshtas, 2004: Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell. Journal of Hydrometeorology, 5, 611\u2013624.\n\nAndreas, E. L, R. E. Jordan, and A. P. Makshtas, 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Boundary-Layer Meteorology, 114, 439\u2013460.\n\nAndreas, E. L, P. O. G. Persson, R. E. Jordan, T. W. Horst, P. S. Guest, A. A. Grachev, and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87\u2013104.\n\nClaffey, K. J., E. L Andreas, and A. P. Makshtas, 1994: Upper-air data collected on Ice Station Weddell. Special Report 94-25, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 62 pp.\n\nISW Group, 1993: Weddell Sea exploration from ice station. Eos, Transactions, American Geophysical Union, 74, 121\u2013126.\n\nMakshtas, A. P., E. L Andreas, P. N. Svyaschennikov, and V. F. Timachev, 1999: Accounting for clouds in sea ice models. Atmospheric Research, 52, 77\u2013113.", "east": -43.2, "geometry": ["POINT(-48.5 -66.3)"], "keywords": "Antarctica; Atmosphere; Critical Zone; Meteorology; Oceans; Radiosounding; Southern Ocean; Weddell Sea", "locations": "Antarctica; Weddell Sea; Southern Ocean", "north": -61.2, "nsf_funding_programs": null, "persons": "Andreas, Edgar", "project_titles": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "projects": [{"proj_uid": "p0000655", "repository": "USAP-DC", "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.4, "title": "Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station", "uid": "600141", "west": -53.8}, {"awards": "0801392 Swanson, Brian", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Microbiology; Oceans; Raman Spectroscopy; Sea Ice; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Sea Surface", "north": -60.0, "nsf_funding_programs": null, "persons": "Swanson, Brian", "project_titles": "Ice Nucleation by Marine Psychrophiles", "projects": [{"proj_uid": "p0000195", "repository": "USAP-DC", "title": "Ice Nucleation by Marine Psychrophiles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Ice Nucleation by Marine Psychrophiles", "uid": "600087", "west": -180.0}, {"awards": "0649609 Horning, Markus", "bounds_geometry": ["POLYGON((165.975 -77.54,166.0631 -77.54,166.1512 -77.54,166.2393 -77.54,166.3274 -77.54,166.4155 -77.54,166.5036 -77.54,166.5917 -77.54,166.6798 -77.54,166.7679 -77.54,166.856 -77.54,166.856 -77.5709,166.856 -77.6018,166.856 -77.6327,166.856 -77.6636,166.856 -77.6945,166.856 -77.7254,166.856 -77.7563,166.856 -77.7872,166.856 -77.8181,166.856 -77.849,166.7679 -77.849,166.6798 -77.849,166.5917 -77.849,166.5036 -77.849,166.4155 -77.849,166.3274 -77.849,166.2393 -77.849,166.1512 -77.849,166.0631 -77.849,165.975 -77.849,165.975 -77.8181,165.975 -77.7872,165.975 -77.7563,165.975 -77.7254,165.975 -77.6945,165.975 -77.6636,165.975 -77.6327,165.975 -77.6018,165.975 -77.5709,165.975 -77.54))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds; and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of muscle morphology, oxidant status and oxygen storage with age will be examined. The effects of age on skeletal muscular function and exercise performance will also be examined. The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging and develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years but basic mammalian aging is an area of study the still requires considerable effort. The development of new models for the study of aging has tremendous potential benefits to society at large.", "east": 166.856, "geometry": ["POINT(166.4155 -77.6945)"], "keywords": "Antarctica; Biota; McMurdo; Oceans; Seals; Southern Ocean", "locations": "Antarctica; Southern Ocean; McMurdo", "north": -77.54, "nsf_funding_programs": null, "persons": "Horning, Markus", "project_titles": "Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "projects": [{"proj_uid": "p0000487", "repository": "USAP-DC", "title": "Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.849, "title": "Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "uid": "600071", "west": 165.975}, {"awards": "0632168 Hulbe, Christina", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 30 May 2009 00:00:00 GMT", "description": "This data set provides the results of predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica. The models examine how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. The models were developed by a collaborative effort called the Community Ice Sheet Model (CISM).\n\nThe data set contains a MATLAB (.mat) native format file with time evolution of basal temperature fields from a generic ice sheet model with uniform and non-uniform heat flux, a MATLAB script for performing singular value decomposition and analysis of the model fields, and a summary of experimental results in Portable Document Format (.pdf). Data are available via FTP.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Community Ice Sheet Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Hulbe, Christina; Daescu, Dacian N.", "project_titles": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region", "projects": [{"proj_uid": "p0000756", "repository": "USAP-DC", "title": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields", "uid": "609396", "west": -180.0}, {"awards": "0440954 Miller, Molly", "bounds_geometry": ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems.", "east": 159.5, "geometry": ["POINT(159.25 -76.683335)"], "keywords": "Allan Hills; Antarctica; Paleontology; Sample/collection Description; Sample/Collection Description; Solid Earth", "locations": "Allan Hills; Antarctica", "north": -76.61667, "nsf_funding_programs": null, "persons": "Miller, Molly", "project_titles": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "projects": [{"proj_uid": "p0000207", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.75, "title": "Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "uid": "600045", "west": 159.0}, {"awards": "0538195 Marone, Chris", "bounds_geometry": null, "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard.", "east": null, "geometry": null, "keywords": "Antarctica; Glacial Till; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lab Experiment; Marine Sediments; Physical Properties; Solid Earth", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "persons": "Marone, Chris; Anandakrishnan, Sridhar", "project_titles": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "projects": [{"proj_uid": "p0000554", "repository": "USAP-DC", "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till", "uid": "600054", "west": null}, {"awards": "0538594 Ponganis, Paul", "bounds_geometry": ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, \u0027backpack\u0027 near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego.", "east": 166.317, "geometry": ["POINT(166.15 -77.7165)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -77.683, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "projects": [{"proj_uid": "p0000535", "repository": "USAP-DC", "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "uid": "600057", "west": 165.983}, {"awards": "0636629 Kurz, Mark", "bounds_geometry": ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.", "east": 164.3, "geometry": ["POINT(162.5 -78.1)"], "keywords": "Antarctica; Cosmogenic Radionuclides; Dry Valleys; Geology/Geophysics - Other; Glaciology; LIDAR; Navigation; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; Dry Valleys", "north": -77.8, "nsf_funding_programs": null, "persons": "Soule, S. Adam; Kurz, Mark D.", "project_titles": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "projects": [{"proj_uid": "p0000559", "repository": "USAP-DC", "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "uid": "600066", "west": 160.7}, {"awards": "0739693 Ashworth, Allan", "bounds_geometry": ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": ["POINT(161 -77.5)"], "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ashworth, Allan; Lewis, Adam", "project_titles": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "projects": [{"proj_uid": "p0000188", "repository": "USAP-DC", "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "600081", "west": 160.0}, {"awards": "0230197 Holt, John; 0636724 Blankenship, Donald", "bounds_geometry": ["POLYGON((-130 -75,-126.5 -75,-123 -75,-119.5 -75,-116 -75,-112.5 -75,-109 -75,-105.5 -75,-102 -75,-98.5 -75,-95 -75,-95 -75.5,-95 -76,-95 -76.5,-95 -77,-95 -77.5,-95 -78,-95 -78.5,-95 -79,-95 -79.5,-95 -80,-98.5 -80,-102 -80,-105.5 -80,-109 -80,-112.5 -80,-116 -80,-119.5 -80,-123 -80,-126.5 -80,-130 -80,-130 -79.5,-130 -79,-130 -78.5,-130 -78,-130 -77.5,-130 -77,-130 -76.5,-130 -76,-130 -75.5,-130 -75))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "This data set includes airborne altimetry collected over the catchment and main trunk of Thwaites Glacier, one of Antarctica\u0027s most active ice streams. The airborne altimetry comprises 35,000 line-kilometers sampled at 20 meters along track. The full dataset has an internal error of \u00b120 cm; a primary subset has an error of \u00b18 cm. We find a +20 cm bias with Geoscience Laser Altimeter System data over a flat interior region. These data will serve as an additional temporal reference for the evolution of Thwaites Glacier surface, as well as aid the construction of future high resolution Digital Elevation Models (DEM). Line data are available in space-delimited ASCII format and are available via FTP.", "east": -95.0, "geometry": ["POINT(-112.5 -77.5)"], "keywords": "AGASEA; Airborne Altimetry; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Thwaites Glacier", "locations": "Thwaites Glacier; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.; Holt, John W.; Morse, David L.", "project_titles": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System", "projects": [{"proj_uid": "p0000174", "repository": "USAP-DC", "title": "Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica", "uid": "609334", "west": -130.0}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": ["POINT(158 -77.666667)"], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "Using new and existing ice core CO2 data from 65 - 30 ka BP a new chronology for Taylor Dome ice core CO2 is established and synchronized with Greenland ice core records to study how high latitude climate change and the carbon cycle were linked during the last glacial period. The new data and chronology should provide a better target for models attempting to explain CO2 variability and abrupt climate change.", "east": 158.0, "geometry": ["POINT(158 -77.666667)"], "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Antarctica; Taylor Dome", "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brook, Edward J.; Ahn, Jinho", "project_titles": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "projects": [{"proj_uid": "p0000268", "repository": "USAP-DC", "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "uid": "609315", "west": 158.0}, {"awards": "0230197 Holt, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This data set includes a nested model, that starts at low resolution for the whole Antarctic Ice Sheet, and then embeds higher resolution data at limited domains. There are at least three levels of nesting: whole, regional, and specific ice streams. Investigators focused on the Thwaites Glacier and the Pine Island Glacier. The model was produced using data from (Holt et al. 2006) and (Vaughan et al. 2006). Data are in Network Common Data Form (NetCDF) format and are available via FTP.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "locations": "Amundsen Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fastook, James L.", "project_titles": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "projects": [{"proj_uid": "p0000243", "repository": "USAP-DC", "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Amundsen Sea Sector Data Set", "uid": "609312", "west": -180.0}, {"awards": "9526566 Bindschadler, Robert", "bounds_geometry": ["POINT(-84 -75.9)", "POINT(160.41 -74.21)", "POINT(-174.45 -82.52)", "POINT(-119.4 -80.01)"], "date_created": "Tue, 28 Nov 2006 00:00:00 GMT", "description": "This data set includes daily, monthly, and yearly mean surface air temperatures for four interior West Antarctic sites between 1978 and 1997. Data include air surface temperatures measured at the Byrd, Lettau, Lynn, and Siple Station automatic weather stations. In addition, because weather stations in Antarctica are difficult to maintain, and resulting multi-decade records are often incomplete, the investigators also calculated surface temperatures from satellite passive microwave brightness temperatures. Calibration of 37-GHz vertically polarized brightness temperature data during periods of known air temperature, using emissivity modeling, allowed the investigators to replace data gaps with calibrated brightness temperatures.\n\nMS Excel data files and GIF images derived from the data are available via ftp from the National Snow and Ice Data Center.", "east": 160.41, "geometry": ["POINT(-84 -75.9)", "POINT(160.41 -74.21)", "POINT(-174.45 -82.52)", "POINT(-119.4 -80.01)"], "keywords": "Antarctica; Atmosphere; Automated Weather Station; Meteorology; Temperature; West Antarctica", "locations": "Antarctica; West Antarctica", "north": -74.21, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Shuman, Christopher A.; Stearns, Charles R.", "project_titles": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica", "projects": [{"proj_uid": "p0000191", "repository": "USAP-DC", "title": "Passive Microwave Remote Sensing for Paleoclimate Indicators at Siple Dome, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.52, "title": "Decadal-Length Composite West Antarctic Air Temperature Records", "uid": "609097", "west": -174.45}, {"awards": "0125761 Thiemens, Mark", "bounds_geometry": ["POINT(139.2728 -89.9975)"], "date_created": "Wed, 01 Nov 2006 00:00:00 GMT", "description": "This data set contains snow pit measurements of oxygen isotopes, \u003csup\u003e17\u003c/sup\u003eO and \u003csup\u003e18\u003c/sup\u003eO, in nitrate and ion concentrations, and surface measurements of oxygen isotopes in nitrate and in nitrate aerosols from the Amundsen-Scott South Pole Station, Antarctica. The 6-meter snow pit provides investigators with a 25-year record of nitrate isotope variations and ion concentrations for a period spanning from 1979 to 2004. Monthly surface snow and weekly aerosol collections yield a year-long record of nitrate isotopic composition starting 01 December 2003 and ending 31 December 2004.\n\nLittle is known about the past denitrification of the stratosphere in high latitude regions. Such knowledge is important to understanding the chemical state of the ancient atmospheres and evaluating the present climate models. With this research, investigators aim to understand the denitrification of the Antarctic stratosphere and quantify the sources of nitrate aerosols over time.\n\nData are in Microsoft Excel format and are available via FTP.", "east": 139.2728, "geometry": ["POINT(139.2728 -89.9975)"], "keywords": "Aerosol; Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP1502; Snow/ice; Snow/Ice; South Pole Station", "locations": "South Pole Station; Antarctica", "north": -89.9975, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thiemens, Mark H.; Savarino, Joel", "project_titles": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)", "projects": [{"proj_uid": "p0000242", "repository": "USAP-DC", "title": "South Pole Atmospheric Nitrate Isotopic Analysis (SPANIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.9975, "title": "Atmospheric Nitrate Isotopic Analysis at Amundsen-Scott South Pole Station, A Twenty-Five Year Record", "uid": "609281", "west": 139.2728}, {"awards": "0230197 Holt, John", "bounds_geometry": ["POLYGON((-134.9 -71.7,-129.86 -71.7,-124.82 -71.7,-119.78 -71.7,-114.74 -71.7,-109.7 -71.7,-104.66 -71.7,-99.62 -71.7,-94.58 -71.7,-89.54 -71.7,-84.5 -71.7,-84.5 -72.7,-84.5 -73.7,-84.5 -74.7,-84.5 -75.7,-84.5 -76.7,-84.5 -77.7,-84.5 -78.7,-84.5 -79.7,-84.5 -80.7,-84.5 -81.7,-89.54 -81.7,-94.58 -81.7,-99.62 -81.7,-104.66 -81.7,-109.7 -81.7,-114.74 -81.7,-119.78 -81.7,-124.82 -81.7,-129.86 -81.7,-134.9 -81.7,-134.9 -80.7,-134.9 -79.7,-134.9 -78.7,-134.9 -77.7,-134.9 -76.7,-134.9 -75.7,-134.9 -74.7,-134.9 -73.7,-134.9 -72.7,-134.9 -71.7))"], "date_created": "Wed, 25 Oct 2006 00:00:00 GMT", "description": "This data set includes 5 km gridded data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) conducted during the 2004-2005 austral summer. Investigators derived maps of the ice sheet surface and subglacial topography, which covers the entire catchments of both the Thwaites Glacier and the Pine Islands Glacier, from airborne survey systems mounted on a Twin Otter aircraft. The surveys had sufficient density to identify critical ice dynamic transitions within the Amundsen Sea Embayment (ASE). \n\nThe ASE is the only major drainage to exhibit significant elevation change over the period of available satellite observations. Modeling of the Western Antarctic Ice Sheet (WAIS) deglaciation pinpointed the Pine Island Glacier and the Thwaites Glacier, which comprise a major portion of the ASE, as the most vulnerable features of the WAIS. Present knowledge of the ice thickness and subglacial boundary conditions in the ASE are insufficient to understand its evolution or its sensitivity to climatic change, and it is not yet determined whether these changes are evidence of ongoing deglaciation or simply a fluctuation that does not threaten the equilibrium of the ice sheet. This research will support the efforts of a community of United States and international researchers to assess the present and predict the future behavior of the ice sheet in the ASE. \n\nThese data are available via FTP.", "east": -84.5, "geometry": ["POINT(-109.7 -76.7)"], "keywords": "AGASEA; Airborne Radar; Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Solid Earth", "locations": "Amundsen Sea; Antarctica", "north": -71.7, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Holt, John W.; Blankenship, Donald D.; Morse, David L.; Vaughan, David G.; Corr, Hugh F. J.; Young, Duncan A.", "project_titles": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "projects": [{"proj_uid": "p0000243", "repository": "USAP-DC", "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.7, "title": "Subglacial Topography: Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica", "uid": "609292", "west": -134.9}, {"awards": "0125570 Scambos, Ted; 0225992 Fahnestock, Mark", "bounds_geometry": ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"], "date_created": "Thu, 05 Oct 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP.", "east": 124.52668, "geometry": ["POINT(124.48059 -80.78277)"], "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.77546, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.79008, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "609283", "west": 124.4345}, {"awards": "9725305 Severinghaus, Jeffrey; 0230452 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": ["POINT(-148.767 -80.667)", "POINT(0 -90)"], "date_created": "Thu, 17 Aug 2006 00:00:00 GMT", "description": "This data set includes gas ratios in polar firn air: O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e, \u003csup\u003e15\u003c/sup\u003eN/\u003csup\u003e14\u003c/sup\u003eN, \u003csup\u003e40\u003c/sup\u003eAr/N\u003csub\u003e2\u003c/sub\u003e, \u003csup\u003e40\u003c/sup\u003eAr/\u003csup\u003e36\u003c/sup\u003eAr, \u003csup\u003e40\u003c/sup\u003eAr/\u003csup\u003e38\u003c/sup\u003eAr, \u003csup\u003e84\u003c/sup\u003eKr/\u003csup\u003e36\u003c/sup\u003eAr, \u003csup\u003e132\u003c/sup\u003eXe/\u003csup\u003e36\u003c/sup\u003eAr, and \u003csup\u003e22\u003c/sup\u003eNe/\u003csup\u003e36\u003c/sup\u003eAr. Investigators sampled air from the permeable snowpack (firn) layer at two sites: Siple Dome, Antarctica in 1996 and at the South Pole in 2001. They observed and modeled the processes of gravitational settling, thermal fractionation, and preferential exclusion of small gas molecules from closed air bubbles. The purpose of this study was to understand these physical processes, which affect the composition of bubbles trapped in ice. By measuring these gas ratios in the ancient air preserved in bubbles trapped in ice, researchers can determine past atmospheric composition and local temperature changes along with the relative timing and magnitude of such events.\n\nThe data file is available in Microsoft Excel format. The research paper is available in PDF. Data and the research paper are available via FTP.", "east": 0.0, "geometry": ["POINT(-148.767 -80.667)", "POINT(0 -90)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "locations": "Antarctica; Siple Dome; South Pole", "north": -80.667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.; Battle, Mark; Bender, Michael", "project_titles": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "projects": [{"proj_uid": "p0000257", "repository": "USAP-DC", "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "uid": "609290", "west": -148.767}, {"awards": null, "bounds_geometry": null, "date_created": "Thu, 15 Jun 2006 00:00:00 GMT", "description": "CUB shear velocity model is created from a large data set of the surface wave fundamental model phase and group velocity measurements. Phase velocities in period range between 40 an 150 s are generously donated by Harvard University and Utrecht University. These phase velocity data sets are described by Ekstr\u00f6m et al. (1997) and Trampert and Woodhouse (1995). The group velocity measurements at periods between 16 and 200s are performed at the Center for Imaging the Earth\u0027s Interior in the University of Colorado at Boulder. The group velocities are measured with the frequency-time analysis (Levshin et al., 1989) in which for every waveform a human analyst defines the frequency range of measurements and separate the signal form a variety of noise sources (e.g., overtones, fundamental modes of different types, other earthquakes, multipaths, scattered arrivals). We used broadband waveforms following earthquakes occurred from 1997 to present and recorded at stations from both global networks (GDSN, GSN, GEOSCOPE) as well as temporary regional arrays. At present, the group velocity dataset is composed of about 200000 paths.\n\nData coverage is generally better for Rayleigh waves than for Love waves, is better at intermediate periods than at very short or very long periods, and is better in the northern than in the southern hemisphere. This heterogeneous data coverage is imposed by the distribution of seismic stations and earthquakes. Data coverage optimizes in Eurasia and is currently worst across Africa, the central Pacific, parts of the Indian Ocean, and Antarctica.", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Ritzwoller, Michael", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Upper Mantle Shear Velocity Model", "uid": "600004", "west": null}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Sat, 10 Jun 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km\u003csup\u003e2\u003c/sup\u003e. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609282", "west": 124.0218}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This data set includes isotope and depth age data, and CO2 and CH4 data from the Dome C Antarctica ice core. This core is a 906 meter core that spans approximately 32,000 years. It was a thermally drilled core and was retrieved during the 1977-78 Antarctic field season as part of the International Antarctic Glaciological project.", "east": null, "geometry": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Depth-Age-Model; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Lal, Devendra; Lorius, Claude", "project_titles": "Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c", "projects": [{"proj_uid": "p0000152", "repository": "USAP-DC", "title": "Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": null, "title": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "uid": "609243", "west": null}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": ["POINT(-149 -81)"], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This data set is part of the WAISCORES project, an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nNereson\u0027s \u0027Age Versus Depth\u0027 plot shows the results of the calculations published in her paper on predicted age-depth scales (Nereson, N.A., E.D. Waddington, C.F. Raymond, and H.P. Jacobson. 1996. Predicted Age-Depth Scales for Siple Dome and Inland WAIS Ice Cores in West Antarctica.Geophys. Res. Let., 23(22): 3163-3166.).", "east": -149.0, "geometry": ["POINT(-149 -81)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Nereson, Nadine A.", "project_titles": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "projects": [{"proj_uid": "p0000058", "repository": "USAP-DC", "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.0, "title": "Siple Dome Ice Core Age-Depth Scales", "uid": "609130", "west": -149.0}, {"awards": "9222121 Dalziel, Ian; 9318121 Anandakrishnan, Sridhar", "bounds_geometry": ["POINT(106.48 -72.28)"], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "These data describe the d18O of O2, d15N of N2, d18Oatm, and O2/N2 ratios of trapped gases in the Vostok ice core from East Antarctica. The investigator used a mass spectrometer to measure gas concentrations and isotopic compositions. Data extend to approximately 420,000 years ago. Two different age models are included.\n\nData are available in tab-delimited ASCII format via ftp.", "east": 106.48, "geometry": ["POINT(106.48 -72.28)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "locations": "Lake Vostok; Antarctica", "north": -72.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael", "project_titles": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "projects": [{"proj_uid": "p0000150", "repository": "USAP-DC", "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.28, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "uid": "609107", "west": 106.48}, {"awards": null, "bounds_geometry": null, "date_created": "Fri, 01 Jan 1993 00:00:00 GMT", "description": "This gridded dataset consists of output from the Polar MM5, a version of the Pennsylvania State University / National Center for Atmospheric Research Fifth Generation Mesoscale Model (MM5; version 2) modified for use over extensive ice sheets. More information on the Polar MM5, including a model description and validation studies, is available at http://www-bprc.mps.ohio-state.edu. A series of 72-h non-hydrostatic forecasts are run for a 1-y period (Jan 1993-Dec 1993) overAntarctica and the high-latitude Southern Ocean. The first 24-h of each forecast are discarded for spin up. The horizontal grid resolution is 60-km, with 120 grid points in the x and y direction. The model topography data are interpolated from a 5-km resolution digital elevation model. The ice shelves are manually identified from climatic maps, and represented as permanent ice. The vertical resolution is represented by 28 sigma levels, with the lowest at 11-m above ground level. The initial and boundary conditions include 12-hourly ECMWF TOGA (2.5 deg) global analysis for the surface and upper air variables, 6-hourly ECMWF TOGA (1.125 deg) global analysis for sea surface temperature, and daily DMSP SSM/I polar gridded sea ice concentration (25-km) from the National Snow and Ice Data Center. Model output is in native MM5 format, and available variables are numerous, The reader is referred to the MM5 website for a complete list of variables, as well as detailed documentation and tools for reading and plotting the data. Go to the MM5 homepage at http://www.mmm.ucar.edu/mm5/mm5-home.html. This dataset is currently available upon request from the Polar Meteorology Group, Byrd Polar Research Center, Columbus, OH. Email David Bromwich (bromwich@polarmet1.mps.ohio-state.edu).", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Bromwich, David", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Polar MM5 model output over Antarctica and high-latitude Southern Ocean during 1993", "uid": "600001", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Soil moisture and soil temperature data (0-5 cm) near Palmer Station, Antarctica
|
1947562 |
2025-01-03 | van Gestel, Natasja |
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming |
This data set contains soil temperature, soil moisture, and soil conductivity data in the vicinity of Palmer Station. TEROS12 sensors are installed in 40 plots that are distributed along an increasing primary productivity gradient (i.e., with increasing distance from the Marr Ice Piedmont glacier). The sensors are comprised of 5 cm long metal pins that are inserted straight down into the soil and hence, data are collected from the upper 0-5 cm of the soil. There are 4 sites along the gradient (site 1 is closest to the glacier and site 4 is farthest from the glacier), with ten plots at each site. Half of the plots at each site are plots that contain an open-top chamber and the other half of the plots are control (unwarmed) plots. Plot ids will contain "W" for warmed plots and "C" for control plots. Raw data from the loggers (logged every 20 minutes), as well as an R Markdown file is provided to facilitate reading in and displaying the daily average soil moisture and temperature data at the plot and at the treatment level for each productivity site. Loggers and sensors were installed in December 2022 and were downloaded in November (sites 2-4) and in December (site 1) of 2024. | ["POLYGON((-64.0898264 -64.7704833,-64.08444765 -64.7704833,-64.07906890000001 -64.7704833,-64.07369015 -64.7704833,-64.0683114 -64.7704833,-64.06293265 -64.7704833,-64.0575539 -64.7704833,-64.05217515 -64.7704833,-64.04679639999999 -64.7704833,-64.04141765 -64.7704833,-64.0360389 -64.7704833,-64.0360389 -64.77082025,-64.0360389 -64.77115719999999,-64.0360389 -64.77149415,-64.0360389 -64.7718311,-64.0360389 -64.77216805,-64.0360389 -64.772505,-64.0360389 -64.77284195,-64.0360389 -64.7731789,-64.0360389 -64.77351585,-64.0360389 -64.7738528,-64.04141765 -64.7738528,-64.04679639999999 -64.7738528,-64.05217515 -64.7738528,-64.0575539 -64.7738528,-64.06293265 -64.7738528,-64.0683114 -64.7738528,-64.07369015 -64.7738528,-64.07906890000001 -64.7738528,-64.08444765 -64.7738528,-64.0898264 -64.7738528,-64.0898264 -64.77351585,-64.0898264 -64.7731789,-64.0898264 -64.77284195,-64.0898264 -64.772505,-64.0898264 -64.77216805,-64.0898264 -64.7718311,-64.0898264 -64.77149415,-64.0898264 -64.77115719999999,-64.0898264 -64.77082025,-64.0898264 -64.7704833))"] | ["POINT(-64.06293265 -64.77216805)"] | false | false |
Forward Diffusion Model used to calculate widening of volcanic layer widths
|
1851022 |
2024-11-22 | Fudge, T. J. |
Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation |
[] | [] | false | false | |
2022-2023 Palmer Station terrestrial carbon fluxes - field warming experiment
|
1947562 |
2024-11-18 | van Gestel, Natasja |
Antarctica as a Model System for Responses of Terrestrial Carbon Balance to Warming |
This data set contains the raw data for measurements of carbon fluxes at four field sites along a successional gradient near Palmer Station, Antarctica. At the beginning of the experiment, field site 1 (youngest site, closest to the glacier) was approximately 2 years since deglaciation, field site 2 about 30 years since deglaciation, field site 3 about 60 years since deglaciation, and Litchfield Island: hundreds of years since deglaciation. These sites have each: 5 control plots and 5 warmed plots (warmed via open-top chambers, OTC). Carbon flux measurements were taken weekly at most sites (40 plots total). A custom chamber connected to a LI-COR 6800 was placed on a stainless steel ring. Then measurements were taken over a 90 second or 120 second interval. Measurements were taken with a transparent chamber to obtain net ecosystem exchange (NEE; micromols CO2/m2/s), and then covered with dark cloth to obtain ecosystem respiration (ER) measurements. The incoming carbon fluxes was then obtained based on the NEE and ER. | ["POLYGON((-64.0898264 -64.7704833,-64.08444765 -64.7704833,-64.07906890000001 -64.7704833,-64.07369015 -64.7704833,-64.0683114 -64.7704833,-64.06293265 -64.7704833,-64.0575539 -64.7704833,-64.05217515 -64.7704833,-64.04679639999999 -64.7704833,-64.04141765 -64.7704833,-64.0360389 -64.7704833,-64.0360389 -64.77082025,-64.0360389 -64.77115719999999,-64.0360389 -64.77149415,-64.0360389 -64.7718311,-64.0360389 -64.77216805,-64.0360389 -64.772505,-64.0360389 -64.77284195,-64.0360389 -64.7731789,-64.0360389 -64.77351585,-64.0360389 -64.7738528,-64.04141765 -64.7738528,-64.04679639999999 -64.7738528,-64.05217515 -64.7738528,-64.0575539 -64.7738528,-64.06293265 -64.7738528,-64.0683114 -64.7738528,-64.07369015 -64.7738528,-64.07906890000001 -64.7738528,-64.08444765 -64.7738528,-64.0898264 -64.7738528,-64.0898264 -64.77351585,-64.0898264 -64.7731789,-64.0898264 -64.77284195,-64.0898264 -64.772505,-64.0898264 -64.77216805,-64.0898264 -64.7718311,-64.0898264 -64.77149415,-64.0898264 -64.77115719999999,-64.0898264 -64.77082025,-64.0898264 -64.7704833))"] | ["POINT(-64.06293265 -64.77216805)"] | false | false |
Law Dome firn air and ice core 14CO concentration
|
1643669 |
2024-10-24 | Petrenko, Vasilii |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
This is a data set containing measurements of [14CO] in firn air and ice core samples from Law Dome DE08-OH site, Antarctica. The firn air and ice core samples were collected at Law Dome in December 2018 and January 2019. The [14CO] data represent atmospheric values (with the in situ cosmogenic and procedural components removed). [14CO] measurements were conducted as described in Hmiel et al., 2024 (https://doi.org/10.5194/tc-18-3363-2024). The in situ cosmogenic [14CO] contribution was calculated using parameters and model also described in Hmiel et al. (2024). As [14CO] measurements in ice cores are complex, use of the data in a publication requires contacting Vasilii Petrenko (vasilii.petrenko@rochester.edu) to ensure correct understanding of the data. Depending on nature of use of the data, co-authorship may be appropriate. | ["POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))"] | ["POINT(113 -66.5)"] | false | false |
Surface melt-related multi-source remote-sensing and climate model data over Helheim Glacier, Greenland for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Albers equal area projection; EPSG 9822) over Helheim Glacier and surrounding areas in Greenland. The data is used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/> <br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, spectral reflectance in four wavelength bands from the Moderate Resolution Imaging Spectroradiometer (MODIS), a static digital elevation model (DEM), and an ice sheet mask. <br/><br/>A similar dataset has also been produced for Larsen C ice shelf and is also available through the US Antarctic Program Data Center. <br/><br/> <br/><br/> <br/><br/> | ["POLYGON((-40 67.55,-39.611 67.55,-39.222 67.55,-38.833 67.55,-38.444 67.55,-38.055 67.55,-37.666 67.55,-37.277 67.55,-36.888 67.55,-36.499 67.55,-36.11 67.55,-36.11 67.28999999999999,-36.11 67.03,-36.11 66.77,-36.11 66.51,-36.11 66.25,-36.11 65.99,-36.11 65.73,-36.11 65.47,-36.11 65.21000000000001,-36.11 64.95,-36.499 64.95,-36.888 64.95,-37.277 64.95,-37.666 64.95,-38.055 64.95,-38.444 64.95,-38.833 64.95,-39.222 64.95,-39.611 64.95,-40 64.95,-40 65.21000000000001,-40 65.47,-40 65.73,-40 65.99,-40 66.25,-40 66.51,-40 66.77,-40 67.03,-40 67.28999999999999,-40 67.55))"] | ["POINT(-38.055 66.25)"] | false | false |
Surface melt-related multi-source remote-sensing and climate model data over Larsen C Ice Shelf, Antarctica for segmentation and machine learning applications
|
2136938 |
2024-10-07 | Alexander, Patrick; Antwerpen, Raphael; Cervone, Guido; Fettweis, Xavier; Lütjens, Björn; Tedesco, Marco |
Collaborative Research: EAGER: Generation of high resolution surface melting maps over Antarctica using regional climate models, remote sensing and machine learning |
This dataset contains high-resolution satellite-derived snow/ice surface melt-related data on a common 100 m equal area grid (Lambert azimuthal equal area projection; EPSG 9820) over Larsen C Ice Shelf and surrounding areas in Antarctica. The data is prepared to be used as part of a machine learning framework that aims to fill data gaps in computed meltwater fraction on the 100 m grid using a range of methods, results of which will be published separately. <br/><br/><br/>The data include fraction of a grid cell covered by meltwater derived from Sentinel-1 synthetic aperture radar (SAR) backscatter, satellite-derived passive microwave (PMW) brightness temperatures, snowpack liquid water content within the first meter of snow and atmospheric and radiative variables from the Modéle Atmosphérique Règional (MAR) regional climate model, a static digital elevation model (DEM), and an ice sheet mask. <br/><br/><br/>A similar dataset has been produced for Helheim Glacier, Greenland and is also available through the US Antarctic Program Data Center. | ["POLYGON((-68.5 -65.25,-67.35 -65.25,-66.2 -65.25,-65.05 -65.25,-63.9 -65.25,-62.75 -65.25,-61.6 -65.25,-60.45 -65.25,-59.3 -65.25,-58.15 -65.25,-57 -65.25,-57 -65.652,-57 -66.054,-57 -66.456,-57 -66.858,-57 -67.25999999999999,-57 -67.66199999999999,-57 -68.064,-57 -68.466,-57 -68.868,-57 -69.27,-58.15 -69.27,-59.3 -69.27,-60.45 -69.27,-61.6 -69.27,-62.75 -69.27,-63.9 -69.27,-65.05 -69.27,-66.2 -69.27,-67.35 -69.27,-68.5 -69.27,-68.5 -68.868,-68.5 -68.466,-68.5 -68.064,-68.5 -67.66199999999999,-68.5 -67.25999999999999,-68.5 -66.858,-68.5 -66.456,-68.5 -66.054,-68.5 -65.652,-68.5 -65.25))"] | ["POINT(-62.75 -67.25999999999999)"] | false | false |
Tertiary creep rates of temperate ice containing greater than 0.7% liquid water
|
1643120 |
2024-09-16 | Iverson, Neal |
NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice |
Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen’s flow law, in which strain rate depends on stress raised to a power of n=3-4. In sharp contrast to this nonlinearity, we find by conducting large-scale, shear-deformation experiments to tertiary creep that temperate ice is linear-viscous (n≈1.0) over common ranges of liquid water content and stress expected near glacier beds and in ice stream margins. This linearity is likely caused by diffusive pressure-melting and refreezing at grain boundaries and could help stabilize modeled responses of ice sheets to shrinkage-induced stress increases. | [] | [] | false | false |
Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)
|
1840058 |
2024-09-16 | jenouvrier, stephanie |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated” mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. <br/> | ["POINT(140.017 -66.66)"] | ["POINT(140.017 -66.66)"] | false | false |
Impulse HF radar data from Conway Ridge
|
0087144 |
2024-07-22 | Hoffman, Andrew; Conway, Howard; Christianson, Knut |
Glacial History of Ridge AB, West Antarctica |
Marine ice sheets are low-pass filters of climate variability that take centuries to adjust to interior and near-terminus changes in mass balance. Constraining these century-scale changes from satellite observations that span only the last 40 years is challenging. Here, we take a different approach of carefully synthesizing different data sets to infer changes in the configurations of van der Veen and Mercer Ice Streams on the Siple Coast over the past 3000 years from englacial features encoded in ice-penetrating radar data. Englacial radar data from Conway Ridge reveal smooth, surface conformal layers overlying disrupted stratigraphy that suggest the van der Veen Ice Stream was 40 km wider over 3000 years ago. Englacial layer dating indicates that the ice stream narrowed to its present configuration between $\sim3000$ and $\sim1000$ years ago. Similarly disrupted stratigraphy and buried crevasses suggest that ice flowing from Mercer to Whillans Ice Stream across the northwestern tip of the ridge slowed shortly after. Using an ice-flow model capable of simulating shear margin migration, we evaluate whether small changes in ice thickness can lead to large changes in shear margin location. Our results suggest that the tip of Conway Ridge is sensitive to thinning and thickening, and that when the basal strength at the tip of the ridge increases with the height above flotation, the ice sheet shear margins can change quickly. | ["POLYGON((-150 -83.5,-148 -83.5,-146 -83.5,-144 -83.5,-142 -83.5,-140 -83.5,-138 -83.5,-136 -83.5,-134 -83.5,-132 -83.5,-130 -83.5,-130 -83.65,-130 -83.8,-130 -83.95,-130 -84.1,-130 -84.25,-130 -84.4,-130 -84.55,-130 -84.7,-130 -84.85,-130 -85,-132 -85,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-150 -84.85,-150 -84.7,-150 -84.55,-150 -84.4,-150 -84.25,-150 -84.1,-150 -83.95,-150 -83.8,-150 -83.65,-150 -83.5))"] | ["POINT(-140 -84.25)"] | false | false |
Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)
|
1444690 0958658 1443534 |
2024-05-22 | Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Keeshin, Skye; Wearing, Martin; Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani; Bell, Robin |
Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130 Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This Shallow Ice Radar (SIR) dataset is from the Frequency Modulated Continuous Wave (LFMCW) radar system on board the IcePod while deployed with the ROSETTA-Ice project during the austral summers of November 2015 - December 2017. SIR data was collected along the ROSETTA-Ice Survey Grid where possible. More detailed information is included in the ReadMe. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, using CReSIS 2013/14 MCoRDS scripts as a foundation. All levels of processed data are Matfiles as a result. Included in this dataset are the following: * SIR level1a Matfiles separated by ROSETTA-Ice Survey Grid Line Number; * SIR long-line images at 300dpi (PNGs) for easy data viewing, rendered in MATLAB from level1 data; * SIR internal reflector digitization picks (CSV), rendered manually using MATLAB picking scripts; * SIR digitization frame images (picked and un-picked) as JPGs output from picking process | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)
|
0958658 1443534 1444690 |
2024-05-20 | Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin |
Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130 Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This Deep ICE (DICE) radar dataset is from the pulse-chirp depth sounding radar system on board the IcePod while deployed with the ROSETTA-Ice Project during the austral summers of November 2015 - December 2017. DICE data was collected along the ROSETTA-Ice Survey grid where possible. More detailed information is included in the ReadMe, including flight lines with data loss. DICE is a dual channel sensor with pulse-chirp rate of 1us and 3us, which means the data can be processed in four pulse/channel configurations: 1usCh1, 3usCh1, 1usCh2, and 3usCh2. The included dataset is 3usCh1 DICE, which is the preferred configuration. The preferred configuration is 3usCh1, which is included in this dataset. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, with CReSIS 2014 MCoRDS scripts as a foundation. As such, all processed levels of this data product are Matfiles. Included in this dataset are the following: * DICE level2a data Matfiles, separated by ROSETTA-Ice Survey Grid Line Number; * DICE long-line images at 300dpi (PNGs) for easy data viewing rendered in MATLAB from level2 data; * DICE Ice Base digitization picks, rendered manually using MATLAB picking script; * DICE digitization frame images (picked and un-picked) as JPGs output from picking process | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)
|
1443534 0958658 1444690 |
2024-05-17 | Locke, Caitlin; Bertinato, Christopher; Dhakal, Tejendra; Becker, Maya K; Starke, Sarah; Boghosian, Alexandra |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This LiDAR data is from the RIEGL VQ-580 Airborne Laser Scanner onboard IcePod while deployed with the ROSETTA-Ice Project during November 2015 - December 2017. This data was processed at Lamont-Doherty Earth Observatory using RIEGL's RiPROCESS Data Processing Software. LiDAR data was collected along the ROSETTA-Ice Survey Grid where possible. Survey flights with no data are listed in the ReadMe. Clouds have been removed where possible. | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
Current velocity and direction data from Regional Ocean Modeling System simulations (2006-2007 & 2010-2011)
|
2138277 |
2024-05-09 | Gallagher, Katherine |
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula |
This dataset includes daily-averaged current speed and velocity data from the Regional Ocean Modeling System. Domain covers the West Antarctic Peninsula. Simulations are from the 2006, 2007, 2010, and 2011 seasons. | ["POLYGON((-97.5 -55,-92.05 -55,-86.6 -55,-81.15 -55,-75.7 -55,-70.25 -55,-64.8 -55,-59.35 -55,-53.9 -55,-48.449999999999996 -55,-43 -55,-43 -57.1,-43 -59.2,-43 -61.3,-43 -63.4,-43 -65.5,-43 -67.6,-43 -69.7,-43 -71.8,-43 -73.9,-43 -76,-48.45 -76,-53.9 -76,-59.35 -76,-64.8 -76,-70.25 -76,-75.7 -76,-81.15 -76,-86.6 -76,-92.05000000000001 -76,-97.5 -76,-97.5 -73.9,-97.5 -71.8,-97.5 -69.7,-97.5 -67.6,-97.5 -65.5,-97.5 -63.4,-97.5 -61.3,-97.5 -59.2,-97.5 -57.099999999999994,-97.5 -55))"] | ["POINT(-70.25 -65.5)"] | false | false |
Simulated krill trajectory data from Regional Ocean Modeling System simulations 2006-2007 & 2010-2011
|
2138277 |
2024-05-09 | Gallagher, Katherine |
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula |
This dataset contains simulated krill trajectories from the Regional Ocean Modeling System (ROMS) in NETCDF format. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the ROMS framework with diel vertical migration behavior added to simulate Antarctic krill behavior. Time frames and diel vertical migration behaviors simulated are included in a .csv file. Data currently cover 4 austral summers: 2006, 2007, 2010, and 2011. Five different vertical migration behaviors were simulated, for a total of 20 simulations. | ["POLYGON((-97.5 -56,-92.2 -56,-86.9 -56,-81.6 -56,-76.3 -56,-71 -56,-65.7 -56,-60.4 -56,-55.1 -56,-49.800000000000004 -56,-44.5 -56,-44.5 -58,-44.5 -60,-44.5 -62,-44.5 -64,-44.5 -66,-44.5 -68,-44.5 -70,-44.5 -72,-44.5 -74,-44.5 -76,-49.8 -76,-55.1 -76,-60.4 -76,-65.7 -76,-71 -76,-76.3 -76,-81.6 -76,-86.9 -76,-92.19999999999999 -76,-97.5 -76,-97.5 -74,-97.5 -72,-97.5 -70,-97.5 -68,-97.5 -66,-97.5 -64,-97.5 -62,-97.5 -60,-97.5 -58,-97.5 -56))"] | ["POINT(-71 -66)"] | false | false |
Elevation transects from Pine Island Bay
|
1745043 |
2024-04-11 | Munevar Garcia, Santiago |
Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations |
This dataset contains the elevation raster for Pine Island Bay and the raw elevation profiles used for each site. The transects are organized based on their orientation in relation to paleo-ice flow. They are spaced 500 meters apart, with elevation measurements extracted every 50 meters along each transect. | ["POINT(-100 -75)"] | ["POINT(-100 -75)"] | false | false |
Hyperspectral reflectance values and biophysicochemical properties of biocrusts and soils in the Fryxell Basin, McMurdo Dry Valleys, Antarctica
|
2044924 |
2024-04-03 | Barrett, John | No project link provided | Microbial communities are the primary drivers of carbon cycling in the McMurdo Dry Valleys of Antarctica. Dense microbial mats, consisting mainly of photosynthetic cyanobacteria, occupy aquatic areas associated with streams and lakes. Other microbial communities also occur at lower densities as patchy surface biological soil crusts (biocrusts) across the terrestrial landscape. Multispectral satellite data have been used to model microbial mat abundance in high-density areas like stream and lake margins, but no previous studies had investigated the lower detection limits of biocrusts. Here, we describe remote sensing and field-based survey and sampling approaches to study the detectability and distribution of biocrusts in the McMurdo Dry Valleys. Using a combination of multi- and hyperspectral tools and spectral linear unmixing, we modeled the abundances of biocrust in eastern Taylor Valley. Our spectral approaches can detect low masses of biocrust material in laboratory microcosms down to biocrust concentrations of 1% by mass. These techniques also distinguish the spectra of biocrust from both surface rock and mineral signatures from orbit. We found that biocrusts are present throughout the soils of eastern Taylor Valley and are associated with diverse underlying soil communities. The densest biocrust communities identified in this study had total organic carbon 5x greater than the content of typical arid soils. The most productive biocrusts were located downslope of melting snowpacks in unique soil ecosystems that are distinct from the surrounding arid landscape. There are similarities between the snowpack and stream sediment communities (high diversity of soil invertebrates) as well as their ecosystem properties (e.g., persistence of liquid water, high transfer of available nutrients, lower salinity from flushing) compared to the typical arid terrestrial ecosystem of the dry valleys. Our approach extends the capability of orbital remote sensing of photosynthetic communities out of the aquatic margins and into the drier soils which comprise most of this landscape. This interdisciplinary work is critical for measuring and monitoring terrestrial carbon stocks and predicting future ecosystem dynamics in this currently water-limited but increasingly dynamic Antarctic landscape, which is particularly climate-sensitive and difficult to access. | ["POLYGON((161.70776367188 -77.519802097166,161.899475097661 -77.519802097166,162.091186523442 -77.519802097166,162.282897949223 -77.519802097166,162.474609375004 -77.519802097166,162.666320800785 -77.519802097166,162.858032226566 -77.519802097166,163.049743652347 -77.519802097166,163.241455078128 -77.519802097166,163.433166503909 -77.519802097166,163.62487792969 -77.519802097166,163.62487792969 -77.54867059480199,163.62487792969 -77.57753909243799,163.62487792969 -77.606407590074,163.62487792969 -77.63527608771,163.62487792969 -77.664144585346,163.62487792969 -77.69301308298199,163.62487792969 -77.72188158061799,163.62487792969 -77.750750078254,163.62487792969 -77.77961857589,163.62487792969 -77.808487073526,163.433166503909 -77.808487073526,163.241455078128 -77.808487073526,163.049743652347 -77.808487073526,162.858032226566 -77.808487073526,162.666320800785 -77.808487073526,162.474609375004 -77.808487073526,162.282897949223 -77.808487073526,162.091186523442 -77.808487073526,161.899475097661 -77.808487073526,161.70776367188 -77.808487073526,161.70776367188 -77.77961857589,161.70776367188 -77.750750078254,161.70776367188 -77.72188158061799,161.70776367188 -77.69301308298199,161.70776367188 -77.664144585346,161.70776367188 -77.63527608771,161.70776367188 -77.606407590074,161.70776367188 -77.57753909243799,161.70776367188 -77.54867059480199,161.70776367188 -77.519802097166))"] | ["POINT(162.666320800785 -77.664144585346)"] | false | false |
CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023
|
1443677 9896041 |
2024-03-27 | Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana; Sutterley, Tyler |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) Ocean Tides around Antarctica and in the Southern Ocean |
CATS2008_v2023 is an update of the original CATS2008 tide model (Howard et al., 2019 [https://doi.org/10.15784/601235]; Padman et al., 2002 [https://doi.org/10.3189/172756402781817752]). It introduces a new model file format, increased resolution, more accurate coastlines, and a simple scaling for ice shelf flexure near grounding lines. The changes included in the new CATS2008_v2023 model are: (1) The CATS2008 model has been interpolated to a finer grid (2 km for CATS2008_v2023 vs 4 km for CATS2008) to provide a better representation of coastlines and ice shelf grounding lines. (2) Coastlines have been adjusted to match BedMachine Antarctica v3 (Morlighem et al., 2020 [https://doi.org/10.1038/s41561-019-0510-8]; Morlighem, 2022 [https://doi.org/10.5067/FPSU0V1MWUB6]). Areas that were previously grounded and had no tidal constituent data in CATS2008 have been filled using MATLAB's ‘regionfill’ function, applied to the real and imaginary components of tidal constituents individually. An ocean mask matching BedMachine Antarctica v3 is provided in the model file to mask out grounded areas. (3) Water depth (water column thickness under ice shelves) has been adjusted to match BedMachine Antarctica v3. (4) An ice shelf flexure model has been included for estimating tidal deflections in grounding zones. Flexure is approximated by a forward 1D linear elastic model applied to BedMachine Antarctica v3 ice geometry, with elastic modulus E=4.8 GPa and Poisson's ratio nu=0.4. The ice flexure can be included as an option when using TMD3.0 (Greene et al., 2024 [https://doi.org/10.21105/joss.06018]) and pyTMD (Sutterley, 2024 [https://doi.org/10.5281/zenodo.10501349]) software packages. (5) The model is provided as a consolidated NetCDF file that can be used with TMD3.0 and pyTMD, but not with earlier TMD versions. | ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.161699999999996,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.138600000000004,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"] | ["POINT(0 -89.999)"] | false | false |
The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross
|
1951500 |
2024-02-27 | Joanie, Van de Walle; Jenouvrier, Stephanie |
NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment |
1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically. 2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate). 3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation. 4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Full Waveform Ambient Noise Tomography for East Antarctica
|
1914698 |
2024-01-24 | Hansen, Samantha; Emry, Erica |
Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes
Subglacial Basin (RESISSt) |
Recent investigations in polar environments have examined solid-Earth-ice-sheet feedbacks and have emphasized that glacial isostatic adjustment, tectonic, and geothermal forcings exert first-order control on the physical conditions at and below the ice-bed interface and must be taken into account when evaluating ice-sheet evolution. However, the solid-Earth structure beneath much of Antarctica is still poorly constrained given the sparse distribution of seismic stations across the continent and the generally low seismicity rate. One region of particular interest is the Wilkes Subglacial Basin (WSB) in East Antarctica. During the mid-Pliocene warm period, the WSB may have contributed 3-4 m to the estimated 20 m rise in sea-level, indicating that this region could also play an important role in future warming scenarios. However, the WSB may have experienced notable bedrock uplift since the Pliocene; therefore, past geologic inferences of instability may not serve as a simple analogue for the future. Using records of ambient seismic noise recorded by both temporary and long-term seismic networks, along with a full-waveform tomographic inversion technique, we have developed improved images of the lithospheric structure beneath East Antarctica, including the WSB. Empirical Green’s Functions with periods between 40 and 340 s have been extracted using a frequency-time normalization technique, and a finite-difference approach with a spherical grid has been employed to numerically model synthetic seismograms. Associated sensitivity kernels have also been constructed using a scattering integral method. Our results suggest the WSB is underlain by slow seismic velocities, with faster seismic structure beneath the adjacent Transantarctic Mountains and the Belgica Subglacial Highlands. This may indicate that the WSB is associated with a region of thinner lithosphere, possibly associated with prior continental rifting. The seismic heterogeneity highlighted in our model could have significant implications for understanding the geodynamic origin of WSB topography and its influence on ice-sheet behavior. The model file and associated plotting scripts are provided. | ["POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))"] | ["POINT(135 -77.5)"] | false | false |
Ocean CFC reconstructed data product
|
2023303 |
2023-10-31 | Cimoli, Laura; Purkey, Sarah; Gebbie, Jack |
Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters? |
A global CFC Data product is derived used the Time-Corrected Method (TCM) in order to estimate CFCs and SF6 ocean concentration back to 1940. The Green's functions (GFs), describing the steady-state transport from the surface to the ocean interior, is solved, constrained by observations. From the GFs, we reconstruct global tracer concentrations (and associated uncertainties) in the ocean interior at annual resolution (1940–2021). The spatial resolution includes 50 neutral density levels that span the water column along World Ocean Circulation Experiment/Global Ocean Ship-Based Hydrographic Investigations Program lines. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Firn depth and bubble density for Siple Ice Core and other sites
|
0917509 |
2023-10-18 | Spencer, Matthew |
Collaborative Research: Combined Physical Property Measurements at Siple Dome |
This data set consists of bubble-number densities in glacier ice, in units of bubbles per cubic centimeter, based on firn densification and grain-growth modeling under steady-state climate conditions. | ["POINT(-149 -81)"] | ["POINT(-149 -81)"] | false | false |
Shear Wave Velocity of the Antarctic Upper Mantle from Full Waveform Inversion and Long Period Ambient Seismic Noise
|
1643798 1643873 |
2023-10-16 | Emry, Erica |
Collaborative Research: Imaging Seismic Heterogeneity within the Antarctic Mantle with Full Waveform Ambient Noise Tomography |
This dataset provides the shear wave velocity model resulting from a full-waveform inversion that was constrained using long-period empirical Green's functions extracted from ambient seismic noise. These results were presented by Emry and Hansen at the 2022 Fall Meeting of the American Geophysical Union. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation
|
1745078 |
2023-10-02 | Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Edwards, Jon S.; Mühl, Michaela; Schmitt, Jochen; Fischer, Hubertus; Blunier, Thomas; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes estimates of the atmospheric methane relative interpolar difference (rIPD) across the Last Glacial Maximum and Deglaciation. The rIPD was calculated using discrete, high-resolution methane measurements from the WAIS Divide, NEEM and GISP2 ice cores. Two independent IPD records were determined: One using NEEM and WAIS and one using GISP2 and WAIS. The dataset includes rIPD values calculated using both Greenland methane data both corrected and uncorrected for excess methane (Lee et al., 2020). The rIPD was calculated by smoothing each methane record and synchronizing them to the WD2014 gas age scale. 1-sigma rIPD uncertainties are included. This dataset also includes the output of the four-box troposphere model used to interpret the rIPD. For both excess methane-corrected records, the model output and 1-sigma uncertainty is provided for northern extratropical (30N - 90N) and total tropical (30S - 30N) sources in Tg yr-1. For the NEEM-derived rIPD, sections of the rIPD where atmospheric methane changed rapidly were deemed untrustworthy were removed from the dataset. Lee, J. E. et al. Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica et cosmochimica acta 270, 409-430 (2020). | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Simulated marine debris trajectories along the West Antarctic Peninsula in 2008-2009 and 2018-2019
|
2138277 |
2023-09-13 | Gallagher, Katherine |
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula |
These data represent simulated buoyant debris released along the West Antarctic Peninsula. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the Regional Ocean Modeling System (ROMS) framework. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. A total of 12 simulations were conducted, simulating debris fields from 4 potential sources: non-point sources, tourism, fishing, and research. | ["POLYGON((-90 -55,-85.5 -55,-81 -55,-76.5 -55,-72 -55,-67.5 -55,-63 -55,-58.5 -55,-54 -55,-49.5 -55,-45 -55,-45 -57.5,-45 -60,-45 -62.5,-45 -65,-45 -67.5,-45 -70,-45 -72.5,-45 -75,-45 -77.5,-45 -80,-49.5 -80,-54 -80,-58.5 -80,-63 -80,-67.5 -80,-72 -80,-76.5 -80,-81 -80,-85.5 -80,-90 -80,-90 -77.5,-90 -75,-90 -72.5,-90 -70,-90 -67.5,-90 -65,-90 -62.5,-90 -60,-90 -57.5,-90 -55))"] | ["POINT(-67.5 -67.5)"] | false | false |
Notothenioid hemoglobin protein 3D modeling.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Simulations of ice-shelf rifting on Larsen C Ice Shelf
|
2139002 |
2023-08-24 | Huth, Alexander |
OPP-PRF Calving, Icebergs, and Climate |
This dataset contains a model (Elmer/Ice Fortran modules) to simulate rifting on ice shelves. The model combines the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. Additionally, it accounts for rift-flank boundary processes, including pressure on rift-flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. This dataset also contains the input data (Elmer restart files), input files (Elmer .sifs), and Slurm batch scripts to run five experiments. All experiments aim to simulate the final two years of rift propagation that led to the calving of tabular iceberg A68 from Larsen C ice shelf in 2017. However, each experiment differs in its treatment of rift-flank boundary processes, which affects the rift path. For more information, see the associated publication (Huth et al., 2023). | ["POLYGON((-67 -66,-66.3 -66,-65.6 -66,-64.9 -66,-64.2 -66,-63.5 -66,-62.8 -66,-62.1 -66,-61.4 -66,-60.7 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.7 -70,-61.4 -70,-62.1 -70,-62.8 -70,-63.5 -70,-64.2 -70,-64.9 -70,-65.6 -70,-66.3 -70,-67 -70,-67 -69.6,-67 -69.2,-67 -68.8,-67 -68.4,-67 -68,-67 -67.6,-67 -67.2,-67 -66.8,-67 -66.4,-67 -66))"] | ["POINT(-63.5 -68)"] | false | false |
Abaqus user-defined elements subroutine for cohesive zone model of hydrofracturing of surface crevasses in ice shelves
|
1847173 |
2023-07-04 | Gao, Yuxiang; Ghosh, Gourab; Jimenez, Stephen; Duddu, Ravindra | No project link provided | This dataset contains the ABAQUS input files for simulating floating ice shelves with constant density assuming linear elastic rheology or elasto-visco-plastic rheology and ABAQUS user-defined elements subroutine for water-filled cohesive zone elements. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf
|
1543445 |
2023-05-03 | Zhang, Jing; Luo, Liping |
Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model |
This dataset includes the 3-km resolution budget terms of surface mass balance (SMB) and surface energy budget (SEB) for the Larsen C Ice Shelf during the melting season of 2017-18. The variables include the SMB budget terms of net surface mass balance, precipitation, runoff, blowing snow erosion, surface sublimation, and blowing snow sublimation, and the SEB budget terms of net surface energy budget, downwelling and upwelling longwave radiation, surface absorbed shortwave radiation, ground heat flux, and sensible / latent heat flux. | ["POLYGON((-70.9 -65,-69.51 -65,-68.12 -65,-66.73 -65,-65.34 -65,-63.95 -65,-62.56 -65,-61.17 -65,-59.78 -65,-58.39 -65,-57 -65,-57 -65.5,-57 -66,-57 -66.5,-57 -67,-57 -67.5,-57 -68,-57 -68.5,-57 -69,-57 -69.5,-57 -70,-58.39 -70,-59.78 -70,-61.17 -70,-62.56 -70,-63.95 -70,-65.34 -70,-66.73 -70,-68.12 -70,-69.51 -70,-70.9 -70,-70.9 -69.5,-70.9 -69,-70.9 -68.5,-70.9 -68,-70.9 -67.5,-70.9 -67,-70.9 -66.5,-70.9 -66,-70.9 -65.5,-70.9 -65))"] | ["POINT(-63.95 -67.5)"] | false | false |
Passive particle trajectories from Regional Ocean Modeling System simulations 2008-2009 & 2018-2019
|
2138277 |
2023-04-26 | Gallagher, Katherine |
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula |
This dataset contains passive particle trajectories from the Regional Ocean Modeling System (ROMS) in NETCDF format. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the ROMS framework. Time frames and particle release depths are included in a .csv file. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. Five different release depths were used across the 5 model years, for a total of 20 simulations. | ["POLYGON((-97.5 -56,-92.2 -56,-86.9 -56,-81.6 -56,-76.3 -56,-71 -56,-65.7 -56,-60.4 -56,-55.1 -56,-49.800000000000004 -56,-44.5 -56,-44.5 -58,-44.5 -60,-44.5 -62,-44.5 -64,-44.5 -66,-44.5 -68,-44.5 -70,-44.5 -72,-44.5 -74,-44.5 -76,-49.8 -76,-55.1 -76,-60.4 -76,-65.7 -76,-71 -76,-76.3 -76,-81.6 -76,-86.9 -76,-92.19999999999999 -76,-97.5 -76,-97.5 -74,-97.5 -72,-97.5 -70,-97.5 -68,-97.5 -66,-97.5 -64,-97.5 -62,-97.5 -60,-97.5 -58,-97.5 -56))"] | ["POINT(-71 -66)"] | false | false |
Remotely-sensed iceberg geometries and meltwater fluxes
|
1933764 1643455 |
2023-04-06 | Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Sliding-Law Parameter and Airborne Radar-Derived Basal Reflectivity Data Underneath Thwaites Glacier, Antarctica
|
2152622 |
2023-01-25 | Das, Indrani |
NSF-NERC: PROcesses, drivers, Predictions: Modeling the response of Thwaites Glacier over the next Century using Ice/Ocean Coupled Models (PROPHET) |
Data resulting from comparing model and observations of sliding-law parameter and airborne radar-derived basal reflectivity underneath Thwaites Glacier, Antarctica | ["POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.3,-100 -74.6,-100 -74.9,-100 -75.2,-100 -75.5,-100 -75.8,-100 -76.1,-100 -76.4,-100 -76.7,-100 -77,-101 -77,-102 -77,-103 -77,-104 -77,-105 -77,-106 -77,-107 -77,-108 -77,-109 -77,-110 -77,-110 -76.7,-110 -76.4,-110 -76.1,-110 -75.8,-110 -75.5,-110 -75.2,-110 -74.9,-110 -74.6,-110 -74.3,-110 -74))"] | ["POINT(-105 -75.5)"] | false | false |
Current velocity and direction data from Regional Ocean Modeling System simulations (2008-2009 & 2018-2019)
|
2138277 |
2023-01-13 | Gallagher, Katherine |
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula |
This dataset includes daily-averaged current speed and velocity data from the Regional Ocean Modeling System. Domain covers the West Antarctic Peninsula. Simulations are from the 2008, 2009, 2018, and 2019 seasons. | ["POLYGON((-97.5 -55,-92.05 -55,-86.6 -55,-81.15 -55,-75.7 -55,-70.25 -55,-64.8 -55,-59.35 -55,-53.9 -55,-48.449999999999996 -55,-43 -55,-43 -57.1,-43 -59.2,-43 -61.3,-43 -63.4,-43 -65.5,-43 -67.6,-43 -69.7,-43 -71.8,-43 -73.9,-43 -76,-48.45 -76,-53.9 -76,-59.35 -76,-64.8 -76,-70.25 -76,-75.7 -76,-81.15 -76,-86.6 -76,-92.05000000000001 -76,-97.5 -76,-97.5 -73.9,-97.5 -71.8,-97.5 -69.7,-97.5 -67.6,-97.5 -65.5,-97.5 -63.4,-97.5 -61.3,-97.5 -59.2,-97.5 -57.099999999999994,-97.5 -55))"] | ["POINT(-70.25 -65.5)"] | false | false |
Simulated krill trajectory data from Regional Ocean Modeling System simulations 2008-2009 & 2018-2019
|
2138277 |
2023-01-13 | Gallagher, Katherine |
OPP-PRF Pygoscelis Penguin Response to Potential Prey Retention along the West Antarctic Peninsula |
This dataset contains simulated krill trajectories from the Regional Ocean Modeling System (ROMS) in NETCDF format. Files include latitude, longitude, and depth of particles released along the West Antarctic Peninsula within the ROMS framework with diel vertical migration behavior added to simulate Antarctic krill behavior. Time frames and diel vertical migration behaviors simulated are included in a .csv file. Data currently cover 4 austral summers: 2008, 2009, 2018, and 2019. Five different vertical migration behaviors were simulated, for a total of 20 simulations. | ["POLYGON((-97.5 -56,-92.2 -56,-86.9 -56,-81.6 -56,-76.3 -56,-71 -56,-65.7 -56,-60.4 -56,-55.1 -56,-49.800000000000004 -56,-44.5 -56,-44.5 -58,-44.5 -60,-44.5 -62,-44.5 -64,-44.5 -66,-44.5 -68,-44.5 -70,-44.5 -72,-44.5 -74,-44.5 -76,-49.8 -76,-55.1 -76,-60.4 -76,-65.7 -76,-71 -76,-76.3 -76,-81.6 -76,-86.9 -76,-92.19999999999999 -76,-97.5 -76,-97.5 -74,-97.5 -72,-97.5 -70,-97.5 -68,-97.5 -66,-97.5 -64,-97.5 -62,-97.5 -60,-97.5 -58,-97.5 -56))"] | ["POINT(-71 -66)"] | false | false |
Modelled Solar Irradiance for Western Antarctic Pennisula
|
1744584 |
2023-01-06 | Klein, Andrew |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
This dataset comprises a series of geotiff grids of modelled solar radiation (Wh m-2 day-1) for a portion of the Western Antarctic Peninsula. The grids were generated using the r.sun module in Grass GIS. In addition to the a geotiff grid representing the average daily global horizontal irradiance for an entire year, the dataset also includes geotiffs containing daily values of direct beam irradiance, diffuse irradiance, ground reflected irradiance, and global (total) irradiance (all in Wh m-2 day-1) as well as insolation time (hours). This dataset was created in support of projects ANT-1744550, -1744570, -1744584, and -1744602. | ["POLYGON((-78 -60,-74.6 -60,-71.2 -60,-67.8 -60,-64.4 -60,-61 -60,-57.6 -60,-54.2 -60,-50.8 -60,-47.400000000000006 -60,-44 -60,-44 -61.3,-44 -62.6,-44 -63.9,-44 -65.2,-44 -66.5,-44 -67.8,-44 -69.1,-44 -70.4,-44 -71.7,-44 -73,-47.4 -73,-50.8 -73,-54.2 -73,-57.6 -73,-61 -73,-64.4 -73,-67.8 -73,-71.2 -73,-74.6 -73,-78 -73,-78 -71.7,-78 -70.4,-78 -69.1,-78 -67.8,-78 -66.5,-78 -65.2,-78 -63.9,-78 -62.6,-78 -61.3,-78 -60))"] | ["POINT(-61 -66.5)"] | false | false |
Average global horizontal solar irradiance at study sites
|
1744584 |
2022-12-29 | Klein, Andrew |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
This csv dataset contains modelled average global horizontal solar irradiance (KWh m-2 day-1) for the fifteen study sites associated with visited by projects ANT-1744550, -1744570, -1744584, and -1744602 during ARSV Laurence M. Gould cruise LMG 19-04 in April and May 2019. | ["POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.8,-60 -62.6,-60 -63.4,-60 -64.2,-60 -65,-60 -65.8,-60 -66.6,-60 -67.4,-60 -68.2,-60 -69,-61 -69,-62 -69,-63 -69,-64 -69,-65 -69,-66 -69,-67 -69,-68 -69,-69 -69,-70 -69,-70 -68.2,-70 -67.4,-70 -66.6,-70 -65.8,-70 -65,-70 -64.2,-70 -63.4,-70 -62.6,-70 -61.8,-70 -61))"] | ["POINT(-65 -65)"] | false | false |
Crane Glacier centerline observations and modeling results
|
1933764 |
2022-10-24 | Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994—2100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994—2019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in “.mat” format, which can be read using MATLAB’s “load” function or using Python with the Scipy “scipy.io.loadmat” function. | ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"] | ["POINT(-62.55 -65.4)"] | false | false |
5 million year transient Antarctic ice sheet model run with "sensitized" marine ice margin instabilities
|
1744771 |
2022-09-02 | Balco, Gregory; Buchband, Hannah; Halberstadt, Anna Ruth |
Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements |
This dataset is a NetCDF file containing the results of a 5 MA ice sheet model run with parameter settings intended to enhance marine ice sheet instability processes. Uses the Penn State ice sheet model as described in DeConto et al. (2021) and Pollard & DeConto (2012). The model runs from 5 Ma to present and snapshots are recorded every 2000 years. Model grid resolution is 40 km. Only the model geometry (thickness, height, whether grounded) is saved in each snapshot. The purpose of the model run was to support a study into whether or not it is possible to distinguish models with different marine ice sheet instability parameterizations using geologic data. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
5 million year transient Antarctic ice sheet model run with "desensitized" marine ice margin instabilities
|
1744771 |
2022-09-02 | Balco, Gregory; Buchband, Hannah; Halberstadt, Anna Ruth |
Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements |
This dataset is a NetCDF file containing the results of a 5 MA ice sheet model run with parameter settings intended to suppress marine ice sheet instability processes. Uses the Penn State ice sheet model as described in DeConto et al. (2021) and Pollard & DeConto (2012). The model runs from 5 Ma to present and snapshots are recorded every 2000 years. Model grid resolution is 40 km. Only the model geometry (thickness, height, whether grounded) is saved in each snapshot. The purpose of the model run was to support a study into whether or not it is possible to distinguish models with different marine ice sheet instability parameterizations using geologic data. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Parallel Ice Sheet Model (PISM) v2
|
1644277 |
2022-07-14 | Aschwanden, Andy |
Collaborative Research: Feedbacks between Orographic Precipitation and Ice Dynamics |
The Parallel Ice Sheet Model (PISM) is an open-source ice sheet model distributed under GPL-3.0. This version includes the orographic precipitation module and other improvements produced under NSF award 1644277. | [] | [] | false | false |
Partionining of CERES planetary albedo between atmospheric and surface reflection
|
1643436 |
2022-06-10 | Donohoe, Aaron |
What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System |
The partitioning of top of atmosphere radiation into surface and atmospheric contributions using the isotropic SW model over the CERES satellite record | ["POLYGON((-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 90,-180 72,-180 54,-180 36,-180 18,-180 0,-180 -18,-180 -36,-180 -54,-180 -72,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,-180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -90,180 -72,180 -54,180 -36,180 -18,180 0,180 18,180 36,180 54,180 72,180 90,180 90,180 90,180 90,180 90,180 90,180 90,180 90,180 90,180 90,-180 90))"] | ["POINT(0 -89.999)"] | false | false |
In-Situ Density, Temperature, Grain Size, and Layer Thickness data for the Antarctic Ice Sheet
|
1844793 |
2022-03-29 | Aksoy, Mustafa; Kaurejo, Dua; Kar, Rahul |
Characterization of Antarctic Firn by Multi-Frequency Passive Remote Sensing from Space |
This dataset includes density, temperature, grain size, and layer thickness measurements collected from various projects available on USAP-DC. Depth listings were recalculated to reflect measurements from the surface of the ice to the deep ice if they were not listed as such in the original dataset. Non-linear least-squares regression was performed on the data to find parameters to existing depth-dependent density and grain size models and the regression results are provided in this dataset. Data is made available in MATLAB and XLSX files. See “insituData_readMe” for more details. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
microMRI analyses of Trematomus scotti Tsco_18_08 with X-cell xenomas
|
1947040 |
2022-03-15 | Lauridsen, Henrik; Desvignes, Thomas; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Multi-layer 3D models and videos of Tsco_18_08 from high-field microMRI data. | ["POLYGON((-62.9 -64.7,-62.84 -64.7,-62.78 -64.7,-62.72 -64.7,-62.66 -64.7,-62.6 -64.7,-62.54 -64.7,-62.48 -64.7,-62.42 -64.7,-62.36 -64.7,-62.3 -64.7,-62.3 -64.73,-62.3 -64.76,-62.3 -64.79,-62.3 -64.82,-62.3 -64.85,-62.3 -64.88,-62.3 -64.91,-62.3 -64.94,-62.3 -64.97,-62.3 -65,-62.36 -65,-62.42 -65,-62.48 -65,-62.54 -65,-62.6 -65,-62.66 -65,-62.72 -65,-62.78 -65,-62.84 -65,-62.9 -65,-62.9 -64.97,-62.9 -64.94,-62.9 -64.91,-62.9 -64.88,-62.9 -64.85,-62.9 -64.82,-62.9 -64.79,-62.9 -64.76,-62.9 -64.73,-62.9 -64.7))"] | ["POINT(-62.6 -64.85)"] | false | false |
Causes and consequences of pair-bond disruption in a sex-skewed population of a long-lived monogamous seabird: the wandering Albatross
|
1840058 |
2022-02-04 | Jenouvrier, Stephanie; Sun, Ruijiao; Barbraud, Christophe; Delord, Karine |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Many animals form long-term monogamous pair-bonds, and the disruption of a pair-bond (through either divorce or widowhood) can have significant consequences for individual vital rates (survival, breeding, and breeding success probabilities) and life-history outcomes (lifetime reproductive success, life expectancy). Here, we investigated the causes and consequences of pair-bond disruption in wandering albatross (Diomedea exulans). State-of-the-art statistical and mathematical approaches were developed to estimate divorce and widowhood rates and their impacts on vital rates and life-history outcomes. In this population, females incur a higher mortality rate due to incidental fishery bycatch, hence the population is male-skewed. Therefore, we first posited that males show higher widowhood rates negatively correlated with fishing effort, and females have higher divorce rates because they have more mating opportunities. Furthermore, we expected that divorce can be an adaptive strategy, whereby individuals improve breeding success by breeding with a new partner of better quality. Finally, we posited that pair-bond disruptions can reduce survival and breeding probabilities due to the cost of remating processes, with important consequences for life-history outcomes. As expected, we show that males have higher widowhood rates than females and females have higher divorce rates in this male-skewed population. However, no correlation was found between fishing effort and male widowhood. Secondly, contrary to our expectation, we found that divorce is likely non-adaptive in this population. We propose that divorce in this population is caused by an intruder who outcompetes the original partner in line with the "forced divorce" hypothesis. Furthermore, we found a 16.7% and 18.0% reduction in lifetime reproductive success (LRS) only for divorced and widowed males, respectively, due to missing breeding seasons after a pair-bond disruption. Finally, we found that divorced individuals are more likely to divorce again, but whether this is related to specific individual characteristics remains an important area of investigation. Description of data processing: This file includes: (1) observation events data; (2) E-surge GEPAT (Generator of pattern of elementary matrices) code for fitting MULTIEVENT-CAPTURE-MARK-RECAPTURE (MECMR) models; and (3) pair-bond status and breeding success data to perform all the analysis described in Sun et al. (2022, Ecological Monographs) | [] | [] | false | false |
Gridded Values of Conservative Temperature and Absolute Salinity Around Antarctica averaged for the depth range 300 m to min([water depth, 1000]) m
|
1744789 1744792 |
2022-02-01 | Howard, Susan L.; Little, Chris; Sun, Qiang; Padman, Laurence | No project link provided | This dataset contains NetCDF files of two-dimensional gridded fields of hydrographic properties, Conservative Temperature (CT) and Absolute Salinity (SA), around Antarctica, depth-averaged for the depth range 300 m to min([water depth, 1000]) m from 38 CMIP6 models, the World Ocean Atlas 2018, and our own product developed from the World Ocean Database. These fields are designed to represent the hydrography of deeper water masses on the Antarctic Continental Shelf (ACS), where typical water depths are 400-600 m, and the intermediate-depth water off the continental shelf. The dataset includes a high-resolution polar-stereographic grid (2 x 2 km) of Southern Ocean geometry, including water depth, elevation of the land and ice-sheet surface (including ice shelves), a mask (identifying water, land and grounded ice, and ice shelves), and offshore distance from the continental shelf break. An example MATLAB script for accessing the grids and plotting them is included. The primary purpose of this dataset is to provide simplified 2-D hydrographic fields that can be used to assess the performance of climate models for the ACS, focusing on the depth range that affects most basal melting of Antarctica’s ice shelves. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Model of iceberg drift and decay including breakup
|
1744835 |
2022-01-18 | Wagner, Till |
Modeling Giant Icebergs and Their Decay |
Because of difficulties in adequately simulating their breakup, large Antarctic icebergs to date have either not been represented in models or represented but with no breakup scheme such that they consistently survive too long and travel too far compared with observations. Here, we introduce a representation of iceberg fracturing using a breakup scheme based on the “footloose mechanism.” We optimize the parameters of this breakup scheme by forcing the iceberg model with an ocean state estimate and comparing the modeled iceberg trajectories and areas with the Antarctic Iceberg Tracking Database. We show that including large icebergs and a representation of their breakup substantially affects the iceberg meltwater distribution, with implications for the circulation and stratification of the Southern Ocean. This data link includes the model developed for the study, including a link to the forcing fields needed to replicate the model results. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Radiometric dating, geochemical proxies, and predator biological remains obtained from aquatic sediment cores on South Georgia Island.
|
1443585 1443386 1443424 1826712 |
2022-01-13 | Kristan, Allyson; Maiti, Kanchan; McMahon, Kelton; Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set contains radiometric dating measurements from two aquatic sediment cores excavated from two separate sites (Salisbury Plain and Gold Harbor) on South Georgia Island in February 2019. It also contains biological and geochemical sediment proxy values from both sediment cores, including total carbon (%), total nitrogen (%), number of penguin feathers and eggshell fragments, number of seal hairs, and δ13C and δ15N stable isotope values. Cores were sectioned at 1cm intervals, and radiometric dating analyses were conducted on sediment fractions <850 µm by measuring for 210Pb and 226Ra (via 214Pb) by direct gamma counting using the high purity germanium planar detector in the Marine Geochemistry Laboratory at Louisiana State University (LSU). The 210Pbex profiles were used to calculate sedimentation rates using a steady state model that assumes constant rate of supply and constant sedimentation rate (Maiti et al., 2010). Geochemical analyses were performed on sediment fractions <125 µm using an Elemental Analyzer-Isotope Ratio Mass Spectrometry (EA-IRMS) in the Stable Isotope Ecology Lab at LSU. Biological counts of feathers and hairs were determined by enumeration using a dissecting microscope of sediment fractions >1000 µm. The data set also includes sediment core excavation site names and coordinates, date of excavation, sediment depth and age, and carbon to nitrogen isotopic ratios. Details of the data set and all relevant methods are provided in Kristan et al., 2021. | ["POLYGON((-37.33 -54.05,-37.192 -54.05,-37.054 -54.05,-36.916 -54.05,-36.778 -54.05,-36.64 -54.05,-36.502 -54.05,-36.364 -54.05,-36.226 -54.05,-36.088 -54.05,-35.95 -54.05,-35.95 -54.107,-35.95 -54.164,-35.95 -54.221,-35.95 -54.278,-35.95 -54.335,-35.95 -54.392,-35.95 -54.449,-35.95 -54.506,-35.95 -54.563,-35.95 -54.62,-36.088 -54.62,-36.226 -54.62,-36.364 -54.62,-36.502 -54.62,-36.64 -54.62,-36.778 -54.62,-36.916 -54.62,-37.054 -54.62,-37.192 -54.62,-37.33 -54.62,-37.33 -54.563,-37.33 -54.506,-37.33 -54.449,-37.33 -54.392,-37.33 -54.335,-37.33 -54.278,-37.33 -54.221,-37.33 -54.164,-37.33 -54.107,-37.33 -54.05))"] | ["POINT(-36.64 -54.335)"] | false | false |
Phylogenetic Analysis of Notoxcellia species.
|
1947040 |
2022-01-04 | Desvignes, Thomas; Varsani, Arvind; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Nucleic acid sequences, sequence alignments, model selection results, and phylogenetic trees from the phylogenetic placement of Notoxcellia species. | ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"] | ["POINT(-62.7 -64.45)"] | false | false |
Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation
|
1929991 |
2021-12-23 | Wild, Christian; Alley, Karen; Muto, Atsu; Truffer, Martin; Scambos, Ted; Pettit, Erin |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This data set includes two grounding-line products of Thwaites Glacier and a series of offshore pinning points for 2014 and 2019/20. The grounding lines where delineated manually from height above flotation calculations using the bathymetry model from Jordan et al. (2020), the REMA digital surface elevation model (Howat et al., 2019) for the 2014 product and ICESat-2 surface altimetry data (Smith et al., 2019) for the 2019/20 product. More details about the processing, corrections and uncertainties can be found in our publication. We would appreciate if users who think the grounding-line products are useful for your own research would cite our manuscript. | ["POLYGON((-108 -74.5,-107.6 -74.5,-107.2 -74.5,-106.8 -74.5,-106.4 -74.5,-106 -74.5,-105.6 -74.5,-105.2 -74.5,-104.8 -74.5,-104.4 -74.5,-104 -74.5,-104 -74.6,-104 -74.7,-104 -74.8,-104 -74.9,-104 -75,-104 -75.1,-104 -75.2,-104 -75.3,-104 -75.4,-104 -75.5,-104.4 -75.5,-104.8 -75.5,-105.2 -75.5,-105.6 -75.5,-106 -75.5,-106.4 -75.5,-106.8 -75.5,-107.2 -75.5,-107.6 -75.5,-108 -75.5,-108 -75.4,-108 -75.3,-108 -75.2,-108 -75.1,-108 -75,-108 -74.9,-108 -74.8,-108 -74.7,-108 -74.6,-108 -74.5))"] | ["POINT(-106 -75)"] | false | false |
LMG13-11 JKC-1 Paleoceanographic data
|
1433140 0732625 |
2021-11-15 | Shevenell, Amelia |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This data set contains an age vs depth model and measurements of magnetic susceptibility, benthic foraminifera Bulimina aculeata d18O and d13C, bulk sediment GDGT data, and diatom assemblage data from USAP LMG13-11 JKC-1 sediment core (0-100 cm) archived at the Oregon State University ACC repository. All stable isotope and GDGT measurements were made at the University of South Florida College of Marine Science. Diatom assemblages were counted at Colgate University. The data set includes all replicate measurements. Details of the entire data set and all relevant methods are provided in Browne et al (submitted, 2021) | ["POLYGON((-69 -58,-67.7 -58,-66.4 -58,-65.1 -58,-63.8 -58,-62.5 -58,-61.2 -58,-59.9 -58,-58.6 -58,-57.3 -58,-56 -58,-56 -59,-56 -60,-56 -61,-56 -62,-56 -63,-56 -64,-56 -65,-56 -66,-56 -67,-56 -68,-57.3 -68,-58.6 -68,-59.9 -68,-61.2 -68,-62.5 -68,-63.8 -68,-65.1 -68,-66.4 -68,-67.7 -68,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60,-69 -59,-69 -58))"] | ["POINT(-62.5 -63)"] | false | false |
Circum-Antarctic grounding-line sinuosity
|
1745043 1745055 1246353 |
2021-11-10 | Simkins, Lauren; Stearns, Leigh; Riverman, Kiya |
Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum. |
The dataset here allows exploration of the causes and significance of Antarctic grounding-line sinuosity by coupling observations of contemporary Antarctic grounding lines and paleo-grounding lines expressed as ice-marginal landforms on the Ross Sea continental shelf. Modern grounding lines are derived from the MEaSUREs Version 2 Differential Satellite Radar Interferometry dataset with spatial resolutions of 25-120 m spanning February 1992 to December 2014 (Rignot et al., 2016; Mouginot et al., 2017). The boundaries of individual grounding lines representative of individual glacial catchments (n=664) were delineated by the inflection points of the shear strain rate, εxy (c.f Van der Veen et al., 2011). Sinuosity was calculated as the ratio of the true length, orthogonal to ice-flow direction, of the grounding lines and the straight line length between end-points and in units of km/km. Raster data were extracted at 1-km points along each grounding line; the mean was calculated for each grounding line and merged in a table with sinuosity data. A dataset of 6,275 paleo-grounding lines expressed as ice-marginal landforms on the deglaciated western Ross Sea continental shelf are used in this study, originally published by Simkins et al., 2018. The ice-marginal landforms were mapped from multibeam echo sounder data that was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with 30-60% swath overlap (Cruise DOI: 10.7284/901477). The resulting bathymetry data was gridded at 20-40 m with decimeter vertical elevation resolution depending on water depth and sea-state. Sinuosity is calculated as a ratio of true (mapped) landform length, measured in the across paleo-ice flow direction at the crest of the landform, to the straight line distance between the mapped landform endpoints and in units of km/km. To compare modern and paleo-grounding lines, we use a consistent length scale by segmenting the grounding lines into 2-km sections for the two datasets (modern, n=12,966; paleo, n=5,832), even though this eliminates grounding lines that are less than 2-km long and thus results in 1 modern and 3,873 paleo-grounding lines removed. The full-length and 2-km segmented groundings lines are provided as shapefiles "InSAR_groundinglines_full" and "InSAR_groundinglines_2km", the paleo-grounding lines are provided as shapefiles "RossSea_icemarginal_full" and "RossSea_icemarginal_2km", and points marking modern grounding lines retreat from repeat InSAR surveys are provided as shapefile "InSAR_retreat_points", all stored together in a geodatabase named "Antarctic_groundinglines.gbd". Additional grounding line metrics, including length, sinuosity, bed roughness, and bed slope for modern and paleo-grounding lines, and height-above-buoyancy gradient, ice-flow velocity, presence of pinning points and ice shelves are provided for modern grounding lines. The published dataset was compiled and analyzed in the article "Controls on circum-Antarctic grounding-line sinuosity " by Simkins, L.M., Stearns, L.A., and Riverman, K.L, which will be submitted to a peer-review journal in November 2021. References Mouginot, J., B. Scheuchl, and E. Rignot. 2017. MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Rignot, E., J. Mouginot, and B. Scheuchl. 2016. MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Simkins, L. M., Greenwood, S. L., & Anderson, J. B. (2018). Diagnosing ice sheet grounding line stability from landform morphology. The Cryosphere, 12(8), 2707-2726. Van der Veen, C. J., J. C. Plummer, & L. A. Stearns. (2011). Controls on the recent speed up of Jakobshavn Isbræ, West Greenland. Journal of Glaciology, 57(204), 770-782 | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Pennell Trough, Ross Sea bathymetry and glacial landforms
|
1745043 1745055 1246353 |
2021-10-04 | Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Prothro, Lindsay; Simkins, Lauren |
Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum. |
Bathymetry from multibeam echo sounding data in Pennell Trough, Ross Sea, Antarctica was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with a 1°×1° beam width, swath angular coverage set to 62°×62°, and 30-60% overlap between survey lines. All raw, ping-edited geophysical data collected on NBP15-02 can be accessed using the Marine Geoscience Data System (Cruise DOI: 10.7284/901477). The bathymetry dataset here is gridded at 20-m resolution with a water depth-dependent vertical resolution on the order of decimeters. Two shapefiles are provided for ice-marginal landforms and meltwater landforms observable in the bathymetry data. The purpose of collecting the bathymetry data on cruise NBP15-02 was to better understand the glacial history of the Ross Sea, and the dataset, inclusive of bathymetry data and shapefiles of glacial landforms, from Pennell Trough are used to understand impacts on subglacial channel morphology and organization during the deglaciation of the region following the Last Glacial Maximum. The published dataset was used and analyzed in the article "Topographic controls on channelized meltwater in the subglacial environment" by Simkins, L.M., Greenwood, S.L., Munevar Garcia, S., Eareckson, E.A., Anderson, J.B., and Prothro, L.O, which was published in Geophysical Research Letters in 2021 (DOI: 10.1029/2021GL094678). | ["POLYGON((174 -75,174.4 -75,174.8 -75,175.2 -75,175.6 -75,176 -75,176.4 -75,176.8 -75,177.2 -75,177.6 -75,178 -75,178 -75.2,178 -75.4,178 -75.6,178 -75.8,178 -76,178 -76.2,178 -76.4,178 -76.6,178 -76.8,178 -77,177.6 -77,177.2 -77,176.8 -77,176.4 -77,176 -77,175.6 -77,175.2 -77,174.8 -77,174.4 -77,174 -77,174 -76.8,174 -76.6,174 -76.4,174 -76.2,174 -76,174 -75.8,174 -75.6,174 -75.4,174 -75.2,174 -75))"] | ["POINT(176 -76)"] | false | false |
Erebus GPS timeseries
|
1643952 1917149 2039432 |
2021-09-03 | Grapenthin, Ronni |
Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica |
We use NASA's Jet Propulsion Laboratory's (JPL) GipsyX software in PPP mode with ambiguity resolution applied to 24 hour segments of data to generate daily position solutions. We use JPL's orbit and clock products and International GNSS Service (IGS) antenna phase center models. Where available, we use JPL's second order ionospheric corrections, otherwise we fall back on those provided by the IGS. To correct tropospheric delays, we use the GPT2 model as implemented in GipsyX. Ocean tidal loading corrections utilize the TPXO7.2 and ATLAS model, a combination of hydrodynamic model and altimetry data, with respect to Earth's Center of Mass implemented in SPOTL. We obtain position solutions for each station day in a fiducial-free reference frame, which we then transform into the 2014 International Reference Frame using JPL's transformation coefficients and generate timeseries of position change relative to the first epoch, given in the *.series files which are ASCII files with the following columns: decimal year displacement east (m) displacement north (m) displacement up (m) sigma east (m) sigma north (m) sigma up (m) east-north covariance east-up covariance north-up covariance Year (YYYY) Month (MM) Day (DD) Hour (hh) Minute (mm) Second (ss) Solution path We generate position time series relative to stable Antarctic plate by removing the plate velocities modeled by Argus et al (2010). These are provided in the *.npy files that be readily read into python scripts: pos_ts = np.load('test.npy').flatten()[0] pos_ts['itrf'] provides the ITRF data as above pos_ts['plate'] provides the data with Antarctic plate motion removed. | ["POLYGON((166 -77.1,166.39 -77.1,166.78 -77.1,167.17 -77.1,167.56 -77.1,167.95 -77.1,168.34 -77.1,168.73 -77.1,169.12 -77.1,169.51 -77.1,169.9 -77.1,169.9 -77.18,169.9 -77.26,169.9 -77.34,169.9 -77.42,169.9 -77.5,169.9 -77.58,169.9 -77.66,169.9 -77.74,169.9 -77.82,169.9 -77.9,169.51 -77.9,169.12 -77.9,168.73 -77.9,168.34 -77.9,167.95 -77.9,167.56 -77.9,167.17 -77.9,166.78 -77.9,166.39 -77.9,166 -77.9,166 -77.82,166 -77.74,166 -77.66,166 -77.58,166 -77.5,166 -77.42,166 -77.34,166 -77.26,166 -77.18,166 -77.1))"] | ["POINT(167.95 -77.5)"] | false | false |
Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores
|
None | 2021-07-16 | McConnell, Joseph; Chellman, Nathan | No project link provided | This dataset includes: 1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). 2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). 3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand. 4) Tie points to constrain flow model used to develop JRI_2008 chronology. | ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"] | ["POINT(-1.4 -73.15)"] | false | false |
Antarctic passive microwave Kmeans derived surface melt days, 1979-2020
|
1543432 |
2021-06-22 | Johnson, Andrew; Hock, Regine; Fahnestock, Mark |
Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model |
This dataset contains the total number of days per year with meltwater present at the surface across the Antarctic ice sheet and surrounding ice shelves derived from passive microwave satellite observations for each melt year from 1979/80 to 2019/20. This data comes from daily and near-daily SMMR, SSM/I, and SSMIS results at 25 km resolution at 19 GHz horizontal polarization. Each melt year starts on July 1 and ends June 30. The melt detection algorithm is described in Johnson and others (2020) and uses KMeans clustering analysis of the annual brightness temperature time series on each pixel to detect melt for that pixel and year. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming
|
1443347 |
2021-06-08 | Condron, Alan |
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet |
Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. This dataset contains the results from multi-century (present–2250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. These results were published in Sadai et al., Science Advances, 2020, Vol. 6, eaaz1169 Please note that ALL the raw model data generated for this project is archived at Woods Hole Oceanographic Institution and the University of Massachusetts Amherst and freely available on request. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Simulated changes in Southern Ocean salinity
|
1443347 |
2021-05-04 | Condron, Alan |
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet |
This dataset contains the MITgcm model output data presented in Ashley, K.E. et al., 2021. This dataset includes simulated spatial changes in sea surface salinity (SSS), time series data of salinity, and scatter plot data of SSS changes against meltwater discharge. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Simulations of 10Be over Antarctica
|
1443448 1443144 |
2021-02-03 | Ding, Qinghua; Schaefer, Joerg; Steig, Eric J. |
Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole |
Experiments were conducted using ECHAM5-HAM atmospheric aerosol - climate model at horizontal resolution of T42 (~2.8° latitude × 2.8° longitude) with 19 vertical levels to examine the relationship between the production of 10Be in the atmosphere and its deposition at the surface. Five experiments were conducted, using a) constant 10Be production but varying, observed climate b) climatological climate of the last 50 years but varying 10Be production, c) constant 10Be production with 50-years of varying climate for 0 ka, (d) 6 ka, and (e) 21 ka, using the TraCE21 simulation to provide boundary conditions. The results will be useful for comparison with 10Be concentration records obtained from the South Pole ice core and other Antarctic and Greenland records. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data
|
1643795 |
2021-01-15 | Mikesell, Dylan |
Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods |
This data set includes observations of Rayleigh and Love wave group and phase velocity dispersion curves from ambient noise crosscorrelation functions. The data set includes the corresponding shear wave velocity model produced by joint inversion of these dispersion curves. This investigators developed a new crust and upper mantle model directly beneath the seismic stations used in this study. Data are in NetCDF and GeoCSV formats. The Python code used to generate the NetCDF files from the GeoCSV files is also contained in the data set. | ["POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))"] | ["POINT(-116.25 -79.25)"] | false | false |
Hypoxia response of hearts of Antarctic fishes
|
1341663 1341602 |
2020-12-18 | O'Brien, Kristin |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1α and HIF-1β subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 ± 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 ± 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1α were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1α increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming. | [] | [] | false | false |
Whillans and Mercer Shear Margin Ice Flow simulation in ISSM
|
1842021 |
2020-12-12 | Kaluzienski, Lynn |
RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence |
The dataset includes initialization and output files of a numerical ice flow simulation of the Whillans and Mercer Ice Streams . The Ice Sheet System Model (ISSM) model was used to solve a 100-year transient stress balance solution of the region with ~10 kPA/yr friction increase downstream of the shear margin between the Whillans and Mercer ice streams. | ["POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.6,-111 -83.2,-111 -83.8,-111 -84.4,-111 -85,-111 -85.6,-111 -86.2,-111 -86.8,-111 -87.4,-111 -88,-116.7 -88,-122.4 -88,-128.1 -88,-133.8 -88,-139.5 -88,-145.2 -88,-150.9 -88,-156.6 -88,-162.3 -88,-168 -88,-168 -87.4,-168 -86.8,-168 -86.2,-168 -85.6,-168 -85,-168 -84.4,-168 -83.8,-168 -83.2,-168 -82.6,-168 -82))"] | ["POINT(-139.5 -85)"] | false | false |
2017 GPR Observations of the Whillans and Mercer Ice Streams
|
1842021 |
2020-12-12 | Kaluzienski, Lynn |
RAPID Proposal: Constraining kinematics of the Whillans/Mercer Ice Stream Confluence |
The dataset includes GPS coordinates for crevasse/fracture locations picked from 350MHz and 400Mhz frequency GPR dataset in the Whillans/Mercer Shear Margin along the SALSA traverse route with associated kinematic outputs for each feature (shear strain rate, vorticity, dilatation). GPS coordinates are in the Antarctic Polar Stereographic projection (EPSG:3031). | ["POLYGON((-168 -82,-162.3 -82,-156.6 -82,-150.9 -82,-145.2 -82,-139.5 -82,-133.8 -82,-128.1 -82,-122.4 -82,-116.7 -82,-111 -82,-111 -82.5,-111 -83,-111 -83.5,-111 -84,-111 -84.5,-111 -85,-111 -85.5,-111 -86,-111 -86.5,-111 -87,-116.7 -87,-122.4 -87,-128.1 -87,-133.8 -87,-139.5 -87,-145.2 -87,-150.9 -87,-156.6 -87,-162.3 -87,-168 -87,-168 -86.5,-168 -86,-168 -85.5,-168 -85,-168 -84.5,-168 -84,-168 -83.5,-168 -83,-168 -82.5,-168 -82))"] | ["POINT(-139.5 -84.5)"] | false | false |
Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture
|
1743310 |
2020-10-24 | Lai, Ching-Yao |
Satellite observations and modelling of surface meltwater flow and its impact on ice shelves |
This data set contains the results presented in Lai et al. (2020), including; the 125m-resolution fracture map, the spatial distribution of fracture depths and the required initial flaw size for hydrofracture, which is calculated using linear elastic fracture mechanics (LEFM) according to the ice-shelf stress fields and thickness. The dimensionless stress (Rxx_bar, defined in Lai et al. (2020)) governs how fractures behave. Using a dimensionless stress criteria we have determined which ice-shelf areas are vulnerable to hydrofracture if inundated with melt water (Rxx_bar >Rxx*_bar). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica
|
1443386 |
2020-10-11 | Ciriani, Yanina; Emslie, Steven |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
Many types of animal tissues are increasingly being used for stable isotope analysis, with their application dependent on the time frame they reflect and their availability for collection. Here, we investigated the isotopic values (δ13C and δ15N) of four tissues (feather, skin, toenail, and bone) collected from fledgling-period chick carcasses of three species of pygoscelid penguins to compare the variability and accuracy of the data among tissues. Samples were collected at 25 de Mayo/King George Island during the 2017/18 austral summer. Chick carcasses are commonly found at active penguin colonies, and “opportunistic sampling” can easily be performed without disturbing nesting penguins. A total of 25–36 carcasses per species were sampled at active colonies of Adélie Pygoscelis adeliae, Gentoo P. papua, and Chinstrap P. antarcticus penguins. A linear mixed model showed that δ13C values varied significantly between tissues, presumably due to tissue-specific isotopic discrimination. In contrast, the only tissue with significantly different δ15N values was toenail. Stable isotope data revealed dietary differences among species, with Gentoo Penguins having higher average isotopic values in tissues compared to Adélie and Chinstrap penguins. In addition, Chinstrap Penguins showed a consistent, but not statistically significant, trend in having higher δ13C values compared to Adélie Penguins. Gentoo Penguins displayed the highest isotopic variability of any species for all tissues. Isotopic composition was most variable in skin in all three species making skin the least reliable tissue for isotope analysis, whereas isotopic values were least variable in toenails. Comparison of isotopic values between two bones (tibiotarsus and coracoid) showed no significant differences in isotopic values, indicating that when the same bone is not available for sampling from carcasses, sampling of any major skeletal element is likely to provide a meaningful comparison. These results allow for more informed opportunistic sampling to accurately estimate and compare penguin diet among species and between ancient and active colonies. | ["POLYGON((-58.62 -62.257,-58.6199 -62.257,-58.6198 -62.257,-58.6197 -62.257,-58.6196 -62.257,-58.6195 -62.257,-58.6194 -62.257,-58.6193 -62.257,-58.6192 -62.257,-58.6191 -62.257,-58.619 -62.257,-58.619 -62.2571,-58.619 -62.2572,-58.619 -62.2573,-58.619 -62.2574,-58.619 -62.2575,-58.619 -62.2576,-58.619 -62.2577,-58.619 -62.2578,-58.619 -62.2579,-58.619 -62.258,-58.6191 -62.258,-58.6192 -62.258,-58.6193 -62.258,-58.6194 -62.258,-58.6195 -62.258,-58.6196 -62.258,-58.6197 -62.258,-58.6198 -62.258,-58.6199 -62.258,-58.62 -62.258,-58.62 -62.2579,-58.62 -62.2578,-58.62 -62.2577,-58.62 -62.2576,-58.62 -62.2575,-58.62 -62.2574,-58.62 -62.2573,-58.62 -62.2572,-58.62 -62.2571,-58.62 -62.257))"] | ["POINT(-58.6195 -62.2575)"] | false | false |
ANTAEM project airborne EM resistivity data from McMurdo Region
|
1644187 |
2020-09-12 | Tulaczyk, Slawek |
Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica |
The ANTAEM survey was carried out in the period November 12th to 28th, 2018, with the SkyTEM 312 system. Twenty-one missions (flights) were conducted over 11 production days of helicopter service, resulting in a total of approximately ~3400 line km of data. The SkyTEM system records data from take-off until landing resulting in multiple lines converging to the landing pads in McMurdo and at Marble Point. The production without overlapping lines adds up to approximately 2900 line km. The flight speed was approximately 120 km/h at a target flight altitude of ~50 m (sensor height), but the actual sensor height varies depending on the terrain. The surveys were carried out with a Bell 212 helicopter, which carried the SkyTEM sensor as a sling load. The SkyTEM system was configured in a standard two-moment setup (low moment, LM and high moment, HM). Areas with extremely resistive dry and/or frozen sediment/bedrock, and glacier ice often produce EM-signals with amplitudes below the detection level of the system. Data from these low signal environments cannot be inverted into resistivity models. Data with strong induced polarization effects cannot be inverted for resistivity either. These data were discharged in this standard data delivery. The EM-data and inversion result (resistivity models) are delivered in the SkyTEM2018_dat.xyz and SkyTEM2018_inv.xyz files respectably. The RECORD number in the two files links data and model together. EM-data and data uncertainty for data entering inversion. Info stated in file Header: NAN value, Data unit, Coordinate system, Gate times. The SkyTEM system uses at High-Low moment data recording cycle, therefore only a subset of the total 40 time gates are preset for each moment. The standard lateral constraints inversion (LCI), delivered in the SkyTEM2018_inv.xyz file, was carried out with a smooth 30 layered resistivity model discretized to a depth of 500 m. A depth of investigation (DOI) was estimated for each resistivity model. | ["POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9))"] | ["POINT(164.75 -77.6)"] | false | false |
Antarctic Tide Gauge Database, version 1
|
0125252 0125602 1443677 |
2020-07-10 | Howard, Susan L.; Padman, Laurence; King, Matt |
Ocean Tides around Antarctica and in the Southern Ocean |
The Antarctic Tide Gauge (AntTG) database provides tidal harmonic coefficients (amplitude and phase) for ocean surface height (tide-induced height perturbation relative to the seabed) at many coastal, ocean and ice shelf locations around Antarctica. The coefficients are provided for up to 8 tidal constituents (Q1, O1, P1, K1, N2 , M2, S2, K2) where data is available. These coefficients are primarily intended for users interested in validation of tide models for the Antarctic seas including the areas covered by the floating ice shelves (e.g., King and Padman, 2005; King et al., 2011; Stammer et al., 2014). The database is provided as single files in ASCII text and MATLAB *.mat formats, as well as in a KML package that can be viewed in Google Earth. Several different measurement systems were used to collect the data. The quality of database entries varies widely, from short records of unknown accuracy to very precise, long-term records from bottom pressure recorders in the ocean and GPS systems installed on ice shelves. This database provides sufficient quality control information (record length, time step, and measurement type) for a user to judge whether a tidal analysis at a particular site is likely to be useful for their application. | ["POLYGON((-180 -53,-144 -53,-108 -53,-72 -53,-36 -53,0 -53,36 -53,72 -53,108 -53,144 -53,180 -53,180 -56.7,180 -60.4,180 -64.1,180 -67.8,180 -71.5,180 -75.2,180 -78.9,180 -82.6,180 -86.3,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.3,-180 -82.6,-180 -78.9,-180 -75.2,-180 -71.5,-180 -67.8,-180 -64.1,-180 -60.4,-180 -56.7,-180 -53))"] | ["POINT(0 -89.999)"] | false | false |
Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica
|
1443576 |
2020-06-05 | Panter, Kurt |
Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province |
Mt. Early and Sheridan Bluff (87°S) are the above ice expression of Earth’s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method. | ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"] | ["POINT(-153.75 -87)"] | false | false |
Earthquake Sequence Dynamics at the Interface Between an Elastic Layer and Underlying Half-Space in Antiplane Shear
|
1656518 1542885 |
2020-05-11 | Abrahams, Lauren |
Collaborative Research: Characterizing Brittle Failure and Fracture Propagation in Fast Ice Sliding with Dynamic Rupture Models based on Whillans Ice Stream Seismic/Geodetic Data |
We quantify sliding stability and rupture styles for a horizontal interface between an elastic layer and stiffer elastic half-space with a free surface on top and rate-and-state friction on the interface. Specific motivation (and model parameters) comes from quasi-periodic slow slip events on the Whillans Ice Plain in West Antarctica. We quantify the influence of layer thickness on sliding stability, specifically whether steady loading of the system produces steady sliding or sequences of stick-slip events. This dataset contains input files from different parts of parameter space to demonstrate different styles of slip (steady sliding, slow slip sequences, and fast slip sequences). | [] | [] | false | false |
Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf
|
0636773 1341669 |
2020-05-11 | DeMaster, David; Taylor, Richard; Smith, Craig; Isla, Enrique; Thomas, Carrie |
Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
This data set is used to describe a new technique for assessing labile organic carbon (LOC) abundances and mean residence times in marine sediments. Radiocarbon is used to determine abundances of labile organic carbon and then a diagenetic organic carbon model, coupled with sediment biotrubation coefficients, is used to assess LOC mean residence times. | ["POLYGON((-71 -64,-70.4 -64,-69.8 -64,-69.2 -64,-68.6 -64,-68 -64,-67.4 -64,-66.8 -64,-66.2 -64,-65.6 -64,-65 -64,-65 -64.7,-65 -65.4,-65 -66.1,-65 -66.8,-65 -67.5,-65 -68.2,-65 -68.9,-65 -69.6,-65 -70.3,-65 -71,-65.6 -71,-66.2 -71,-66.8 -71,-67.4 -71,-68 -71,-68.6 -71,-69.2 -71,-69.8 -71,-70.4 -71,-71 -71,-71 -70.3,-71 -69.6,-71 -68.9,-71 -68.2,-71 -67.5,-71 -66.8,-71 -66.1,-71 -65.4,-71 -64.7,-71 -64))"] | ["POINT(-68 -67.5)"] | false | false |
SOAR-Lake Vostok Survey bed elevation data
|
9911617 9978236 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work |
Bedrock Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Bedrock Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
SPICEcore Advection
|
1443471 |
2020-03-25 | Fudge, T. J. |
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core |
The South Pole Ice Core (SPICEcore), which spans the past 54,300 years, was drilled far from an ice divide such that ice recovered at depth originated upstream of the core site. If the climate is different upstream, the climate history recovered from the core will be a combination of the upstream conditions advected to the core site and temporal changes. Here, we evaluate the impact of ice advection on two fundamental records from SPICEcore: accumulation rate and water isotopes. We determined past locations of ice deposition based on GPS measurements of the modern velocity field spanning 100 km upstream, where ice of ~20 ka age would likely have originated. Beyond 100 km, there are no velocity measurements, but ice likely originates from Titan Dome, an additional 90 km distant. Shallow radar measurements extending 100 km upstream from the core site reveal large (~20%) variations in accumulation but no significant trend. Water isotope ratios, measured at 12.5 km intervals for the first 100 km of the flowline, show a decrease with elevation of -0.008‰ m-1 for δ18O. Advection adds approximately 1‰ for δ18O to the LGM-to-modern change. We also use an existing ensemble of continental ice-sheet model runs to assess the ice sheet elevation change through time. The magnitude of elevation change is likely small and the sign uncertain. Assuming a lapse rate of 10°C per km of elevation, the inference of LGM-to-modern temperature change is ~1.4°C smaller than if the flow from upstream is not considered. | ["POINT(-98.16 -89.99)"] | ["POINT(-98.16 -89.99)"] | false | false |
Ross Sea ocean model simulation used to support ROSETTA-Ice
|
1443677 |
2020-02-14 | Springer, Scott; Howard, Susan L.; Padman, Laurence |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This dataset contains a regional ocean-ice shelf model used to support and interpret the ROSETTA-Ice field program. A gzipped tar file containing the regional ROMS model code, configuration files, input files, and selected output files. The model simulation covers three years following a ten year spin up. Two sets of output files from the simulation are included. The first is the complete model output (T,S,u,v, etc.) averaged over 30 day intervals. The second is selected variable (T, S, and passive dye tracers) averaged over one day. Included Matlab scripts process these daily passive dye files into water masses and make a simple movie of the time evolution of the water mass distributions. For futher information, see the Supplemental Information of the associated publication (Tinto et al., 2019). | ["POLYGON((-180 -68,-175.85 -68,-171.7 -68,-167.55 -68,-163.4 -68,-159.25 -68,-155.1 -68,-150.95 -68,-146.8 -68,-142.65 -68,-138.5 -68,-138.5 -69.7,-138.5 -71.4,-138.5 -73.1,-138.5 -74.8,-138.5 -76.5,-138.5 -78.2,-138.5 -79.9,-138.5 -81.6,-138.5 -83.3,-138.5 -85,-142.65 -85,-146.8 -85,-150.95 -85,-155.1 -85,-159.25 -85,-163.4 -85,-167.55 -85,-171.7 -85,-175.85 -85,180 -85,177.4 -85,174.8 -85,172.2 -85,169.6 -85,167 -85,164.4 -85,161.8 -85,159.2 -85,156.6 -85,154 -85,154 -83.3,154 -81.6,154 -79.9,154 -78.2,154 -76.5,154 -74.8,154 -73.1,154 -71.4,154 -69.7,154 -68,156.6 -68,159.2 -68,161.8 -68,164.4 -68,167 -68,169.6 -68,172.2 -68,174.8 -68,177.4 -68,-180 -68))"] | ["POINT(-172.25 -76.5)"] | false | false |
Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data
|
1443534 |
2020-01-10 | Das, Indrani; Padman, Laurence; Bell, Robin; Fricker, Helen; Hulbe, Christina; Siddoway, Christine; Dhakal, Tejendra; Frearson, Nicholas; Mosbeux, Cyrille; Cordero, Isabel; Siegfried, Matt; Tinto, Kirsty |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This dataset was produced for the manuscript \"Multi-decadal basal melt rates and structure of the Ross Ice Shelf, Antarctica using airborne ice penetrating radar\" by Das et al., 2020 in Journal of Geophysical Research-Earth Surface. It has total ice thickness, thickness of the LMI layer, strain induced thickness change, basal melt rates and the error estimate for basal melt rates. | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
CATS2008: Circum-Antarctic Tidal Simulation version 2008
|
9896041 1443677 |
2019-12-19 | Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) Ocean Tides around Antarctica and in the Southern Ocean |
CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry. Model type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). Grid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) Constituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. Units: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). Coordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. Citation: "… an update to the inverse model described by Padman et al. [2002]." See CATS2008_README.pdf for further details. | ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"] | ["POINT(0 -89.999)"] | false | false |
Ross Sea post-middle Miocene seismic interpretation
|
1043700 |
2019-11-24 | Harry, Dennis L. |
Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History |
Interpretation of major post-middle Miocene seismic reflections in the Ross Sea are provided in i) ASCII files containing Line, Trace, X, Y, and TWTT (two-way travel) picks and ii) netcdf grid files of structure and isochore maps in two-way travel time and depth or thickness. Data are in the Antarctic Polar Stereographic projection. | ["POLYGON((-180 -70,-176.5 -70,-173 -70,-169.5 -70,-166 -70,-162.5 -70,-159 -70,-155.5 -70,-152 -70,-148.5 -70,-145 -70,-145 -71,-145 -72,-145 -73,-145 -74,-145 -75,-145 -76,-145 -77,-145 -78,-145 -79,-145 -80,-148.5 -80,-152 -80,-155.5 -80,-159 -80,-162.5 -80,-166 -80,-169.5 -80,-173 -80,-176.5 -80,180 -80,177.5 -80,175 -80,172.5 -80,170 -80,167.5 -80,165 -80,162.5 -80,160 -80,157.5 -80,155 -80,155 -79,155 -78,155 -77,155 -76,155 -75,155 -74,155 -73,155 -72,155 -71,155 -70,157.5 -70,160 -70,162.5 -70,165 -70,167.5 -70,170 -70,172.5 -70,175 -70,177.5 -70,-180 -70))"] | ["POINT(-175 -75)"] | false | false |
Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data
|
1043528 0539578 |
2019-11-12 | Fegyveresi, John; Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan; Voigt, Donald E. |
Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core Collaborative Research: Physical Properties of the WAIS Divide Deep Core |
This data set includes the fully updated (2017) bubble number-density measured at depths from 120 meters down to 1600 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006) and Fegyveresi and others (2011). Data also includes tabs for bubble size and shape data. | ["POINT(-112.3 -79.43333333)"] | ["POINT(-112.3 -79.43333333)"] | false | false |
Antarctic topographic and subglacial lake geostatistical simulations
|
1745137 |
2019-10-02 | MacKie, Emma; Schroeder, Dustin; Caers, Jef; Siegfried, Matt; Scheidt, Celine |
CAREER: Cross-Instrument Synthesis of Antarctic Radar Sounding Observations |
These data accompany the paper "Antarctic Topographic Realizations and Geostatistical Modeling Used to Map Subglacial Lakes" (MacKie et al., in review). This dataset contains 100 geostatistically generated subglacial topographic realizations for Antarctica. Data science techniques were used to calculate the probability of the occurrence of radar-detected lakes and altimetry-detected (active) lakes across the continent, using each topographic realization as a parameter. This generated 100 probability maps of the likelihood of radar-detected lake occurrence and 100 probability maps of active lake occurrence. Further statistics were used to generate 100 binary maps showing expected radar-detected lake locations. The ensemble of realizations can be used for uncertainty quantification. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Sea Ice Layer Cakes, PIPERS 2017
|
1341513 |
2019-08-30 | Mei, M. Jeffrey; Maksym, Edward; Jeffrey Mei, M. |
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica |
Layer Cakes for the PIPERS ice stations 4, 7, 8 and 9 (05/24, 05/29, 05/31, 06/02) with snow depth (both raw and interpolated), surface lidar scan and ice draft AUV scan aligned onto a common 100m x 100m grid, binned at 0.2m resolution. | ["POLYGON((-180 -68,-179 -68,-178 -68,-177 -68,-176 -68,-175 -68,-174 -68,-173 -68,-172 -68,-171 -68,-170 -68,-170 -68.8,-170 -69.6,-170 -70.4,-170 -71.2,-170 -72,-170 -72.8,-170 -73.6,-170 -74.4,-170 -75.2,-170 -76,-171 -76,-172 -76,-173 -76,-174 -76,-175 -76,-176 -76,-177 -76,-178 -76,-179 -76,180 -76,179 -76,178 -76,177 -76,176 -76,175 -76,174 -76,173 -76,172 -76,171 -76,170 -76,170 -75.2,170 -74.4,170 -73.6,170 -72.8,170 -72,170 -71.2,170 -70.4,170 -69.6,170 -68.8,170 -68,171 -68,172 -68,173 -68,174 -68,175 -68,176 -68,177 -68,178 -68,179 -68,-180 -68))"] | ["POINT(180 -72)"] | false | false |
Crustal Structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for Tectonic Origins
|
1148982 |
2019-07-31 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
The Transantarctic Mountains (TAMs) are the largest non-collisional mountain range on Earth. Their origin, as well as the origin of the Wilkes Subglacial Basin (WSB) along the inland side of the TAMs, have been widely debated, and a key constraint to distinguish between competing models is the underlying crustal structure. Previous investigations have examined this structure but have primarily focused on a small region of the central TAMs near Ross Island, providing little along-strike constraint. In this study, we use data from the new Transantarctic Mountains Northern Network and from five stations operated by the Korea Polar Research Institute to investigate the crustal structure beneath a previously unexplored portion of the TAMs. Using S-wave receiver functions and Rayleigh wave phase velocities, crustal thickness and average crustal shear velocity (Vs) are resolved within ±4 km and ±0.1 km/s, respectively. The crust thickens from ~20 km near the Ross Sea coast to ~46 km beneath the northern TAMs, which is somewhat thicker than that imaged in previous studies beneath the central TAMs. The crust thins to ~41 km beneath the WSB.Vs ranges from ~3.1-3.9 km/s, with slower velocities near the coast. Our findings are consistent with a flexural origin for the TAMs and WSB, where these features result from broad flexure of the East Antarctic lithosphere and uplift along its western edge due to thermal conduction from hotter mantle beneath West Antarctica. Locally thicker crust may explain the ~1 km of additional topography in the northern TAMs compared to the central TAMs. | ["POLYGON((150 -72,152 -72,154 -72,156 -72,158 -72,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,170 -72.3,170 -72.6,170 -72.9,170 -73.2,170 -73.5,170 -73.8,170 -74.1,170 -74.4,170 -74.7,170 -75,168 -75,166 -75,164 -75,162 -75,160 -75,158 -75,156 -75,154 -75,152 -75,150 -75,150 -74.7,150 -74.4,150 -74.1,150 -73.8,150 -73.5,150 -73.2,150 -72.9,150 -72.6,150 -72.3,150 -72))"] | ["POINT(160 -73.5)"] | false | false |
NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model
|
1543031 |
2019-04-22 | Judd, Emily |
Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica |
GENESIS global circulation model (GCM) outputs from a middle Eocene simulation parameterized with 2000 ppm pCO2, high obliquity, and no Antarctic ice. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Report on Antarctic surface hydrology workshop, LDEO, 2018
|
1743326 |
2019-03-22 | Kingslake, Jonathan; Trusel, Luke; Banwell, Alison; Bell, Robin; Das, Indrani; DeConto, Robert; Tedesco, Marco; Lenaerts, Jan; Schoof, Christian |
Workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability |
In February 2018, we hosted a workshop on Antarctic Surface Hydrology and Future Ice-shelf Stability at Lamont-Doherty Earth Observatory, Palisades, New York. Funding for the workshop was provided by the U.S. National Science Foundation (NSF) Antarctic Glaciology Program (award number: 1743326). The aims of the workshop were to: (1) establish the state-of-the-science of Antarctic surface hydrology; (2) identify key science questions raised by observations and theoretical studies of Antarctic surface hydrology, and (3) move the community toward answering these questions by bringing together scientists with diverse expertise. The workshop was motivated by the premise that significant gains in our understanding can be made if researchers with interests in this field are provided with an opportunity to communicate and develop collaborations across disciplines. Here we report on the organisation, attendance, and structure of the workshop, before summarizing key science outcomes, research questions, and future priorities that emerged during the workshop within the following four themes: 1. Surface melting: controls and observations 2. Water ponding and flow 3. Impact of meltwater on ice-shelf stability 4. Ice-sheet/climate modeling Finally, building on the emergent science questions, we propose a framework for prioritizing future work, aimed at understanding and predicting the impact that surface meltwater will have on future Antarctic Ice Sheet mass balance. | [] | [] | false | false |
Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios
|
1443394 |
2019-02-04 | Pollard, David |
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet |
The dataset consists of two tar files for two distinct sets of simulations. Each tar file contains a number of Netcdf files with model output for one simulation each, and also contains a DIF file (Directory Interchange Format, in xml form) with information on that part of the dataset. Set 1: There are 4 Netcdf files with output from the PSU 3D Antarctic ice sheet model including ice melange, showing role of melange in potentially providing buttressing and possibly slowing down ice retreat in strong climate warming scenarios. Set two: There are 2 Netcdf files with output from the PSU 3D Antarctic ice sheet model, for two future warming scenarios RCP4.5 and RCP8.5, contributing to oceanic meltwater discharge fields for future climate and ocean model simulations performed at Univ. Massachusetts by other PIs on the NSF project. More details on file names and model fields is provided in "Data Section" of the Readme file. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Model output NOAA GFDL CM2_6 Cant Hant storage
|
1425989 |
2018-12-14 | Chen, Haidi |
Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) |
This dataset include the budget terms for heat, carbon and phosphate storage tendency in pre-industrial simulation and climate change simulation forced with atmospheric CO2 increasing at a rate of 1% per year run following 120 years of the pre-industrial simulation. The results are zonally integrated. The dataset also include the meridional overturning circulation in the control and climate simulations. | ["POLYGON((-180 -20,-144 -20,-108 -20,-72 -20,-36 -20,0 -20,36 -20,72 -20,108 -20,144 -20,180 -20,180 -27,180 -34,180 -41,180 -48,180 -55,180 -62,180 -69,180 -76,180 -83,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -83,-180 -76,-180 -69,-180 -62,-180 -55,-180 -48,-180 -41,-180 -34,-180 -27,-180 -20))"] | ["POINT(0 -89.999)"] | false | false |
Ice-ocean-ecosystem model output
|
1341440 |
2018-11-20 | Jin, Meibing |
Collaborative Research: Phytoplankton Phenology in the Antarctic: Drivers, Patterns, and Implications for the Adelie Penguin |
["POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -49.5,180 -54,180 -58.5,180 -63,180 -67.5,180 -72,180 -76.5,180 -81,180 -85.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.5,-180 -81,-180 -76.5,-180 -72,-180 -67.5,-180 -63,-180 -58.5,-180 -54,-180 -49.5,-180 -45))"] | ["POINT(0 -89.999)"] | false | false | |
Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone
|
1245915 |
2018-06-07 | Ray, Laura; Arcone, Steven; Kaluzienski, Lynn; Koons, Peter; Lever, Jim; Walker, Ben |
Collaborative Research: Flow and Fracture Dynamics in an Ice Shelf Lateral Margin: Observations and Modeling of the McMurdo Shear Zone |
This dataset is comprised of ground penetrating radar data (GSSI DZT format with DZG files for GPS location) of a 28 square km area conduced in the heavily crevassed McMurdo Shear Zone in two consecutive field seasons. A radar system comprised of a GSSI SIR-30 32-bit two-channel control unit and model 5103 “400 MHz” and Model 5106A “200 MHz” antenna units were used to conduct the GPR surveys. The radar system was mounted on a sled and towed by a robot. The robot surveyed the 5 x 5.7 km area on lines separated by 50-m and traveled from West to East and return. The 2014 survey was conducted between Oct 29, 2014 and Nov 9, 2014, and the 2015 survey was conducted between Oct 26, 2015 and Nov 1, 2015. The use of identical waypoints in each year provides an Eulerian sampling protocol, where sampled GPS locations remain fixed, but the ice moves between annual surveys. In 2014, the 400 MHz antenna imaged to a depth of 19 meters, and in 2015, the 400 MHz antenna imaged to a depth of 80 meters to examine englacial ice. In both years, the 200 MHz antenna imaged to a depth of 160 meters. | ["POLYGON((168.36 -78.03,168.384 -78.03,168.408 -78.03,168.432 -78.03,168.456 -78.03,168.48 -78.03,168.504 -78.03,168.528 -78.03,168.552 -78.03,168.576 -78.03,168.6 -78.03,168.6 -78.035,168.6 -78.04,168.6 -78.045,168.6 -78.05,168.6 -78.055,168.6 -78.06,168.6 -78.065,168.6 -78.07,168.6 -78.075,168.6 -78.08,168.576 -78.08,168.552 -78.08,168.528 -78.08,168.504 -78.08,168.48 -78.08,168.456 -78.08,168.432 -78.08,168.408 -78.08,168.384 -78.08,168.36 -78.08,168.36 -78.075,168.36 -78.07,168.36 -78.065,168.36 -78.06,168.36 -78.055,168.36 -78.05,168.36 -78.045,168.36 -78.04,168.36 -78.035,168.36 -78.03))"] | ["POINT(168.48 -78.055)"] | false | false |
Ross Sea unconformities digital grids in depth and two-way time
|
1341585 |
2018-05-25 | Sorlien, Christopher; Wilson, Douglas S. |
Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea |
This data set includes digital 1 km grids of sub-bottom stratigraphy of most of Ross Sea. In addition to acoustic basement (same as top syn-rift sedimentary rocks in Central Trough and probably other basins), these grids include Oligocene and Miocene horizons that are unconformities in most areas. A sea floor grid is also included. Except for the sea floor grid, the grids are trimmed to be relatively close to control of interpreted seismic stratigraphy. The grids are provided in two way travel time and in depth. Math can be performed on the corresponding time and depth grids to recreate the 3D interval velocity model that was used. The velocity of the water used was 1450 m/s. More detailed descriptions of the work are found in the Final NSF report for PLR1341585 by C. Sorlien, B. Luyendyk, and D. Wilson. The grids are continuous so are merged with the sea floor where there is outcrop, or with basement if there is onlap, or with a young unconformity where there is sub-bottom truncation. The filenames include the name of the horizon (unconformity) and whether they are in time or depth. \"etc.\" means there are two or more horizons that have been merged. Most of the horizons are named and defined in the ANTOSTRAT (1995) atlas. The starting points for many of these horizons are ANTOSTRAT [1995] near DSDP sites 273, 272, and 270. In other areas we deviate from the interpretation of ANTOSTRAT [1995]. late Oligocene through middle Miocene horizons, interpreted very close to the ANTOSTRAT [1995] at DSDP Site 273 in Central Trough, are much deeper in our interpretation within Terror Rift. These horizon grids usually include the sea floor where there is outcrop or acoustic basement (top syn-rift in some basins) where there is onlap. ANTOSTRAT (1995), Seismic Stratigraphic Atlas of the Ross Sea, in Geology and Seismic Stratigraphy of the Antarctic Margin, edited by A. K. Cooper, Barker, P. F., Brancolini, G., 22 plates, American Geophysical Union, Washington, D.C. | ["POLYGON((-180 -73.22,-179.17 -73.22,-178.34 -73.22,-177.51 -73.22,-176.68 -73.22,-175.85 -73.22,-175.02 -73.22,-174.19 -73.22,-173.36 -73.22,-172.53 -73.22,-171.7 -73.22,-171.7 -73.765,-171.7 -74.31,-171.7 -74.855,-171.7 -75.4,-171.7 -75.945,-171.7 -76.49,-171.7 -77.035,-171.7 -77.58,-171.7 -78.125,-171.7 -78.67,-172.53 -78.67,-173.36 -78.67,-174.19 -78.67,-175.02 -78.67,-175.85 -78.67,-176.68 -78.67,-177.51 -78.67,-178.34 -78.67,-179.17 -78.67,180 -78.67,178.56 -78.67,177.12 -78.67,175.68 -78.67,174.24 -78.67,172.8 -78.67,171.36 -78.67,169.92 -78.67,168.48 -78.67,167.04 -78.67,165.6 -78.67,165.6 -78.125,165.6 -77.58,165.6 -77.035,165.6 -76.49,165.6 -75.945,165.6 -75.4,165.6 -74.855,165.6 -74.31,165.6 -73.765,165.6 -73.22,167.04 -73.22,168.48 -73.22,169.92 -73.22,171.36 -73.22,172.8 -73.22,174.24 -73.22,175.68 -73.22,177.12 -73.22,178.56 -73.22,-180 -73.22))"] | ["POINT(176.95 -75.945)"] | false | false |
Region Climate Model Output Plio-Pleistocene
|
1245899 |
2018-01-16 | Kowalewski, Douglas |
Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound |
Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene. | ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"] | ["POINT(-160 -77.5)"] | false | false |
Shortwave Spectroradiometer Data from Ross Island, Antarctica
|
1141939 |
2017-12-12 | Lubin, Dan |
Antarctic Cloud Physics: Fundamental Observations from Ross Island |
In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014). <br><br>There are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water. <br><br>Ancillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response. | ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"] | ["POINT(166.67325 -77.54515)"] | false | false |
Hydrodynamics of Spongiobranchaea australis
|
1246317 |
2017-09-27 | Mittal, Rajat |
Collaborative Research: Pteropod Swimming Behavior as a Bio Assay for Ocean Acidification |
Spongiobranchaea australis is a gymnosome pteropod that is abundant in the Southern Ocean. Videos of specimens of S. Australis collected near Palmer Station in April 2014, were used to develop computational fluid dynamics models and simulations of swimming hydrodynamics conducted. The deposited movie shows the computed vortex structures for a swimming S. Australis. | [] | [] | false | false |
Antarctic Ice Core Tephra Analysis
|
1142007 |
2017-08-03 | Kurbatov, Andrei V. |
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT) |
This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Holocene Black Carbon in Antarctica
|
0839093 |
2017-06-19 | McConnell, Joseph; Arienzo, Monica |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
Black carbon (BC) and other biomass-burning (BB) aerosols are critical components of climate forcing but quantification, predictive climate modeling, and policy decisions have been hampered by limited understanding of the climate drivers of BB and by the lack of long-term records. Prior modeling studies suggested that increased Northern Hemisphere anthropogenic BC emissions increased recent temperatures and regional precipitation, including a northward shift in the Inter-Tropical Convergence Zone (ITCZ). Two Antarctic ice cores were analyzed for BC and the longest record shows that the highest BC deposition during the Holocene occurred ~8-6k years before present in a period of relatively high austral burning season and low growing season insolation. Atmospheric transport modeling suggests South America (SA) as the dominant source of modern Antarctic BC and, consistent with the ice-core record, climate model experiments using mid-Holocene and preindustrial insolation simulate comparable increases in carbon loss due to fires in SA during the mid-Holocene. SA climate proxies document a northward shifted ITCZ and weakened SA Summer Monsoon (SASM) during this period, with associated impacts on hydroclimate and burning. A second Antarctic ice core spanning the last 2.5k years documents similar linkages between hydroclimate and BC, with the lowest deposition during the Little Ice Age characterized by a southerly shifted ITCZ and strengthened SASM. These new results indicate that insolation-driven changes in SA hydroclimate and BB, likely linked to the position of the ITCZ, modulated Antarctic BC deposition during most of the Holocene and suggests connections and feedbacks between future BC emissions and hydroclimate. | ["POLYGON((161.41425 -77.73489,161.486884 -77.73489,161.559518 -77.73489,161.632152 -77.73489,161.704786 -77.73489,161.77742 -77.73489,161.850054 -77.73489,161.922688 -77.73489,161.995322 -77.73489,162.067956 -77.73489,162.14059 -77.73489,162.14059 -77.747868,162.14059 -77.760846,162.14059 -77.773824,162.14059 -77.786802,162.14059 -77.79978,162.14059 -77.812758,162.14059 -77.825736,162.14059 -77.838714,162.14059 -77.851692,162.14059 -77.86467,162.067956 -77.86467,161.995322 -77.86467,161.922688 -77.86467,161.850054 -77.86467,161.77742 -77.86467,161.704786 -77.86467,161.632152 -77.86467,161.559518 -77.86467,161.486884 -77.86467,161.41425 -77.86467,161.41425 -77.851692,161.41425 -77.838714,161.41425 -77.825736,161.41425 -77.812758,161.41425 -77.79978,161.41425 -77.786802,161.41425 -77.773824,161.41425 -77.760846,161.41425 -77.747868,161.41425 -77.73489))"] | ["POINT(161.77742 -77.79978)"] | false | false |
Rebreather Testing for the United States Antarctic Scientific Diving Program
|
1553824 |
2017-05-12 | Heine, John |
Rebreather Testing for the United States Antarctic Scientific Diving Program |
Overall dataset and specific temperature data for a number of different rebreather models. | ["POLYGON((163 -78,163.4 -78,163.8 -78,164.2 -78,164.6 -78,165 -78,165.4 -78,165.8 -78,166.2 -78,166.6 -78,167 -78,167 -78.05,167 -78.1,167 -78.15,167 -78.2,167 -78.25,167 -78.3,167 -78.35,167 -78.4,167 -78.45,167 -78.5,166.6 -78.5,166.2 -78.5,165.8 -78.5,165.4 -78.5,165 -78.5,164.6 -78.5,164.2 -78.5,163.8 -78.5,163.4 -78.5,163 -78.5,163 -78.45,163 -78.4,163 -78.35,163 -78.3,163 -78.25,163 -78.2,163 -78.15,163 -78.1,163 -78.05,163 -78))"] | ["POINT(165 -78.25)"] | false | false |
Upper Mantle Shear Wave Velocity Structure beneath the Northern Transantarctic Mountains
|
1148982 |
2017-04-20 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
Using data from the Transantarctic Mountains (TAMs) Northern Network, the shear wave velocity structure beneath the northern TAMs was investigated with surface wave tomography. Rayleigh wave phase velocities were calculated using a two-plane wave approximation and were then inverted for shear velocity structure. The resulting model shows a low velocity zone (~4.24 km/s) at ~160 km depth offshore and adjacent to Mt. Melbourne that extends inland and vertically upwards to ~100 km depth beneath the northern TAMs and Victoria Land. Another low velocity zone (~4.16-4.24 km/s) is also seen at ~150 km depth beneath Ross Island, and relatively slow velocities (~4.24-4.32 km/s) along the Terror Rift connect the two low velocity zones. This structure has been interpreted to reflect rift-related decompression melting along the TAMs front, which would provide thermal buoyancy to uplift the mountain range. | ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"] | ["POINT(159.223506 -74.6349495)"] | false | false |
Upper Mantle Seismic Structure beneath the Northern Transantarctic Mountains from Regional P- and S-wave Tomography
|
1148982 |
2017-04-06 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
Stretching ~3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAMs' subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; δVP ≈ -2.0%; δVS ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; δVP ≈ -1.5% to -2.0%; δVS ≈ -1.0% to -4.0%) that extend to depths of ~200 and ~150 km, respectively. The RI and TNB slow anomalies also extend ~50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (δVP ≈ 0.5% to 2%; δVS ≈ 1.5% to 4.0%). A low velocity region (δVP ≈ -1.5%), centered at ~150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range. | ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"] | ["POINT(159.223506 -74.6349495)"] | false | false |
WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)
|
0944197 |
2017-03-28 | Fudge, T. J. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \"bipolar seesaw\". We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q
|
0538427 |
2017-03-28 | McConnell, Joseph |
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core |
A state-of-the-art continuous ice core analytical system was used to analyze samples from 0 to ~130 m depth of the recently collected intermediate core WDC05Q from West Antarctica. Interpretation of these records and publication of findings is ongoing. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
|
1043580 |
2017-01-10 | Reusch, David |
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs |
None | [] | [] | false | false |
Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins
|
1043554 |
2016-11-09 | Willenbring, Jane |
Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins |
The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete. | ["POINT(161.5 -77.5)"] | ["POINT(161.5 -77.5)"] | false | false |
King George and Livingston Islands: Velocities and Digital Elevation Model
|
1043649 |
2016-02-17 | Osmanoglu, Batuhan; Hock, Regine |
Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components |
The data contain the time series totals of SAR derived detrended surface velocities from Livingston Island, as well as GeoTiff files generated from intensity tracking of Synthetic Aperture Radar (SAR) imagery. The images include average annual velocity and ice thickness of King George Island, and average annual velocity, ice thickness, and a digital elevation model of Livingston Island. | ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"] | ["POINT(-61 -62.75)", "POINT(-57.5 -61.75)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0839059 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"] | ["POINT(-168.65 -82.35)"] | false | false |
Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 |
2016-01-01 | White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
|
1043580 |
2016-01-01 | Reusch, David |
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs |
The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. Using contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. The previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here. | ["POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))"] | ["POINT(0 -89.999)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling
|
1142162 |
2016-01-01 | Stone, John |
Glacial-interglacial History of West Antarctic Nunataks and Site Reconnaissance for Subglacial Bedrock Sampling |
This award supports a reconnaissance geological and radar-sounding study of promising sites in West Antarctica for a future project to measure cosmogenic nuclides in subglacial bedrock. Field work will take place in the Whitmore Mountains, close to the WAIS divide, and on the Nash and Pirrit Hills, downflow from the divide in the Weddell Sea drainage. At each site geological indicators of higher (and lower) ice levels in the past will be mapped and evidence of subglacial erosion or its absence will be documented. Elevation transects of both glacial erratics and adjacent bedrock samples will be collected to establish the timing of recent deglaciation at the sites and provide a complement to similar measurements on material from depth transects obtained by future subglacial drilling. At each site, bedrock ridges will be traced into the subsurface with closely-spaced ice-penetrating radar surveys, using a combination of instruments and frequencies to obtain the highest possible surface detail. Collectively the results will define prospective sites for subglacial sampling, and maximize the potential information to be obtained from such samples in future studies. The intellectual merit of this project is that measurements of cosmogenic nuclides in subglacial bedrock hold promise for resolving the questions of whether the West Antarctic ice sheet collapsed completely in the past, whether it is prone to repeated large deglaciations, and if so, what is their magnitude and frequency. Such studies will require careful choice of targets, to locate sites where bedrock geology is favorable, cosmogenic nuclide records are likely to have been protected from subglacial erosion, and the local ice-surface response is indicative of large-scale ice sheet behavior. The broader impacts of this work include helping to determine whether subglacial surfaces in West Antarctica were ever exposed to cosmic rays, which will provide unambiguous evidence for or against a smaller ice sheet in the past. This is an important step towards establishing whether the WAIS is vulnerable to collapse in future, and will ultimately help to address uncertainty in forecasting sea level change. The results will also provide ground truth for models of ice-sheet dynamics and long-term ice sheet evolution, and will help researchers use these models to identify paleoclimate conditions responsible for WAIS deglaciation. The education and training of students (both undergraduate and graduate students) will play an important role in the project, which will involve Antarctic fieldwork, technically challenging labwork, data collection and interpretation, and communication of the outcome to scientists and the general public. | ["POLYGON((-104.14 -81.07,-102.24 -81.07,-100.34 -81.07,-98.44 -81.07,-96.54 -81.07,-94.64 -81.07,-92.74 -81.07,-90.84 -81.07,-88.94 -81.07,-87.04 -81.07,-85.14 -81.07,-85.14 -81.207,-85.14 -81.344,-85.14 -81.481,-85.14 -81.618,-85.14 -81.755,-85.14 -81.892,-85.14 -82.029,-85.14 -82.166,-85.14 -82.303,-85.14 -82.44,-87.04 -82.44,-88.94 -82.44,-90.84 -82.44,-92.74 -82.44,-94.64 -82.44,-96.54 -82.44,-98.44 -82.44,-100.34 -82.44,-102.24 -82.44,-104.14 -82.44,-104.14 -82.303,-104.14 -82.166,-104.14 -82.029,-104.14 -81.892,-104.14 -81.755,-104.14 -81.618,-104.14 -81.481,-104.14 -81.344,-104.14 -81.207,-104.14 -81.07))"] | ["POINT(-94.64 -81.755)"] | false | false |
Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations
|
1141973 |
2016-01-01 | Tedesco, Marco |
Enhanced Spatial Resolution Surface Melting over the Antarctic Peninsula (1958 - to date) from a Regional Climate Model Validated through Remote Sensing Observations |
This award supports a project to generate first-time validated enhanced spatial resolution (5-10 km) maps of surface melting over the Antarctic Peninsula for the period 1958 - to date from the outputs of a regional climate model and different downscaling techniques. These maps will be assessed and validated through new high spatial resolution (2.25 km) surface melting maps obtained from the QuikSCAT satellite for the period 1999 - 2009. The intellectual merit of this work is that it would be the first time that the outputs of a regional climate model would be used to study surface melting over Antarctica at such high spatial resolution and the first time that such results are validated by means of an observational tool that has such a large spatial coverage and high spatial resolution. The results generated in this study would also provide a first-time opportunity to study the melt distribution over the Peninsula and its correlation with climate drivers, such as the Southern Annual Mode (SAM) and the El Nino-Southern Oscillation (ENSO) at these unprecedented spatial scales. The enhanced resolution melting maps will also offer a unique opportunity to study melting trends and patterns over specific regions of the Peninsula, such as the Wilkins and the Larsen A and B ice shelves and evaluate whether the extreme melting observed during the recent collapses was unprecedented over the + 50 years. The broader impacts of the project are that it will integrate research and education by fully supporting one female undergrad student, a PhD student and partially supporting a PostDoc. The work will be done at a minority-serving institution and the PhD student who worked on the development of the high-resolution melting data set from QuikSCAT will become the PostDoc who will work on this project. Teaching and learning will be supported by incorporating research results into graduate and undergrad level courses and will be disseminated over the web and through appropriate channels. Results from this project will also benefit the society at large as they will improve our understanding of the links between atmospheric patterns and surface melting and they will contribute to improving estimates of sea level rise from the Antarctica continent. | ["POLYGON((-94.7374 -56.9464,-89.23679 -56.9464,-83.73618 -56.9464,-78.23557 -56.9464,-72.73496 -56.9464,-67.23435 -56.9464,-61.73374 -56.9464,-56.23313 -56.9464,-50.73252 -56.9464,-45.23191 -56.9464,-39.7313 -56.9464,-39.7313 -59.19838,-39.7313 -61.45036,-39.7313 -63.70234,-39.7313 -65.95432,-39.7313 -68.2063,-39.7313 -70.45828,-39.7313 -72.71026,-39.7313 -74.96224,-39.7313 -77.21422,-39.7313 -79.4662,-45.23191 -79.4662,-50.73252 -79.4662,-56.23313 -79.4662,-61.73374 -79.4662,-67.23435 -79.4662,-72.73496 -79.4662,-78.23557 -79.4662,-83.73618 -79.4662,-89.23679 -79.4662,-94.7374 -79.4662,-94.7374 -77.21422,-94.7374 -74.96224,-94.7374 -72.71026,-94.7374 -70.45828,-94.7374 -68.2063,-94.7374 -65.95432,-94.7374 -63.70234,-94.7374 -61.45036,-94.7374 -59.19838,-94.7374 -56.9464))"] | ["POINT(-67.23435 -68.2063)"] | false | false |
Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements
|
1043750 |
2016-01-01 | Chen, Jianli |
Collaborative Research: Long-Term and Interannual Variability of Antarctic Ice Sheet Mass Balance From Satellite Gravimetry and Other Geodetic Measurements |
This award supports a project to improve the estimate of long-term and inter-annual variability of Antarctic ice sheet mass balance at continental, regional, and catchment scales, using satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) and other geodetic measurements. The work will improve the quantification of long-term mass change rates over Antarctica using GRACE gravity data with a longer record and newer generation(s) of products and will develop advanced numerical forward modeling techniques that can accurately correct leakage effects associated with GRACE data processing, and significantly improve spatial resolution of GRACE mass rate estimates over Antarctica. The work will also contribute to a better understanding of crustal uplift rates due to postglacial rebound (PGR) and present day ice load change over Antarctica via PGR models, GPS measurements, and combined analysis of GRACE and ICESat elevation changes. Inter-annual variations of ice mass over Antarctica will be investigated at continental and catchment scales and connections to regional climate change will be studied. The major deliverables from this study will be improved assessments of ice mass balance for the entire Antarctic ice sheet and potential contribution to global mean sea level rise. The work will also provide estimates of regional ice mass change rates over Antarctica, with a focus along the coast in the Amundsen Sea Embayment, the Peninsula in West Antarctica, and in Wilkes Land and Victoria Land in East Antarctica. Estimates of inter-annual ice mass change over Antarctica at various spatial scales, and assessments of uncertainty of GRACE ice rate estimates and PGR models errors over Antarctica will also be made. The intellectual merits of the proposed investigation include 1) providing improved assessments of Antarctic ice mass balance at different temporal and spatial scales with unprecedented accuracy, an important contribution to broad areas of polar science research; 2) combining high accuracy GPS vertical uplift measurements and PGR models to better quantify long-term crust uplift effects that are not distinguishable from ice mass changes by GRACE; and 3) unifying the work of several investigations at the forefront of quantifying ice sheet and glacier mass balance and crustal uplift based on a variety of modern space geodetic observations. The broader impacts include the fact that the project will actively involve student participation and training, through the support of two graduate students. In addition the project will contribute to general education and public outreach (E/PO) activities and the results from this investigation will help inspire future geoscientists and promote public awareness of significant manifestations of climate change. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)
|
0839107 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"] | ["POINT(-163.6 -84.25)"] | false | false |
Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation
|
1043018 |
2015-12-03 | Pollard, David |
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea |
Ice-sheet model output of Antarctic Ice Sheet simulations spanning 30,000 years BP to 5000+ years in the future. | ["POINT(-85 -82)"] | ["POINT(-85 -82)"] | false | false |
Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers
|
0934534 |
2015-07-07 | Sergienko, Olga |
COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model's adjoint to support sea level change assessment |
This data set includes basal shear distributions inferred from surface observations - surface ice velocities (Joughin et al., 2010, Rignot et al., 2011), bed and surface elevations (Fretwell et al., 2013) under ten selected locations in Greenland and Antarctica. In Greenland, the locations were: 79° North and Zachariae Glaciers, Jakobshan Isbrae, North East Greenland Ice Stream, Petermann Glacier. The Antarctica locations were Bindschadler Ice Stream, Lambert Ice Stream, MacAyeal Ice Stream, Pine Island Glacier, Thwaites Glacier, and an unnamed location around ~40° E 84° S. | ["POLYGON((-150 -75,-129 -75,-108 -75,-87 -75,-66 -75,-45 -75,-24 -75,-3 -75,18 -75,39 -75,60 -75,60 -76.5,60 -78,60 -79.5,60 -81,60 -82.5,60 -84,60 -85.5,60 -87,60 -88.5,60 -90,39 -90,18 -90,-3 -90,-24 -90,-45 -90,-66 -90,-87 -90,-108 -90,-129 -90,-150 -90,-150 -88.5,-150 -87,-150 -85.5,-150 -84,-150 -82.5,-150 -81,-150 -79.5,-150 -78,-150 -76.5,-150 -75))", "POLYGON((-75 84,-69.5 84,-64 84,-58.5 84,-53 84,-47.5 84,-42 84,-36.5 84,-31 84,-25.5 84,-20 84,-20 81.6,-20 79.2,-20 76.8,-20 74.4,-20 72,-20 69.6,-20 67.2,-20 64.8,-20 62.4,-20 60,-25.5 60,-31 60,-36.5 60,-42 60,-47.5 60,-53 60,-58.5 60,-64 60,-69.5 60,-75 60,-75 62.4,-75 64.8,-75 67.2,-75 69.6,-75 72,-75 74.4,-75 76.8,-75 79.2,-75 81.6,-75 84))"] | ["POINT(-45 -82.5)", "POINT(-47.5 72)"] | false | false |
Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A
|
0440701 |
2015-06-08 | Severinghaus, Jeffrey P.; Orsi, Anais J. |
Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site |
This data set shows the modeled surface temperature reconstruction from an inversion of the 300 m WDC05A borehole at the West Antarctic Divide Ice core site. | ["POINT(-112.125 -79.463)"] | ["POINT(-112.125 -79.463)"] | false | false |
Annual Satellite Era Accumulation Patterns Over WAIS Divide: A Study Using Shallow Ice Cores, Near-Surface Radars and Satellites
|
0944653 |
2015-01-01 | Forster, Richard |
Collaborative Research: Annual satellite era accumulation patterns over WAIS Divide: A study using shallow ice cores, near-surface radars and satellites |
This award supports a project to broaden the knowledge of annual accumulation patterns over the West Antarctic Ice Sheet by processing existing near-surface radar data taken on the US ITASE traverse in 2000 and by gathering and validating new ultra/super-high-frequency (UHF) radar images of near surface layers (to depths of ~15 m), expanding abilities to monitor recent annual accumulation patterns from point source ice cores to radar lines. Shallow (15 m) ice cores will be collected in conjunction with UHF radar images to confirm that radar echoed returns correspond with annual layers, and/or sub-annual density changes in the near-surface snow, as determined from ice core stable isotopes. This project will additionally improve accumulation monitoring from space-borne instruments by comparing the spatial-radar-derived-annual accumulation time series to the passive microwave time series dating back over 3 decades and covering most of Antarctica. The intellectual merit of this project is that mapping the spatial and temporal variations in accumulation rates over the Antarctic ice sheet is essential for understanding ice sheet responses to climate forcing. Antarctic precipitation rate is projected to increase up to 20% in the coming century from the predicted warming. Accumulation is a key component for determining ice sheet mass balance and, hence, sea level rise, yet our ability to measure annual accumulation variability over the past 5 decades (satellite era) is mostly limited to point-source ice cores. Developing a radar and ice core derived annual accumulation dataset will provide validation data for space-born remote sensing algorithms, climate models and, additionally, establish accumulation trends. The broader impacts of the project are that it will advance discovery and understanding within the climatology, glaciology and remote sensing communities by verifying the use of UHF radars to monitor annual layers as determined by visual, chemical and isotopic analysis from corresponding shallow ice cores and will provide a dataset of annual to near-annual accumulation measurements over the past ~5 decades across WAIS divide from existing radar data and proposed radar data. By determining if temporal changes in the passive microwave signal are correlated with temporal changes in accumulation will help assess the utility of passive microwave remote sensing to monitor accumulation rates over ice sheets for future decades. The project will promote teaching, training and learning, and increase representation of underrepresented groups by becoming involved in the NASA History of Winter project and Thermochron Mission and by providing K-12 teachers with training to monitor snow accumulation and temperature here in the US, linking polar research to the student's backyard. The project will train both undergraduate and graduate students in polar research and will encouraging young investigators to become involved in careers in science. In particular, two REU students will participate in original research projects as part of this larger project, from development of a hypothesis to presentation and publication of the results. The support of a new, young woman scientist will help to increase gender diversity in polar research. | ["POLYGON((-119.4 -78.1,-118.46 -78.1,-117.52 -78.1,-116.58 -78.1,-115.64 -78.1,-114.7 -78.1,-113.76 -78.1,-112.82 -78.1,-111.88 -78.1,-110.94 -78.1,-110 -78.1,-110 -78.29,-110 -78.48,-110 -78.67,-110 -78.86,-110 -79.05,-110 -79.24,-110 -79.43,-110 -79.62,-110 -79.81,-110 -80,-110.94 -80,-111.88 -80,-112.82 -80,-113.76 -80,-114.7 -80,-115.64 -80,-116.58 -80,-117.52 -80,-118.46 -80,-119.4 -80,-119.4 -79.81,-119.4 -79.62,-119.4 -79.43,-119.4 -79.24,-119.4 -79.05,-119.4 -78.86,-119.4 -78.67,-119.4 -78.48,-119.4 -78.29,-119.4 -78.1))"] | ["POINT(-114.7 -79.05)"] | false | false |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-01-01 | Levy, Joseph |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica |
The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"] | ["POINT(163.5385 -77.82215)"] | false | false |
Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica
|
1043657 |
2015-01-01 | Cassano, John; Palo, Scott |
Collaborative Research: Ocean-Ice-Atmosphere Interactions in the Terra Nova Bay Polynya, Antarctica |
Antarctic coastal polynas are, at the same time, sea-ice free sites and 'sea-ice factories'. They are open water surface locations where water mass transformation and densification occurs, and where atmospheric exchanges with the deep ocean circulation are established. Various models of the formation and persistence of these productive and diverse ocean ecosystems are hampered by the relative lack of in situ meteorological and physical oceanographic observations, especially during the inhospitable conditions of their formation and activity during the polar night. Characterization of the lower atmosphere properties, air-sea surface heat fluxes and corresponding ocean hydrographic profiles of Antarctic polynyas, especially during strong wind events, is sought for a more detailed understanding of the role of polynyas in the production of latent-heat type sea ice and the formation, through sea ice brine rejection, of dense ocean bottom waters. A key technological innovation in this work continues to be the use of instrumented unmanned aircraft systems (UAS), to enable the persistent and safe observation of the interaction of light and strong katabatic wind fields, and mesocale cyclones in the Terra Nova Bay (Victoria Land, Antarctica) polynya waters during late winter and early summer time frames. | ["POLYGON((163 -74.5,163.9 -74.5,164.8 -74.5,165.7 -74.5,166.6 -74.5,167.5 -74.5,168.4 -74.5,169.3 -74.5,170.2 -74.5,171.1 -74.5,172 -74.5,172 -74.9,172 -75.3,172 -75.7,172 -76.1,172 -76.5,172 -76.9,172 -77.3,172 -77.7,172 -78.1,172 -78.5,171.1 -78.5,170.2 -78.5,169.3 -78.5,168.4 -78.5,167.5 -78.5,166.6 -78.5,165.7 -78.5,164.8 -78.5,163.9 -78.5,163 -78.5,163 -78.1,163 -77.7,163 -77.3,163 -76.9,163 -76.5,163 -76.1,163 -75.7,163 -75.3,163 -74.9,163 -74.5))"] | ["POINT(167.5 -76.5)"] | false | false |
A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
|
1043485 |
2015-01-01 | Kurz, Mark D.; Curtice, Josh |
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea |
This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. | ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"] | ["POINT(166.324 -77.908945)"] | false | false |
Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System
|
0732844 0758274 0632198 |
2014-11-03 | Parizek, Byron R.; Blankenship, Donald D.; Dupont, Todd K.; Holt, John W. |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System IPY: Flow Dynamics of the Amundsen Sea Glaciers: Thwaites and Pine Island. |
This data set consists of experimental output from a higher-order finite-element model that was utilized in conjunction with existing data sets to isolate essential physical processes affecting Thwaites Glacier (TG) in the Amundsen Sea Embayment (ASE) of West Antarctica. | ["POLYGON((-110.06 -74.05,-109.582 -74.05,-109.104 -74.05,-108.626 -74.05,-108.148 -74.05,-107.67 -74.05,-107.192 -74.05,-106.714 -74.05,-106.236 -74.05,-105.758 -74.05,-105.28 -74.05,-105.28 -74.31,-105.28 -74.57,-105.28 -74.83,-105.28 -75.09,-105.28 -75.35,-105.28 -75.61,-105.28 -75.87,-105.28 -76.13,-105.28 -76.39,-105.28 -76.65,-105.758 -76.65,-106.236 -76.65,-106.714 -76.65,-107.192 -76.65,-107.67 -76.65,-108.148 -76.65,-108.626 -76.65,-109.104 -76.65,-109.582 -76.65,-110.06 -76.65,-110.06 -76.39,-110.06 -76.13,-110.06 -75.87,-110.06 -75.61,-110.06 -75.35,-110.06 -75.09,-110.06 -74.83,-110.06 -74.57,-110.06 -74.31,-110.06 -74.05))"] | ["POINT(-107.67 -75.35)"] | false | false |
Bubble Number-density Data and Modeled Paleoclimates
|
0539578 |
2014-08-14 | Alley, Richard; Fegyveresi, John | No project link provided | This data set includes bubble number-density measured at depths from 120 meters to 560 meters at 20-meter intervals in both horizontal and vertical samples. The data set also includes modeled temperature reconstructions based on the model developed by Spencer and others (2006). | ["POINT(-112.3 -79.433333)"] | ["POINT(-112.3 -79.433333)"] | false | false |
Standing Water Depth on Larsen B Ice Shelf
|
0944248 |
2014-04-29 | MacAyeal, Douglas |
Model Studies of Surface Water Behavior on Ice Shelves |
This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability. | ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"] | ["POINT(-59 -65)"] | false | false |
Interaction of Ice Stream Flow with Heterogeneous Beds
|
0838811 |
2014-04-14 | Sergienko, Olga |
Model Investigation of Ice Stream/Subglacial Lake Systems |
This data set consists of outputs of several numerical models simulating ice stream flow over undulated bed, interaction of ice stream flow, and subglacial and supraglacial hydraulic systems. All simulations are performed for idealized geometries using finite-element models. | ["POINT(0 -78)"] | ["POINT(0 -78)"] | false | false |
Late Holocene Methane Concentrations from WAIS Divide and GISP2
|
0538538 0944584 0538578 |
2014-01-31 | Mitchell, Logan E |
Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core. |
This data set measures methane concentrations in ancient air trapped in the West Antarctic Ice Sheet (WAIS) Divide and Greenland Ice Sheet Project (GISP2) ice cores; presenting two, high-resolution ice core methane records of the past 2500 years, one from each pole. These measurements were used to reconstruct the methane Inter-Polar Difference (IPD) during the late Holocene. Also included are model results of methane emissions that were presented in the manuscript describing this data set. | ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"] | ["POINT(-112.0865 -79.4676)", "POINT(-38.5 72.6)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838937 |
2014-01-01 | Costa, Daniel |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)
|
1043740 |
2014-01-01 | Lenczewski, Melissa |
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL) |
The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research. This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research. | ["POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))"] | ["POINT(166.5 -78)"] | false | false |
A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica
|
1139739 |
2014-01-01 | Hansen, Samantha |
New Approach to Investigate the Seismic Velocity Structure beneath Antarctica |
Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent. Broader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains
|
1354231 |
2014-01-01 | Kowalewski, Douglas |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains |
Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award. | ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"] | ["POINT(-140 -77.5)"] | false | false |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula
|
0838996 |
2014-01-01 | Hollibaugh, James T. |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula |
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the 'winter water' (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the 'circumpolar deep water' (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP 'grows in' during spring and summer after this water mass forms. The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer. | ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"] | ["POINT(-71.5 -67)"] | false | false |
Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri
|
0944201 |
2014-01-01 | Hofmann, Gretchen |
Effect of Ocean Acidification on Early Life History Stages of the Antarctic Sea Urchins Sterechinus Neumayeri |
This research examines the effects of ocean acidification on embryos and larvae of a contemporary calcifier in the coastal waters of Antarctica, the sea urchin Sterechinus neumayeri. The effect of future ocean acidification is projected to be particularly threatening to calcifying marine organisms in coldwater, high latitude seas, making tolerance data on these organisms a critical research need in Antarctic marine ecosystems. Due to a high magnesium (Mg) content of their calcitic hard parts, echinoderms are especially vulnerable to dissolution stress from ocean acidification because they currently inhabit seawater that is barely at the saturation level to support biogenic calcification. Thus, cold-water, high latitude species with a high Mg-content in their hard parts are considered to be the 'first responders' to chemical changes in the surface oceans. Studies in this proposal will use several metrics to examine the physiological plasticity of contemporary urchin embryos and larvae to CO2-acidified seawater, to mimic the scenarios defined by IPCC models and by analyses of future acidification predicted for the Southern Ocean. The research also will investigats the biological consequences of synergistic interactions of two converging climate change-related stressors - CO2- driven ocean acidification and ocean warming. Specifically the research will (1) assess the effect of CO2-acidified seawater on the development of early embryos and larvae, (2) using morphometrics, examine changes in the larval endoskeleton in response to development under the high-CO2 conditions of ocean acidification, (3) using a DNA microarray, profile changes in gene expression for genes involved in biomineralization and other important physiological processes, and (4) measure costs and physiological consequences of development under conditions of ocean acidification. The proposal will support the training of undergraduates, graduate students and a postdoctoral fellow. The PI also will collaborate with the UC Santa Barbara Gevirtz Graduate School of Education to link the biological effects of ocean acidification to the chemical changes expected for the Southern Ocean using the 'Science on a Sphere' technology. This display will be housed in an education and public outreach center, the Outreach Center for Teaching Ocean Science (OCTOS), a new state-of-the-art facility under construction at UC Santa Barbara. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes
|
1019305 |
2014-01-01 | Grim, Jeffrey |
PostDoctoral Research Fellowship |
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | [] | [] | false | false |
Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 |
2014-01-01 | Bender, Michael |
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an 'International Climate Park' in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"] | ["POINT(159.29167 -76.7)"] | false | false |
East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains
|
1043619 |
2014-01-01 | Hemming, Sidney R. |
Collaborative Research: East Antarctic outlet glacier contributions to the Ross Sea from chronology of detrital grains |
Intellectual Merit: The PIs proposed a provenance study of glacial deposits in the Ross Embayment that will provide a broad scale geochronologic survey of detrital minerals in till to help characterize bedrock beneath the East Antarctic ice sheet and constrain Antarctica?s glacial history. This project capitalizes on previous investments in field sampling. Analytical tools applied to single mineral grains extracted from existing collections of glacial till will generate ?fingerprints? of East Antarctic outlet glaciers and West Antarctic till to refine paleo-ice flow models for the Ross Embayment during the last glacial maximum, older records from ANDRILL cores, and to assess IRD sources in the Southern Ocean. New provenance tracers will include a suite of geochronological methods that together provide greater insights into the orogenic and erosional history the region. This project will include U/Pb of detrital zircons, (U-Th)/He on a subset of the U/Pb dated zircons, as well as Ar-Ar of detrital hornblende, mica and feldspars. Broader Impacts: This research will train one M.S. student at IUPUI, a Ph.D. student at Columbia, and several undergraduates at both institutions. Graduate students involved in the project will be involved in mentoring undergraduate researchers. Incorporation of research discoveries will be brought into the classroom by providing concrete examples and exercises at the appropriate level. Licht and Columbia graduate student E. Pierce are developing outreach projects with local secondary school teachers to investigate the provenance of glacial materials in their local areas. The research will have broad applicability to many fields. | ["POLYGON((-180 -63.997,-179.7982 -63.997,-179.5964 -63.997,-179.3946 -63.997,-179.1928 -63.997,-178.991 -63.997,-178.7892 -63.997,-178.5874 -63.997,-178.3856 -63.997,-178.1838 -63.997,-177.982 -63.997,-177.982 -66.3324,-177.982 -68.6678,-177.982 -71.0032,-177.982 -73.3386,-177.982 -75.674,-177.982 -78.0094,-177.982 -80.3448,-177.982 -82.6802,-177.982 -85.0156,-177.982 -87.351,-178.1838 -87.351,-178.3856 -87.351,-178.5874 -87.351,-178.7892 -87.351,-178.991 -87.351,-179.1928 -87.351,-179.3946 -87.351,-179.5964 -87.351,-179.7982 -87.351,180 -87.351,172.54273 -87.351,165.08546 -87.351,157.62819 -87.351,150.17092 -87.351,142.71365 -87.351,135.25638 -87.351,127.79911 -87.351,120.34184 -87.351,112.88457 -87.351,105.4273 -87.351,105.4273 -85.0156,105.4273 -82.6802,105.4273 -80.3448,105.4273 -78.0094,105.4273 -75.674,105.4273 -73.3386,105.4273 -71.0032,105.4273 -68.6678,105.4273 -66.3324,105.4273 -63.997,112.88457 -63.997,120.34184 -63.997,127.79911 -63.997,135.25638 -63.997,142.71365 -63.997,150.17092 -63.997,157.62819 -63.997,165.08546 -63.997,172.54273 -63.997,-180 -63.997))"] | ["POINT(143.72265 -75.674)"] | false | false |
Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica
|
0732804 |
2014-01-01 | McPhee, Miles G. |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the 'Multidisciplinary Study of the Amundsen Sea Embayment' proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded 'Polar Palooza' education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | ["POINT(166.25 -77.42)"] | ["POINT(166.25 -77.42)"] | false | false |
Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History
|
1043700 |
2014-01-01 | Harry, Dennis L. |
Geodynamic Models of Subsidence and Lithospheric Flexure at the ANDRILL Drill Sites: Implications for Cenozoic Tectonics and Ice Sheet History |
Intellectual Merit: This research will place the subsidence history of the southern Victoria Land Basin into a quantitative geodynamic context and will assess the influence of flexure associated with late Neogene volcanic loading of the crust by the Erebus Volcanic Group. This will be done by extending geodynamic models of extension in the West Antarctic Rift System to include extensional hiatuses hypothesized to have occurred during the Late Paleogene and Miocene, and by developing a new geodynamic model of volcanic loading and associated lithosphere flexure. Finite element and finite difference modeling methods will be used. In the first phase of the project, a series of extensional geodynamic models will be developed to examine the effect that proposed extensional hiatuses have on the style of extension, with emphasis placed on developing a process based understanding of the change in rift style from diffuse during the Late Cretaceous to more focused during the Cenozoic. The models will test the hypotheses that extensional hiatuses led to the change in rifting style, and will place constraints on the timing and duration of the hiatuses. The second phase of the project will use the thermal and rheological properties of the previous models to constrain the flexural rigidity of the lithosphere in order to model the flexural response to volcanic loading to test the hypotheses that flexural subsidence contributed to cyclic changes between grounded and floating ice at the ANDRILL AND-1A site, complicating interpretations of the climatic record from this core, and that flexure contributes to the stress orientation at the AND-2B site, which is inconsistent with the expected regional extensional stress orientation. Broader impacts: The project will train an undergraduate student and an M.S. student. Outreach activities include a planned series of talks at regional high schools, junior colleges, and 4-year colleges that have geology programs. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines
|
0944475 |
2014-01-01 | Kaplan, Michael |
Collaborative Research: Pleistocene East Antarctic Ice Sheet History as Recorded in Sediment Provenance and Chronology of High-elevation TAM Moraines |
Intellectual Merit: The proposed work will investigate changes in the compositional variation of glacial tills over time across two concentric sequences of Pleistocene moraines located adjacent to the heads of East Antarctic outlet glaciers in the Transantarctic Mountains (TAM). The chronologic framework for this work will be generated from cosmogenic exposure ages of boulders on prominent morainal ridges. The PIs hypothesize that variations in till composition may indicate a change in ice flow direction or a change in the composition of the original source area, while ages of the moraines provide a long-term terrestrial perspective on ice sheet dynamics. Both results are vital for modeling experiments that aim to reconstruct the East Antarctic Ice Sheet and assess its role in the global climate system and its potential impact on global sea level rise. The variation of till compositions through time also allows for a more accurate interpretation of sediment cores from the Ross Sea and the Southern Ocean. Additionally, till exposures at the head of some East Antarctic outlet glaciers have been shown to contain subglacial material derived from East Antarctic bedrock, providing a window through the ice to view East Antarctica's inaccessible bedrock. Till samples will be collected from two well-preserved sequences of moraine crests at Mt. Howe (head of Scott Glacier) and Mt. Achernar (between Beardmore and Nimrod Glaciers). Each size fraction in glacial till provides potentially valuable information, and the PIs will measure the petrography of the clast and sand fractions, quantitative X-ray diffraction on the crushed <2mm fraction, elemental abundance of the silt/clay fraction, and U/Pb of detrital zircons in the sand fraction. Data collection will rely on established methods previously used in this region and the PIs will also explore new methods to assess their efficacy. On the same moraines crests sampled for provenance studies, the PIs will sample for cosmogenic surface exposure analyses to provide a chronologic framework at the sites for provenance changes through time. Broader Impact: The proposed research involves graduate and undergraduate training in a diverse array of laboratory methods. Students and PIs will be make presentations to community and campus groups, as well as conduct interviews with local news outlets. The proposed work also establishes a new, potentially long-term, collaboration between scientists at IUPUI and LDEO and brings a new PI (Kaplan) into the field of Antarctic Earth Sciences. | ["POLYGON((-180 -84.1,-176.97 -84.1,-173.94 -84.1,-170.91 -84.1,-167.88 -84.1,-164.85 -84.1,-161.82 -84.1,-158.79 -84.1,-155.76 -84.1,-152.73 -84.1,-149.7 -84.1,-149.7 -84.43,-149.7 -84.76,-149.7 -85.09,-149.7 -85.42,-149.7 -85.75,-149.7 -86.08,-149.7 -86.41,-149.7 -86.74,-149.7 -87.07,-149.7 -87.4,-152.73 -87.4,-155.76 -87.4,-158.79 -87.4,-161.82 -87.4,-164.85 -87.4,-167.88 -87.4,-170.91 -87.4,-173.94 -87.4,-176.97 -87.4,180 -87.4,178.12 -87.4,176.24 -87.4,174.36 -87.4,172.48 -87.4,170.6 -87.4,168.72 -87.4,166.84 -87.4,164.96 -87.4,163.08 -87.4,161.2 -87.4,161.2 -87.07,161.2 -86.74,161.2 -86.41,161.2 -86.08,161.2 -85.75,161.2 -85.42,161.2 -85.09,161.2 -84.76,161.2 -84.43,161.2 -84.1,163.08 -84.1,164.96 -84.1,166.84 -84.1,168.72 -84.1,170.6 -84.1,172.48 -84.1,174.36 -84.1,176.24 -84.1,178.12 -84.1,-180 -84.1))"] | ["POINT(-174.25 -85.75)"] | false | false |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris
|
0944489 |
2014-01-01 | Williams, Trevor; Hemming, Sidney R. |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris |
Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences | ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"] | ["POINT(54 -68)"] | false | false |
Depths to Ice-cemented Soils in High-elevation Quartermain Mountains, Dry Valleys, Antarctica
|
None | 2013-03-18 | Marinova, Margarita M.; McKay, Christopher P. | No project link provided | This data set is comprised of four surveyed valleys focusing on the depth to ground ice in the high-elevation Quartermain Mountains in the Beacon Valley area: University Valley, Farnell Valley, and two unnamed valleys north of University Valley, which we will call Valley North and Valley 2 North. To date it is only in the high-elevation Dry Valleys that the climatic conditions are dry and cold enough that cryotic (always below 0°C) yet dry soil is found over ice-cemented ground (McKay et al. 1998), (Bockheim 2007). The data provide a qualitative and quantitative contribution towards understanding the type and distribution of ground ice in the Quartermain Mountains at a high spatial resolution. The measurements can be used to improve and validate models of ice stability and distribution. This data set contains observations of depth to ice-cemented ground, based on 475 measurements at 147 sites. Note that the measurements represent the thickness of the active layer plus any dry permafrost layer, which is ubiquitous in this region, and not just the thickness of the active layer. | ["POLYGON((160.666667 -77.833333,160.681667 -77.833333,160.696667 -77.833333,160.711667 -77.833333,160.726667 -77.833333,160.741667 -77.833333,160.756667 -77.833333,160.771667 -77.833333,160.786667 -77.833333,160.801667 -77.833333,160.816667 -77.833333,160.816667 -77.8399997,160.816667 -77.8466664,160.816667 -77.8533331,160.816667 -77.8599998,160.816667 -77.8666665,160.816667 -77.8733332,160.816667 -77.8799999,160.816667 -77.8866666,160.816667 -77.8933333,160.816667 -77.9,160.801667 -77.9,160.786667 -77.9,160.771667 -77.9,160.756667 -77.9,160.741667 -77.9,160.726667 -77.9,160.711667 -77.9,160.696667 -77.9,160.681667 -77.9,160.666667 -77.9,160.666667 -77.8933333,160.666667 -77.8866666,160.666667 -77.8799999,160.666667 -77.8733332,160.666667 -77.8666665,160.666667 -77.8599998,160.666667 -77.8533331,160.666667 -77.8466664,160.666667 -77.8399997,160.666667 -77.833333))"] | ["POINT(160.741667 -77.8666665)"] | false | false |
West Antarctica Ice Core and Climate Model Data
|
0837988 |
2013-03-13 | Steig, Eric J. |
Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012) |
This data set includes ice core water isotope data from Antarctic ice cores covering the last 200 to 2000 years. | ["POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))"] | ["POINT(0 -89.999)"] | false | false |
Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica
|
9615420 |
2013-02-14 | Engelhardt, Hermann |
Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics |
This data set is a collection of video data of basal ice taken in a borehole on the Kamb Ice Stream in West Antarctica. Ice streams are an expression of the inherent instability of the West Antarctic Ice Sheet, and their behavior is a key control on the overall ice-sheet mass balance. Understanding the response of the ice sheet in a warming climate requires a thorough understanding of the internal dynamics of ice streams, in addition to the relevant ice-atmosphere and ice-ocean interactions in the region. The basal environment of the ice streams and of many glaciers is a key scientific interest, including conditions, mainly basal sliding, that lead to fast flow of the ice. The purpose of this data set is to present a review of the full range of original video recordings from the basal ice of the Kamb Ice Stream. Direct observations at the ice-stream bed are a crucial complement to modeling efforts predicting future scenarios in a warming climate. | ["POINT(-136.404633 -82.39955)"] | ["POINT(-136.404633 -82.39955)"] | false | false |
The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)
|
0839053 |
2013-01-01 | Ackley, Stephen |
The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11) |
Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models. Researchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet. A series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed. | ["POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))"] | ["POINT(-142.083 -72.3165)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838892 |
2013-01-01 | Burns, Jennifer |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys
|
0838850 |
2013-01-01 | Gooseff, Michael N. |
Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys |
Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities. | ["POLYGON((-163.3 -77.62,-163.202 -77.62,-163.104 -77.62,-163.006 -77.62,-162.908 -77.62,-162.81 -77.62,-162.712 -77.62,-162.614 -77.62,-162.516 -77.62,-162.418 -77.62,-162.32 -77.62,-162.32 -77.631,-162.32 -77.642,-162.32 -77.653,-162.32 -77.664,-162.32 -77.675,-162.32 -77.686,-162.32 -77.697,-162.32 -77.708,-162.32 -77.719,-162.32 -77.73,-162.418 -77.73,-162.516 -77.73,-162.614 -77.73,-162.712 -77.73,-162.81 -77.73,-162.908 -77.73,-163.006 -77.73,-163.104 -77.73,-163.202 -77.73,-163.3 -77.73,-163.3 -77.719,-163.3 -77.708,-163.3 -77.697,-163.3 -77.686,-163.3 -77.675,-163.3 -77.664,-163.3 -77.653,-163.3 -77.642,-163.3 -77.631,-163.3 -77.62))"] | ["POINT(-162.81 -77.675)"] | false | false |
Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem
|
0838830 |
2013-01-01 | Cottrell, Matthew; Kirchman, David |
Photoheterotrophic Microbes in the West Antarctic Peninsula Marine Ecosystem |
Light quality and availability are likely to change in polar ecosystems as ice coverage and thickness decrease. How microbes adjust to these and other changes will have huge impacts on the polar marine ecosystems. Little is known about photoheterotrophic prokaryotes, which are hypothesized to gain a metabolic advantage by harvesting light energy in addition to utilizing dissolved organic matter (DOM). Photoheterotrophy is not included in current models of carbon cycling and energy flow. This research will examine three questions: 1. Are photoheterotrophic microbes present and active in Antarctic waters in winter and summer? 2. Does community structure of photoheterotrophs shift between summer and winter? 3. Which microbial groups assimilate more DOM in light than in the dark? The research will test hypotheses about activity of photoheterotrophs in winter and in summer, shifts in community structure between light and dark seasons and the potentially unique impacts of photoheterotrophs on biogeochemical processes in the Antarctic. The project will directly support a graduate student, will positively impact the NSF REU program at the College of Marine and Earth Studies, and will include students from the nation's oldest historical minority college. The results will be featured during weekly tours of Lewes facilities (about 1000 visitors per year) and during Coast Day, an annual open-house that attracts about 10,000 visitors. | ["POLYGON((-64.079666 -64.77966,-64.0757659 -64.77966,-64.0718658 -64.77966,-64.0679657 -64.77966,-64.0640656 -64.77966,-64.0601655 -64.77966,-64.0562654 -64.77966,-64.0523653 -64.77966,-64.0484652 -64.77966,-64.0445651 -64.77966,-64.040665 -64.77966,-64.040665 -64.783261,-64.040665 -64.786862,-64.040665 -64.790463,-64.040665 -64.794064,-64.040665 -64.797665,-64.040665 -64.801266,-64.040665 -64.804867,-64.040665 -64.808468,-64.040665 -64.812069,-64.040665 -64.81567,-64.0445651 -64.81567,-64.0484652 -64.81567,-64.0523653 -64.81567,-64.0562654 -64.81567,-64.0601655 -64.81567,-64.0640656 -64.81567,-64.0679657 -64.81567,-64.0718658 -64.81567,-64.0757659 -64.81567,-64.079666 -64.81567,-64.079666 -64.812069,-64.079666 -64.808468,-64.079666 -64.804867,-64.079666 -64.801266,-64.079666 -64.797665,-64.079666 -64.794064,-64.079666 -64.790463,-64.079666 -64.786862,-64.079666 -64.783261,-64.079666 -64.77966))"] | ["POINT(-64.0601655 -64.797665)"] | false | false |
Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes
|
0741301 |
2013-01-01 | O'Brien, Kristin |
Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes |
Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. This collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education. | ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"] | ["POINT(-63.445 -63.695)"] | false | false |
Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling
|
1043779 |
2013-01-01 | Mellish, Jo-Ann |
Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING |
Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk. | ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"] | ["POINT(166.283335 -77.69653)"] | false | false |
AGASEA Ice Thickness Profile Data from the Amundsen Sea Embayment, Antarctica
|
0636724 |
2012-05-03 | Blankenship, Donald D.; Young, Duncan A.; Holt, John W.; Kempf, Scott D. |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System |
This data set contains line-based radar-derived ice thickness and bed elevation data, collected as part of the Airborne Geophysical Survey of the Amundsen Embayment (AGASEA) expedition, which took place over Thwaites Glacier in West Antarctica from 2004 to 2005. The data set includes ice thickness, ice sheet bed elevation, and ice sheet surface elevation, derived from ice-penetrating radar and aircraft GPS positions. The data are spaced on a 15 km by 15 km grid over the entire catchment of the glacier, and sampled at approximately 15 meters along track. Most of the radar data used for this dataset has been processed using a 1-D focusing algorithm, to reduce the along track resolution to tens of meters, to improve boundary conditions for ice sheet models. Data are available via FTP in space-delimited ASCII format. | ["POLYGON((-125 -73,-121.5 -73,-118 -73,-114.5 -73,-111 -73,-107.5 -73,-104 -73,-100.5 -73,-97 -73,-93.5 -73,-90 -73,-90 -74,-90 -75,-90 -76,-90 -77,-90 -78,-90 -79,-90 -80,-90 -81,-90 -82,-90 -83,-93.5 -83,-97 -83,-100.5 -83,-104 -83,-107.5 -83,-111 -83,-114.5 -83,-118 -83,-121.5 -83,-125 -83,-125 -82,-125 -81,-125 -80,-125 -79,-125 -78,-125 -77,-125 -76,-125 -75,-125 -74,-125 -73))"] | ["POINT(-107.5 -78)"] | false | false |
Antarctic Peninsula 100 m Digital Elevation Model Derived from ASTER GDEM
|
None | 2012-04-30 | Cook, Allison | No project link provided | This data set provides a 100 meter resolution surface topography Digital Elevation Model (DEM) of the Antarctic Peninsula. The DEM is based on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) data. | ["POLYGON((-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-62.5 -63,-61 -63,-59.5 -63,-58 -63,-56.5 -63,-55 -63,-55 -63.7,-55 -64.4,-55 -65.1,-55 -65.8,-55 -66.5,-55 -67.2,-55 -67.9,-55 -68.6,-55 -69.3,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.3,-70 -68.6,-70 -67.9,-70 -67.2,-70 -66.5,-70 -65.8,-70 -65.1,-70 -64.4,-70 -63.7,-70 -63))"] | ["POINT(-62.5 -66.5)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838722 |
2012-01-01 | Gehrels, George; Reiners, Peter; Thomson, Stuart |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"] | ["POINT(68.49 -70.49)"] | false | false |
Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau
|
0739781 |
2012-01-01 | Blythe, Ann Elizabeth; Huerta, Audrey D. |
Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau |
This project studies formation of the TransAntarctic Mountains (TAM) through numerical modeling based on cooling histories of apatite mineral grains. The TAM are the highest and longest rift-related mountain range in the world. Various models for their uplift have been proposed, the most provocative of which is that they are not uplifted, but instead are the eroded remnant of a plateau. This project evaluates that hypothesis by collecting apatites from around Byrd Glacier for fission track thermochronology. Results will be combined with a kinematic and thermal model to determine the TAM's structural evolution. The plateau model, if correct, implies that the Byrd Glacier originated not as a glacier-carved valley through the TAM, but as a river system flowing in the opposite direction. Given that the Byrd Glacier is a key drainage for the East Antarctic ice sheet, this result has important implications for ice sheet models and interpretation of both regional geology and sediment records. The main broader impacts are undergraduate research and a new collaboration between a primarily undergraduate and a research institution. Students will be involved in the field program, sample analyses, and numerical modeling. | ["POLYGON((155.77667 -79.793335,156.208836 -79.793335,156.641002 -79.793335,157.073168 -79.793335,157.505334 -79.793335,157.9375 -79.793335,158.369666 -79.793335,158.801832 -79.793335,159.233998 -79.793335,159.666164 -79.793335,160.09833 -79.793335,160.09833 -79.8578345,160.09833 -79.922334,160.09833 -79.9868335,160.09833 -80.051333,160.09833 -80.1158325,160.09833 -80.180332,160.09833 -80.2448315,160.09833 -80.309331,160.09833 -80.3738305,160.09833 -80.43833,159.666164 -80.43833,159.233998 -80.43833,158.801832 -80.43833,158.369666 -80.43833,157.9375 -80.43833,157.505334 -80.43833,157.073168 -80.43833,156.641002 -80.43833,156.208836 -80.43833,155.77667 -80.43833,155.77667 -80.3738305,155.77667 -80.309331,155.77667 -80.2448315,155.77667 -80.180332,155.77667 -80.1158325,155.77667 -80.051333,155.77667 -79.9868335,155.77667 -79.922334,155.77667 -79.8578345,155.77667 -79.793335))"] | ["POINT(157.9375 -80.1158325)"] | false | false |
Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica
|
0538674 |
2011-08-15 | Macgregor, Joseph A.; Matsuoka, Kenichi; Studinger, Michael S. |
Collaborative Research: Deciphering the Deep Ice and the Ice-water Interface over Lake Vostok Using Existing Radar Data |
This data set provides a modeled radar attenuation rate profile, showing the predicted contributions from pure ice and impurities to radar attenuation at the Vostok 5G ice core site in Antarctica, as well as the total attenuation rate and its formal uncertainty. The model data are based on borehole temperature logs, concentrations of major soluble ions measured from melted ice core samples, and information about the electrical conductivity of ice. Attenuation rates and their spatial variability are important constraints for radar studies of ice sheets. Parameters include depth, total attenuation rate, and attenuation rate contribution from pure ice, acidity, and salinity. Data are available via FTP as a text file (.txt) with columns in comma separated value format. | ["POINT(73.17 -78.47)"] | ["POINT(73.17 -78.47)"] | false | false |
High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet
|
None | 2011-02-20 | Bindschadler, Robert; Choi, Hyeungu | No project link provided | This data set provides grounding line and hydrostatic line locations for the Antarctic coastline and islands around Antarctica. The data are derived using customized software to combine data from Landsat-7 imagery and Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry, which were primarily collected between 1999 to 2003. The data set also includes elevations along each line, selected from six candidate digital elevation models. The data were developed as part of the Antarctic Surface Accumulation and Ice Discharge (ASAID) project. Funding trough NASA grant 509496.02.08.01.81 Data are provided in both ASCII text (.txt) and shapefile (.shp, .dbf, .shx) formats. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838729 |
2011-01-01 | Hemming, Sidney R. |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"] | ["POINT(48.9 -64)"] | false | false |
Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island
|
0839084 |
2011-01-01 | Fritts, David; Janches, Diego |
Large- and Small-scale Dynamics and Meteor Studies in the MLT with a New-generation Meteor Radar on King George Island |
The project will employ a sophisticated meteor radar at the Brazilian Antarctic station Comandante Ferraz on King George Island for a number of synergetic research efforts of high interest to the international aeronomical community. The location of the radar will be at the tip of the Antarctic Peninsula - at a critical southern latitude of 62 degrees - to fill a current measurement gap from 54 to 68 degrees south. The radar will play a key role in Antarctic and inter-hemispheric studies of neutral atmosphere dynamics, defining global mesosphere and lower thermosphere structure and variability (from 80 to 105 km) and guiding advances of models accounting for the dynamics of this high-altitude region, including general circulation models, and climate and numerical weather prediction models. The unique radar measurement sensitivity will enable studies of: (1) the large-scale circulation and planetary waves, (2) the tidal structure and variability, (3) the momentum transport by small-scale gravity waves, (4) important, but unquantified, gravity wave - tidal interactions, (5) polar mesosphere summer echoes, and (6) meteor fluxes, head echoes, and non-specular trails, a number of which exhibit high latitudinal gradients at these latitudes. This radar will support extensive collaborations with U.S. and other scientists making measurements at other Antarctic and Arctic conjugate sites, including Brazilian scientists at C. Ferraz and U.S. and international colleagues having other instrumentation in the Antarctic, Arctic, and within South America. Links to the University of Colorado in the U.S., Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil and Universidad Nacional de La Plata in Argentina will provide unique research opportunities for graduate and undergraduate students in the U.S. and South America. | ["POLYGON((-63 -59,-62 -59,-61 -59,-60 -59,-59 -59,-58 -59,-57 -59,-56 -59,-55 -59,-54 -59,-53 -59,-53 -59.6,-53 -60.2,-53 -60.8,-53 -61.4,-53 -62,-53 -62.6,-53 -63.2,-53 -63.8,-53 -64.4,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.4,-63 -63.8,-63 -63.2,-63 -62.6,-63 -62,-63 -61.4,-63 -60.8,-63 -60.2,-63 -59.6,-63 -59))"] | ["POINT(-58 -62)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0528728 |
2011-01-01 | Vernet, Maria |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"] | ["POINT(-66.84 -66.405)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529087 |
2011-01-01 | Quetin, Langdon B.; Ross, Robin Macurda |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"] | ["POINT(-66 -65.5)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529666 |
2011-01-01 | Fritsen, Christian |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels. | ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"] | ["POINT(0 -89.999)"] | false | false |
Methane Isotopes in South Pole Firn Air, 2008
|
0739491 |
2011-01-01 | Sowers, Todd A. |
Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air |
This data set contains depth profiles for delta carbon-13 (δ13C) and delta deuterium (δD) of methane (CH<sub>4</sub>) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH<sub>4</sub> at South Pole Station (no depth-age model provided). Data are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx). | ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"] | ["POINT(0 -89.999)"] | false | false |
Histories of Accumulation, Thickness, and WAIS Divide Location, Antarctica
|
0440666 |
2010-06-20 | Waddington, Edwin D.; Koutnik, Michelle |
Histories of accumulation, thickness and WAIS Divide location from radar layers using a new inverse approach |
This data set contains radar internal layer and ice sheet topography data for two sites in Antarctica, along with associated model results from two studies. This project used geophysical inverse theory and a 2.5 D flowband ice-flow forward model to extract robust transient accumulation patterns from multiple deeper layers. Histories of divide migration, or the movement of the ice sheet and ice-surface evolution are also provided. The data used to solve the inverse problem, and the model solutions are provided. Internal layers, modern ice-surface velocities, and modern ice-sheet geometry at Taylor Mouth are available, as well as the pattern of accumulation inferred by Waddington et al. (2007). Data are available via FTP in Matlab (.mat) format. Supporting information is available as text files (.rtf and .txt). | ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"] | ["POINT(-111.816667 -79.416667)", "POINT(158.716667 -77.783333)"] | false | false |
Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica
|
0338151 |
2010-06-15 | Raymond, Charles; Matsuoka, Kenichi |
Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data |
This data set contains the results of a model study of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. The model data are based on radar data collected by the Support Office of Aerogeophysical Research (SOAR) at the University of Texas, and the University of Washington, in 2000. The data include values for attenuation estimates for individual radar profiles. Data are available via FTP in MATLAB (.mat) and Portable Document (.pdf) formats. | ["POINT(-112.09 -79.47)"] | ["POINT(-112.09 -79.47)"] | false | false |
Borehole Optical Stratigraphy Modeling, Antarctica
|
0335330 |
2010-06-15 | Hawley, Robert L.; Smith, Ben; Waddington, Edwin D.; Fudge, T. J. |
Borehole Optical Stratigraphy: Ice Microphysics, Climate Change, and the Optical Properties of Firn |
This data set consists of scripts and code designed for modeling the properties of boreholes in polar ice sheets, under a range of variations in the borehole geometry, firn layering, and camera pointing and position. The data set contains two folders. One includes two perl scripts and a piece of C code, along with directions for setting up and running a Monte Carlo model of photons traveling to and from a borehole in the firn. The second includes scripts for generating ray-tracing input files to be used with the POV-Ray package (a standard, free raytracing package) to generate simulated borehole video frames based on the results of the Monte Carlo model. The project was conducted between February 2005 and April 2010. The codes to run the models are available via FTP, in Perlscript (.pl) and C code. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection
|
0440687 |
2010-01-01 | Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection |
As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute. | ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"] | ["POINT(-59 -62)"] | false | false |
Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station
|
9024544 |
2010-01-01 | Andreas, Edgar |
Atmospheric Boundary Layer Measurements on the Weddell Sea Drifting Station |
Location: Ice camp on perennial sea ice in the southwestern corner of the Weddell Sea, Antarctic The first direct radiative and turbulent surface flux measurements ever made over floating Antarctic sea ice. The data are from Ice Station Weddell as it drifted in the western Weddell Sea from February to late May 1992. Data Types: Hourly measurements of the turbulent surface fluxes of momentum and sensible and latent heat by eddy covariance at a height of 4.65 m above snow-covered sea ice. Instruments were a 3-axis sonic anemometer/thermometer and a Lyman-alpha hygrometer. Hourly, surface-level measurements of the four radiation components: in-coming and out-going longwave and shortwave radiation. Instruments were hemispherical pyranometers and pyrgeometers. Hourly mean values of standard meteorological variables: air temperature, dew point temperature, wind speed and direction, barometric pressure, surface temperature. Instruments were a propeller-vane for wind speed and direction and cooled-mirror dew-point hygrometers and platinum resistance thermometers for dew-points and temperatures. Surface temperature came from a Barnes PRT-5 infrared thermometer. Flux Data The entire data kit is bundled as a zip file named ISW_Flux_Data.zip The main data file is comma delimited. The README file is ASCII. The associated reprints of publications are in pdf. Radiosounding data: On Ice Station Weddell, typically twice a day from 21 February through 4 June 1992 made with both tethered (i.e., only boundary-layer profiles) and (more rarely) free-flying sondes that did not measure wind speed. (168 soundings). ISW Radiosoundings The entire data kit is bundled as a zip file named ISW_Radiosounding.zip. The README file is in ASCII. Two summary files that include the list of sounding and the declinations are in ASCII. The 168 individual sounding files are in ASCII. Two supporting publications that describe the data and some analyses are in pdf. Radiosounding data collected from the Russian ship Akademic Fedorov from 26 May through 5 June 1992 at 6-hourly intervals as it approached Ice Station Weddell from the north. These soundings include wind vector, temperature, humidity, and pressure. (40 soundings) Akademic Federov Radiosoundings The entire data kit is bundled as a zip file named Akad_Federov_Radiosounding.zip. The README file is in ASCII. A summary file that lists the soundings is in ASCII. The 40 individual sounding files are in ASCII. Two supporting publications that describe the data and some analyses are in pdf. Documentation: Andreas, E. L, and K. J. Claffey, 1995: Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. Journal of Geophysical Research, 100, 4821–4831. Andreas, E. L, K. J. Claffey, and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Boundary-Layer Meteorology, 97, 459–486. Andreas, E. L, R. E. Jordan, and A. P. Makshtas, 2004: Simulations of snow, ice, and near-surface atmospheric processes on Ice Station Weddell. Journal of Hydrometeorology, 5, 611–624. Andreas, E. L, R. E. Jordan, and A. P. Makshtas, 2005: Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results. Boundary-Layer Meteorology, 114, 439–460. Andreas, E. L, P. O. G. Persson, R. E. Jordan, T. W. Horst, P. S. Guest, A. A. Grachev, and C. W. Fairall, 2010: Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology, 11, 87–104. Claffey, K. J., E. L Andreas, and A. P. Makshtas, 1994: Upper-air data collected on Ice Station Weddell. Special Report 94-25, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH, 62 pp. ISW Group, 1993: Weddell Sea exploration from ice station. Eos, Transactions, American Geophysical Union, 74, 121–126. Makshtas, A. P., E. L Andreas, P. N. Svyaschennikov, and V. F. Timachev, 1999: Accounting for clouds in sea ice models. Atmospheric Research, 52, 77–113. | ["POLYGON((-53.8 -61.2,-52.74 -61.2,-51.68 -61.2,-50.62 -61.2,-49.56 -61.2,-48.5 -61.2,-47.44 -61.2,-46.38 -61.2,-45.32 -61.2,-44.26 -61.2,-43.2 -61.2,-43.2 -62.22,-43.2 -63.24,-43.2 -64.26,-43.2 -65.28,-43.2 -66.3,-43.2 -67.32,-43.2 -68.34,-43.2 -69.36,-43.2 -70.38,-43.2 -71.4,-44.26 -71.4,-45.32 -71.4,-46.38 -71.4,-47.44 -71.4,-48.5 -71.4,-49.56 -71.4,-50.62 -71.4,-51.68 -71.4,-52.74 -71.4,-53.8 -71.4,-53.8 -70.38,-53.8 -69.36,-53.8 -68.34,-53.8 -67.32,-53.8 -66.3,-53.8 -65.28,-53.8 -64.26,-53.8 -63.24,-53.8 -62.22,-53.8 -61.2))"] | ["POINT(-48.5 -66.3)"] | false | false |
Ice Nucleation by Marine Psychrophiles
|
0801392 |
2010-01-01 | Swanson, Brian |
Ice Nucleation by Marine Psychrophiles |
The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment
|
0649609 |
2010-01-01 | Horning, Markus |
Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment |
The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds; and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of muscle morphology, oxidant status and oxygen storage with age will be examined. The effects of age on skeletal muscular function and exercise performance will also be examined. The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging and develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years but basic mammalian aging is an area of study the still requires considerable effort. The development of new models for the study of aging has tremendous potential benefits to society at large. | ["POLYGON((165.975 -77.54,166.0631 -77.54,166.1512 -77.54,166.2393 -77.54,166.3274 -77.54,166.4155 -77.54,166.5036 -77.54,166.5917 -77.54,166.6798 -77.54,166.7679 -77.54,166.856 -77.54,166.856 -77.5709,166.856 -77.6018,166.856 -77.6327,166.856 -77.6636,166.856 -77.6945,166.856 -77.7254,166.856 -77.7563,166.856 -77.7872,166.856 -77.8181,166.856 -77.849,166.7679 -77.849,166.6798 -77.849,166.5917 -77.849,166.5036 -77.849,166.4155 -77.849,166.3274 -77.849,166.2393 -77.849,166.1512 -77.849,166.0631 -77.849,165.975 -77.849,165.975 -77.8181,165.975 -77.7872,165.975 -77.7563,165.975 -77.7254,165.975 -77.6945,165.975 -77.6636,165.975 -77.6327,165.975 -77.6018,165.975 -77.5709,165.975 -77.54))"] | ["POINT(166.4155 -77.6945)"] | false | false |
Singular Value Decomposition Analysis of Ice Sheet Model Output Fields
|
0632168 |
2009-05-30 | Hulbe, Christina; Daescu, Dacian N. |
Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region |
This data set provides the results of predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica. The models examine how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. The models were developed by a collaborative effort called the Community Ice Sheet Model (CISM). The data set contains a MATLAB (.mat) native format file with time evolution of basal temperature fields from a generic ice sheet model with uniform and non-uniform heat flux, a MATLAB script for performing singular value decomposition and analysis of the model fields, and a summary of experimental results in Portable Document Format (.pdf). Data are available via FTP. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica
|
0440954 |
2009-01-01 | Miller, Molly |
Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica |
This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate. In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems. | ["POLYGON((159 -76.61667,159.05 -76.61667,159.1 -76.61667,159.15 -76.61667,159.2 -76.61667,159.25 -76.61667,159.3 -76.61667,159.35 -76.61667,159.4 -76.61667,159.45 -76.61667,159.5 -76.61667,159.5 -76.630003,159.5 -76.643336,159.5 -76.656669,159.5 -76.670002,159.5 -76.683335,159.5 -76.696668,159.5 -76.710001,159.5 -76.723334,159.5 -76.736667,159.5 -76.75,159.45 -76.75,159.4 -76.75,159.35 -76.75,159.3 -76.75,159.25 -76.75,159.2 -76.75,159.15 -76.75,159.1 -76.75,159.05 -76.75,159 -76.75,159 -76.736667,159 -76.723334,159 -76.710001,159 -76.696668,159 -76.683335,159 -76.670002,159 -76.656669,159 -76.643336,159 -76.630003,159 -76.61667))"] | ["POINT(159.25 -76.683335)"] | false | false |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till
|
0538195 |
2009-01-01 | Marone, Chris; Anandakrishnan, Sridhar |
Laboratory Study of Stick-Slip Behavior and Deformation Mechanics of Subglacial Till |
This award supports a project to conduct laboratory experiments and numerical modeling to determine the constitutive properties of subglacial till under dynamic stressing and to test the hypothesis that granular properties of till are sufficient, when coupled elastically to a large ice stream, to reproduce the field observations of triggered slip and subglacial seismicity. Testing will be carried out in a servo-controlled biaxial shear device under controlled temperature and stress conditions, which will allow both sliding and microstructural processes to be studied in detail. The main focus of the work will be on laboratory measurements. In addition, we will construct continuum models to evaluate whether our results can predict complex ice sheet motions and observed characteristics of subglacial seismicity. In terms of broader impacts, the proposed work will encourage interactions between the rock-mechanics and glaciology communities and will bring together members of different scientific backgrounds and vocabularies, but similar problems and data. The project will train undergraduate and graduate students at Penn State University and the scientists involved plan to give presentations to grade school classes, scout groups, and at community open houses. Results will be presented at professional meetings and will be published in a timely manner. The work will result in a better understanding of glacial motion and the physics of earthquake slip, which is essential for understanding ice sheet dynamics and earthquake hazard. | [] | [] | false | false |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins
|
0538594 |
2009-01-01 | Ponganis, Paul |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins |
The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, 'backpack' near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego. | ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"] | ["POINT(166.15 -77.7165)"] | false | false |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills
|
0636629 |
2009-01-01 | Soule, S. Adam; Kurz, Mark D. |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills |
This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change. | ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"] | ["POINT(162.5 -78.1)"] | false | false |
Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains
|
0739693 |
2009-01-01 | Ashworth, Allan; Lewis, Adam |
Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains |
This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica's ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise. | ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"] | ["POINT(161 -77.5)"] | false | false |
Airborne Laser Altimetry of the Thwaites Glacier Catchment, West Antarctica
|
0230197 0636724 |
2008-01-01 | Young, Duncan A.; Kempf, Scott D.; Blankenship, Donald D.; Holt, John W.; Morse, David L. |
Collaborative Research: Synthesis of Thwaites Glacier Dynamics: Diagnostic and Prognostic Sensitivity Studies of a West Antarctic Outlet System |
This data set includes airborne altimetry collected over the catchment and main trunk of Thwaites Glacier, one of Antarctica's most active ice streams. The airborne altimetry comprises 35,000 line-kilometers sampled at 20 meters along track. The full dataset has an internal error of ±20 cm; a primary subset has an error of ±8 cm. We find a +20 cm bias with Geoscience Laser Altimeter System data over a flat interior region. These data will serve as an additional temporal reference for the evolution of Thwaites Glacier surface, as well as aid the construction of future high resolution Digital Elevation Models (DEM). Line data are available in space-delimited ASCII format and are available via FTP. | ["POLYGON((-130 -75,-126.5 -75,-123 -75,-119.5 -75,-116 -75,-112.5 -75,-109 -75,-105.5 -75,-102 -75,-98.5 -75,-95 -75,-95 -75.5,-95 -76,-95 -76.5,-95 -77,-95 -77.5,-95 -78,-95 -78.5,-95 -79,-95 -79.5,-95 -80,-98.5 -80,-102 -80,-105.5 -80,-109 -80,-112.5 -80,-116 -80,-119.5 -80,-123 -80,-126.5 -80,-130 -80,-130 -79.5,-130 -79,-130 -78.5,-130 -78,-130 -77.5,-130 -77,-130 -76.5,-130 -76,-130 -75.5,-130 -75))"] | ["POINT(-112.5 -77.5)"] | false | false |
Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica
|
0337891 |
2007-11-05 | Brook, Edward J.; Ahn, Jinho |
Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2 |
Using new and existing ice core CO2 data from 65 - 30 ka BP a new chronology for Taylor Dome ice core CO2 is established and synchronized with Greenland ice core records to study how high latitude climate change and the carbon cycle were linked during the last glacial period. The new data and chronology should provide a better target for models attempting to explain CO2 variability and abrupt climate change. | ["POINT(158 -77.666667)"] | ["POINT(158 -77.666667)"] |