{"dp_type": "Project", "free_text": "Ice Core Records"}
[{"awards": null, "bounds_geometry": null, "dataset_titles": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "601814", "doi": null, "repository": "USAP-DC", "science_program": null, "title": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "url": "http://www.usap-dc.org/view/dataset/601814"}], "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Abrupt Climate Change; Antarctica; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Ice Core Records; Talos Dome", "locations": "Talos Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Iseli, Rene; Schmitt, Jochen; Brook, Edward J.; Clark, Reid; Menking, James; Bauska, Thomas; Fischer, Hubertus; Lee, James; Riddell-Young, Benjamin", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0637004 McGwire, Kenneth", "bounds_geometry": null, "dataset_titles": "Ice core image analyses by McGwire site 91 and site 93", "datasets": [{"dataset_uid": "601745", "doi": "10.15784/601745", "repository": "USAP-DC", "science_program": null, "title": "Ice core image analyses by McGwire site 91 and site 93", "url": "http://www.usap-dc.org/view/dataset/601745"}], "date_created": "Mon, 16 Oct 2023 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": "VSMOW-SLAP d170, d180, and 17O-excess data from WAIS Divide Ice Core Project, Siple Dome and Taylor Dome", "datasets": [{"dataset_uid": "601743", "doi": "10.15784/601743", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "VSMOW-SLAP d170, d180, and 17O-excess data from WAIS Divide Ice Core Project, Siple Dome and Taylor Dome", "url": "http://www.usap-dc.org/view/dataset/601743"}], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Delta 18O; Delta O-17; Epica Dome C; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Talos Dome; Taylor Dome; Vostok", "locations": "Siple Dome; Taylor Dome; Talos Dome; Epica Dome C; Vostok; Antarctica; Siple Dome; Taylor Dome; Epica Dome C; Talos Dome", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Schoenemann, Spruce; Steig, Eric J.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": null, "uid": null, "west": null}, {"awards": "2034874 Salesky, Scott; 2035078 Giometto, Marco", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "1. A non-technical explanation of the project\u0027s broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer.\r\n\r\nKatabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs.\r\n\r\nThe Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps.\r\n\r\n\r\n2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. \r\n\r\nUsing field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow.\r\n\r\nThe numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models\r\n\r\nThis award reflects the NSF statutory mission and has been deemed worthy of support through evaluation using the intellectual merit of the Foundation and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC RADIATION; DATA COLLECTIONS; SNOW/ICE; SNOW; FIELD INVESTIGATION; AIR TEMPERATURE; HUMIDITY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Salesky, Scott; Giometto, Marco; Das, Indrani", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling", "uid": "p0010433", "west": null}, {"awards": "2231558 Smith, Nathan; 2231559 Tinto, Kirsteen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 01 Sep 2023 00:00:00 GMT", "description": "PUBLIC ABSTRACT \u2013 NSF 2231558/2231559\r\nCOLLABORATIVE RESEARCH: CONFERENCE: INTERDISCIPLINARY ANTARCTIC EARTH SCIENCE CONFERENCE \u0026 DEEP-FIELD PLANNING WORKSHOP\r\n\r\nThe unique Antarctic environment offers insight into processes and records not seen anywhere else on Earth, and is critical to understanding our planet\u2019s history and future. The remoteness and logistics of Antarctic science brings together researchers from diverse disciplines who otherwise wouldn\u2019t be presented with opportunities for collaboration, and often rarely attend the same academic conferences. The Interdisciplinary Antarctic Earth Science (IAES) conference is a biennial gathering that supports the collaboration of U.S. bio-, cryo-, geo-, and atmospheric science researchers working in the Antarctic. This proposal will support the next two IAES conferences to be held in 2022 and 2024, as well as a paired deep-field camp planning workshop. The IAES conference is important to the mission of the NSF in supporting interdisciplinary collaboration in the Antarctic earth sciences, but also fulfills recommendations by the National Academy for improving awareness, data sharing, and early career researcher mentoring and development. The size and scope of the IAES conference allow it to serve as a hub for novel, interdisciplinary collaboration, as well as an incubator for the development of the next generation of Antarctic earth scientists.\r\n\r\nThe goals of the IAES conference are to develop and deepen scientific collaborations across the Antarctic earth science community, and create a framework for future deep-field, as well as non-field-based research. The conference will share science through presentations of current research and keynote talks, broaden participation through welcoming new researchers from under-represented communities and disciplines, and deepen collaboration through interdisciplinary networking highlighting potential research connections, novel mentorship activities, and promoting data re-use, and application of remote sensing and modeling. Discussions resulting from the IAES conference will be used to develop white papers on future Antarctic collaborative research and deep-field camps based on community-driven research priorities. Community surveys and feedback will be solicited throughout the project to guide the future development of the IAES conference.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GEOMORPHIC LANDFORMS/PROCESSES; GEOCHEMISTRY; California; ICE CORE RECORDS; ECOLOGICAL DYNAMICS; GLACIERS/ICE SHEETS; PALEOCLIMATE RECONSTRUCTIONS", "locations": "California", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Smith, Nathan; Tinto, Kirsty", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference \u0026 Deep-Field Planning Workshop", "uid": "p0010432", "west": -180.0}, {"awards": "2228257 Michaud, Alexander", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 31 May 2023 00:00:00 GMT", "description": "The goals of this work are to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice. We will achieve these goals by utilizing subsamples from the ~65 ka record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute\u2019s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). Our genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. Accomplishing these goals contains significant risk because microbial cells within the ice sheet may have damaged membranes and DNA, rendering their genomes inadequate for sequencing. However, existing methods to study ice core biology cannot produce results with the low-biomass and small sample volumes from ice coring projects. While there are unknowns surrounding the suitability of the cells for flow cytometric sorting and single cell sequencing, making this project an exploratory endeavor; it will be a transformative step toward understanding the ecology of one of the most understudied environments on Earth.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "WAIS Divide; TERRESTRIAL ECOSYSTEMS; ICE SHEETS; BACTERIA/ARCHAEA; ICE CORE RECORDS", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Michaud, Alexander; Winski, Dominic A.", "platforms": null, "repositories": null, "science_programs": null, "south": -79.28, "title": "EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet", "uid": "p0010421", "west": -112.05}, {"awards": "1745078 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ; Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation; Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica; Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "datasets": [{"dataset_uid": "601736", "doi": "10.15784/601736", "keywords": "Antarctica; Greenland; Methane; Paleoclimate; West Antarctic Ice Sheet", "people": "Schmitt, Jochen; M\u00fchl, Michaela; Brook, Edward J.; Riddell-Young, Benjamin; Rosen, Julia; Buizert, Christo; Martin, Kaden; Lee, James; Blunier, Thomas; Fischer, Hubertus; Edwards, Jon S.", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane interpolar difference and four-box troposphere model output across the Last Glacial Maximum and Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601736"}, {"dataset_uid": "601683", "doi": "10.15784/601683", "keywords": "Antarctica; Methane; West Antarctic Ice Sheet", "people": "Riddell-Young, Benjamin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 isotopic composition of atmospheric methane across Heinrich Stadials 1 and 5, and Dansgaard Oesgher Event 12, WAIS Divide Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601683"}, {"dataset_uid": "601813", "doi": "10.15784/601813", "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "people": "Menking, Andy; Fischer, Hubertus; Bauska, Thomas; Iseli, Rene; Clark, Reid; Brook, Edward J.; Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601813"}, {"dataset_uid": "601737", "doi": "10.15784/601737", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Ice Core Records; Methane; West Antarctic Ice Sheet", "people": "Lee, James; Rosen, Julia; Brook, Edward J.; Riddell-Young, Benjamin; Edwards, Jon S.; Martin, Kaden", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric methane across the Last Glacial Maximum and deglaciation from the GISP2, NEEM and WAIS Divide ice cores ", "url": "https://www.usap-dc.org/view/dataset/601737"}], "date_created": "Mon, 01 May 2023 00:00:00 GMT", "description": "This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are \"fingerprints\" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. \u003cbr/\u003e\u003cbr/\u003eThe project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Ice Sheet; TRACE GASES/TRACE SPECIES; METHANE", "locations": "Antarctic Ice Sheet", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "uid": "p0010416", "west": -180.0}, {"awards": "1542723 Alexander, Becky", "bounds_geometry": "POINT(-112.05 -79.28)", "dataset_titles": "WAIS Divide ice core nitrate isotopes", "datasets": [{"dataset_uid": "601456", "doi": "10.15784/601456", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chemistry; Ice Core Records; Nitrate; Nitrate Isotopes; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide ice core nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601456"}], "date_created": "Mon, 13 Feb 2023 00:00:00 GMT", "description": "The Earth\u0027s atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate.\u003cbr/\u003e\u003cbr/\u003eThis award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": null, "is_usap_dc": true, "keywords": "Nitrate Isotopes; ICE CORE RECORDS; WAIS Divide; LABORATORY", "locations": "WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.28, "title": "Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core", "uid": "p0010403", "west": -112.05}, {"awards": "2037963 Smith, Heidi", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 11 Oct 2022 00:00:00 GMT", "description": "Glacial ice cores serve as a museum back in time, providing detailed records of past climatic conditions. In addition to chronological records such as temperature, chemistry and gas composition, ice provides a unique environment for preserving microbes and other biological materials through time. These microbes provide invaluable insight into the physiological capabilities necessary for survival in the Earths cryosphere and other icy planetary bodies, yet little is known about them. This award supports fundamental research into the activity of microbes in ice, and directly supports major research priorities regarding Antarctic biota identified in the 2015 National Academies of Sciences, Engineering, and Medicine report, A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. The broader impacts of this work are that it will be relevant to researchers across paleoclimate and biological fields. It will support two early career researchers, a graduate and an undergraduate student who will conduct laboratory analyses, participate in outreach activities, publish papers in scientific journals and present at conferences. \r\n\r\nThis work will use previously collected ice cores to investigate englacial microbial activity from the Holocene back to the Last Glacial Maximum from the blue ice area of Taylor Glacier, Antarctica. The proposal identified making significant contributions to 1) investing how Antarctic organisms evolve and adapt to changing environment, 2) understanding how microbes alter the preservation of paleorecord-relevant gas and trace element information in ice cores, and 3) identifying microbial life in cores and their activity in relation to dust depositional events. Two recently developed complementary techniques (bio-orthogonal noncanonical amino acid tagging and deuterium isotope probing) in combination with Raman Confocal Microspectroscopy will be used to assess and quantify microbial activity in ice. During phase one of the project, these methods will be optimized using deaccessioned ice cores available at the National Science Foundations Ice Core Facility. In phase two, ice cores in a time series from the Taylor Glacier will be analyzed for geochemistry and microbial activity. Research results will provide a comprehensive view of englacial microbial communities, including their metabolic diversity and activity, and the effect of geochemical parameters on microbial assemblages from different climate periods. Given the dearth of information available on englacial microbial communities, the results of this research will be of particular significance.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Microbial Activity; LABORATORY; Paleoclimate; CAMP; Taylor Glacier; Microbiology; Alaska; ICE CORE RECORDS", "locations": "CAMP; Alaska; Taylor Glacier", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Smith, Heidi; Foreman, Christine; Dieser, Markus", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Life in Ice: Probing Microbial Englacial Activity through Time", "uid": "p0010385", "west": null}, {"awards": "2218402 Fegyveresi, John", "bounds_geometry": "POLYGON((-115 -85.5,-113.5 -85.5,-112 -85.5,-110.5 -85.5,-109 -85.5,-107.5 -85.5,-106 -85.5,-104.5 -85.5,-103 -85.5,-101.5 -85.5,-100 -85.5,-100 -85.65,-100 -85.8,-100 -85.95,-100 -86.1,-100 -86.25,-100 -86.4,-100 -86.55,-100 -86.7,-100 -86.85,-100 -87,-101.5 -87,-103 -87,-104.5 -87,-106 -87,-107.5 -87,-109 -87,-110.5 -87,-112 -87,-113.5 -87,-115 -87,-115 -86.85,-115 -86.7,-115 -86.55,-115 -86.4,-115 -86.25,-115 -86.1,-115 -85.95,-115 -85.8,-115 -85.65,-115 -85.5))", "dataset_titles": "Multi-Site Brittle Ice Data and Measurements", "datasets": [{"dataset_uid": "601786", "doi": null, "keywords": "Antarctica; Brittle Ice; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Core; Ice Core Records; Ice Core Records; Physical Properties; Simple Dome; Siple Dome; South Pole; SPICEcore; Subgrain Boundaries; WAIS Divide", "people": "Fegyveresi, John; Barnett, Samantha", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-Site Brittle Ice Data and Measurements", "url": "https://www.usap-dc.org/view/dataset/601786"}], "date_created": "Mon, 19 Sep 2022 00:00:00 GMT", "description": "Brittle ice has been a long-standing and consistent challenge for ice-coring projects, complicating sampling, and introducing the possibility of contamination. Several procedures have been tested to reduce brittle damage to recovered cores, but many come with high monetary and time costs. Our background research suggests that bubble size and c-axis fabric are primary drivers for brittleness and are predictable from site characteristics, enabling prediction of brittleness before coring. We propose to improve understanding of the mechanisms involved in brittle ice onset and behavior, through targeted investigations of various ice physical properties, in carefully selected samples across multiple ice-core sites, in order to guide the upcoming Hercules Dome ice-core drilling and science communities. This project will involve collaboration between Northern Arizona University, the National Science Foundation Ice Core Facility, and Pennsylvania State University, and will utilize new and existing ice-core physical properties data from several previously drilled sites. This is a high-risk, low-cost project that could yield important results, and thus is well-suited for EAGER funding. This proposal utilizes existing ice cores and does not require Antarctic fieldwork. ", "east": -100.0, "geometry": "POINT(-107.5 -86.25)", "instruments": null, "is_usap_dc": true, "keywords": "Hercules Dome Ice Core; West Antarctica; Grain Statistics; LABORATORY; Ice Core; ICE SHEETS; Physical Properties; Brittle Ice; C-Axis Fabric; Bubble; ICE CORE RECORDS", "locations": "West Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fegyveresi, John", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Hercules Dome Ice Core", "south": -87.0, "title": "EAGER: Constraining the Expected Brittle-ice Behavior for the Hercules Dome Ice-core Site.", "uid": "p0010378", "west": -115.0}, {"awards": "2149518 Fudge, Tyler", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Sun, 07 Aug 2022 00:00:00 GMT", "description": "Interpreting highly compressed portions of ice cores is increasingly important as projects target climate records in basal ice, and in ice recovered from blue-ice areas. This project will integrate precisely co-registered electrical conductivity measurements (ECM), hyperspectral imaging, laser ablation ICPMS measurements of impurities, and ice physical properties to investigate sub-cm chemical and physical variations in polar ice. This work will establish to what extent annual layer interpretations of polar ice with sub-cm layering is possible. Critical to resolving thin ice layers is understanding the across-core variations which may obscure or distort the vertical layering. Analyses will be focused on samples from WAIS Divide, SPICEcore, and GISP2, which have well established seasonal cycles that yielded benchmark timescales, as well a large diameter ice core from a blue ice area.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE CORE RECORDS; Ice Core", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Fegyveresi, John M", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections", "uid": "p0010365", "west": -180.0}, {"awards": "1543454 Dunbar, Nelia; 1543361 Kurbatov, Andrei", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Cryptotephra in SPC-14 ice core; SPICEcore visable tephra", "datasets": [{"dataset_uid": "601667", "doi": "10.15784/601667", "keywords": "Antarctica; Electron Microprobe; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; Tephra", "people": "Iverson, Nels", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore visable tephra", "url": "https://www.usap-dc.org/view/dataset/601667"}, {"dataset_uid": "601666", "doi": "10.15784/601666", "keywords": "Antarctica; Cryptotephra; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; SPICEcore; Tephra", "people": "Hartman, Laura; Yates, Martin; Kurbatov, Andrei V.; Helmick, Meredith", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Cryptotephra in SPC-14 ice core", "url": "https://www.usap-dc.org/view/dataset/601666"}], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "Antarctic ice core tephra records tend to be dominated by proximal volcanism and infrequently contain tephra from distal volcanoes within and off of the continent. Tephra layers in East Antarctic ice cores are largely derived from Northern Victoria Land volcanoes. For example, 43 out of 55 tephra layers in Talos Dome ice core are from local volcanoes. West Antarctic ice cores are dominated by tephra from Marie Byrd Land volcanoes. Thirty-six out of the 52 tephra layers in WAIS are from Mt. Berlin or Mt.Takahe. It would be expected that the majority of the tephra layers found in cores on and adjacent to the Antarctic Peninsula and Weddell Sea should be from Sub-Antarctic islands (e.g., South Sandwich and South Shetland Islands). Unfortunately, these records are poorly characterized, making correlations to the source volcanoes very unlikely.\r\n\r\nThe South Pole ice core (SPICEcore) is uniquely situated to capture the volcanic records from all of these regions of the continent, as well as sub-tropical eruptions with significant global climate signatures. Twelve visible tephra layers have been characterized in SPICEcore and represent tephra produced by volcanoes from the Sub-Antarctic Islands (6), Marie Byrd Land (5), and one from an unknown sub-tropical eruption, likely from South America. Three of these tephra layers correlate to other ice core tephra providing important \u201cpinning points\u201d for timescale calibrations, recently published (Winski et al, 2019). Two tephra layers from Marie Byrd Land correlate to WAIS Divide ice core tephra (15.226ka and 44.864ka), and one tephra eruptive from the South Sandwich Island can be correlated EPICA Dome C, Vostok, and RICE (3.559ka). An additional eight cryptotephra have been characterized, and one layer geochemically correlates with the 1257 C.E. eruption of Samalas volcano in Indonesia.\r\n\r\nSPICEcore does not have a tephra record dominated by one volcanic region. Instead, it contains more of the tephra layers derived from off-continent volcanic sources. The far-travelled tephra layers from non-Antarctic sources improve our understanding of tephra transport to the interior of Antarctica. The location in the middle of the continent along with the longer transport distances from the local volcanoes has allowed for a unique tephra record to be produced that begins to link more of future ice core records together.\r\n\r\n", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": null, "is_usap_dc": true, "keywords": "VOLCANIC DEPOSITS; South Pole", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Tephrochronology of a South Pole Ice Core", "uid": "p0010311", "west": 0.0}, {"awards": "1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200257", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/34133"}, {"dataset_uid": "200256", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/24530"}, {"dataset_uid": "200255", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/32632"}], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles.\r\n\r\nThe project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Antarctica; USA/NSF; AMD; ICE CORE RECORDS; USAP-DC; VOLCANIC DEPOSITS; MODELS; Amd/Us", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Buizert, Christo; Wettstein, Justin", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores", "uid": "p0010279", "west": -180.0}, {"awards": "1936530 Carbotte, Suzanne; 2230824 Nitsche, Frank", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 05 Nov 2021 00:00:00 GMT", "description": "Samples and data obtained by researchers working in Antarctica are valuable, unique assets which typically require a substantial and expensive logistical effort to acquire. Preservation of these data increases the return on the significant public investment for acquisition, enabling future re-use for new analyses, and ensure that data behind scientific publications are available for others to review. The US Antarctic Program Data Center (USAP-DC) will provide an open-disciplinary hybrid repository for project metadata and the diverse research data obtained from the Antarctic region by NSF funded researchers for which other data repositories do not exist. In addition, a Project Catalog will provide a single online resource for the US Antarctic scientific community to manage information about their research activities and will link project metadata to the various distributed repositories where Antarctic data resides. In doing so, the USAP-DC will follow community best practices and standards to ensure data are citable, shareable, and discoverable. It will also facilitate registration of data descriptions into the Antarctic Master Directory to meet US goals for data sharing under the International Antarctic Treaty.\r\n\r\nWith full open access to interfaces to search for and download data, USAP-DC will make a wide range of data products resulting from NSF funded research in Antarctica available not only to the research community but also to the broader public. The data center is operated using community standards for metadata and data access which helps ensure data re-usability into the future. The new Project catalog, which is designed to support consolidation of information on research products of USAP awards over the lifetime of a project, will make it simpler for NSF program managers, but also for individual researchers and especially larger collaborative research groups to keep track of datasets and related information produced as part of their projects. Through tutorials and meetings at conferences USAP-DC will contribute to raise awareness and inform the research community, especially new investigators about data management best practices.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Antarctica; Amd/Us; PALEOCLIMATE RECONSTRUCTIONS; GLACIERS/ICE SHEETS; COMPUTERS; ICE CORE RECORDS; SNOW/ICE; Database; ECOLOGICAL DYNAMICS; USAP-DC; OCEAN CHEMISTRY; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Cyberinfrastructure; Polar Cyberinfrastructure", "paleo_time": null, "persons": "Carbotte, Suzanne; Tinto, Kirsty; Nitsche, Frank O.", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Supporting Antarctic Research with Ongoing Operations and Development of the USAP-DC Project Catalog and Data Repository", "uid": "p0010274", "west": -180.0}, {"awards": "2035580 Aarons, Sarah; 2035637 Tabor, Clay", "bounds_geometry": null, "dataset_titles": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area; Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.; Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "datasets": [{"dataset_uid": "601822", "doi": "10.15784/601822", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Deuterium; Hydrogen; Ice; Ice Core Data; Isotope; Oxygen; Water", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Oxygen and hydrogen isotope compositions and associated d-excess of ice from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601822"}, {"dataset_uid": "601820", "doi": "10.15784/601820", "keywords": "ALHIC1903; Allan Hills; Antarctica; Cryosphere; Dust; Ice Core Data; Isotope; Nd; Neodymium; Sr; Strontium", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Strontium and neodymium isotope compositions of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601820"}, {"dataset_uid": "601821", "doi": "10.15784/601821", "keywords": "ALHIC1903; Allan Hills; Antarctica; Blue Ice; Cryosphere; Dust; Leach; Rare Earth Element", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Rare earth elemental concentrations of leached ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area.", "url": "https://www.usap-dc.org/view/dataset/601821"}, {"dataset_uid": "601825", "doi": "10.15784/601825", "keywords": "Accumulation Rate; ALHIC1903; Allan Hills; Antarctica; Blue Ice; Concentration; Cryosphere; Dust; Flux", "people": "Carter, Austin", "repository": "USAP-DC", "science_program": null, "title": "Concentration and flux of ice core dust from ALHIC1903 drilled at the Allan Hills Blue Ice Area", "url": "https://www.usap-dc.org/view/dataset/601825"}], "date_created": "Wed, 06 Oct 2021 00:00:00 GMT", "description": "The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet.\r\n\r\nThis project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "MICROPARTICLE CONCENTRATION; FIELD SURVEYS; GEOCHEMISTRY; ICE EXTENT; Amd/Us; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; AMD; Allan Hills; ICE CORE RECORDS; USAP-DC", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aarons, Sarah; Tabor, Clay", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial", "uid": "p0010270", "west": null}, {"awards": "2103032 Schmittner, Andreas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The Antarctic ice sheet is an important component of Earth\u2019s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability.\r\n\r\nThis project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE CORE RECORDS; Amd/Us; USA/NSF; OCEAN TEMPERATURE; GLACIERS/ICE SHEETS; BIOGEOCHEMICAL CYCLES; MODELS; AMD; United States Of America; OCEAN CURRENTS; ICEBERGS; PALEOCLIMATE RECONSTRUCTIONS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Schmittner, Andreas; Haight, Andrew ; Clark, Peter", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation", "uid": "p0010256", "west": -180.0}, {"awards": "1744993 Higgins, John; 1745007 Mayewski, Paul; 1744832 Severinghaus, Jeffrey; 0838843 Kurbatov, Andrei; 1745006 Brook, Edward J.", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022; Allan Hills Stable Water Isotopes; I-165-M GPR Field Report 2019-2020", "datasets": [{"dataset_uid": "601620", "doi": "10.15784/601620", "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "url": "https://www.usap-dc.org/view/dataset/601620"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Shackleton, Sarah; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601669", "doi": "10.15784/601669", "keywords": "Allan Hills; Antarctica; GPR; Ice Core; Report", "people": "Brook, Edward J.; Nesbitt, Ian", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "I-165-M GPR Field Report 2019-2020", "url": "https://www.usap-dc.org/view/dataset/601669"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}], "date_created": "Fri, 27 Aug 2021 00:00:00 GMT", "description": " Between about 2.8-0.9 Ma, Earth\u2019s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth\u2019s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of \u003e1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to \u003e 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth\u2019s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4\u201d or 9\u201d diameter) ice cores at sites where we have previously identified \u003e1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. ", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USAP-DC; SNOW/ICE; Allan Hills; FIELD SURVEYS; USA/NSF; Amd/Us; LABORATORY", "locations": "Allan Hills", "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "uid": "p0010253", "west": 159.16667}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Bergelin, Marie; Putkonen, Jaakko", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past\r\n\r\nRecently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth\u2019s history with samples that are unavailable anywhere else. Ice survives poorly on Earth\u2019s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today.\r\n\r\nWe propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications.\r\n", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "2045611 Rasbury, Emma; 2042495 Blackburn, Terrence", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ; U-series Geochronology, Isotope, and Elemental Geochemistry of a Subglacial Precipitate that Formed Across Termination III; U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601806", "doi": "10.15784/601806", "keywords": "Antarctica; Cryosphere; Erosion; Isotope Data; Major Elements; Soil; Taylor Glacier; Taylor Valley", "people": "Tulaczyk, Slawek; Blackburn, Terrence; Piccione, Gavin; Edwards, Graham", "repository": "USAP-DC", "science_program": null, "title": "U-Th isotopes and major elements in sediments from Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601806"}, {"dataset_uid": "601800", "doi": "10.15784/601800", "keywords": "Antarctica; Cryosphere", "people": "Gagliardi, Jessica", "repository": "USAP-DC", "science_program": null, "title": "Subglacial precipitates record Antarctic ice sheet response to Southern Ocean warming ", "url": "https://www.usap-dc.org/view/dataset/601800"}, {"dataset_uid": "601781", "doi": "10.15784/601781", "keywords": "Antarctica; Carbon; Carbon Isotopes; Cryosphere; East Antarctica; Elephant Moraine; Geochronology; Isotope Data; Opal; Oxygen Isotope; Sr; Subglacial; U", "people": "Piccione, Gavin", "repository": "USAP-DC", "science_program": null, "title": "U-series Geochronology, Isotope, and Elemental Geochemistry of a Subglacial Precipitate that Formed Across Termination III", "url": "https://www.usap-dc.org/view/dataset/601781"}], "date_created": "Fri, 18 Jun 2021 00:00:00 GMT", "description": "Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth\u2019s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* \u003c1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit \u03b418O compositions consistent with derivation from the depleted polar plateau (\u003c -50 \u2030). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or \u201cAntarctic isotopic maximums\u201d, which represent Southern Hemisphere warm periods during low Atlantic Meridional overturning circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. ", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; FIELD INVESTIGATION; AMD; USA/NSF; Amd/Us; USAP-DC; East Antarctica", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Reconstructing East Antarctica\u2019s Past Response to Climate using Subglacial Precipitates", "uid": "p0010192", "west": -180.0}, {"awards": "1643355 Steig, Eric; 1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; Layer and Thinning based Accumulation Rate Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "601448", "doi": "10.15784/601448", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow/ice; Snow/Ice", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "Layer and Thinning based Accumulation Rate Reconstructions", "url": "https://www.usap-dc.org/view/dataset/601448"}, {"dataset_uid": "200219", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32632"}, {"dataset_uid": "200220", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncdc.noaa.gov/paleo/study/24530"}], "date_created": "Fri, 28 May 2021 00:00:00 GMT", "description": "The main objectives of the proposed work are twofold: (1) to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores; (2) to provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores. The WAIS Divide, Siple Dome, Byrd, Taylor Dome and South Pole ice cores will be synchronized using volcanic, dust and gas (CH4 and d18Oatm) markers; this synchronization will be combined with ice-flow and firn densification modeling to create gas-age and ice-age scales for these ice cores, consistent with the highly accurate WAIS Divide chronology. The grant will support ongoing efforts to synchronize the WAIS Divide core to the Dome C and Dronning Maud Land cores, which in turn have been synchronized to several East Antarctic ice cores. Using this chronological framework, the interpolar phasing of millennial-scale climate change will be investigated during the DO cycles using 6 Antarctic ice cores, and during the last deglaciation using 11 ice cores. The relationship between accumulation rate and site temperature during the natural warming of the last deglaciation will be investigated for all the Antarctic ice cores included in the framework.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Steig, Eric J.; Buizert, Christo", "platforms": null, "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw", "uid": "p0010183", "west": -180.0}, {"awards": "1543325 Landolt, Scott; 1543377 Seefeldt, Mark", "bounds_geometry": "POLYGON((166.918 -77.8675,167.2997 -77.8675,167.6814 -77.8675,168.0631 -77.8675,168.4448 -77.8675,168.8265 -77.8675,169.2082 -77.8675,169.5899 -77.8675,169.9716 -77.8675,170.3533 -77.8675,170.735 -77.8675,170.735 -77.98145,170.735 -78.0954,170.735 -78.20935,170.735 -78.3233,170.735 -78.43725,170.735 -78.5512,170.735 -78.66515,170.735 -78.7791,170.735 -78.89305,170.735 -79.007,170.3533 -79.007,169.9716 -79.007,169.5899 -79.007,169.2082 -79.007,168.8265 -79.007,168.4448 -79.007,168.0631 -79.007,167.6814 -79.007,167.2997 -79.007,166.918 -79.007,166.918 -78.89305,166.918 -78.7791,166.918 -78.66515,166.918 -78.5512,166.918 -78.43725,166.918 -78.3233,166.918 -78.20935,166.918 -78.0954,166.918 -77.98145,166.918 -77.8675))", "dataset_titles": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "datasets": [{"dataset_uid": "601441", "doi": "10.15784/601441", "keywords": "Accumulation; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Precipitation; Ross Ice Shelf; Snow; Snow/ice; Snow/Ice; Weatherstation; Weather Station Data", "people": "Seefeldt, Mark", "repository": "USAP-DC", "science_program": null, "title": "Precipitation Observations for the Northwest Ross Ice Shelf - 2017-12 to 2019-11", "url": "https://www.usap-dc.org/view/dataset/601441"}], "date_created": "Tue, 27 Apr 2021 00:00:00 GMT", "description": "Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. \r\n\r\nProject goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications.", "east": 170.735, "geometry": "POINT(168.8265 -78.43725)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; Amd/Us; USA/NSF; SNOW; Wind Data; WEATHER STATIONS; Ross Ice Shelf", "locations": "Ross Ice Shelf", "north": -77.8675, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Seefeldt, Mark; Landolt, Scott", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.007, "title": "Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation", "uid": "p0010173", "west": 166.918}, {"awards": "1443144 Steig, Eric; 1443448 Schaefer, Joerg", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Simulations of 10Be over Antarctica; South Pole ice Core 10Be CE", "datasets": [{"dataset_uid": "601431", "doi": "10.15784/601431", "keywords": "Antarctica; South Pole", "people": "Schaefer, Joerg; Steig, Eric J.; Ding, Qinghua", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Simulations of 10Be over Antarctica", "url": "https://www.usap-dc.org/view/dataset/601431"}, {"dataset_uid": "601535", "doi": "10.15784/601535", "keywords": "Antarctica; South Pole", "people": "Schaefer, Joerg", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice Core 10Be CE", "url": "https://www.usap-dc.org/view/dataset/601535"}], "date_created": "Thu, 04 Feb 2021 00:00:00 GMT", "description": "This project acquired measurements of the concentration of beryllium-10 (10Be) from an ice core from the South Pole, Antarctica. An isotope of the element beryllium, 10Be, is produced in the atmosphere by high-energy protons (cosmic rays) that enter Earth\u0027s atmosphere from space. It is removed from the atmosphere by settling or by scavenging by rain or snowfall. Hence, concentrations of 10Be in snow at the South Pole reflect the production rate of 10Be in the atmosphere. Because the rate of production of 10Be over Antarctica depends primarily on the strength of the Sun\u0027s magnetic field, measurements of 10Be in the South Pole ice core provide a record of changes in solar activity. To ain interpretation of the South Pole 10Be record, a climate model that can simulate the production of 10Be in the atmosphere, it\u0027s transport through the atmosphere, and its deposition at the snow surface in Antarctica is used to quantify the impact of climate noise on the 10Be signal.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "COSMIC RAYS; LABORATORY; BERYLLIUM-10 ANALYSIS; SNOW/ICE; South Pole; GLACIERS; ICE CORE RECORDS", "locations": "South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Schaefer, Joerg; Steig, Eric J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole", "uid": "p0010158", "west": -180.0}, {"awards": "0732917 McCormick, Michael; 0732450 Van Dover, Cindy; 0732711 Smith, Craig; 0732983 Vernet, Maria", "bounds_geometry": "POLYGON((-60.5 -63.1,-59.99 -63.1,-59.48 -63.1,-58.97 -63.1,-58.46 -63.1,-57.95 -63.1,-57.44 -63.1,-56.93 -63.1,-56.42 -63.1,-55.91 -63.1,-55.4 -63.1,-55.4 -63.29,-55.4 -63.48,-55.4 -63.67,-55.4 -63.86,-55.4 -64.05,-55.4 -64.24,-55.4 -64.43,-55.4 -64.62,-55.4 -64.81,-55.4 -65,-55.91 -65,-56.42 -65,-56.93 -65,-57.44 -65,-57.95 -65,-58.46 -65,-58.97 -65,-59.48 -65,-59.99 -65,-60.5 -65,-60.5 -64.81,-60.5 -64.62,-60.5 -64.43,-60.5 -64.24,-60.5 -64.05,-60.5 -63.86,-60.5 -63.67,-60.5 -63.48,-60.5 -63.29,-60.5 -63.1))", "dataset_titles": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula; NBP1001 cruise data; NBP1203 cruise data; Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "601073", "doi": "10.15784/601073", "keywords": "Antarctica; Antarctic Peninsula; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; LARISSA; Microbiology", "people": "McCormick, Michael", "repository": "USAP-DC", "science_program": null, "title": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula", "url": "https://www.usap-dc.org/view/dataset/601073"}, {"dataset_uid": "601304", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601304"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.", "east": -55.4, "geometry": "POINT(-57.95 -64.05)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NBP1203; USAP-DC; Amd/Us; LARISSA; Larsen Ice Shelf; Species Abundance Data; R/V NBP; Antarctic Peninsula; NBP1001; USA/NSF; AMD; Antarctica; MARINE ECOSYSTEMS", "locations": "Antarctica; Antarctic Peninsula; Larsen Ice Shelf", "north": -63.1, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "McCormick, Michael; Vernet, Maria; Van Dover, Cindy; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.", "uid": "p0010135", "west": -60.5}, {"awards": "1246465 Brook, Edward J.", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "datasets": [{"dataset_uid": "601337", "doi": "10.15784/601337", "keywords": "Antarctica; Carbon Cycle; CO2; Gas Chromatograph; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; WAIS Divide", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Marine Isotope Stage 3 CO2 record", "url": "https://www.usap-dc.org/view/dataset/601337"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Cycle; Ice Core Records; USAP-DC; CO2; FIELD INVESTIGATION; CARBON DIOXIDE; LABORATORY; WAIS Divide", "locations": "WAIS Divide", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Completing the WAIS Divide Ice Core CO2 record", "uid": "p0010110", "west": -112.1115}, {"awards": "1907974 Saltzman, Eric", "bounds_geometry": "POLYGON((129.26 -89.86,130.261 -89.86,131.262 -89.86,132.263 -89.86,133.264 -89.86,134.265 -89.86,135.266 -89.86,136.267 -89.86,137.268 -89.86,138.269 -89.86,139.27 -89.86,139.27 -89.861,139.27 -89.862,139.27 -89.863,139.27 -89.864,139.27 -89.865,139.27 -89.866,139.27 -89.867,139.27 -89.868,139.27 -89.869,139.27 -89.87,138.269 -89.87,137.268 -89.87,136.267 -89.87,135.266 -89.87,134.265 -89.87,133.264 -89.87,132.263 -89.87,131.262 -89.87,130.261 -89.87,129.26 -89.87,129.26 -89.869,129.26 -89.868,129.26 -89.867,129.26 -89.866,129.26 -89.865,129.26 -89.864,129.26 -89.863,129.26 -89.862,129.26 -89.861,129.26 -89.86))", "dataset_titles": "H2 in South Pole firn air", "datasets": [{"dataset_uid": "601332", "doi": "10.15784/601332", "keywords": "Antarctica; Firn; Glaciology; Hydrogen; Ice Core Records; Snow/ice; Snow/Ice; South Pole", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "H2 in South Pole firn air", "url": "https://www.usap-dc.org/view/dataset/601332"}], "date_created": "Tue, 09 Jun 2020 00:00:00 GMT", "description": "Hydrogen (H2) is one of the most abundant trace gases in the atmosphere, with a mean level of 500 ppb and an atmospheric lifetime of about two years. Hydrogen has an impact on both air quality and climate, due to its role as a precursor for tropospheric ozone and stratospheric water vapor. Projections indicate that a future \"hydrogen economy\" would increase hydrogen emissions. Understanding of the atmospheric hydrogen budget is largely based on a 30-year record of surface air measurements, but there are no long-term records with which to assess either: 1) the influence of climate change on atmospheric hydrogen, or 2) the extent to which humans have impacted the hydrogen budget. Polar ice core records of hydrogen will advance our understanding of the atmospheric hydrogen cycle and provide a stronger basis for projecting future changes to atmospheric levels of hydrogen and their impacts. \u003cbr/\u003e\u003cbr/\u003eThe research will involve laboratory work to enable the collection and analysis of hydrogen in polar ice cores. Hydrogen is a highly diffusive molecule and, unlike most other atmospheric gases, diffusion of hydrogen in ice is so rapid that ice samples must be stored in impermeable containers immediately upon drilling and recovery. This project will: 1) construct a laboratory system for extracting and analyzing hydrogen in polar ice, 2) develop and test materials and construction designs for vessels to store ice core samples in the field, and 3) test the method on samples of opportunity previously stored in the field. The goal of this project is a proven, cost-effective design for storage flasks to be fabricated for use on future polar ice coring projects. This project will support the dissertation research of a graduate student in the UC Irvine Department of Earth System Science.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 139.27, "geometry": "POINT(134.265 -89.865)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Firn; TRACE GASES/TRACE SPECIES; South Pole; FIELD INVESTIGATION; USAP-DC", "locations": "South Pole", "north": -89.86, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Glaciology; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Saltzman, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.87, "title": "EAGER: Feasibility of Reconstructing the Atmospheric History of Molecular Hydrogen from Antarctic Ice", "uid": "p0010106", "west": 129.26}, {"awards": "1643722 Brook, Edward J.", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole Ice Core Methane Data and Gas Age Time Scale; South Pole ice core (SPC14) total air content (TAC)", "datasets": [{"dataset_uid": "601546", "doi": "10.15784/601546", "keywords": "Antarctica; South Pole", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) total air content (TAC)", "url": "https://www.usap-dc.org/view/dataset/601546"}, {"dataset_uid": "601329", "doi": "10.15784/601329", "keywords": "Antarctica; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; South Pole", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Methane Data and Gas Age Time Scale", "url": "https://www.usap-dc.org/view/dataset/601329"}], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. \u003cbr/\u003e\u003cbr/\u003eMethane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student\u0027s senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "AMD; LABORATORY; METHANE; ICE CORE RECORDS; Gas Chromatography; South Pole; USAP-DC", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "A High Resolution Atmospheric Methane Record from the South Pole Ice Core", "uid": "p0010102", "west": 0.0}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "datasets": [{"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Vaughn, Bruce; Bradley, Elizabeth; Price, Michael; Garland, Joshua; Jones, Tyler R.; White, James; Morris, Valerie", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}, {"dataset_uid": "601326", "doi": "10.15784/601326", "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "people": "Vaughn, Bruce; Jones, Tyler R.; White, James; Morris, Valerie", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601326"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "Ice cores contain detailed accounts of Earth\u0027s climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process.This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "AMD; West Antarctic Ice Sheet; ISOTOPES; Amd/Us; USAP-DC; USA/NSF; Water Isotopes; WAIS Divide Ice Core; Deuterium; LABORATORY", "locations": "West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Garland, Joshua; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "uid": "p0010100", "west": -112.085}, {"awards": "1142167 Pettit, Erin; 1142035 Obbard, Rachel", "bounds_geometry": "POLYGON((-112.3 -79.2,-112.2 -79.2,-112.1 -79.2,-112 -79.2,-111.9 -79.2,-111.8 -79.2,-111.7 -79.2,-111.6 -79.2,-111.5 -79.2,-111.4 -79.2,-111.3 -79.2,-111.3 -79.23,-111.3 -79.26,-111.3 -79.29,-111.3 -79.32,-111.3 -79.35,-111.3 -79.38,-111.3 -79.41,-111.3 -79.44,-111.3 -79.47,-111.3 -79.5,-111.4 -79.5,-111.5 -79.5,-111.6 -79.5,-111.7 -79.5,-111.8 -79.5,-111.9 -79.5,-112 -79.5,-112.1 -79.5,-112.2 -79.5,-112.3 -79.5,-112.3 -79.47,-112.3 -79.44,-112.3 -79.41,-112.3 -79.38,-112.3 -79.35,-112.3 -79.32,-112.3 -79.29,-112.3 -79.26,-112.3 -79.23,-112.3 -79.2))", "dataset_titles": "ApRES Firn Density Study; ApRES Vertical Strain Study; GPS Horizontal Strain Network; South Pole (SPICEcore) Borehole Deformation; WAIS Divide Borehole Deformation", "datasets": [{"dataset_uid": "601314", "doi": "10.15784/601314", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Flow; WAIS Divide; WAIS Divide Ice Core", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601314"}, {"dataset_uid": "601315", "doi": "10.15784/601315", "keywords": "Acoustic Televiewer; Anisotropy; Antarctica; Borehole Logging; Deformation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Flow; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICEcore) Borehole Deformation", "url": "https://www.usap-dc.org/view/dataset/601315"}, {"dataset_uid": "601322", "doi": "10.15784/601322", "keywords": "Antarctica; Firn; Firn Density; Glaciology; Ice Penetrating Radar; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Firn Density Study", "url": "https://www.usap-dc.org/view/dataset/601322"}, {"dataset_uid": "200141", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "GPS Horizontal Strain Network", "url": ""}, {"dataset_uid": "601323", "doi": "10.15784/601323", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice Strain; Phase Sensitive Radar; Radar; Snow/ice; Snow/Ice; WAIS Divide", "people": "Pettit, Erin", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "ApRES Vertical Strain Study", "url": "https://www.usap-dc.org/view/dataset/601323"}], "date_created": "Fri, 15 May 2020 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF\u0027s \"From STEM to STEAM\" toward enhancing the connection between art and science.", "east": -111.3, "geometry": "POINT(-111.8 -79.35)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; GLACIERS/ICE SHEETS; WAIS Divide; ICE CORE RECORDS; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Radar", "locations": "WAIS Divide", "north": -79.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Obbard, Rachel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "UNAVCO; USAP-DC", "science_programs": "WAIS Divide Ice Core; SPICEcore", "south": -79.5, "title": "Collaborative Research: VeLveT Ice - eVoLution of Fabric and Texture in Ice at WAIS Divide, West Antarctica", "uid": "p0010098", "west": -112.3}, {"awards": "1443470 Aydin, Murat", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "South Pole ice core (SPC14) discrete methane data; SP19 Gas Chronology; SPC14 carbonyl sulfide, methyl chloride, and methyl bromide measurements from South Pole, Antarctica", "datasets": [{"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Winski, Dominic A.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601270", "doi": "10.15784/601270", "keywords": "Antarctica", "people": "Aydin, Murat", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPC14 carbonyl sulfide, methyl chloride, and methyl bromide measurements from South Pole, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601270"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}], "date_created": "Thu, 26 Mar 2020 00:00:00 GMT", "description": "In the past, Earth\u0027s climate underwent dramatic changes that influenced physical, chemical, geological, and biological processes on a global scale. Such changes left an imprint in Earth\u0027s atmosphere, as shown by the variability in abundances of trace gases like carbon dioxide and methane. In return, changes in the atmospheric trace gas composition affected Earth\u0027s climate. Studying compositional variations of the past atmosphere helps us understand the history of interactions between global biogeochemical cycles and Earth?s climate. The most reliable information on past atmospheric composition comes from analysis of air entrapped in polar ice cores. This project aims to generate ice-core records of relatively short-lived, very-low-abundance trace gases to determine the range of past variability in their atmospheric levels and investigate the changes in global biogeochemical cycles that caused this variability. This project measures three such gases: carbonyl sulfide, methyl chloride, and methyl bromide. Changes in carbonyl sulfide can indicate changes in primary productivity and photosynthetic update of carbon dioxide. Changes in methyl chloride and methyl bromide significantly impact natural variability in stratospheric ozone. In addition, the processes that control atmospheric levels of methyl chloride and methyl bromide are shared with those controlling levels of atmospheric methane. The measurements will be made in the new ice core from the South Pole, which is expected to provide a 40,000-year record.\u003cbr/\u003e\u003cbr/\u003eThe primary focus of this project is to develop high-quality trace gas records for the entire Holocene period (the past 11,000 years), with additional, more exploratory measurements from the last glacial period including the period from 29,000-36,000 years ago when there were large changes in atmospheric methane. Due to the cold temperatures of the South Pole ice, the proposed carbonyl sulfide measurements are expected to provide a direct measure of the past atmospheric variability of this gas without the large hydrolysis corrections that are necessary for interpretation of measurements from ice cores in warmer settings. Furthermore, we will test the expectation that contemporaneous measurements from the last glacial period in the deep West Antarctic Ice Sheet Divide ice core will not require hydrolysis loss corrections. With respect to methyl chloride, we aim to verify and improve the existing Holocene atmospheric history from the Taylor Dome ice core in Antarctica. The higher resolution of our measurements compared with those from Taylor Dome will allow us to derive a more statistically significant relationship between methyl chloride and methane. With respect to methyl bromide, we plan to extend the existing 2,000-year database to 11,000 years. Together, the methyl bromide and methyl chloride records will provide strong measurement-based constraints on the natural variability of stratospheric halogens during the Holocene period. In addition, the methyl bromide record will provide insight into the correlation between methyl chloride and methane during the Holocene period due to common sources and sinks.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; CARBONYL SULFIDE; HALOCARBONS AND HALOGENS; TRACE GASES/TRACE SPECIES; Antarctic; USAP-DC", "locations": "Antarctic", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core", "uid": "p0010089", "west": -180.0}, {"awards": "1443105 Steig, Eric", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core; South Pole high resolution ice core water stable isotope record for dD, d18O; South Pole Ice Core Holocene Major Ion Dataset; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Schauer, Andrew; Stevens, Max; Conway, Howard; Epifanio, Jenna; White, James; Waddington, Edwin D.; Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Buizert, Christo", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601239", "doi": "10.15784/601239", "keywords": "Antarctica; Cavity Ring Down Spectrometers; Delta 18O; Delta Deuterium; Deuterium Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Oxygen Isotope; Snow/ice; Snow/Ice; Stable Isotopes", "people": "Jones, Tyler R.; Schauer, Andrew; Kahle, Emma; Vaughn, Bruce; Morris, Valerie; White, James; Steig, Eric J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole high resolution ice core water stable isotope record for dD, d18O", "url": "https://www.usap-dc.org/view/dataset/601239"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601429", "doi": "10.15784/601429", "keywords": "Antarctica; Climate; Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrogen; Ice; Ice Core; Ice Core Chemistry; Oxygen; Paleoclimate; Snow/ice; Snow/Ice; South Pole; Stable Isotopes", "people": "Steig, Eric J.; Vaughn, Bruce; Jones, Tyler R.; Kahle, Emma; White, James; Schauer, Andrew; Morris, Valerie", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Continuous-flow measurements of the complete water isotope ratios (D/H, 17O/16O, 18O/16) from the South Pole ice core", "url": "https://www.usap-dc.org/view/dataset/601429"}, {"dataset_uid": "601399", "doi": "10.15784/601399", "keywords": "Antarctica; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601399"}], "date_created": "Sun, 17 Nov 2019 00:00:00 GMT", "description": "This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible.\u003cbr/\u003e\u003cbr/\u003eThis project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "SPICEcore; D18O; LABORATORY; OXYGEN ISOTOPE ANALYSIS; Oxygen Isotope; South Pole; USAP-DC; GLACIERS/ICE SHEETS; Antarctica; AMD; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Steig, Eric J.; White, James", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole", "uid": "p0010065", "west": 0.0}, {"awards": "1443566 Bay, Ryan", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "datasets": [{"dataset_uid": "601222", "doi": "10.15784/601222", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; SPICEcore", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "url": "https://www.usap-dc.org/view/dataset/601222"}], "date_created": "Thu, 31 Oct 2019 00:00:00 GMT", "description": "This award supports the deployment and analysis of data from an oriented laser dust logger in the South Pole ice core borehole to complement study of the ice core record. Before the core is even processed, data from the borehole probe will immediately determine the depth-age relationship, augment 3D mapping of South Pole stratigraphy, aid in searches for the oldest ice in Antarctica, and reveal layers of volcanic or extraterrestrial fallout. Regarding the intellectual merit, the oriented borehole log will be essential for investigating features in the ice sheet that may have implications for ice core chronology, ice flow, ice sheet physical properties and stability in response to climate change. The tools and techniques developed in this program have applications in glaciology, biogeoscience and exploration of other planetary bodies. The program aims for a deeper understanding of the consequences and causes of abrupt climate change. The broader impacts of the project are that it will include outreach and education, providing a broad training ground for students and post-docs. Data and metadata will be made available through data centers and repositories such as the National Snow and Ice Data Center web portal. \u003cbr/\u003e\u003cbr/\u003eThe laser dust logger detects reproducible paleoclimate features at sub-centimeter depth scale. Dust logger data are being used for synchronizing records and dating any site on the continent, revealing accumulation anomalies and episodes of rapid ice sheet thinning, and discovering particulate horizons of special interest. In this project we will deploy a laser dust logger equipped with a magnetic compass to find direct evidence of preferentially oriented dust. Using optical scattering measurements from IceCube calibration studies at South Pole and borehole logs at WAIS Divide, we have detected a persistent anisotropy correlated with flow and crystal fabric which suggests that the majority of insoluble particulates must be located within ice grains. With typical concentrations of parts-per-billion, little is known about the location of impurities within the polycrystalline structure of polar ice. While soluble impurities are generally thought to concentrate at inter-grain boundaries and determine electrical conductivity, the fate of insoluble particulates is much less clear, and microscopic examinations are extremely challenging. These in situ borehole measurements will help to unravel intimate relationships between impurities, flow, and crystal fabric. Data from this project will further develop a unique record of South Pole surface roughness as a proxy for paleowind and provide new insights for understanding glacial radar propagation. This project has field work in Antarctica.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; ICE CORE RECORDS; USAP-DC", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Laser Dust Logging of a South Pole Ice Core", "uid": "p0010061", "west": 90.0}, {"awards": "1142646 Twickler, Mark; 1142517 Aydin, Murat; 1141839 Steig, Eric", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "South Pole Ice Core Holocene Major Ion Dataset; South Pole ice core (SPC14) discrete methane data; South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth; SP19 Gas Chronology; Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "datasets": [{"dataset_uid": "601221", "doi": "10.15784/601221", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Depth; Ice Core Records; Snow/ice; Snow/Ice; SPICEcore", "people": "Fegyveresi, John; Hargreaves, Geoff; Kahle, Emma; Nicewonger, Melinda R.; Souney, Joseph Jr.; Twickler, Mark; Casey, Kimberly A.; Aydin, Murat; Steig, Eric J.; Nunn, Richard; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPICEcore) SPC14 Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601221"}, {"dataset_uid": "601399", "doi": "10.15784/601399", "keywords": "Antarctica; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601399"}, {"dataset_uid": "601396", "doi": "10.15784/601396", "keywords": "Accumulation; Antarctica; Diffusion Length; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Dynamic; Layer Thinning; Oxygen Isotope; South Pole; SPICEcore; Temperature", "people": "Schauer, Andrew; Stevens, Max; Conway, Howard; Epifanio, Jenna; White, James; Waddington, Edwin D.; Kahle, Emma; Steig, Eric J.; Jones, Tyler R.; Fudge, T. J.; Koutnik, Michelle; Morris, Valerie; Vaughn, Bruce; Buizert, Christo", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Temperature, accumulation rate, and layer thinning from the South Pole ice core (SPC14)", "url": "https://www.usap-dc.org/view/dataset/601396"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Winski, Dominic A.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}], "date_created": "Wed, 30 Oct 2019 00:00:00 GMT", "description": "This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; Amd/Us; Antarctica; ANALYTICAL LAB; USA/NSF; AMD; South Pole; ICE CORE RECORDS; FIELD INVESTIGATION; Ice Core", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark; Souney, Joseph Jr.; Aydin, Murat; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: A 1500m Ice Core from South Pole", "uid": "p0010060", "west": 90.0}, {"awards": "1341728 Stone, John", "bounds_geometry": "POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81))", "dataset_titles": "Cosmogenic nuclide data, Harter Nunatak; Cosmogenic nuclide data, John Nunatak; Cosmogenic nuclide data, Mt Axtell; Cosmogenic nuclide data, Mt Goodwin; Cosmogenic nuclide data, Mt Tidd; Cosmogenic nuclide data, Mt Turcotte; Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "datasets": [{"dataset_uid": "200080", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, John Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601214", "doi": "10.15784/601214", "keywords": "Aluminum-26; Antarctica; Be-10; Bedrock Core; Beryllium-10; Chemistry:rock; Chemistry:Rock; Cosmogenic; Cosmogenic Dating; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Data; Pirrit Hills; Rocks; Solid Earth; Subglacial Bedrock", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "url": "https://www.usap-dc.org/view/dataset/601214"}, {"dataset_uid": "200076", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Tidd", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200075", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Axtell", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200077", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Turcotte", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200078", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Goodwin", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200079", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Harter Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Tue, 08 Oct 2019 00:00:00 GMT", "description": "This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past few million years, and if so, when and how frequently this occurred. The principal aim is to identify climatic conditions or thresholds in the climate system that led to ice-sheet collapse in the past, and assess the threat of climate change to vulnerable ice sheets in the future. We recovered a subglacial bedrock core from beneath 150 m of ice cover in the Pirrit Hills, in West Antarctica, and measured cosmogenic nuclide profiles to determine the bedrock exposure history. Cosmic-ray-produced Be-10 and Al-26 in the core indicate: (i) Continuous Pleistocene ice cover averaging ~200 m; and (ii) One or more pre-Pleistocene deglaciations that exposed the core site for ~200-800 years in the Pliocene, or \u003e 800 years, in the Miocene. Optically stimulated luminescence (OSL) dating of the core top precludes exposure to sunlight since ~450 ka, consistent with the Be-10 and Al-26 data. Trapped atmospheric argon in ice recovered from 80 cm above the bedrock surface indicates an age for the enclosing ice \u003e 2 Ma (delta 40Ar/36Ar = -0.15 per-mil). Together, these results rule out any Pleistocene thinning of ice in the Pirrit Hills by more than 150 m.", "east": -85.0, "geometry": "POINT(-85.65 -81.15)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "DEPTH AT SPECIFIC AGES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -81.3, "title": "EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse", "uid": "p0010057", "west": -86.3}, {"awards": "1443336 Osterberg, Erich; 1443397 Kreutz, Karl; 1443663 Cole-Dai, Jihong", "bounds_geometry": "POINT(-180 -90)", "dataset_titles": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.; South Pole Ice Core Holocene Major Ion Dataset; South Pole Ice Core Sea Salt and Major Ions; South Pole ice core (SPC14) discrete methane data; South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements; SPICEcore 400-480 m Major Ions SDSU; The South Pole Ice Core (SPICEcore) chronology and supporting data", "datasets": [{"dataset_uid": "601399", "doi": "10.15784/601399", "keywords": "Antarctica; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Holocene Major Ion Dataset", "url": "https://www.usap-dc.org/view/dataset/601399"}, {"dataset_uid": "601553", "doi": "10.15784/601553", "keywords": "Antarctica; Dust; Ice Core; South Pole", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPC14) microparticle concentration, mass concentration, flux, particle-size-distribution mode, and aspect ratio measurements", "url": "https://www.usap-dc.org/view/dataset/601553"}, {"dataset_uid": "601206", "doi": "10.15784/601206", "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Cole-Dai, Jihong; Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Iverson, Nels; Severinghaus, Jeffrey P.; Jones, Tyler R.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "url": "https://www.usap-dc.org/view/dataset/601206"}, {"dataset_uid": "601675", "doi": "10.15784/601675", "keywords": "Antarctica; South Pole; SPICEcore", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Preliminary SPC14 high-resolution Fe and Mn biologically relevant and dissolved trace metal concentrations spanning -42 \u2013 54,300 years BP.", "url": "https://www.usap-dc.org/view/dataset/601675"}, {"dataset_uid": "601754", "doi": "10.15784/601754", "keywords": "Antarctica; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Major Ion; Sea Ice; Sea Salt; Sodium; South Pole; SPICEcore", "people": "Winski, Dominic A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Sea Salt and Major Ions", "url": "https://www.usap-dc.org/view/dataset/601754"}, {"dataset_uid": "601430", "doi": "10.15784/601430", "keywords": "Antarctica; Ions; South Pole; SPICEcore", "people": "Larrick, Carleigh; Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore 400-480 m Major Ions SDSU", "url": "https://www.usap-dc.org/view/dataset/601430"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Winski, Dominic A.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. \u003cbr/\u003e\u003cbr/\u003eThe investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators\u0027 efforts to disseminate outcomes of climate change science to the broader community.", "east": -180.0, "geometry": "POINT(-180 -90)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; USAP-DC; Amd/Us; USA/NSF; LABORATORY; AMD", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Osterberg, Erich", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "uid": "p0010051", "west": -180.0}, {"awards": "1443550 Brook, Edward J.", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data; SPICEcore Holocene CO2 and N2O data", "datasets": [{"dataset_uid": "601197", "doi": "10.15784/601197", "keywords": "Antarctica; Carbon Dioxide; Ice Core Gas Records; Nitrous Oxide; South Pole; SPICEcore", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Holocene CO2 and N2O data", "url": "https://www.usap-dc.org/view/dataset/601197"}, {"dataset_uid": "200055", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Polar Ice Cores 3,000 Year Nitrous Oxide d15N and d18O Data", "url": "https://www.ncdc.noaa.gov/paleo-search/study/25530"}], "date_created": "Tue, 06 Aug 2019 00:00:00 GMT", "description": "The temperature of the earth is controlled, in part, by heat trapping gases that include carbon dioxide, methane, and nitrous oxide. Despite their importance to climate, direct measurements of these gases in the atmosphere are limited to the last 50 years at best. Air trapped in ice cores extends those data back hundreds of millennia, and measurements of greenhouse gases in ice cores underpin much of our understanding of global chemical cycles relevant to modern climate change. Existing records vary in quality and detail. The proposed work fills gaps in our knowledge of nitrous oxide and carbon dioxide over the last 10,000 years. New measurements from an ice core from the South Pole will be used to determine what role changes in ocean and land based processes played in controlling these gases, which decreased during the first 2,000 years of this time period, then gradually increased toward the present. The work will address a major controversy over whether early human activities could have impacted the atmosphere, and provide data to improve mathematical models of the land-ocean-atmosphere system that predict how future climate change will impact the composition of the atmosphere and climate. \u003cbr/\u003e\u003cbr/\u003eFor nitrous oxide the work will improve on existing concentration records It will also develop measurement of the isotopomers of nitrous oxide and explore their utility for understanding aspects of the Holocene nitrous oxide budget. The primary goal is to determine if marine and/or terrestrial emissions of nitrous oxide change in response to changes in Holocene climate. A new Holocene isotopic record for carbon dioxide (stable carbon and oxygen isotopes), will improve the precision of existing records by a factor 5 and increase the temporal resolution. These data will be used to evaluate controversial hypotheses about why carbon dioxide concentrations changed in the Holocene and provide insight into millennial scale processes in the carbon cycle, which are not resolved by current isotopic data. A graduate student and post doc will receive advanced training during and the student and principle investigator will conduct outreach efforts targeted at local middle school students. The proposed work will also contribute to teaching efforts by the PI and to public lectures on climate and climate change. The results will be disseminated through publications, data archive, and the OSU Ice Core Lab web site. New analytical methods of wide utility will also be developed and documented.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctica; ICE CORE RECORDS; CARBON DIOXIDE; NOT APPLICABLE; USAP-DC; TRACE GASES/TRACE SPECIES; NITROUS OXIDE", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Controls on Variations in Atmospheric Carbon Dioxide and Nitrous Oxide During the Last 10,000 years", "uid": "p0010043", "west": -180.0}, {"awards": "1543267 Brook, Edward J.; 1543229 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Multi-site ice core Krypton stable isotope ratios; Noble Gas Data from recent ice in Antarctica for 86Kr problem", "datasets": [{"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Bertler, Nancy; Shackleton, Sarah; Pyne, Rebecca L.; Mosley-Thompson, Ellen; Mulvaney, Robert; Buizert, Christo; Severinghaus, Jeffrey P.; Bereiter, Bernhard; Brook, Edward J.; Etheridge, David; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601195", "doi": "10.15784/601195", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "url": "https://www.usap-dc.org/view/dataset/601195"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Baggenstos, Daniel; Mosley-Thompson, Ellen; Bertler, Nancy; Bereiter, Bernhard; Severinghaus, Jeffrey P.; Etheridge, David; Shackleton, Sarah; Mulvaney, Robert; Brook, Edward J.; Buizert, Christo; Pyne, Rebecca L.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Baggenstos, Daniel; Shackleton, Sarah; Severinghaus, Jeffrey P.; Brook, Edward J.; Buizert, Christo; Bereiter, Bernhard; Etheridge, David; Bertler, Nancy; Pyne, Rebecca L.; Mulvaney, Robert; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}], "date_created": "Wed, 10 Jul 2019 00:00:00 GMT", "description": "Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess.\r\nIntellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. \r\n\r\nBroader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; FIRN; ICE CORE RECORDS; USAP-DC; Greenland; Xenon; Noble Gas; Ice Core; Amd/Us; Antarctica; AMD; LABORATORY; Krypton; ATMOSPHERIC PRESSURE", "locations": "Greenland; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "uid": "p0010037", "west": -180.0}, {"awards": "1443464 Sowers, Todd; 1443472 Brook, Edward J.; 1443710 Severinghaus, Jeffrey", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole CH4 data for termination; South Pole Ice Core Isotopes of N2 and Ar; South Pole ice core (SPC14) discrete methane data; South Pole ice core total air content; South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2; SP19 Gas Chronology", "datasets": [{"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Sowers, Todd A.; Kahle, Emma; Steig, Eric J.; Winski, Dominic A.; Osterberg, Erich; Fudge, T. J.; Hood, Ekaterina; Kalk, Michael; Ferris, David G.; Kennedy, Joshua A.; Severinghaus, Jeffrey P.; Epifanio, Jenna; Brook, Edward J.; Buizert, Christo; Kreutz, Karl; Aydin, Murat; Edwards, Jon S.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}, {"dataset_uid": "601230", "doi": "10.15784/601230", "keywords": "Antarctica; Atmospheric CH4; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Data; Methane; Methane Concentration; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole CH4 data for termination", "url": "https://www.usap-dc.org/view/dataset/601230"}, {"dataset_uid": "601231", "doi": "10.15784/601231", "keywords": "Air Content; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core total air content", "url": "https://www.usap-dc.org/view/dataset/601231"}, {"dataset_uid": "601517", "doi": "10.15784/601517", "keywords": "Antarctica; Argon; Argon Isotopes; Firn; Firn Temperature Gradient; Firn Thickness; Gas Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Nitrogen; Nitrogen Isotopes; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.; Morgan, Jacob", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Isotopes of N2 and Ar", "url": "https://www.usap-dc.org/view/dataset/601517"}, {"dataset_uid": "601152", "doi": "10.15784/601152", "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "url": "https://www.usap-dc.org/view/dataset/601152"}], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today\u0027s concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. \u003cbr/\u003e \u003cbr/\u003eThis award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole.\u003cbr/\u003e\u003cbr/\u003eThe project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. \u003cbr/\u003e\u003cbr/\u003eThe increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; AMD; LABORATORY; Antarctica; NITROGEN ISOTOPES; USA/NSF; METHANE; Amd/Us; FIELD INVESTIGATION", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "uid": "p0010005", "west": 0.0}, {"awards": "1644245 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project); Ice core ethane measurements, Greenland and Antarctica, 1000-1900 CE.", "datasets": [{"dataset_uid": "601367", "doi": "10.15784/601367", "keywords": "Antarctica; Ethane", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Ice Core Air Ethane and Acetylene Measurements - South Pole SPC14 Ice Core (SPICEcore project)", "url": "https://www.usap-dc.org/view/dataset/601367"}, {"dataset_uid": "002574", "doi": "", "keywords": null, "people": null, "repository": "Arctic Data Center", "science_program": null, "title": "Ice core ethane measurements, Greenland and Antarctica, 1000-1900 CE.", "url": "https://arcticdata.io/catalog/view/doi:10.18739/A2CR5NC1B"}], "date_created": "Tue, 13 Nov 2018 00:00:00 GMT", "description": "Aydin/1644245\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure ethane in ice core air extracted from the recently drilled intermediate depth South Pole ice core (SPICECORE). Ethane is an abundant hydrocarbon in the atmosphere. The ice core samples that will be used in this analysis will span about 150 years before present to about 55,000 years before present and therefore, ethane emissions linked to human activities are not a subject of this study. The study will focus on quantifying the variability in the natural sources of ethane and the processes that govern its removal from the atmosphere. A long-term ice core ethane record will provide new knowledge on the chemistry of Earth?s atmosphere during time periods when human influence was either much smaller than present day or non-existent. The broader impacts of this work include education and training of students and a contribution to a better understanding of the chemistry of the atmosphere in the past and how it has been impacted by past changes in climate.\u003cbr/\u003e\u003cbr/\u003eNatural sources that emit ethane are both geologic (e.g. seeps, vents, mud volcanoes etc.) and pyrogenic (wild fires) which is commonly called biomass burning. Ethane is removed from the atmosphere via oxidation reactions. The ice core ethane measurements have great potential as a proxy for gaseous emissions from biomass burning. This is especially true for time periods preceding the industrial revolution when atmospheric variability of trace gases was largely controlled by natural processes. Another objective of this study is to improve understanding of the causes of atmospheric methane variability apparent which are in the existing ice core records. Methane is a simpler hydrocarbon than ethane and more abundant in the atmosphere. Even though the project does not include any methane measurements; the commonalities between the sources and removal of atmospheric ethane and methane mean that ethane measurements can be used to gain insight into the causes of changes in atmospheric methane levels. The broader impacts of the project include partial support for one Ph.D. student and support for undergraduate researchers at UC Irvine. The PIs group currently has 4 undergraduate researchers. The PI and the graduate students in the UCI ice core laboratory regularly participate in on- and off-campus activities such as laboratory tours and lectures directed towards educating high-school students and science teachers, and the local community at large about the scientific value of polar ice cores as an environmental record of our planet\u0027s past. The results of this research will be disseminated via peer-review publications and will contribute to policy-relevant activities such as the IPCC Climate Assessment. Data resulting from this project will be archived in a national data repository. This award does not have field work in Antarctica.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "Arctic Data Center; USAP-DC", "science_programs": "SPICEcore", "south": null, "title": "Ethane Measurements in the Intermediate Depth South Pole Ice Core (SPICECORE)", "uid": "p0000762", "west": null}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores; Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores; Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores; Greenhouse gas composition in the Allan Hills S27 ice core; Methane concentration in Allan Hills ice cores; Stable isotope composition of the trapped air in the Allan Hills S27 ice core; Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area; Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "datasets": [{"dataset_uid": "601201", "doi": "10.15784/601201", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Argon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Gas Records; Krypton; Mass Spectrometer; Noble Gas; Snow/ice; Snow/Ice; Xenon", "people": "Ng, Jessica; Bender, Michael; Yan, Yuzhen; Severinghaus, Jeffrey P.; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of heavy noble gases in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601201"}, {"dataset_uid": "601129", "doi": "10.15784/601129", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601129"}, {"dataset_uid": "601425", "doi": "10.15784/601425", "keywords": "Allan Hills; Antarctica; Blue Ice; Carbon Dioxide; Ice Core; Methane", "people": "Brook, Edward J.; Yan, Yuzhen", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Greenhouse gas composition in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601425"}, {"dataset_uid": "601512", "doi": "10.15784/601512", "keywords": "Allan Hills; Antarctica; Blue Ice; Ice Core; Ice Core Gas Records; Isotope; Nitrogen; Oxygen", "people": "Bender, Michael; Yan, Yuzhen; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable isotope composition of the trapped air in the Allan Hills S27 ice core", "url": "https://www.usap-dc.org/view/dataset/601512"}, {"dataset_uid": "601202", "doi": "10.15784/601202", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Carbon Dioxide; Carbon Isotopes; Chemistry:ice; Chemistry:Ice; CO2; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Gas Records; Ice Core Records; Mass Spectrometer; Mass Spectrometry; Methane; Snow/ice; Snow/Ice", "people": "Bender, Michael; Higgins, John; Yan, Yuzhen; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Carbon dioxide concentration and its stable carbon isotope composition in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601202"}, {"dataset_uid": "601128", "doi": "10.15784/601128", "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "people": "Introne, Douglas; Yan, Yuzhen; Kurbatov, Andrei V.; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601128"}, {"dataset_uid": "601483", "doi": "10.15784/601483", "keywords": "Allan Hills; Antarctica; Argon; Ice; Ice Core Data; Ice Core Gas Records; Isotope; Mass Spectrometry; Nitrogen; Oxygen", "people": "Higgins, John; Yan, Yuzhen; Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Elemental and isotopic composition of nitrogen, oxygen, and argon in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601483"}, {"dataset_uid": "601203", "doi": "10.15784/601203", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Chemistry:ice; Chemistry:Ice; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenhouse Gas; Ice; Ice Core Data; Ice Core Gas Records; Methane; Snow/ice; Snow/Ice", "people": "Brook, Edward J.; Yan, Yuzhen; Bender, Michael; Higgins, John", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Methane concentration in Allan Hills ice cores", "url": "https://www.usap-dc.org/view/dataset/601203"}, {"dataset_uid": "601130", "doi": "10.15784/601130", "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "people": "Kurbatov, Andrei V.; Introne, Douglas; Yan, Yuzhen; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "url": "https://www.usap-dc.org/view/dataset/601130"}], "date_created": "Thu, 18 Oct 2018 00:00:00 GMT", "description": "Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores.\u003cbr/\u003e\u003cbr/\u003eBetween about 2.8-0.9 million years ago, Earth\u0027s climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth\u0027s spin axis. Much is known about the \"40,000-year\" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Amd/Us; AMD; Allan Hills; USA/NSF; FIELD INVESTIGATION; USAP-DC; Ice Core; LABORATORY", "locations": "Allan Hills", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": null, "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "uid": "p0000760", "west": null}, {"awards": "0839107 Powell, Ross; 0839059 Powell, Ross; 0838947 Tulaczyk, Slawek; 0838764 Anandakrishnan, Sridhar; 0838763 Anandakrishnan, Sridhar; 0838855 Jacobel, Robert; 0839142 Tulaczyk, Slawek", "bounds_geometry": null, "dataset_titles": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line; Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD); Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES); IRIS ID#s 201035, 201162, 201205; IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.; Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set; Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set; Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone; The IRIS DMC archives and distributes data to support the seismological research community.; UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "datasets": [{"dataset_uid": "000148", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS ID#s 201035, 201162, 201205", "url": "http://ds.iris.edu/"}, {"dataset_uid": "601122", "doi": "10.15784/601122", "keywords": "Antarctica; Flexure Zone; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Ice-Shelf Basal Melting; Ice-Shelf Strain Rate", "people": "Begeman, Carolyn", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Basal melt rates of the Ross Ice Shelf near the Whillans Ice Stream grounding line", "url": "https://www.usap-dc.org/view/dataset/601122"}, {"dataset_uid": "001406", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "The IRIS DMC archives and distributes data to support the seismological research community.", "url": "http://ds.iris.edu/ds/nodes/dmc/"}, {"dataset_uid": "001405", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "IRIS offers free and open access to a comprehensive data store of raw geophysical time-series data collected from a large variety of sensors, courtesy of a vast array of US and International scientific networks, including seismometers (permanent and temporary), tilt and strain meters, infrasound, temperature, atmospheric pressure and gravimeters, to support basic research aimed at imaging the Earth\u0027s interior.", "url": "http://www.iris.edu/hq/data_and_software"}, {"dataset_uid": "601234", "doi": "10.15784/601234", "keywords": "ACL; Antarctica; Biomarker; BIT Index; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Stream; Whillans Ice Stream; WISSARD", "people": "Askin, Rosemary; Scherer, Reed Paul; Baudoin, Patrick; Casta\u00f1eda, Isla; Warny, Sophie; Coenen, Jason", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Biomarker Data Set", "url": "https://www.usap-dc.org/view/dataset/601234"}, {"dataset_uid": "601245", "doi": "10.15784/601245", "keywords": "Antarctica; Pollen; West Antarctica; WISSARD", "people": "Scherer, Reed Paul; Casta\u00f1eda, Isla; Askin, Rosemary; Coenen, Jason; Baudoin, Patrick; Warny, Sophie", "repository": "USAP-DC", "science_program": "WISSARD", "title": "Paleogene marine and terrestrial development of the West Antarctic Rift System: Palynomorph Data Set", "url": "https://www.usap-dc.org/view/dataset/601245"}, {"dataset_uid": "600155", "doi": "10.15784/600155", "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "url": "https://www.usap-dc.org/view/dataset/600155"}, {"dataset_uid": "000150", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "UNAVCO ID#s WHL1, WHL2, LA02, LA09 (full data link not provided)", "url": "http://www.unavco.org/"}, {"dataset_uid": "609594", "doi": "10.7265/N54J0C2W", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS; Radar; Whillans Ice Stream", "people": "Jacobel, Robert", "repository": "USAP-DC", "science_program": null, "title": "Radar Studies of Subglacial Lake Whillans and the Whillans Ice Stream Grounding Zone", "url": "https://www.usap-dc.org/view/dataset/609594"}, {"dataset_uid": "600154", "doi": "10.15784/600154", "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "people": "Powell, Ross", "repository": "USAP-DC", "science_program": null, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "url": "https://www.usap-dc.org/view/dataset/600154"}], "date_created": "Mon, 10 Sep 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. \u003cbr/\u003e\u003cbr/\u003eINTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. \u003cbr/\u003e\u003cbr/\u003eBROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e SEISMOMETERS \u003e SEISMOMETERS", "is_usap_dc": true, "keywords": "USAP-DC; Ice Penetrating Radar; Antarctic; Subglacial Lake; Subglacial Hydrology; Grounding Line; Sea Level Rise; Bed Reflectivity; Ice Sheet Stability; Stability; Radar; Sub-Ice-Shelf; Geophysics; Biogeochemical; LABORATORY; Sediment; Sea Floor Sediment; Ice Thickness; Model; Ice Stream Stability; Basal Ice; SATELLITES; Ice Sheet Thickness; Subglacial; Antarctica; NOT APPLICABLE; Antarctic Ice Sheet; Ice Sheet; FIELD SURVEYS; Surface Elevation; Geochemistry; FIELD INVESTIGATION; Not provided", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES", "repo": "IRIS", "repositories": "IRIS; UNAVCO; USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "p0000105", "west": null}, {"awards": "1443341 Hawley, Robert; 1443471 Koutnik, Michelle", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "7MHz radar in the vicinity of South Pole; Firn density and compaction rates 50km upstream of South Pole; Firn temperatures 50km upstream of South Pole; Shallow radar near South Pole; South Pole area GPS velocities; SPICEcore Advection", "datasets": [{"dataset_uid": "601100", "doi": "10.15784/601100", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ice Velocity", "people": "Lilien, David; Conway, Howard; Koutnik, Michelle; Fudge, T. J.; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole area GPS velocities", "url": "https://www.usap-dc.org/view/dataset/601100"}, {"dataset_uid": "601525", "doi": "10.15784/601525", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Snow/ice; Snow/Ice; South Pole; SPICEcore; Temperature", "people": "Lilien, David; Waddington, Edwin D.; Koutnik, Michelle; Conway, Howard; Stevens, Christopher Max; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Firn temperatures 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601525"}, {"dataset_uid": "601680", "doi": "10.15784/601680", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Snow/ice; Snow/Ice; South Pole; Temperature", "people": "Lilien, David; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Koutnik, Michelle; Stevens, Christopher Max", "repository": "USAP-DC", "science_program": null, "title": "Firn density and compaction rates 50km upstream of South Pole", "url": "https://www.usap-dc.org/view/dataset/601680"}, {"dataset_uid": "601369", "doi": "10.15784/601369", "keywords": "Antarctica; Ice Sheet", "people": "Waddington, Edwin D.; Conway, Howard; Koutnik, Michelle; Fudge, T. J.; Lilien, David; Stevens, Max", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "7MHz radar in the vicinity of South Pole", "url": "https://www.usap-dc.org/view/dataset/601369"}, {"dataset_uid": "601099", "doi": "10.15784/601099", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Radar; Snow Accumulation; Snow/ice; Snow/Ice", "people": "Koutnik, Michelle; Lilien, David; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Shallow radar near South Pole", "url": "https://www.usap-dc.org/view/dataset/601099"}, {"dataset_uid": "601266", "doi": "10.15784/601266", "keywords": "Antarctica; Ice Core Data; South Pole; SPICEcore", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore Advection", "url": "https://www.usap-dc.org/view/dataset/601266"}], "date_created": "Thu, 14 Jun 2018 00:00:00 GMT", "description": "Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science.\u003cbr/\u003e\u003cbr/\u003eIce-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "FIRN; Firn; USAP-DC; South Pole; Radar; FIELD SURVEYS; ICE CORE RECORDS", "locations": "South Pole", "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core", "uid": "p0000200", "west": 110.0}, {"awards": "1443232 Waddington, Edwin", "bounds_geometry": "POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89))", "dataset_titles": "AC-ECM for SPICEcore; ECM (DC and AC) multi-track data and images from 2016 processing season", "datasets": [{"dataset_uid": "601189", "doi": " 10.15784/601189 ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; SPICEcore; Volcanic", "people": "Waddington, Edwin D.; Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "AC-ECM for SPICEcore", "url": "https://www.usap-dc.org/view/dataset/601189"}, {"dataset_uid": "601366", "doi": "10.15784/601366", "keywords": "Antarctica", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "ECM (DC and AC) multi-track data and images from 2016 processing season", "url": "https://www.usap-dc.org/view/dataset/601366"}], "date_created": "Tue, 08 May 2018 00:00:00 GMT", "description": "Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. \u003cbr/\u003e \u003cbr/\u003eThe electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available.", "east": 180.0, "geometry": "POINT(145 -89.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; Amd/Us; AMD; LABORATORY", "locations": null, "north": -89.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fudge, T. J.; Waddington, Edwin D.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology", "uid": "p0000378", "west": 110.0}, {"awards": "0944021 Brook, Edward J.; 0943466 Hawley, Robert; 0944307 Conway, Howard", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Hawley, Robert L.; Giese, Alexandra; Clemens-Sewall, David", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Hawley, Robert L.; Clemens-Sewall, David", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}, {"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Brook, Edward J.; Lee, James", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "0732711 Smith, Craig; 0732625 Leventer, Amy; 0732602 Truffer, Martin; 0732651 Gordon, Arnold; 0732983 Vernet, Maria; 0732655 Mosley-Thompson, Ellen", "bounds_geometry": "POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8))", "dataset_titles": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems; Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203; Bruce Plateau Accumulation O18 2009-1900; Easten Antarctic Peninsula Surface Sediment Diatom Data; LMG13-11 JKC-1 Paleoceanographic data; Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001; NBP1001 cruise data; NBP1203 cruise data; Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001; Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Sediment samples (full data link not provided)", "datasets": [{"dataset_uid": "000143", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1203 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1203"}, {"dataset_uid": "000145", "doi": "", "keywords": null, "people": null, "repository": "AMGRF", "science_program": null, "title": "Sediment samples (full data link not provided)", "url": "http://arf.fsu.edu/"}, {"dataset_uid": "600073", "doi": "10.15784/600073", "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "people": "Vernet, Maria", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "url": "https://www.usap-dc.org/view/dataset/600073"}, {"dataset_uid": "601211", "doi": "10.15784/601211", "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "people": "Leventer, Amy", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "url": "https://www.usap-dc.org/view/dataset/601211"}, {"dataset_uid": "601485", "doi": "10.15784/601485", "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "people": "Shevenell, Amelia", "repository": "USAP-DC", "science_program": "LARISSA", "title": "LMG13-11 JKC-1 Paleoceanographic data", "url": "https://www.usap-dc.org/view/dataset/601485"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "Taylor, Richard; DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "600167", "doi": "10.15784/600167", "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "people": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Bruce Plateau Accumulation O18 2009-1900", "url": "https://www.usap-dc.org/view/dataset/600167"}, {"dataset_uid": "601346", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601346"}, {"dataset_uid": "601347", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601347"}, {"dataset_uid": "000142", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1001 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP1001"}, {"dataset_uid": "601348", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Gordon, Arnold; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601348"}, {"dataset_uid": "601306", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601306"}, {"dataset_uid": "601305", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601305"}, {"dataset_uid": "000226", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Biology Species Abundance from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expeditions NBP1001 and NBP1203", "url": "https://doi.org/10.1594/ieda/320821"}, {"dataset_uid": "601345", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "people": "Huber, Bruce; Gordon, Arnold", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "url": "https://www.usap-dc.org/view/dataset/601345"}], "date_created": "Thu, 01 Feb 2018 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth\u0027s systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica.", "east": -55.8, "geometry": "POINT(-61.9 -62.8)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e BOX CORE; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SNOW DENSITY CUTTER", "is_usap_dc": true, "keywords": "Paleoclimate; Megafauna; USAP-DC; AMD; Amd/Us; Antarctica; Climate Change; LABORATORY; Climate Variability; Multi-Disciplinary; Cryosphere; NBP1001; FIELD SURVEYS; Not provided; Antarctic Peninsula; R/V NBP; FIELD INVESTIGATION; USA/NSF; Ice Core; Holocene", "locations": "Antarctica; Antarctic Peninsula", "north": -57.8, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "AMGRF; MGDS; R2R; USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "uid": "p0000101", "west": -68.0}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": "POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))", "dataset_titles": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "datasets": [{"dataset_uid": "601065", "doi": "10.15784/601065", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "url": "https://www.usap-dc.org/view/dataset/601065"}], "date_created": "Sun, 29 Oct 2017 00:00:00 GMT", "description": "This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia\u0027s Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City\u0027s arts and science communities to bridge the gap between scientific knowledge and public perception.", "east": -112.086, "geometry": "POINT(-112.293 -79.484)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "uid": "p0000081", "west": -112.5}, {"awards": "1142007 Kurbatov, Andrei", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Core Tephra Analysis; Antarctic Tephra Data Base AntT static web site", "datasets": [{"dataset_uid": "601038", "doi": "10.15784/601038", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Tephra", "people": "Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Antarctic Ice Core Tephra Analysis", "url": "https://www.usap-dc.org/view/dataset/601038"}, {"dataset_uid": "601052", "doi": "10.15784/601052", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciology; Intracontinental Magmatism; IntraContinental Magmatism; Sample/collection Description; Sample/Collection Description; Tephra", "people": "Kurbatov, Andrei V.; Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tephra Data Base AntT static web site", "url": "https://www.usap-dc.org/view/dataset/601052"}], "date_created": "Fri, 06 Oct 2017 00:00:00 GMT", "description": "Many key questions in climate research (e.g. relative timing of climate events in different geographic areas, climate-forcing mechanisms, natural threshold levels in the climate system) are dependent on accurate reconstructions of the temporal and spatial distribution of past rapid climate change events in continental, atmospheric, marine and polar realms. This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. Development of this database will assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources. The AntT project relies on a cyberinfrastructure framework developed in house through NSF funded CDI-Type I: CiiWork for data assimilation, interpretation and open distribution model. In addition to collection and integration of existing information about volcanic products, this project will focus on filling the information gaps about unique physico-chemical characteristics of very fine (\u003c3 micrometer) volcanic particles (cryptotephra) that are present in Antarctic ice cores. This component of research will involve improving analytical methodology for detecting cryptotephra layers in ice, and will train a new generation of scientists to apply an array of modern state?of?the-art instrumentation available to the project team. \u003cbr/\u003e\u003cbr/\u003eThe recognized importance of tephra in establishing a chronological framework for volcanic and sedimentary successions has already resulted in the development of robust regional tephrochronological frameworks (e.g. Europe, Kamchatka, New Zealand, Western North America). The AntT project will provide this framework for Antarctic tephrochronology, as needed for precise correlation records between Antarctic ice cores (e.g. WAIS Divide, RICE, ITASE) and global paleoclimate archives. The results of AntT will be of particular significance to climatologists, paleoclimatologists, atmospheric chemists, geochemists, climate modelers, solar-terrestrial physicists, environmental statisticians, and policy makers for designing solutions to mitigate or cope with likely future impacts of climate change events on modern society.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Hartman, Laura; Wheatley, Sarah D.; Kurbatov, Andrei V.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "uid": "p0000328", "west": -180.0}, {"awards": "1542778 Alley, Richard", "bounds_geometry": null, "dataset_titles": "c-Axis Fabric of the South Pole Ice Core, SPC14; South Pole Ice Core (SPIcecore) Visual Observations", "datasets": [{"dataset_uid": "601057", "doi": "10.15784/601057", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; South Pole; SPICEcore", "people": "Voigt, Donald E.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "c-Axis Fabric of the South Pole Ice Core, SPC14", "url": "https://www.usap-dc.org/view/dataset/601057"}, {"dataset_uid": "601088", "doi": "10.15784/601088", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; Visual Observations", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core (SPIcecore) Visual Observations", "url": "https://www.usap-dc.org/view/dataset/601088"}], "date_created": "Fri, 29 Sep 2017 00:00:00 GMT", "description": "This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice.\u003cbr/\u003e\u003cbr/\u003eThe intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard; Fegyveresi, John; Voigt, Donald E.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": null, "title": "Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core", "uid": "p0000141", "west": null}, {"awards": "0944348 Taylor, Kendrick; 0944266 Twickler, Mark", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Summary of Results from the WAIS Divide Ice Core Project; WAIS Divide WDC06A Core Quality Versus Depth", "datasets": [{"dataset_uid": "601021", "doi": "10.15784/601021", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Summary of Results from the WAIS Divide Ice Core Project", "url": "https://www.usap-dc.org/view/dataset/601021"}, {"dataset_uid": "601030", "doi": "10.15784/601030", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide Ice Core", "people": "Twickler, Mark; Taylor, Kendrick C.; Souney, Joseph Jr.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Core Quality Versus Depth", "url": "https://www.usap-dc.org/view/dataset/601030"}], "date_created": "Fri, 09 Jun 2017 00:00:00 GMT", "description": "Taylor/0944348\u003cbr/\u003e\u003cbr/\u003eThis award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Mark, Twickler; Taylor, Kendrick C.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000080", "west": -112.1115}, {"awards": "1341360 Steig, Eric", "bounds_geometry": "POINT(106 -77.5)", "dataset_titles": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "datasets": [{"dataset_uid": "601031", "doi": "10.15784/601031", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Snow Pit; WAIS Divide Ice Core", "people": "Steig, Eric J.; Schoenemann, Spruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "url": "https://www.usap-dc.org/view/dataset/601031"}], "date_created": "Tue, 06 Jun 2017 00:00:00 GMT", "description": "Steig/1341360\u003cbr/\u003e\u003cbr/\u003eThis award supports a two-year project to develop a method for rapid and precise measurements of the difference in 18O/16O and 17O/16O isotope ratios in water, referred to as the 17O-excess. Measurement of 17O-excess is a recent innovation in geochemistry, complementing traditional measurements of the ratios of hydrogen (D/H) and oxygen (18O/16O). Conventional measurements of 17O/16O are limited in number because of the time-consuming and laborious nature of the analyses, which involves the conversion of water to oxygen via fluorination, followed by high-precision mass spectrometry. This project will use a novel cavity ring-down spectroscopy (CRDS) system developed by a joint effort of the University of Washington and Picarro, Inc. (Santa Clara, CA), along with the Centre for Ice and Climate (Neils Bohr Institute, Copenhagen). The primary intellectual merit of the research is the improvement of the CRDS method for measurements of 17Oexcess of discrete samples of water, to obtain precision and accuracy competitive with conventional methods using mass spectrometry. This will be achieved by quantification of the effects of water vapor concentration variability and instrument memory, precise calibration of the instrument against standard waters, and improvements to the spectroscopic analyses. The CRDS system will also be coupled to continuous-flow systems for ice core analysis, in collaboration with the University of Colorado, Boulder. The goal is to have an operational system available for ice core processing associated with the next major U.S.-led ice core project at South Pole, in 2015-2017. The broader impacts of the research include the ability to measure 17O-excess in ambient atmospheric water vapor, which can be used to improve understanding of convection, moisture transport, and condensation. The instrument development work proposed here is relevant to research supported by several NSF-GEO programs, including Hydrology, Climate and Large Scale Dynamics, Paleoclimate, Atmosphere Chemistry, and both the Arctic and Antarctic Programs. This proposal will support a postdoctoral researcher.", "east": 106.0, "geometry": "POINT(106 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -77.5, "title": "Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores", "uid": "p0000316", "west": 106.0}, {"awards": "1246223 Hastings, Meredith", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide WDC06A Nitrate Isotope Record", "datasets": [{"dataset_uid": "601022", "doi": "10.15784/601022", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; WAIS Divide; WAIS Divide Ice Core", "people": "Buffen, Aron; Hastings, Meredith", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Nitrate Isotope Record", "url": "https://www.usap-dc.org/view/dataset/601022"}], "date_created": "Tue, 02 May 2017 00:00:00 GMT", "description": "Hastings/1246223\u003cbr/\u003e\u003cbr/\u003eThis award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women\u0027s Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hastings, Meredith", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice", "uid": "p0000399", "west": -112.1115}, {"awards": "0944191 Taylor, Kendrick; 0944197 Waddington, Edwin", "bounds_geometry": "POLYGON((-180 -79,-173.3 -79,-166.6 -79,-159.9 -79,-153.2 -79,-146.5 -79,-139.8 -79,-133.1 -79,-126.4 -79,-119.7 -79,-113 -79,-113 -79.1,-113 -79.2,-113 -79.3,-113 -79.4,-113 -79.5,-113 -79.6,-113 -79.7,-113 -79.8,-113 -79.9,-113 -80,-119.7 -80,-126.4 -80,-133.1 -80,-139.8 -80,-146.5 -80,-153.2 -80,-159.9 -80,-166.6 -80,-173.3 -80,180 -80,150.9 -80,121.8 -80,92.7 -80,63.6 -80,34.5 -80,5.4 -80,-23.7 -80,-52.8 -80,-81.9 -80,-111 -80,-111 -79.9,-111 -79.8,-111 -79.7,-111 -79.6,-111 -79.5,-111 -79.4,-111 -79.3,-111 -79.2,-111 -79.1,-111 -79,-81.9 -79,-52.8 -79,-23.7 -79,5.4 -79,34.5 -79,63.6 -79,92.7 -79,121.8 -79,150.9 -79,-180 -79))", "dataset_titles": "Accumulation Rates from the WAIS Divide Ice Core; WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica; WAIS Divide Multi Track Electrical Measurements; WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "datasets": [{"dataset_uid": "601015", "doi": "10.15784/601015", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "url": "https://www.usap-dc.org/view/dataset/601015"}, {"dataset_uid": "601172", "doi": "10.15784/601172", "keywords": "Antarctic; Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; Wais Project; West Antarctic Ice Sheet", "people": "Taylor, Kendrick C.; Fudge, T. J.", "repository": "USAP-DC", "science_program": null, "title": "WAIS Divide Multi Track Electrical Measurements", "url": "https://www.usap-dc.org/view/dataset/601172"}, {"dataset_uid": "609591", "doi": "10.7265/N5B56GPJ", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Fudge, T. J.; Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Electrical Conductance Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609591"}, {"dataset_uid": "601004", "doi": "10.15784/601004", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Snow Accumulation; WAIS Divide Ice Core", "people": "Buizert, Christo; Fudge, T. J.; Waddington, Edwin D.; Conway, Howard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Accumulation Rates from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/601004"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices.", "east": -111.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "Ice Core Depth; National Ice Core Lab; Electrical Conductivity; FIELD INVESTIGATION; Not provided", "locations": null, "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Fudge, T. J.; Taylor, Kendrick C.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "uid": "p0000026", "west": -113.0}, {"awards": "0538520 Thiemens, Mark; 0538049 Steig, Eric", "bounds_geometry": "POINT(-112.085 -79.5)", "dataset_titles": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core; WAIS Divide sulfate and nitrate isotopes; WAIS ice core isotope data #387, 385 (full data link not provided)", "datasets": [{"dataset_uid": "601007", "doi": "10.15784/601007", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrate; Oxygen Isotope; Sulfate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.; Alexander, Becky", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide sulfate and nitrate isotopes", "url": "https://www.usap-dc.org/view/dataset/601007"}, {"dataset_uid": "609479", "doi": "10.7265/N5BG2KXH", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Thiemens, Mark H.", "repository": "USAP-DC", "science_program": null, "title": "Multiple Isotope Analysis of Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609479"}, {"dataset_uid": "002512", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "WAIS ice core isotope data #387, 385 (full data link not provided)", "url": "http://www.waisdivide.unh.edu/"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538520\u003cbr/\u003eThiemens\u003cbr/\u003eThis award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions.", "east": -112.085, "geometry": "POINT(-112.085 -79.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope Ratios; Temperature; Sulfate; West Antarctic; Paleoatmosphere; LABORATORY; Ice Core; Ice Core Data; Mass Independent Fractionation; FIELD SURVEYS; Not provided; Accumulation Rate; Oxygen Isotope; FIELD INVESTIGATION; Ice Core Chemistry; Isotope", "locations": "West Antarctic", "north": -79.5, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Alexander, Becky; Steig, Eric J.; Thiemens, Mark H.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Project website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000020", "west": -112.085}, {"awards": "1142166 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "datasets": [{"dataset_uid": "601008", "doi": "10.15784/601008", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1300 to 3404 m", "url": "https://www.usap-dc.org/view/dataset/601008"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "McConnell/1142166\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core", "uid": "p0000287", "west": -112.1115}, {"awards": "0538427 McConnell, Joseph", "bounds_geometry": "POINT(-112.1115 -79.481)", "dataset_titles": "Gas measurement from Higgins et al., 2015 - PNAS; WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A; WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A; WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "datasets": [{"dataset_uid": "601013", "doi": "10.15784/601013", "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601013"}, {"dataset_uid": "601009", "doi": "10.15784/601009", "keywords": "Aerosol; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from 1.5 to 577 m", "url": "https://www.usap-dc.org/view/dataset/601009"}, {"dataset_uid": "601010", "doi": "10.15784/601010", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601010"}, {"dataset_uid": "601011", "doi": "10.15784/601011", "keywords": "Aerosol; Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Aerosol Records from Intermediate Core WDC05Q", "url": "https://www.usap-dc.org/view/dataset/601011"}, {"dataset_uid": "601012", "doi": "10.15784/601012", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice-Core Chronology from Intermediate Core WDC05A", "url": "https://www.usap-dc.org/view/dataset/601012"}, {"dataset_uid": "601014", "doi": "10.15784/601014", "keywords": "Allan Hills; Antarctica; Argon; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope", "people": "Higgins, John", "repository": "USAP-DC", "science_program": null, "title": "Gas measurement from Higgins et al., 2015 - PNAS", "url": "https://www.usap-dc.org/view/dataset/601014"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "0538427\u003cbr/\u003eMcConnell \u003cbr/\u003eThis award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF\u0027s Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers.", "east": -112.1115, "geometry": "POINT(-112.1115 -79.481)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bender, Michael; McConnell, Joseph", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core", "uid": "p0000148", "west": -112.1115}, {"awards": "0539232 Cuffey, Kurt; 0539578 Alley, Richard", "bounds_geometry": "POINT(112.083 -79.467)", "dataset_titles": "Grain Size Full Population Dataset from WDC06A Core; Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole; Temperature Reconstruction at the West Antarctic Ice Sheet Divide; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery; WAIS Divide Surface and Snow-pit Data, 2009-2013; WDC 06A Mean Grain Size Data", "datasets": [{"dataset_uid": "609550", "doi": "10.7265/N5V69GJW", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.; Clow, Gary D.", "repository": "USAP-DC", "science_program": null, "title": "Temperature Profile of the West Antarctic Ice Sheet Divide Deep Borehole", "url": "https://www.usap-dc.org/view/dataset/609550"}, {"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "600377", "doi": "10.15784/600377", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Nitrogen; Paleoclimate; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Cuffey, Kurt M.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Temperature Reconstruction at the West Antarctic Ice Sheet Divide", "url": "https://www.usap-dc.org/view/dataset/600377"}, {"dataset_uid": "609654", "doi": "10.7265/N5GM858X", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Photo/video; Photo/Video; Thin Sections; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Vertical Thin Section Low-resolution Digital Imagery", "url": "https://www.usap-dc.org/view/dataset/609654"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Fegyveresi, John; Voigt, Donald E.; Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}, {"dataset_uid": "609655", "doi": "10.7265/N5VX0DG0", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "Grain Size Full Population Dataset from WDC06A Core", "url": "https://www.usap-dc.org/view/dataset/609655"}, {"dataset_uid": "609656", "doi": "10.7265/N5MC8X08", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Cravens, Eric D.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": null, "title": "WDC 06A Mean Grain Size Data", "url": "https://www.usap-dc.org/view/dataset/609656"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "0539578\u003cbr/\u003eAlley \u003cbr/\u003eThis award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.", "east": 112.083, "geometry": "POINT(112.083 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERA; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; Temperature Profiles; FIELD SURVEYS; Bubble Number Density; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": "WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Physical Properties of the WAIS Divide Deep Core", "uid": "p0000038", "west": 112.083}, {"awards": "1043167 White, James; 1043092 Steig, Eric", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "Resampling of Deep Polar Ice Cores using Information Theory; Seasonal temperatures in West Antarctica during the Holocene ; Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core; WAIS Divide Ice Core Discrete CH4 (80-3403m)", "datasets": [{"dataset_uid": "601365", "doi": "10.15784/601365", "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Vaughn, Bruce; Morris, Valerie; White, James; Garland, Joshua; Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Resampling of Deep Polar Ice Cores using Information Theory", "url": "https://www.usap-dc.org/view/dataset/601365"}, {"dataset_uid": "601603", "doi": "10.15784/601603", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Seasonality; Seasonal Temperatures; Temperature; Water Isotopes; West Antarctic Ice Sheet", "people": "Jones, Tyler R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Seasonal temperatures in West Antarctica during the Holocene ", "url": "https://www.usap-dc.org/view/dataset/601603"}, {"dataset_uid": "601274", "doi": "10.15784/601274", "keywords": "Antarctica; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Vaughn, Bruce; Bradley, Elizabeth; Price, Michael; Garland, Joshua; Jones, Tyler R.; White, James; Morris, Valerie", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/601274"}, {"dataset_uid": "600169", "doi": "10.15784/600169", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "people": "Morris, Valerie; White, James; Jones, Tyler R.; Vaughn, Bruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "url": "https://www.usap-dc.org/view/dataset/600169"}, {"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Sowers, Todd A.; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}], "date_created": "Thu, 15 Sep 2016 00:00:00 GMT", "description": "Steig/1043092\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "White, James; Vaughn, Bruce; Jones, Tyler R.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000078", "west": -112.08}, {"awards": "0838936 Brook, Edward J.; 0839031 Severinghaus, Jeffrey", "bounds_geometry": "POINT(161.75 -77.75)", "dataset_titles": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica; Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica; Taylor Glacier chemistry data and Taylor Dome TD2015 time scale; Taylor Glacier CO2 record; Taylor Glacier Gas Isotope Data", "datasets": [{"dataset_uid": "600165", "doi": "10.15784/600165", "keywords": "Antarctica; Cosmogenic; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600165"}, {"dataset_uid": "000158", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Taylor Glacier CO2 record", "url": "ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/taylor/taylor2016d13co2.txt"}, {"dataset_uid": "601103", "doi": "10.15784/601103", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Horizontal Ice Core; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier chemistry data and Taylor Dome TD2015 time scale", "url": "https://www.usap-dc.org/view/dataset/601103"}, {"dataset_uid": "601033", "doi": "10.15784/601033", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Isotope; Solid Earth; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier Gas Isotope Data", "url": "https://www.usap-dc.org/view/dataset/601033"}, {"dataset_uid": "601029", "doi": "10.15784/601029", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "people": "Severinghaus, Jeffrey P.; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601029"}], "date_created": "Tue, 29 Mar 2016 00:00:00 GMT", "description": "Severinghaus/0839031 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \"clathrate hypothesis\" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \"horizontal ice core\" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.75, "geometry": "POINT(161.75 -77.75)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Not provided; USAP-DC", "locations": null, "north": -77.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Brook, Edward J.; Severinghaus, Jeffrey P.", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -77.75, "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "uid": "p0000099", "west": 161.75}, {"awards": "1043518 Brook, Edward J.", "bounds_geometry": "POINT(-112.08648 -79.46763)", "dataset_titles": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP; Early Holocene methane records from Siple Dome, Antarctica; Methan record", "datasets": [{"dataset_uid": "000176", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Methan record", "url": "https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/ice-core"}, {"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Yang, Ji-Woong; Ahn, Jinho", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}, {"dataset_uid": "601055", "doi": "10.15784/601055", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Yang, Ji-Woong; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Early Holocene methane records from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601055"}, {"dataset_uid": "609628", "doi": "10.7265/N5JM27K4", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph; Rhodes, Rachel; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Continuous, Ultra-high Resolution WAIS-Divide Ice Core Methane Record 9.8-67.2 ka BP", "url": "https://www.usap-dc.org/view/dataset/609628"}], "date_created": "Tue, 12 Jan 2016 00:00:00 GMT", "description": "1043500/Sowers\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 50 yr resolution methane data set that will play a pivotal role in developing the WAIS Divide timescale as well as providing a common stratigraphic framework for comparing climate records from Greenland and West Antarctica. Even higher resolution data are proposed for key intervals to assist in precisely defining the phasing of abrupt climate change between the hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP-2 cores throughout the last 110,000 years is also proposed, to establish the interpolar methan (CH4) gradient that will be used to identify geographic areas responsible for the climate related methane emission changes. The intellectual merit of the proposed work is that it will provide chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. One main objective is to understand the interpolar timing of millennial-scale climate change. This is an important scientific goal relevant to understanding climate change mechanisms in general. The proposed work will help establish a chronological framework for addressing these issues. In addition, this proposal addresses the question of what methane sources were active during the ice age, through the work on the interpolar methane gradient. This work is directed at the fundamental question of what part of the biosphere controlled past methane variations, and is important for developing more sophisticated understanding of those variations. The broader impacts of the work are that the ultra-high resolution CH4 record will directly benefit all ice core paleoclimate research and the chronological refinements will impact paleoclimate studies that rely on ice core timescales for correlation purposes. The project will support both graduate and undergraduate students and the PIs will participate in outreach to the public.", "east": -112.08648, "geometry": "POINT(-112.08648 -79.46763)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "WAIS Divide; Not provided; LABORATORY; Wais Divide-project; Methane Concentration", "locations": "WAIS Divide", "north": -79.46763, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Rhodes, Rachel; Brook, Edward J.; McConnell, Joseph", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NCEI", "repositories": "NCEI; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46763, "title": "Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core", "uid": "p0000185", "west": -112.08648}, {"awards": "0948247 Pettit, Erin", "bounds_geometry": "POINT(-123.35 -75.1)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 06 Jan 2016 00:00:00 GMT", "description": "Pettit/0948247\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world.", "east": -123.35, "geometry": "POINT(-123.35 -75.1)", "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Crystals; Deformation; FIELD INVESTIGATION; Model; Sonic Logger; Ice Flow; Rheology; FIELD SURVEYS; Borehole; Climate; Ice Fabric; Antarctica; Interglacial", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Pettit, Erin; Hansen, Sharon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -75.1, "title": "The Relationship between Climate and Ice Rheology at Dome C, East Antarctica", "uid": "p0000708", "west": -123.35}, {"awards": "1141936 Foreman, Christine", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "datasets": [{"dataset_uid": "600133", "doi": "10.15784/600133", "keywords": "Antarctica; Biota; Genetic Sequences; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "url": "https://www.usap-dc.org/view/dataset/600133"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ADS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Dissolved Organic Carbon; Microbes; Ice Core; Not provided; Pyrosequencing; Microbial Diversity; Molecular; WAIS Divide; LABORATORY; FIELD SURVEYS; Antarctic; FIELD INVESTIGATION; DNA", "locations": "Antarctic; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core", "uid": "p0000342", "west": 112.085}, {"awards": "1142173 Bay, Ryan; 1142010 Talghader, Joseph", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "datasets": [{"dataset_uid": "600172", "doi": "10.15784/600172", "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Talghader, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "url": "https://www.usap-dc.org/view/dataset/600172"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "1142010/Talghader\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Fabric; Optical Scattering; Not provided; FIELD SURVEYS; Ice Core; Siple Dome; Antarctic; Dust; WAIS Divide; LABORATORY; Crystal Structure; Chronology; FIELD INVESTIGATION; Borehole", "locations": "Antarctic; WAIS Divide; Siple Dome", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Talghader, Joseph; Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.467, "title": "Optical Fabric and Fiber Logging of Glacial Ice", "uid": "p0000339", "west": 112.085}, {"awards": "1042883 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives; Roosevelt Island Climate Evolution Ice Core ICP-MS data", "datasets": [{"dataset_uid": "609621", "doi": "10.7265/N52J68SQ", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Roosevelt Island; Ross Ice Shelf", "people": "Mayewski, Paul A.; Beers, Thomas M.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Climate Evolution Ice Core ICP-MS data", "url": "https://www.usap-dc.org/view/dataset/609621"}, {"dataset_uid": "609636", "doi": "10.7265/N5WS8R6H", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Mayewski, Paul A.; Haines, Skylar; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives", "url": "https://www.usap-dc.org/view/dataset/609636"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "1042883/Mayewski\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Haines, Skylar; Kurbatov, Andrei V.; Mayewski, Paul A.; Beers, Thomas M.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)", "uid": "p0000193", "west": null}, {"awards": "1043780 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "datasets": [{"dataset_uid": "609659", "doi": "10.7265/N5CV4FPK", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609659"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Aydin/1043780\u003cbr/\u003eThis award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ethane; LABORATORY; N-Butane; Carbonyl Sulfide; Propane; Methyl Bromide; Methyl Chloride; Carbon Disulfide", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000055", "west": null}, {"awards": "1043421 Severinghaus, Jeffrey; 1043522 Brook, Edward J.", "bounds_geometry": "POINT(-112.09 -79.47)", "dataset_titles": "WAIS Divide Replicate Core Methane Isotopic Data Set", "datasets": [{"dataset_uid": "601059", "doi": "10.15784/601059", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Replicate Core Methane Isotopic Data Set", "url": "https://www.usap-dc.org/view/dataset/601059"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "1043421/Severinghaus\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed \"replicate coring\". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs\u0027 activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide.", "east": -112.09, "geometry": "POINT(-112.09 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Core Gas Records; Firn Air Isotopes; LABORATORY; FIELD SURVEYS; Mass Spectrometry; Not provided; FIELD INVESTIGATION; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.47, "title": "Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest", "uid": "p0000751", "west": -112.09}, {"awards": "1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey; 1245821 Brook, Edward J.", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Buffen, Aron; Menking, Andy; Petrenko, Vasilii; Dyonisius, Michael; Menking, James; Shackleton, Sarah; Bauska, Thomas; Severinghaus, Jeffrey P.; Barker, Stephen; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Marcott, Shaun; Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii; McConnell, Joseph; Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Petrenko, Vasilii; Dyonisius, Michael", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}, {"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Menking, James; Petrenko, Vasilii; Severinghaus, Jeffrey P.; Dyonisius, Michael; Shackleton, Sarah; Schilt, Adrian; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}, {"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0732804 McPhee, Miles; 0732906 Nowicki, Sophie; 0732730 Truffer, Martin; 0732869 Holland, David", "bounds_geometry": "POINT(-100.728 -75.0427)", "dataset_titles": "Automatic Weather Station Pine Island Glacier; Borehole Temperatures at Pine Island Glacier, Antarctica; Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "datasets": [{"dataset_uid": "609627", "doi": "10.7265/N5T151MV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "people": "Truffer, Martin; Stanton, Timothy", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609627"}, {"dataset_uid": "601216", "doi": "10.15784/601216", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "people": "Holland, David; Mojica Moncada, Jhon F.", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Automatic Weather Station Pine Island Glacier", "url": "https://www.usap-dc.org/view/dataset/601216"}, {"dataset_uid": "600072", "doi": "10.15784/600072", "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "url": "https://www.usap-dc.org/view/dataset/600072"}], "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 \u003cbr/\u003eTitle: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica\u003cbr/\u003e\u003cbr/\u003eThe Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \"Multidisciplinary Study of the Amundsen Sea Embayment\" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \"Polar Palooza\" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.", "east": -100.728, "geometry": "POINT(-100.728 -75.0427)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": true, "keywords": "West Antarctica; Seismic; LABORATORY; Amundsen Sea; Ocean-Ice Interaction; Remote Sensing; COMPUTERS; FIELD SURVEYS; LANDSAT-8; FIELD INVESTIGATION; Ocean Profiling; AUVS; Sea Level Rise; Stability; Not provided; Deformation; SATELLITES; Ice Movement; GROUND-BASED OBSERVATIONS; Ice Temperature; International Polar Year; Borehole", "locations": "West Antarctica; Amundsen Sea", "north": -75.0427, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-8; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0427, "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "uid": "p0000043", "west": -100.728}, {"awards": "0838849 Bender, Michael; 0838843 Kurbatov, Andrei", "bounds_geometry": "POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))", "dataset_titles": "Allan Hills Stable Water Isotopes; Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "datasets": [{"dataset_uid": "600099", "doi": "10.15784/600099", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "url": "https://www.usap-dc.org/view/dataset/600099"}, {"dataset_uid": "609541", "doi": "10.7265/N5NP22DF", "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope", "people": "Kurbatov, Andrei V.; Introne, Douglas; Mayewski, Paul A.; Spaulding, Nicole", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills Stable Water Isotopes", "url": "https://www.usap-dc.org/view/dataset/609541"}], "date_created": "Wed, 10 Dec 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \"International Climate Park\" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.", "east": 159.41667, "geometry": "POINT(159.29167 -76.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; LABORATORY; Deuterium Isotopes; Not provided; Oxygen Isotope", "locations": null, "north": -76.66667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "p0000046", "west": 159.16667}, {"awards": "1043167 White, James; 1043092 Steig, Eric", "bounds_geometry": null, "dataset_titles": "17O excess from WAIS Divide, 0 to 25 ka BP; WAIS Divide Ice Core Discrete CH4 (80-3403m); WAIS Divide WDC06A Oxygen Isotope Record", "datasets": [{"dataset_uid": "601413", "doi": "10.15784/601413", "keywords": "Antarctica; Ice Core; Oxygen Isotope; WAIS Divide", "people": "Steig, Eric J.; Schoenemann, Spruce", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "17O excess from WAIS Divide, 0 to 25 ka BP", "url": "https://www.usap-dc.org/view/dataset/601413"}, {"dataset_uid": "609629", "doi": "10.7265/N5GT5K41", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Oxygen Isotope Record", "url": "https://www.usap-dc.org/view/dataset/609629"}, {"dataset_uid": "601741", "doi": "10.15784/601741", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; WAIS", "people": "Sowers, Todd A.; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Discrete CH4 (80-3403m)", "url": "https://www.usap-dc.org/view/dataset/601741"}], "date_created": "Sat, 06 Dec 2014 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e INFRARED LASER SPECTROSCOPY", "is_usap_dc": true, "keywords": "AMD; ANALYTICAL LAB; USAP-DC; Amd/Us; LABORATORY; ICE CORE RECORDS; Antarctica; Wais Divide-project; FIELD SURVEYS; USA/NSF", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e ANALYTICAL LAB; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "p0000010", "west": null}, {"awards": "0944199 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "WAIS Divide Sonic Log Data", "datasets": [{"dataset_uid": "609592", "doi": "10.7265/N5T72FD2", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; Sonic Log; WAIS Divide; WAIS Divide Ice Core", "people": "Waddington, Edwin D.; Kluskiewicz, Dan; Anandakrishnan, Sridhar; McCarthy, Michael; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Sonic Log Data", "url": "https://www.usap-dc.org/view/dataset/609592"}], "date_created": "Wed, 03 Sep 2014 00:00:00 GMT", "description": "0944199/Matsuoka\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to test the hypothesis that abrupt changes in fabric exist and are associated with both climate transitions and volcanic eruptions. It requires depth-continuous measurements of the fabric. By lowering a new logging tool into the WAIS Divide borehole after the completion of the core drilling, this project will measure acoustic-wave speeds as a function of depth and interpret it in terms of ice fabrics. This interpretation will be guided by ice-core-measured fabrics at sparse depths. This project will apply established analytical techniques for the ice-sheet logging and estimate depth profiles of both compressional- and shear-wave speeds at short intervals (~ 1 m). Previous logging projects measured only compressional-wave speeds averaged over typically 5-7 m intervals. Thus the new logger will enable more precise fabric interpretations. Fabric measurements using thin sections have revealed distinct fabric patterns separated by less than several meters; fabric measurements over a shorter period are crucial. At the WAIS Divide borehole, six two-way logging runs will be made with different observational parameters so that multiple wave-propagation modes will be identified, yielding estimates of both compressional- and shear-wave speeds. Each run takes approximately 24 hours to complete; we propose to occupy the boreholes in total eight days. The logging at WAIS Divide is temporarily planned in December 2011, but the timing is not critical. This project?s scope is limited to the completion of the logging and fabric interpretations. Results will be immediately shared with other WAIS Divide researchers. Direct benefits of this data sharing include guiding further thin-section analysis of the fabric, deriving a precise thinning function that retrieves more accurate accumulation history and depth-age scales. The PIs of this project have conducted radar and seismic surveys in this area and this project will provide a ground truth for these regional remote-sensing assessments of the ice interior. In turn, these remote sensing means can extend the results from the borehole to larger parts of the central West Antarctica. This project supports education for two graduate students for geophysics, glaciology, paleoclimate, and polar logistics. The instrument that will be acquired in this project can be used at other boreholes for ice-fabric characterizations and for englacial hydrology (wetness of temperate ice).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PROBES", "is_usap_dc": true, "keywords": "WAIS Divide; GROUND STATIONS; Western Divide Core; Antarctic Ice Sheet", "locations": "Antarctic Ice Sheet; WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Kluskiewicz, Dan; Anandakrishnan, Sridhar; McCarthy, Michael; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative research: acoustic logging of the WAIS Divide borehole", "uid": "p0000051", "west": null}, {"awards": "0944078 Albert, Mary", "bounds_geometry": "POINT(112.05 79.28)", "dataset_titles": "Firn Permeability and Density at WAIS Divide", "datasets": [{"dataset_uid": "609602", "doi": "10.7265/N57942NT", "keywords": "Antarctica; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Albert, Mary R.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Firn Permeability and Density at WAIS Divide", "url": "https://www.usap-dc.org/view/dataset/609602"}], "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a project to investigate the transformations from snow to firn to ice and the underlying physics controlling firn\u0027s ability to store atmospheric samples from the past. Senior researchers, a graduate student, and several undergraduates will make high-resolution measurements of both the diffusivity and permeability profiles of firn cores from several sites in Antarctica and correlate the results with their microstructures quantified using advanced materials characterization techniques (scanning electron microscopy and x-ray computed tomography). The use of cores from different sites will enable us to examine the influence of different local climate conditions on the firn structure. We will use the results to help interpret existing measurements of firn air chemical composition at several sites where firn air measurements exist. There are three closely-linked goals of this project: to quantify the dependence of interstitial transport properties on firn microstructure from the surface down to the pore close-off depth, to determine at what depths bubbles form and entrap air, and investigate the extent to which these features exhibit site-to-site differences, and to use the measurements of firn air composition and firn structure to better quantify the differences between atmospheric composition (present and past), and the air trapped in both the firn and in air bubbles within ice by comparing the results of the proposed work with firn air measurements that have been made at the WAIS Divide and Megadunes sites. The broader impacts of this project are that the study will this study will enable us to elucidate the fundamental controls on the metamorphism of firn microstructure and its impact on processes of gas entrapment that are important to understanding ice core evidence of past atmospheric composition and climate change. The project will form the basis for the graduate research of a PhD student at Dartmouth, with numerous opportunities for undergraduate involvement in cold room measurements and outreach. The investigators have a track record of successfully mentoring women students, and will build on this experience. In conjunction with local earth science teachers, and graduate and undergraduate students will design a teacher-training module on the role of the Polar Regions in climate change. Once developed and tested, this module will be made available to the broader polar research community for their use with teachers in their communities.", "east": -112.05, "geometry": "POINT(-112.05 -79.28)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e MICROTOMOGRAPHY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": true, "keywords": "Firn Air; FIELD SURVEYS; Physics; GROUND-BASED OBSERVATIONS; Antarctica; Megadunes; Tomography; Wais Divide-project; Firn Core; FIELD INVESTIGATION; Not provided; Firn Permeability; LABORATORY; Visual Observations; Ice; Firn; WAIS Divide; Microstructure; Density", "locations": "Antarctica; WAIS Divide", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Firn Metamorphism: Microstructure and Physical Properties", "uid": "p0000049", "west": -112.05}, {"awards": "0539578 Alley, Richard", "bounds_geometry": null, "dataset_titles": "Bubble Number-density Data and Modeled Paleoclimates", "datasets": [{"dataset_uid": "609538", "doi": "10.7265/N5JW8BTJ", "repository": "USAP-DC", "science_program": null, "title": "Bubble Number-density Data and Modeled Paleoclimates", "url": "http://www.usap-dc.org/view/dataset/609538"}], "date_created": "Thu, 14 Aug 2014 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Air Bubbles; Antarctica; Camera; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fegyveresi, John; Alley, Richard", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0839093 McConnell, Joseph; 0839122 Saltzman, Eric; 0839075 Priscu, John", "bounds_geometry": "POINT(112.05 -79.28)", "dataset_titles": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A; Holocene Black Carbon in Antarctica; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Prokaryotic cell concentration record from the WAIS Divide ice core", "datasets": [{"dataset_uid": "601006", "doi": "10.15784/601006", "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Priscu, John; D\u0027Andrilli, Juliana", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "url": "https://www.usap-dc.org/view/dataset/601006"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}, {"dataset_uid": "601072", "doi": "10.15784/601072", "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "people": "Priscu, John; Santibanez, Pamela", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601072"}, {"dataset_uid": "601034", "doi": "10.15784/601034", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "McConnell, Joseph; Arienzo, Monica", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Holocene Black Carbon in Antarctica", "url": "https://www.usap-dc.org/view/dataset/601034"}], "date_created": "Fri, 30 May 2014 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to use the WAIS Divide deep core to investigate the Last Deglaciation at sub-annual resolution through an integrated set of chemical and biological analyses. The intellectual merit of the project is that these analyses, combined with others, will take advantage of the high snow accumulation WAIS Divide site yielding the highest time resolution glacio-biogeochemical and gas record of any deep Antarctic ice core. With other high resolution Greenland cores (GISP2 and GRIP) and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The proposed chemical, biological, and elemental tracer measurements will also be used to address all of the WAIS Divide science themes. The broader impacts of the project include education and outreach activities such as numerous presentations to local K-12 students; opportunities for student and teacher involvement in the laboratory work; a teacher training program in Earth sciences in the heavily minority Santa Ana, Compton, and Costa Mesa, California school districts; and development of high school curricula. Extensive graduate and undergraduate student involvement also is planned and will include one post doctoral associate, one graduate student, and undergraduate hourly involvement at DRI; a graduate student and undergraduates at University of California, Irvine (UCI); and a post doctoral fellow at MSU. Student recruitment will be made from underrepresented groups building on a long track record of involvement and will include the NSF funded California Alliance for Minority Participation (CAMP) and the Montana American Indian Research Opportunities (AIRO).\u003cbr/\u003e\u003cbr/\u003eThis award does not involve field work in Antarctica.", "east": 112.05, "geometry": "POINT(112.05 -79.28)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CARBON ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e WAS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Bacteria Ice Core; LABORATORY; Ice Core; FIELD INVESTIGATION; West Antarctica; Not provided; Dissolved Organic Carbon", "locations": "West Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY", "persons": "Foreman, Christine; Skidmore, Mark; Saltzman, Eric; McConnell, Joseph; Priscu, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "uid": "p0000273", "west": 112.05}, {"awards": "0839066 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "datasets": [{"dataset_uid": "609546", "doi": "10.7265/N5RF5S0D", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS Divide; WAIS Divide Ice Core", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Major Ion Chemistry Data of WAIS Divide Ice Core Brittle Ice", "url": "https://www.usap-dc.org/view/dataset/609546"}], "date_created": "Wed, 19 Mar 2014 00:00:00 GMT", "description": "Cole-Dai/0839066\u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make continuous major ion analyses in the West Antarctica Ice Sheet Divide (WAIS Divide) ice core by sampling the brittle ice zone (approximately from 500 m to 1500 m). The intellectual merit of the project is that these will likely be the only chemical measurements on the brittle ice zone and, therefore, will bridge the gap in the expected continuous records of climate, ice sheet dynamics and biological evolution based on chemical measurements. High resolution sampling and analysis, probably on selected portions and depth intervals in the brittle ice zone, will help with the independent, high-precision dating of the WAIS Divide core and contribute to the achievement of the major objectives of the WAIS Divide project?development of high resolution climate records with which to investigate issues of climate forcing by greenhouse gases and the role of Antarctica and Southern Hemisphere in the global climate system. Planned collaboration with other WAIS Divide investigators will develop the longest and most detailed volcanic record from Antarctica ice cores. The broader impacts of this project include a contribution to enhancing our knowledge of the climate system. Such improvements in understanding of the global climate system and the ability to predict the magnitude and uncertainty of future changes are highly relevant to the global community. The project will support post-doctoral scientists and graduate students, including those from under-represented groups, will contribute to education, an help to train future scientists and promote diversity in research and education. Public outreach activities of this project will contribute to informal science education of school age children in the Eastern South Dakota region.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Paleoclimate; LABORATORY; Ions; GROUND-BASED OBSERVATIONS; WAISCORES; Ion Chromatograph; Not provided; Ice Core", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE", "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Major Ion Chemical Analysis of Brittle Ice in the WAIS Divide Ice Core", "uid": "p0000047", "west": null}, {"awards": "0739698 Doran, Peter; 0739681 Murray, Alison", "bounds_geometry": "POINT(161.931 -77.3885)", "dataset_titles": "Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "datasets": [{"dataset_uid": "600080", "doi": "10.15784/600080", "keywords": "Antarctica; Biota; Carbon-14; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Dry Valleys; Geochronology; Ice Core Records; Lake Vida; Microbiology", "people": "Murray, Alison", "repository": "USAP-DC", "science_program": null, "title": "Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/600080"}], "date_created": "Thu, 12 Dec 2013 00:00:00 GMT", "description": "Lake Vida is the largest lake of the McMurdo Dry Valleys, with an approximately 20 m ice cover overlaying a brine of unknown depth with at least 7 times seawater salinity and temperatures below -10 degrees C year-round. Samples of brine collected from ice above the main water body contain 1) the highest nitrous oxide levels of any natural water body on Earth, 2) unusual geochemistry including anomalously high ammonia and iron concentrations, 3) high microbial counts with an unusual proportion (99%) of ultramicrobacteria. The microbial community is unique even compared to other Dry Valley Lakes. The research proposes to enter, for the first time the main brine body below the thick ice of Lake Vida and perform in situ measurements, collect samples of the brine column, and collect sediment cores from the lake bottom for detailed geochemical and microbiological analyses. The results will allow the characterization of present and past life in the lake, assessment of modern and past sedimentary processes, and determination of the lake\u0027s history. The research will be conducted by a multidisciplinary team that will uncover the biogeochemical processes associated with a non-photosynthetic microbial community isolated for a significant period of time. This research will address diversity, adaptive mechanisms and evolutionary processes in the context of the physical evolution of the environment of Lake Vida. Results will be widely disseminated through publications, presentations at national and international meetings, through the Subglacial Antarctic Lake Exploration (SALE) web site and the McMurdo LTER web site. The research will support three graduate students and three undergraduate research assistants. The results will be incorporated into a new undergraduate biogeosciences course at the University of Illinois at Chicago which has an extremely diverse student body, dominated by minorities.", "east": 161.931, "geometry": "POINT(161.931 -77.3885)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.3885, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Murray, Alison; Doran, Peter", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.3885, "title": "Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "uid": "p0000485", "west": 161.931}, {"awards": "0944764 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Abrupt Change in Atmospheric CO2 During the Last Ice Age; High-resolution Atmospheric CO2 during 7.4-9.0 ka", "datasets": [{"dataset_uid": "609527", "doi": "10.7265/N5QF8QT5", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; South Pole; WAISCORES", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "High-resolution Atmospheric CO2 during 7.4-9.0 ka", "url": "https://www.usap-dc.org/view/dataset/609527"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}, {"dataset_uid": "609539", "doi": "10.7265/N5F47M23", "keywords": "Antarctica; Arctic; Byrd; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome Ice Core; Taylor Dome; Taylor Dome Ice Core", "people": "Ahn, Jinho; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Abrupt Change in Atmospheric CO2 During the Last Ice Age", "url": "https://www.usap-dc.org/view/dataset/609539"}], "date_created": "Thu, 08 Aug 2013 00:00:00 GMT", "description": "This award supports a project to create new, unprecedented high-resolution atmospheric carbon dioxide (CO2) records spanning intervals of abrupt climate changes during the last glacial period and the early Holocene. The proposed work will utilize high-precision methods on existing ice cores from high accumulation sites such as Siple Dome and Byrd Station, Antarctica and will improve our understanding of how fast CO2 can change naturally, how its variations are linked with climate, and, combined with a coupled climate-carbon cycle model, will clarify the role of terrestrial and oceanic processes during past abrupt changes of climate and CO2. The intellectual merit of this work is that CO2 is the most important anthropogenic greenhouse gas and understanding its past variations, its sources and sinks, and how they are linked to climate change is a major goal of the climate research community. This project will produce high quality data on centennial to multi-decadal time scales. Such high-resolution work has not been conducted before because of insufficient analytical precision, slow experimental procedures in previous studies, or lack of available samples. The proposed research will complement future high-resolution studies from WAIS Divide ice cores and will provide ice core CO2 records for the target age intervals, which are in the zone of clathrate formation in the WAIS ice cores. Clathrate hydrate is a phase composed of air and ice. CO2 analyses have historically been less precise in clathrate ice than in ?bubbly ice? such as the Siple Dome ice core that will be analyzed in the proposed project. High quality, high-resolution results from specific intervals in Siple Dome that we propose to analyze will provide important data for verifying the WAIS Divide record. The broader impacts of the work are that current models show a large uncertainty of future climate-carbon cycle interactions. The results of this proposed work will be used for testing coupled carbon cycle-climate models and may contribute to reducing this uncertainty. The project will contribute to the training of several undergraduate students and a full-time technician. Both will learn analytical techniques and the basic science involved. Minorities and female students will be highly encouraged to participate in this project. Outreach efforts will include participation in news media interviews, at a local festival celebrating art, science and technology, and giving seminar presentations in the US and foreign countries. The OSU ice core laboratory has begun a collaboration with a regional science museum and is developing ideas to build an exhibition booth to make public be aware of climate change and ice core research. All data will be archived at the National Snow and Ice Data Center and at other similar archives per the OPP data policy.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e CO2 ANALYZERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; CO2 Concentrations; Ice Core Gas Age; CO2 Uncertainty; LABORATORY; Ice Core Depth; Not provided; CH4 Concentrations", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "NOT APPLICABLE; NOT APPLICABLE", "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Atmospheric CO2 and Abrupt Climate Change", "uid": "p0000179", "west": null}, {"awards": "9725057 Mayewski, Paul", "bounds_geometry": "POLYGON((-76.1 -77.68,-53.253 -77.68,-30.406 -77.68,-7.559 -77.68,15.288 -77.68,38.135 -77.68,60.982 -77.68,83.829 -77.68,106.676 -77.68,129.523 -77.68,152.37 -77.68,152.37 -78.912,152.37 -80.144,152.37 -81.376,152.37 -82.608,152.37 -83.84,152.37 -85.072,152.37 -86.304,152.37 -87.536,152.37 -88.768,152.37 -90,129.523 -90,106.676 -90,83.829 -90,60.982 -90,38.135 -90,15.288 -90,-7.559 -90,-30.406 -90,-53.253 -90,-76.1 -90,-76.1 -88.768,-76.1 -87.536,-76.1 -86.304,-76.1 -85.072,-76.1 -83.84,-76.1 -82.608,-76.1 -81.376,-76.1 -80.144,-76.1 -78.912,-76.1 -77.68))", "dataset_titles": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data; US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data, Version 1", "datasets": [{"dataset_uid": "609273", "doi": "10.7265/N51V5BXR", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; WAIS", "people": "Mayewski, Paul A.; Dixon, Daniel A.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data", "url": "https://www.usap-dc.org/view/dataset/609273"}, {"dataset_uid": "601559", "doi": null, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; Solid Earth; Wais Project", "people": "Mayewski, Paul A.; Dixon, Daniel A.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US International Trans-Antarctic Scientific Expedition (US ITASE) Glaciochemical Data, Version 1", "url": "https://www.usap-dc.org/view/dataset/601559"}], "date_created": "Thu, 11 Jul 2013 00:00:00 GMT", "description": "9725057 Mayewski This award is for support for a Science Management Office (SMO) for the United States component of the International Trans-Antarctic Scientific Expedition (US ITASE). The broad aim of US ITASE is to develop an understanding of the last 200 years of past West Antarctic climate and environmental change. ITASE is a multidisciplinary program that integrates remote sensing, meteorology, ice coring, surface glaciology and geophysics. In addition to the formation of a science management office, this award supports a series of annual workshops to coordinate the science projects that will be involved in ITASE and the logistics base needed to undertake ground-based sampling in West Antarctica.", "east": 152.37, "geometry": "POINT(38.135 -83.84)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "US ITASE; Not provided; ITASE; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": null, "north": -77.68, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Dixon, Daniel A.; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Science Management for the United States Component of the International Trans-Antarctic Expedition", "uid": "p0000221", "west": -76.1}, {"awards": "0839053 Ackley, Stephen", "bounds_geometry": "POLYGON((-180 -67.05,-170.9866 -67.05,-161.9732 -67.05,-152.9598 -67.05,-143.9464 -67.05,-134.933 -67.05,-125.9196 -67.05,-116.9062 -67.05,-107.8928 -67.05,-98.8794 -67.05,-89.866 -67.05,-89.866 -68.1033,-89.866 -69.1566,-89.866 -70.2099,-89.866 -71.2632,-89.866 -72.3165,-89.866 -73.3698,-89.866 -74.4231,-89.866 -75.4764,-89.866 -76.5297,-89.866 -77.583,-98.8794 -77.583,-107.8928 -77.583,-116.9062 -77.583,-125.9196 -77.583,-134.933 -77.583,-143.9464 -77.583,-152.9598 -77.583,-161.9732 -77.583,-170.9866 -77.583,180 -77.583,178.57 -77.583,177.14 -77.583,175.71 -77.583,174.28 -77.583,172.85 -77.583,171.42 -77.583,169.99 -77.583,168.56 -77.583,167.13 -77.583,165.7 -77.583,165.7 -76.5297,165.7 -75.4764,165.7 -74.4231,165.7 -73.3698,165.7 -72.3165,165.7 -71.2632,165.7 -70.2099,165.7 -69.1566,165.7 -68.1033,165.7 -67.05,167.13 -67.05,168.56 -67.05,169.99 -67.05,171.42 -67.05,172.85 -67.05,174.28 -67.05,175.71 -67.05,177.14 -67.05,178.57 -67.05,-180 -67.05))", "dataset_titles": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "datasets": [{"dataset_uid": "600106", "doi": "10.15784/600106", "keywords": "Ice Core Records; Oceans; Oden; OSO1011; Sea Ice; Sea Ice Salinity; Sea Ice Thickness; Southern Ocean", "people": "Ackley, Stephen", "repository": "USAP-DC", "science_program": null, "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "url": "https://www.usap-dc.org/view/dataset/600106"}], "date_created": "Fri, 03 May 2013 00:00:00 GMT", "description": "Several aspect of the seasonal melting and reformation cycle of Antarctic sea ice appear to be divergent from those occurring in the Arctic. This is most clearly demonstrated by the dramatic diminishing extent and thinning of the Arctic sea ice, to be contrasted to the changes in Antarctic sea-ice extent, which recently (decadaly) shows small increases. Current climate models do not resolve this discrepancy which likely results from both a lack of relevant observational sea-ice data in the Antarctic, along with inadequacies in the physical parameterization of sea-ice properties in climate models.\u003cbr/\u003e\u003cbr/\u003eResearchers will take advantage of the cruise track of the I/B Oden during transit through the Antarctic sea-ice zones in the region of the Bellingshausen, Amundsen and Ross (BAR) seas on a cruise to McMurdo Station. Because of its remoteness and inaccessibility, the BAR region is of considerable scientific interest as being one of the last under described and perhaps unexploited marine ecosystems left on the planet .\u003cbr/\u003e\u003cbr/\u003eA series of on station and underway observations of sea ice properties will be undertaken, thematically linked to broader questions of summer ice survival and baseline physical properties (e.g. estimates of heat and salt fluxes). In situ spatiotemporal variability of sea-ice cover extent, thickness and snow cover depths will be observed.", "east": 165.7, "geometry": "POINT(-142.083 -72.3165)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -67.05, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Ackley, Stephen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.583, "title": "The Sea Ice System in Antarctic Summer, Oden Southern Ocean Expedition (OSO 2010-11)", "uid": "p0000676", "west": -89.866}, {"awards": "0739743 Bay, Ryan", "bounds_geometry": "POINT(123.35 -75.1)", "dataset_titles": "Dome C optical logging data", "datasets": [{"dataset_uid": "000234", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Dome C optical logging data", "url": "http://icecube.berkeley.edu/~bay/edc99/"}], "date_created": "Wed, 27 Jun 2012 00:00:00 GMT", "description": "Bay 0739743\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to make high-resolution logs of dust and ash in the Dome C borehole using an optical dust logger. Logging at 20-50 cm/sec, in a matter of hours, mm-scale depth resolution of dust concentration and volcanic ash layers over the entire 3270 m borehole back to ~800 ka can be provided. The logger probes an area of order m2 of the horizon compared to the ~0.02 m2 core, greatly suppressing depositional noise and making the technique immune to core damage or loss. The method achieves unprecedented resolution of climate variations for matching or comparing ice core records, can detect particulate layers from explosive fallout which are invisible or missing in the core, and often reveals subtle trend changes which can elude standard core analyses. With the highly resolved dust record, it is expected to find new synchronous age markers between East Antarctica, West Antarctica and Greenland. The data could be instrumental in unifying global climate records, or resolving mysteries such as the transition from 41-kyr glacial cycles to apparent 100-kyr cycles. The project will extend previous finding, which make the most convincing case to date for a causal relationship between explosive volcanic events and abrupt climate change on millennial timescales. A search will also be made for evidence that some of the worldwide explosive fallout events that have been identified may have resulted from impacts by comets or asteroids. The investigators will evaluate the reliability of terrestrial impact crater records and the possibility that Earth impacts are considerably more frequent than is generally appreciated. Better understanding of the factors which force abrupt climate changes, the recurrence rate and triggering mechanisms of large volcanic eruptions, and the frequency of Gt to Tt-energy bolide impacts are of vital interest for civilization. The work plan for 2008-11 comprises modifying and testing of existing hardware in year one; logging field work, most likely in year two; data analysis and publication of results in year three. Because the EPICA collaborators will provide a suitable logging winch onsite, the logistical needs of this project are modest and can be accommodated by Twin Otter from McMurdo. The proposal is in the spirit of the International Polar Year (IPY) by forging an international collaboration with potential societal benefit. The project will provide interdisciplinary training to students and postdoctoral fellows from the U.S. and other countries.", "east": 123.35, "geometry": "POINT(123.35 -75.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": false, "keywords": "Ash Layer; LABORATORY; Not provided; FIELD INVESTIGATION; Climate; Antarctica; Ice Core; Bolides; Borehole; Climate Change; Paleoclimate; FIELD SURVEYS; Volcanic", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -75.1, "title": "Dust Logging at Dome C for Abrupt Climate Changes, Large Volcanic Eruptions and Bolide Impacts", "uid": "p0000717", "west": 123.35}, {"awards": "1043528 Alley, Richard; 1043313 Spencer, Matthew", "bounds_geometry": "POINT(112.1166 -79.4666)", "dataset_titles": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy; C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core; Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data; WAIS Divide 580m Bubble and Grain Hybrid Data; WAIS Divide Surface and Snow-pit Data, 2009-2013", "datasets": [{"dataset_uid": "601079", "doi": "10.15784/601079", "keywords": "Antarctica; Atmosphere; AWS; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Meteorology; Physical Properties; Snow Pit; Temperature; WAIS Divide; WAIS Divide Ice Core; Weatherstation", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Surface and Snow-pit Data, 2009-2013", "url": "https://www.usap-dc.org/view/dataset/601079"}, {"dataset_uid": "609605", "doi": "10.7265/N5W093VM", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Alley, Richard; Voigt, Donald E.; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "C-axis Fabric from Physical Properties Samples of the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609605"}, {"dataset_uid": "601087", "doi": "10.15784/601087", "keywords": "Air Bubbles; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Strain; Physical Ice Properties; Snow/ice; Snow/Ice; Strain", "people": "Fegyveresi, John; Alley, Richard", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide 580m Bubble and Grain Hybrid Data", "url": "https://www.usap-dc.org/view/dataset/601087"}, {"dataset_uid": "601224", "doi": "10.15784/601224", "keywords": "Antarctic; Antarctica; Bubble Number Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; NSF-ICF Microtome and Photography Stage; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; WAIS Divide Ice Core; West Antarctic Ice Sheet", "people": "Fegyveresi, John; Voigt, Donald E.; Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Updated (2017) bubble number-density, size, shape, and modeled paleoclimate data", "url": "https://www.usap-dc.org/view/dataset/601224"}, {"dataset_uid": "609603", "doi": "10.7265/N53J39X3", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Average Annual Layer Thickness of the WAIS Divide Ice Core from Visual Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609603"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "1043528/Alley\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to complete the physical-properties studies of the WAIS Divide deep ice core, now being collected in West Antarctica. Ongoing work funded by NSF, under a grant that is ending, has produced visible stratigraphy dating, inspection of the core for any melt layers, volcanic horizons, flow disturbances or other features, analysis of bubble number-densities allowing reconstruction of a two-millennial cooling trend in the latter Holocene at the site, characterization of other bubble characteristics (size, etc.), density studies, characterization of snow-surface changes at the site, preliminary c-axis studies, and more. The current proposal seeks to complete this work, once the rest of the core is recovered. The intellectual merit of the proposed activity starts with quality assurance for the core, by visual detection of any evidence of flow disturbances that would disrupt the integrity of the climate record. Inspection will also reveal any melt layers, volcanic horizons, etc. Annual-layer dating will be conducted; thus far, the visible strata have not been as useful as some other indicators, but the possibility (based on experience in Greenland) that visible examination will allow detection of thinner annual layers than other techniques motivates the effort. Bubble number-density will be used to reconstruct temperature changes through the rest of the bubbly part of the core, providing important paleoclimatic data for earlier parts of the Holocene. Coordinated interpretation of c-axis fabrics, grain sizes and shapes, and bubble characteristics will be used to learn about the history of ice flow, the processes of ice flow, and the softness of the ice for additional deformation. Analysis of surface data already collected will improve interpretation of the layering of the core. It is possible that the annual-layer dating will not be sufficiently successful, and that the core will be undisturbed with no melt layers; if so, then these efforts will not yield major publications. However, success of the other efforts should produce improved understanding of the history and stability of the ice sheet, and key processes controlling these, and the quality assurance provided by the visual examination is important for the project as a whole. The broader impacts of the proposed activity include education of a PhD student and multiple undergraduates, and research opportunities for a junior faculty member at an undergraduate institution. The proposed activity will help support an especially vigorous education and outreach effort providing undergraduate instruction for over 1000 students per year, reaching thousands more citizens and many policymakers, and preparing educational materials used at many levels.", "east": 112.1166, "geometry": "POINT(112.1166 -79.4666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ACFA; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Antarctic; Antarctica; Annual Layer Thickness; Ice Core; Visual Observations; Bubble; LABORATORY; Bubble Density; FIELD INVESTIGATION; Physical Properties; Stratigraphy; Climate Record; Annual Layers; Ice Fabric; C-axis; Model; WAIS Divide; GROUND-BASED OBSERVATIONS; FIELD SURVEYS; Melt Layers; Wais Divide-project; Not provided", "locations": "WAIS Divide; Antarctica; Antarctic", "north": -79.4666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Spencer, Matthew; Alley, Richard; Fitzpatrick, Joan; Voigt, Donald E.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4666, "title": "Collaborative Research: Continued Study of Physical Properties of the WAIS Divide Deep Core", "uid": "p0000027", "west": 112.1166}, {"awards": "0636740 Kreutz, Karl; 0636767 Dunbar, Nelia", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Breton, Daniel; Koffman, Bess; Hamilton, Gordon S.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0738658 Price, P. Buford", "bounds_geometry": "POINT(112.1125 -79.4638)", "dataset_titles": "Access to data; data from one of three optical logs we made at WAIS Divide; WAIS Divide Laser Dust Logger Data", "datasets": [{"dataset_uid": "001349", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://icecube.berkeley.edu/~bay/wdc/"}, {"dataset_uid": "000188", "doi": "", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "data from one of three optical logs we made at WAIS Divide", "url": "http://icecube.berkeley.edu/~bay/wdc/"}, {"dataset_uid": "609540", "doi": "10.7265/N5C53HSG", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Laser Dust Logger; WAIS Divide Ice Core", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Laser Dust Logger Data", "url": "https://www.usap-dc.org/view/dataset/609540"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to use two new scanning fluorimeters to map microbial concentrations vs depth in the WAIS Divide ice core as portions of it become available at NICL, and selected portions of the GISP2 ice core for inter-hemispheric comparison. Ground-truth calibrations with microbes in ice show that the instruments are sensitive to a single cell and can scan the full length of a 1-meter core at 300-micron intervals in two minutes. The goals of these studies will be to exploit the discovery that microbes are transported onto ice, in clumps, several times per year and that at rare intervals (not periodically) of ~104 years, a much higher flux, sometimes lasting \u003e1 decade, reaches the ice. From variations ranging from seasonal to millennial to glacial scale in the arrival time distribution of phototrophs, methanogens, and total microbes in the Antarctic and Arctic ice, the investigators will attempt to determine oceanic and terrestrial sources of these microbes and will look for correlations of microbial bursts with dust concentration and temperature proxies. In addition the project will follow up on the discovery that the rare instances of very high microbial flux account for some of the\"gas artifacts\" in ice cores - isolated spikes of excess CH4 and N2O that have been discarded by others in previous climate studies. The intellectual merit of this project is that it will exploit scanning fluorimetry of microbes as a powerful new tool for studies ranging from meteorology to climatology to biology, especially when combined with mapping of dust, gases, and major element chemistry in ice cores. In 2010-11 the WAIS Divide borehole will be logged with the latest version of the dust logger. The log will provide mm-scale depth resolution of dust concentration and of volcanic ash layers down the entire depth of the borehole. The locations of ash layers in the ice will be determined and chemical analyses of the ash will be analyzed in order to determine provenance. By comparing data from the WAIS Divide borehole with data from other boreholes and with chemical data (obtained by others) on volcanic layers, the researchers will examine the relationship between the timing of volcanic eruptions and abrupt climate change. Results from this project with the scanning fluorimeters and the dust logger could have applications to planetary missions, borehole oceanography, limnology, meteorology, climate, volcanology, and ancient life in ice. A deeper understanding of the causes of abrupt climate change, including a causal relationship with volcanic explosivity, would enable a better understanding of the adverse effects on climate. The broader impact of the project is that it will provide training to students and post-docs from the U. S. and other countries.", "east": 112.1125, "geometry": "POINT(112.1125 -79.4638)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS", "is_usap_dc": true, "keywords": "Dust Loggers; Dust Concentration; Ice Core; West Antarctic Ice Sheet; LABORATORY; Microbial; Fluorimetry; GROUND-BASED OBSERVATIONS; Meteorology; Climatologymeteorologyatmosphere; Ice", "locations": "West Antarctic Ice Sheet", "north": -79.4638, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan; Price, Buford; Souney, Joseph Jr.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PI website", "repositories": "PI website; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.4638, "title": "Climatology, Meteorology, and Microbial Metabolism in Ice with Dust Loggers and Fluorimetry", "uid": "p0000009", "west": 112.1125}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "WAIS Divide Ice Core CO2", "datasets": [{"dataset_uid": "609651", "doi": "10.7265/N5DV1GTZ", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Marcott, Shaun; Brook, Edward J.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core CO2", "url": "https://www.usap-dc.org/view/dataset/609651"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Brook 0739766\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of\u003cbr/\u003ethe proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Dioxide; FIELD INVESTIGATION; CO2; Wais Divide-project; Ice Core; Antarctica; Climate; Gas Chromatography; Antarctic Ice Core; LABORATORY", "locations": "Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marcott, Shaun; Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "uid": "p0000044", "west": -112.08}, {"awards": "0538538 Sowers, Todd; 0538578 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Late Holocene Methane Concentrations from WAIS Divide and GISP2; Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609509", "doi": "10.7265/N5J1013R", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Concentrations from the WAIS Divide Ice Core (WDC06A), 60 to 11,300 ybp", "url": "https://www.usap-dc.org/view/dataset/609509"}, {"dataset_uid": "609586", "doi": "10.7265/N5W66HQQ", "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Mitchell, Logan E", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Late Holocene Methane Concentrations from WAIS Divide and GISP2", "url": "https://www.usap-dc.org/view/dataset/609586"}, {"dataset_uid": "001303", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc"}], "date_created": "Thu, 19 Apr 2012 00:00:00 GMT", "description": "Sowers/Brook\u003cbr/\u003e0538538\u003cbr/\u003eThis award supports a project to develop a high-resolution (every 50 yr) methane data set that will play a pivotal role in developing the timescale for the new deep ice core being drilled at the West Antarctic Ice Sheet Divide (WAIS Divde) site as well as providing a common stratigraphic framework for comparing climate records from Greenland and WAIS Divide. Certain key intervals will be measured at even higher resolution to assist in precisely defining the phasing of abrupt climate change between the northern and southern hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP2 ice cores throughout the last 110kyr is also proposed, to establish the inter-hemispheric methane gradient which will be used to identify geographic areas responsible for the climate-related methane emission changes. A large gas measurement inter-calibration of numerous laboratories, utilizing both compressed air cylinders and WAIS Divide ice core samples, will also be performed. The intellectual merit of the proposed work is that it will provide the chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. In addition, the project addresses the question of what methane sources were active during the ice age and will help to answer the fundamental question of what part of the biosphere controlled past methane variations. The broader impact of the proposed work is that it will directly benefit all ice core paleoclimate research and will impact the paleoclimate studies that rely on ice core timescales for correlation purposes. The project will also support a Ph.D. student at Oregon State University who will have the opportunity to be involved in a major new ice coring effort with international elements. Undergraduates at Penn State will gain valuable laboratory experience and participate fully in the project. The proposed work will underpin the WAIS Divide chronology, which will be fundamental to all graduate student projects that involve the core. The international inter-calibration effort will strengthen ties between research institutions on four continents and will be conducted as part of the International Polar Year research agenda.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Antarctica; Ch4; West Antarctica; Wais Divide-project; GROUND-BASED OBSERVATIONS; FIELD INVESTIGATION; FIELD SURVEYS; Methane Concentration; Methane; Ice Core; WAIS Divide; Antarctic; LABORATORY", "locations": "Antarctic; WAIS Divide; Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; NOT APPLICABLE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Lee, James; Buizert, Christo; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Collaborative Research: Constructing an Ultra-high Resolution Atmospheric Methane Record for the Last 140,000 Years from WAIS Divide Core.", "uid": "p0000025", "west": null}, {"awards": "0739598 Aydin, Murat; 0739491 Sowers, Todd", "bounds_geometry": null, "dataset_titles": "Alkanes in Firn Air Samples, Antarctica and Greenland; Methane Isotopes in South Pole Firn Air, 2008", "datasets": [{"dataset_uid": "609504", "doi": "10.7265/N5X9287C", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Greenland; Snow/ice; Snow/Ice; South Pole; WAIS Divide", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Alkanes in Firn Air Samples, Antarctica and Greenland", "url": "https://www.usap-dc.org/view/dataset/609504"}, {"dataset_uid": "609502", "doi": "10.7265/N55T3HFP", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": null, "title": "Methane Isotopes in South Pole Firn Air, 2008", "url": "https://www.usap-dc.org/view/dataset/609502"}], "date_created": "Thu, 18 Aug 2011 00:00:00 GMT", "description": "This award supports a project to make measurements of methane and other trace gases in firn air collected at South Pole, Antarctica. The analyses will include: methane isotopes (delta-13CH4 and delta-DCH4), light non-methane hydrocarbons (ethane, propane, and n-butane), sulfur gases (COS, CS2), and methyl halides (CH3Cl and CH3Br). The atmospheric burdens of these trace gases reflect changes in atmospheric OH, biomass burning, biogenic activity in terrestrial, oceanic, and wetland ecosystems, and industrial/agricultural activity. The goal of this project is to develop atmospheric histories for these trace gases over the last century through examination of depth profiles of these gases in South Pole firn air. The project will involve two phases: 1) a field campaign at South Pole, Antarctica to drill two firn holes and fill a total of ~200 flasks from depths reaching 120 m, 2) analysis of firn air at University of California, Irvine, Penn State University, and several other collaborating laboratories. Atmospheric histories will be inferred from the measurements using a one dimensional advective/diffusive model of firn air transport. This study will provide new information about the recent changes in atmospheric levels of these gases, providing about a 90 year long time series record that connects the earlier surface and firn air measurements to present day. The project will also explore the possibility of in- situ production of light non-methane hydrocarbons in firn air that is relevant to the interpretation of ice core records. The broader impacts of this research are that it has the potential for significant societal impact by improving our understanding of climate change and man\u0027s input to the atmosphere. The results of this work will be disseminated through the peer review process, and will contribute to environmental assessments, such as the Inter-governmental Panel on Climate Change (IPCC) Climate Assessment and the Word Meteorological Organization (WMO) Stratospheric Ozone Assessment. This research will provide educational opportunities for graduate and undergraduate students, and will contribute to a teacher training program for K-12 teachers in minority school districts.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Isotope; Firn Air Chemistry; Firn Air Isotope Measurements; Not provided; LABORATORY; South Pole; Firn; Delta 13C; Carbon-13; Mass Spectrometer; Deuterium; Mass Spectrometry; Firn Air Samples; Carbon; Gas Chromatography; Polar Firn Air; GROUND-BASED OBSERVATIONS; Methane; Antarctica; Firn Air Isotopes; Delta Deuterium; FIELD SURVEYS; Firn Air; Chromatography; Methane Isotopes; Carbon Isotopes; Stable Isotopes", "locations": "Antarctica; South Pole", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "uid": "p0000162", "west": null}, {"awards": "0636929 Bales, Roger", "bounds_geometry": null, "dataset_titles": "Measurements of Air and Snow Photochemical Species at WAIS Divide, Antarctica", "datasets": [{"dataset_uid": "609585", "doi": "10.7265/N5GX48HW", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Bales, Roger", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Measurements of Air and Snow Photochemical Species at WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609585"}], "date_created": "Thu, 14 Jul 2011 00:00:00 GMT", "description": "This award supports a project to understand how recent changes in atmospheric chemistry, and historical changes as recorded in snow, firn and ice, have affected atmospheric photochemistry over Antarctica. Atmospheric, snow and firn core measurements of selected gas, meteorological and snow physical properties will be made and modeling of snow-atmosphere exchange will be carried out. The intellectual merit of the project is that it will lead to a better an understanding of the atmospheric chemistry in West Antarctica, its bi-directional linkages with the snowpack, and how it responds to regional influences. There are at least four broader impacts of this work. First is education of university students at both the graduate and undergraduate levels. One postdoctoral researcher and one graduate student will carry out much of the work, and a number of undergraduates will be involved. Second, involvement with the WAIS-Divide coring program will be used to help recruit under-represented groups as UC Merced students. As part of UC Merced\u0027s outreach efforts in the San Joaquin Valley, whose students are under-represented in the UC system, the PI and co-PI give short research talks to groups of prospective students, community college and high school educators and other groups. They will develop one such talk highlighting this project. Including high-profile research in these recruiting talks has proven to be an effective way to promote dialog, and interest students in UC Merced. Third, talks such as this also contribute to the scientific literacy of the general public. The PI and grad student will all seek opportunities to share project information with K-14 and community audiences. Fourth, results of the research will be disseminated broadly to the scientific community, and the researchers will seek additional applications for the transfer functions as tools to improve interpretation of ice-cores. This research is highly collaborative, and leverages the expertise and data from a number of other groups.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e CHEMILUMINESCENCE", "is_usap_dc": true, "keywords": "Snow; Atmospheric Chemistry; Not provided; LABORATORY; Antarctica; FIELD SURVEYS; Snow Physical Properties; Meteorology; Wais Divide-project; Firn; Atmosphere Exchange; WAIS Divide; FIELD INVESTIGATION", "locations": "Antarctica; WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bales, Roger", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Atmospheric, Snow and Firn Chemistry Studies for Interpretation of WAIS-Divide Cores", "uid": "p0000041", "west": null}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": "POINT(-112.117 -79.666)", "dataset_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "datasets": [{"dataset_uid": "600142", "doi": "10.15784/600142", "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "url": "https://www.usap-dc.org/view/dataset/600142"}], "date_created": "Thu, 28 Apr 2011 00:00:00 GMT", "description": "Edwards/0739780\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. The broader impacts of the project are that it represents a paradigm shift in our ability to reconstruct the history of fire from ice core records and to understand its impact on atmospheric chemistry and climate over millennial time scales. This type of data is especially needed to drive global circulation model simulations of black carbon aerosols, which have been found to be an important component of global warming and which may be perturbing the hydrologic cycle. The project will also employ undergraduate students and is committed to attracting underrepresented groups to the physical sciences. The project?s outreach component will be conducted as part of the WAIS project outreach program and will reach a wide audience.", "east": -112.117, "geometry": "POINT(-112.117 -79.666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Not provided; Gas Record; Ice Core; Gas Measurement; Ice Core Gas Composition; Antarctica; LABORATORY; Bedrock Ice Core; Ice Core Gas Records; Wais Project; Greenhouse Gas; Atmospheric Chemistry; FIELD INVESTIGATION; Black Carbon; Biomass Burning; WAIS Divide; FIELD SURVEYS; West Antarctica; Methane", "locations": "Antarctica; West Antarctica; WAIS Divide", "north": -79.666, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; McConnell, Joseph; Mitchell, Logan E; Sowers, Todd A.; Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "p0000022", "west": -112.117}, {"awards": "0537532 Liston, Glen; 0538495 Albert, Mary; 0538103 Scambos, Ted; 0538422 Hamilton, Gordon; 0538416 McConnell, Joseph; 0963924 Steig, Eric", "bounds_geometry": "POLYGON((-180 -72.01667,-161.74667 -72.01667,-143.49334 -72.01667,-125.24001 -72.01667,-106.98668 -72.01667,-88.73335 -72.01667,-70.48002 -72.01667,-52.22669 -72.01667,-33.97336 -72.01667,-15.72003 -72.01667,2.5333 -72.01667,2.5333 -73.815003,2.5333 -75.613336,2.5333 -77.411669,2.5333 -79.210002,2.5333 -81.008335,2.5333 -82.806668,2.5333 -84.605001,2.5333 -86.403334,2.5333 -88.201667,2.5333 -90,-15.72003 -90,-33.97336 -90,-52.22669 -90,-70.48002 -90,-88.73335 -90,-106.98668 -90,-125.24001 -90,-143.49334 -90,-161.74667 -90,180 -90,162.25333 -90,144.50666 -90,126.75999 -90,109.01332 -90,91.26665 -90,73.51998 -90,55.77331 -90,38.02664 -90,20.27997 -90,2.5333 -90,2.5333 -88.201667,2.5333 -86.403334,2.5333 -84.605001,2.5333 -82.806668,2.5333 -81.008335,2.5333 -79.210002,2.5333 -77.411669,2.5333 -75.613336,2.5333 -73.815003,2.5333 -72.01667,20.27997 -72.01667,38.02664 -72.01667,55.77331 -72.01667,73.51998 -72.01667,91.26665 -72.01667,109.01332 -72.01667,126.75999 -72.01667,144.50666 -72.01667,162.25333 -72.01667,-180 -72.01667))", "dataset_titles": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009; Norwegian-U.S. Scientific Traverse of East Antarctica; This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "datasets": [{"dataset_uid": "001305", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "This data set contains data from the publication Steig et al., Nature Geoscience, vol. 6, pages 372\u00e2\u20ac\u201c375 (doi:10.1038/ngeo1778), which includes isotope data from the Norway-US traverse in East Antarctica.", "url": "http://nsidc.org/data/nsidc-0536.html"}, {"dataset_uid": "609520", "doi": "10.7265/N5H41PC9", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; East Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records", "people": "McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Chemistry from the Norwegian-U.S. Scientific Traverse of East Antarctica, IPY 2007-2009", "url": "https://www.usap-dc.org/view/dataset/609520"}, {"dataset_uid": "000112", "doi": "", "keywords": null, "people": null, "repository": "Project website", "science_program": null, "title": "Norwegian-U.S. Scientific Traverse of East Antarctica", "url": "http://traverse.npolar.no/"}], "date_created": "Wed, 23 Feb 2011 00:00:00 GMT", "description": "This award supports a project of scientific investigations along two overland traverses in East Antarctica: one going from the Norwegian Troll Station (72deg. S, 2deg. E) to the United States South Pole Station (90deg. S, 0deg. E) in 2007-2008; and a return traverse starting at South Pole Station and ending at Troll Station by a different route in 2008-2009. The project will investigate climate change in East Antarctica, with the goals of understanding climate variability in Dronning Maud Land of East Antarctica on time scales of years to centuries and determining the surface and net mass balance of the ice sheet in this sector to understand its impact on sea level. The project will also investigate the impact of atmospheric and oceanic variability and human activities on the chemical composition of firn and ice in the region, and will revisit areas and sites first explored by traverses in the 1960\u0027s, for detection of possible changes and to establish benchmark datasets for future research efforts. In terms of broader impacts, the results of this study will add to understanding of climate variability in East Antarctica and its contribution to global sea level change. The project includes international exchange of graduate students between the institutions involved and international education of undergraduate students through classes taught by the PI\u0027s at UNIS in Svalbard. It involves extensive outreach to the general public both in Scandinavia and North America through the press, television, science museums, children\u0027s literature, and web sites. Active knowledge sharing and collaboration between pioneers in Antarctic glaciology from Norway and the US, with the international group of scientists and students involved in this project, provide a unique opportunity to explore the changes that half a century have made in climate proxies from East Antarctica, scientific tools, and the culture and people of science. The project is relevant to the International Polar Year (IPY) since it is a genuine collaboration between nations: the scientists involved have complementary expertise, and the logistics involved relies on assets unique to each nation. It is truly an endeavor that neither nation could accomplish alone. This project is a part of the Trans- Antarctic Scientific Traverse Expeditions Ice Divide of East Antarctica (TASTE-IDEA) which is also part of IPY.", "east": 2.5333, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; East Antarctic Plateau; FIXED OBSERVATION STATIONS; Glaciology; LABORATORY; FIELD SURVEYS; Permeability; Ice Core; Climate Variability; Firn; Accumulation Rate; Mass Balance; Snow; Gravity; Ice Sheet; GROUND-BASED OBSERVATIONS; Traverse; Not provided; Antarctic; Ice Core Chemistry; Antarctica; Density", "locations": "Antarctica; Antarctic; East Antarctic Plateau", "north": -72.01667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Bell, Eric; Liston, Glen; Scambos, Ted; Hamilton, Gordon S.; McConnell, Joseph; Albert, Mary R.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC; Project website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Norwegian-United States IPY Scientific Traverse: Climate Variability and Glaciology in East Antarctica", "uid": "p0000095", "west": 2.5333}, {"awards": "0636731 Bender, Michael; 0636705 Marchant, David", "bounds_geometry": "POLYGON((160.48705 -77.84513,160.501913 -77.84513,160.516776 -77.84513,160.531639 -77.84513,160.546502 -77.84513,160.561365 -77.84513,160.576228 -77.84513,160.591091 -77.84513,160.605954 -77.84513,160.620817 -77.84513,160.63568 -77.84513,160.63568 -77.8515624,160.63568 -77.8579948,160.63568 -77.8644272,160.63568 -77.8708596,160.63568 -77.877292,160.63568 -77.8837244,160.63568 -77.8901568,160.63568 -77.8965892,160.63568 -77.9030216,160.63568 -77.909454,160.620817 -77.909454,160.605954 -77.909454,160.591091 -77.909454,160.576228 -77.909454,160.561365 -77.909454,160.546502 -77.909454,160.531639 -77.909454,160.516776 -77.909454,160.501913 -77.909454,160.48705 -77.909454,160.48705 -77.9030216,160.48705 -77.8965892,160.48705 -77.8901568,160.48705 -77.8837244,160.48705 -77.877292,160.48705 -77.8708596,160.48705 -77.8644272,160.48705 -77.8579948,160.48705 -77.8515624,160.48705 -77.84513))", "dataset_titles": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica; Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "600069", "doi": "10.15784/600069", "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600069"}, {"dataset_uid": "609597", "doi": "10.7265/N50R9MBM", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "people": "Yau, Audrey M.; Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609597"}], "date_created": "Thu, 03 Feb 2011 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.", "east": 160.63568, "geometry": "POINT(160.561365 -77.877292)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Elemental Ratios; Oxygen Isotope; Not provided; Nitrogen Isotopes; LABORATORY; Argon Isotopes; FIELD INVESTIGATION", "locations": null, "north": -77.84513, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Yau, Audrey M.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.909454, "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "p0000039", "west": 160.48705}, {"awards": "0538553 Cole-Dai, Jihong", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)", "datasets": [{"dataset_uid": "609544", "doi": "10.7265/N54M92H3", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; WAIS Divide; WAIS Divide Ice Core", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Major Ion Concentrations in WDC05Q and WDC06A Ice Cores (WAIS Divide)", "url": "https://www.usap-dc.org/view/dataset/609544"}], "date_created": "Wed, 25 Aug 2010 00:00:00 GMT", "description": "Cole-Dai\u003cbr/\u003e0538553\u003cbr/\u003e\u003cbr/\u003eThis award supports a project that will contribute to the US West Antarctica Ice Sheet Ice Divide ice core (WAIS Divide) project by developing new instrumentation and analytical procedures to measure concentrations of major ions (Cl-, NO3-, SO42-, Na+, K+, NH4+, Mg2+, Ca2+). A melter-based, continuous flow, multi-ion-chromatograph technique (CFA-IC) has been developed recently at South Dakota State University (SDSU). This project will further expand and improve the CFA-IC technique and instrumentation and develop procedures for routine analysis of major ions in ice cores. In addition, training of personnel (operators) to perform continuous, high resolution major ion analysis of the deep core will be accomplished through this project. The temporal resolution of the major ion measurement will be as low as 0.5 cm with the fully developed CFA-IC technique. At this resolution, it will be possible to use annual cycles of sulfate and sea-salt ion concentrations to determine annual layers in the WAIS Divide ice core. Annual layer counting using CFA-IC chemical measurements and other high resolution measurements will contribute significantly to the major WAIS Divide project objective of producing precisely (i.e., annually) dated climate records. The project will support the integration of research and education, train future scientists and promote human resource development through the participation of graduate and undergraduate students. In particular, undergraduate participation will contribute to a current REU (Research Experience for Undergraduates) chemistry site program at SDSU. Development and utilization of multi-user instrumentation will promote research collaboration and advance environmental science. NSF support for SDSU will contribute to the economic development and strengthen the infrastructure for research and education in South Dakota.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "LABORATORY; WAIS Divide; Ice Core; West Antarctic Ice Sheet; Ion Chromatograph; GROUND-BASED OBSERVATIONS; Not provided; Major Ion; Ions", "locations": "WAIS Divide; West Antarctic Ice Sheet", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Major Ion Chemistry of WAIS Divide Ice Core", "uid": "p0000035", "west": -112.085}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": "POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))", "dataset_titles": "Ion Concentrations from SPRESSO Ice Core, Antarctica; Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "datasets": [{"dataset_uid": "609471", "doi": "10.7265/N508638J", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; South Pole; SPRESSO Ice Core", "people": "Korotkikh, Elena; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Ion Concentrations from SPRESSO Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609471"}, {"dataset_uid": "609472", "doi": "10.7265/N5VH5KSV", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mt Moulton; Paleoclimate", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609472"}], "date_created": "Thu, 29 Jul 2010 00:00:00 GMT", "description": "This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.", "east": -134.7, "geometry": "POINT(-136.2 -76.065)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Interpretation; Ions; US ITASE; Explorations; LABORATORY; Ice Core Data; Ice Core; Ice Analysis; Ice; Not provided; Antarctic Ice Sheet; Laboratory Investigation; Field Investigations; Ice Core Chemistry; Horizontal Ice Core; Ice Chemistry; Ice Sheet", "locations": "Antarctic Ice Sheet", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.43, "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "uid": "p0000209", "west": -137.7}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": null, "dataset_titles": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009; d15N and d18O of air in the WAIS Divide ice core; Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core; Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event; WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "datasets": [{"dataset_uid": "609660", "doi": "10.7265/N5S46PWD", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Low-res d15N and d18O of O2 in the WAIS Divide 06A Deep Core", "url": "https://www.usap-dc.org/view/dataset/609660"}, {"dataset_uid": "609637", "doi": "10.7265/N5B27S7S", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Orsi, Anais J.; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperature Measurement in WDC05A in January 2008 and January 2009", "url": "https://www.usap-dc.org/view/dataset/609637"}, {"dataset_uid": "609635", "doi": "10.7265/N51J97PS", "keywords": "Arctic; Geochemistry; GISP; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Mayewski, Paul A.; Kurbatov, Andrei V.; Haines, Skylar", "repository": "USAP-DC", "science_program": null, "title": "Ultra-High Resolution LA-ICP-MS Results: DO-21 Rapid Warming Event", "url": "https://www.usap-dc.org/view/dataset/609635"}, {"dataset_uid": "601041", "doi": "10.15784/601041", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "people": "Seltzer, Alan; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "url": "https://www.usap-dc.org/view/dataset/601041"}, {"dataset_uid": "601747", "doi": "10.15784/601747", "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "d15N and d18O of air in the WAIS Divide ice core", "url": "https://www.usap-dc.org/view/dataset/601747"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "0538657\u003cbr/\u003eSeveringhaus\u003cbr/\u003eThis award supports a project to develop high-resolution (20-yr) nitrogen and oxygen isotope records on trapped gases in the WAIS Divide ice core (Antarctica), with a comparison record for chronological purposes in the GISP2 (Greenland) ice core. The main scientific objective is to provide an independent temperature-change record for the past 100,000 years in West Antarctica that is not subject to the uncertainty inherent in ice isotopes (18O and deuterium), the classical paleothermometer. Nitrogen isotopes (Delta 15N) in air bubbles in glacial ice record rapid surface temperature change because of thermal fractionation of air in the porous firn layer, and this isotopic anomaly is recorded in bubbles as the firn becomes ice. Using this gas-based temperature-change record, in combination with methane data as interpolar stratigraphic markers, the proposed work will define the precise relative timing of abrupt warming in Greenland and abrupt cooling at the WAIS Divide site during the millennial-scale climatic oscillations of Marine Isotopic Stage 3 (30-70 kyr BP) and the last glacial termination. The nitrogen isotope record also provides constraints on past firn thickness, which inform temperature and accumulation rate histories from the ice core. A search for possible solar-related cycles will be conducted with the WAIS Divide Holocene (Delta 15N.) Oxygen isotopes of O2 (Delta 18Oatm) are obtained as a byproduct of the (Delta 15N) measurement. The gas-isotopic records will enhance the value of other atmospheric gas measurements in WAIS Divide, which are expected to be of unprecedented quality. The high-resolution (Delta 18Oatm) records will provide chronological control for use by the international ice coring community and for surface glacier ice dating. Education of a graduate student, and training of a staff member in the laboratory, will contribute to the nation\u0027s human resource base. Outreach activities in the context of the International Polar Year will be enhanced. International collaboration is planned with the laboratory of LSCE, University of Paris.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Borehole Temperature; LABORATORY; Depth; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project; Ice Core; WAIS Divide", "locations": "WAIS Divide", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Haines, Skylar; Mayewski, Paul A.; Orsi, Anais J.; Kurbatov, Andrei V.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "uid": "p0000036", "west": null}, {"awards": "0538494 Meese, Debra", "bounds_geometry": null, "dataset_titles": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "datasets": [{"dataset_uid": "609436", "doi": "10.7265/N5DF6P5P", "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Obbard, Rachel; Baker, Ian", "repository": "USAP-DC", "science_program": null, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609436"}], "date_created": "Thu, 03 Jun 2010 00:00:00 GMT", "description": "0538494\u003cbr/\u003eMeese\u003cbr/\u003eThis award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": false, "keywords": "LABORATORY; Grain Growth; FIELD SURVEYS; Accumulation Rate; Firn Core; FIELD INVESTIGATION; Chemistry; Snow Pit; Depth Hoar; Firn Density; Ice Core; Not provided; Stratigraphic Analysis; Firn; US ITASE; Annual Layers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Meese, Deb; MEESE, DEBRA", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "uid": "p0000289", "west": null}, {"awards": "9615053 Domack, Eugene", "bounds_geometry": null, "dataset_titles": "Expedition data of LMG9802", "datasets": [{"dataset_uid": "002718", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG9802", "url": "https://www.rvdata.us/search/cruise/LMG9802"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "Domack: OPP 9615053 Manley: OPP 9615670 Banerjee: OPP 9615695 Dunbar: OPP 9615668 Ishman: OPP 9615669 Leventer: OPP 9714371 Abstract This award supports a multi-disciplinary, multi-institutional effort to elucidate the detailed climate history of the Antarctic Peninsula during the Holocene epoch (the last 10,000 years). The Holocene is an important, but often overlooked, portion of the Antarctic paleoclimatic record because natural variability in Holocene climate on time scales of decades to millennia can be evaluated as a model for our present \"interglacial\" world. This project builds on over ten years of prior investigation into the depositional processes, productivity patterns and climate regime of the Antarctic Peninsula. This previous work identified key locations that contain ultra-high resolution records of past climatic variation. These data indicate that solar cycles operating on multi-century and millennial time scales are important regulators of meltwater production and paleoproductivity. These marine records can be correlated with ice core records in Greenland and Antarctica. This project will focus on sediment dispersal patterns across the Palmer Deep region. The objective is to understand the present links between the modern climatic and oceanographic systems and sediment distribution. In particular, additional information is needed regarding the influence of sea ice on the distribution of both biogenic and terrigenous sediment distribution. Sediment samples will be collected with a variety of grab sampling and coring devices. Analytical work will include carbon-14 dating of surface sediments using accellerator mass spectrometry and standard sedimentologic, micropaleontologic and magnetic granulometric analyses. This multiparameter approach is the most effective way to extract the paleoclimatic signals contained in the marine sediment cores. Two additional objectives are the deployment of sediment traps in front of the Muller Ice Shelf in Lallemand Fjord and seismic reflection work in conjunction with site augmentation funded through the Joint Oceanographic Institute. The goal of sediment trap work is to address whether sand transport and deposition adjacent to the ice shelf calving line results from meltwater or aeolian processes. In addition, the relationship between sea ice conditions and primary productivity will be investigated. The collection of a short series of seismic lines across the Palmer Deep basins will fully resolve the question of depth to acoustic basement. The combination of investigators on this project, all with many years of experience working in high latitude settings, provides an effective team to complete the project in a timely fashion. A combination of undergraduate, graduate and post-graduate students will be involved in all stages of the project so that educational objectives will be met in-tandem with research goals of the project.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Holocene Paleoenvironmental Change Along the Antarctic Peninsula: A Test of the Solar/Bi-Polar Signal", "uid": "p0000869", "west": null}, {"awards": "0837988 Steig, Eric", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "West Antarctica Ice Core and Climate Model Data", "datasets": [{"dataset_uid": "609536", "doi": "10.7265/N5QJ7F8B", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": null, "title": "West Antarctica Ice Core and Climate Model Data", "url": "https://www.usap-dc.org/view/dataset/609536"}], "date_created": "Fri, 30 Apr 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using \u003e60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Deuterium Isotopes; Deuterium Excess; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "uid": "p0000180", "west": -180.0}, {"awards": "0440817 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "WAIS Divide Ice Core Images, Antarctica", "datasets": [{"dataset_uid": "609375", "doi": "10.7265/N5348H8T", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Optical Images; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "McGwire, Kenneth C.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core Images, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609375"}], "date_created": "Wed, 10 Feb 2010 00:00:00 GMT", "description": "This award supports the coordination of an interdisciplinary and multi institutional deep ice coring program in West Antarctica. The program will develop interrelated climate, ice dynamics, and biologic records focused on understanding interactions of global earth systems. The records will have a year-by-year chronology for the most recent 40,000 years. Lower temporal resolution records will extend to 100,000 years before present. The intellectual activity of this project includes enhancing our understanding of the natural mechanisms that cause climate change. The study site was selected to obtain the best possible material, available from anywhere, to determine the role of greenhouse gas in the last series of major climate changes. The project will study the how natural changes in greenhouse gas concentrations influence climate. The influence of sea ice and atmospheric circulation on climate changes will also be investigated. Other topics that will be investigated include the influence of the West Antarctic ice sheet on changes in sea level and the biology deep in the ice sheet. The broader impacts of this project include developing information required by other science communities to improve predictions of future climate change. The \u003cbr/\u003eproject will use mass media to explain climate, glaciology, and biology issues to a broad audience. The next generation of ice core investigators will be trained and there will be an emphasis on exposing a diverse group of students to climate, glaciology and biology research.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctica; Not provided; Ice Core Data; West Antarctica; LABORATORY; Ice Core; FIELD INVESTIGATION", "locations": "Antarctica; West Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "McGwire, Kenneth C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Investigation of Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide", "uid": "p0000182", "west": null}, {"awards": "0520523 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Methane Measurements from the GISP2 and Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609440", "doi": "10.7265/N58P5XFZ", "keywords": "Antarctica; Arctic; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane Measurements from the GISP2 and Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609440"}], "date_created": "Wed, 09 Dec 2009 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Methane; Greenland Ice Cap; Ice Core Data; Siple Dome; Not provided; Ice Core Gas Records; DRILLING PLATFORMS; LABORATORY; Ice Core; Ice Core Chemistry; Antarctica; Greenland Ice Sheet Project 2", "locations": "Antarctica; Greenland Ice Cap; Siple Dome", "north": null, "nsf_funding_programs": "Arctic Natural Sciences", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e FIXED PLATFORMS \u003e SURFACE \u003e DRILLING PLATFORMS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Collaborative Research: New insights into the Holocene methane budget from dual isotope systematics and a high resolution record of the interpolar gradient", "uid": "p0000131", "west": null}, {"awards": "0196105 Steig, Eric", "bounds_geometry": null, "dataset_titles": "US ITASE Stable Isotope Data, Antarctica", "datasets": [{"dataset_uid": "609425", "doi": "10.7265/N5NZ85MD", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; ITASE; Paleoclimate; WAIS", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "ITASE", "title": "US ITASE Stable Isotope Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609425"}], "date_created": "Thu, 01 Oct 2009 00:00:00 GMT", "description": "Not Available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e LIDAR/LASER SPECTROMETERS \u003e PALMS", "is_usap_dc": true, "keywords": "Isotope; Depth; Ice Core Gas Records; Ice Core; Ice Core Data; Ice Core Chemistry; LABORATORY; Firn Isotopes; FIELD SURVEYS; Deuterium; Ice Age; Oxygen Isotope; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": null, "title": "Stable Isotope Studies at West Antarctic ITASE Sites", "uid": "p0000013", "west": null}, {"awards": "0440414 Steig, Eric", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "datasets": [{"dataset_uid": "600042", "doi": "10.15784/600042", "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "ITASE", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "url": "https://www.usap-dc.org/view/dataset/600042"}], "date_created": "Mon, 14 Sep 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~ 100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "p0000202", "west": -180.0}, {"awards": "0440975 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-119.533333 -80.016667)", "dataset_titles": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "datasets": [{"dataset_uid": "609407", "doi": "10.7265/N55X26V0", "keywords": "Antarctica; Arctic; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Nitrogen and Oxygen Gas Isotopes in the Siple Dome and Byrd Ice Cores, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609407"}], "date_created": "Fri, 17 Jul 2009 00:00:00 GMT", "description": "The award supports the development of high-resolution nitrogen and oxygen isotope records on trapped gases in the Byrd and Siple Dome ice cores, and the Holocene part of the GISP2 ice core. The primary scientific goals of this work are to understand the enigmatic d15N anomalies seen thus far in the Siple Dome record at 15.3 ka and 35 ka, and to find other events that may occur in both cores. At these events, d15N of trapped air approaches zero, implying little or no gravitational fractionation of gases in the firn layer at the time of formation of the ice. These events may represent times of low accumulation rate and arid meteorological conditions, and thus may contain valuable information about the climatic history of West Antarctica. Alternatively, they may stem from crevassing and thus may reveal ice-dynamical processes. Finding the events in the Byrd core, which is located 500 km from Siple Dome, would place powerful constraints on their origin and significance. A second major goal is to explore the puzzling absence of the abrupt warming event at 22 ka (seen at Siple Dome) in the nearby Byrd 18O/16O record in the ice (d18Oice), and search for a possible correlative signal in Byrd d15N. A third goal takes advantage of the fact that precise measurements of the oxygen isotopic composition of atmospheric O2 (d18Oatm) are obtained as a byproduct of the d15N measurement. The proposed gas-isotopic measurements will underpin an integrated suite of West Antarctic climate and atmospheric gas records, which will ultimately include the WAIS Divide core. These records will help separate regional from global climate signals, and may place constraints on the cause of abrupt climate change. Education of two graduate students, and training of two staff members in the laboratory, contribute to the nation\u0027s human resource base. Education and outreach will be an important component of the project.", "east": -119.533333, "geometry": "POINT(-119.533333 -80.016667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Firn Air Isotopes; Not provided; Nitrogen Isotopes; LABORATORY; Firn Isotopes; Paleoclimate; FIELD SURVEYS; Ice Core; Oxygen Isotope; FIELD INVESTIGATION; Siple Dome", "locations": "Antarctica; Siple Dome", "north": -80.016667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -80.016667, "title": "Nitrogen and oxygen gas isotopes in the Siple Dome and Byrd ice cores", "uid": "p0000450", "west": -119.533333}, {"awards": "9814810 Bales, Roger", "bounds_geometry": "POLYGON((-124 -76,-120 -76,-116 -76,-112 -76,-108 -76,-104 -76,-100 -76,-96 -76,-92 -76,-88 -76,-84 -76,-84 -77.4,-84 -78.8,-84 -80.2,-84 -81.6,-84 -83,-84 -84.4,-84 -85.8,-84 -87.2,-84 -88.6,-84 -90,-88 -90,-92 -90,-96 -90,-100 -90,-104 -90,-108 -90,-112 -90,-116 -90,-120 -90,-124 -90,-124 -88.6,-124 -87.2,-124 -85.8,-124 -84.4,-124 -83,-124 -81.6,-124 -80.2,-124 -78.8,-124 -77.4,-124 -76))", "dataset_titles": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet; Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "datasets": [{"dataset_uid": "609394", "doi": "10.7265/N5PZ56RS", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; ITASE; WAIS", "people": "Frey, Markus; Bales, Roger; McConnell, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Atmospheric Mixing Ratios of Hydroperoxides above the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609394"}, {"dataset_uid": "609392", "doi": "10.7265/N5TM7826", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS", "people": "Frey, Markus; McConnell, Joseph; Bales, Roger", "repository": "USAP-DC", "science_program": null, "title": "Twenty-Three Century-scale Ice Core Records of Hydrogen Peroxide (H2O2) from West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609392"}], "date_created": "Mon, 01 Jun 2009 00:00:00 GMT", "description": "This award supports a project to improve understanding of atmospheric photochemistry over West Antarctica, as recorded in snow, firn and ice. Atmospheric and firn sampling will be undertaken as part of the U.S. International Trans-Antarctic Scientific Expedition (US ITASE) traverses. Measurements of hydrogen peroxide (H2O2) and formaldehyde (HCHO) will be made on these samples and a recently developed, physically based atmosphere-to-snow transfer model will be used to relate photochemical model estimates of these components to the concentrations of these parameters in the atmosphere and snow. The efficiency of atmosphere-to-snow transfer and the preservation of these components is strongly related to the rate and timing of snow accumulation. This information will be obtained by analyzing the concentration of seasonally dependent species such as hydrogen peroxide, nitric acid and stable isotopes of oxygen. Collection of samples along the US ITASE traverses will allow sampling at a wide variety of locations, reflecting both a number of different depositional environments and covering much of the West Antarctic region.", "east": -84.0, "geometry": "POINT(-104 -83)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE SPECTROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS SENSORS", "is_usap_dc": true, "keywords": "Ice Core; Ice Core Chemistry; FIELD INVESTIGATION; FIELD SURVEYS; Antarctica; West Antarctica; Antarctic; LABORATORY; Ice Core Gas Records; Not provided; Ice Core Data; Polar Firn Air; Hydrogen Peroxide; West Antarctic Ice Sheet; Shallow Firn Air; US ITASE; Antarctic Ice Sheet; Snow Chemistry", "locations": "Antarctica; West Antarctica; Antarctic; Antarctic Ice Sheet; West Antarctic Ice Sheet", "north": -76.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Bales, Roger; Frey, Markus; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Hydrogen Peroxide, Formaldehyde, and Sub-Annual Snow Accumulation in West Antarctica: Participation in West Antarctic Traverse", "uid": "p0000253", "west": -124.0}, {"awards": "0538683 Lal, Devendra", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "datasets": [{"dataset_uid": "600058", "doi": "10.15784/600058", "keywords": "Antarctica; Carbon-14; Cosmos; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Solar Activity; South Pole", "people": "Lal, Devendra", "repository": "USAP-DC", "science_program": null, "title": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "url": "https://www.usap-dc.org/view/dataset/600058"}], "date_created": "Fri, 20 Feb 2009 00:00:00 GMT", "description": "0538683\u003cbr/\u003eLal\u003cbr/\u003eThis award supports a project to continue development of a new method for estimating solar activity in the past. It is based on measurements of the concentrations of in-situ produced C-14 in polar ice by cosmic rays, which depend only on (i) the cosmic ray flux, and (ii) ice accumulation rate. This is the only direct method available to date polar ice, since it does not involve any uncertain climatic transfer functions as are encountered in the applications of cosmogenic C-14 data in tree rings, or of Be-10 in ice and sediments. An important task is to improve on the temporal resolution during identified periods of high/low solar activity in the past 32 Kyr. The plan is to undertake a study of changes in the cosmic ray flux during the last millennium (1100-1825 A.D.), during which time 4 low and 1 high solar activity epoch has been identified from historical records. Sunspot data during most of these periods are sparse. Adequate ice samples are available from ice cores from the South Pole and from Summit, Greenland and a careful high resolution study of past solar activity levels during this period will be undertaken. The intellectual merit of the work includes providing independent verification of estimated solar activity levels from the two polar ice records of cosmic ray flux and greatly improve our understanding of solar-terrestrial relationships. \u003cbr/\u003eThe broader impacts include collaboration with other scientists who are experts in the application of the atmospheric cosmogenic C-14 and student training. Both undergraduates and a graduate student will be involved in the proposed research. Various forms of outreach will also be used to disseminate the results of this project, including public presentations and interactions with the media.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lal, Devendra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores", "uid": "p0000555", "west": -180.0}, {"awards": "0440759 Sowers, Todd; 0440509 Battle, Mark; 0440498 White, James; 0440602 Saltzman, Eric; 0440615 Brook, Edward J.; 0440701 Severinghaus, Jeffrey", "bounds_geometry": "POINT(-112.085 -79.467)", "dataset_titles": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane Isotopes from the WAIS Divide Ice Core; Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A; WAIS ice core Methane Data, Carbon Dioxide Data", "datasets": [{"dataset_uid": "609493", "doi": "10.7265/N5319SV3", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Taylor, Kendrick C.; McConnell, Joseph; Brook, Edward J.; Mitchell, Logan E; Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS ice core Methane Data, Carbon Dioxide Data", "url": "https://www.usap-dc.org/view/dataset/609493"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609435", "doi": "10.7265/N5J67DW0", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Methane; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Sowers, Todd A.", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Methane Isotopes from the WAIS Divide Ice Core", "url": "https://www.usap-dc.org/view/dataset/609435"}, {"dataset_uid": "609412", "doi": "10.7265/N5251G40", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Gases in Firn Air and Shallow Ice at the WAIS Drilling Site, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609412"}, {"dataset_uid": "609638", "doi": "10.7265/N56971HF", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Temperature; WAIS Divide; WAIS Divide Ice Core", "people": "Severinghaus, Jeffrey P.; Orsi, Anais J.", "repository": "USAP-DC", "science_program": null, "title": "Surface Temperature Reconstruction from Borehole Temperature Measurement in WDC05A", "url": "https://www.usap-dc.org/view/dataset/609638"}], "date_created": "Tue, 03 Feb 2009 00:00:00 GMT", "description": "This award supports a project to measure the elemental and isotopic composition of firn air and occluded air in shallow boreholes and ice cores from the WAIS Divide site, the location of a deep ice-coring program planned for 2006-07 and subsequent seasons. The three primary objectives are: 1) to establish the nature of firn air movement and trapping at the site to aid interpretations of gas data from the deep core; 2) to expand the suite of atmospheric trace gas species that can be measured in ice and replicate existing records of other species; and 3) to inter-calibrate all collaborating labs to insure that compositional and isotopic data sets are inter-comparable. The program will be initiated with a shallow drilling program during the 05/06 field season which will recover two 300+m cores and firn air samples. The ice core and firn air will provide more than 700 years of atmospheric history that will be used to address a number of important questions related to atmospheric change over this time period. The research team consists of six US laboratories that also plan to participate in the deep core program. This collaborative research program has a number of advantages. First, the scientists will be able to coordinate sample allocation a priori to maximize the resolution and overlap of records of interrelated species. Second, sample registration will be exact, allowing direct comparison of all records. Third, a coherent data set will be produced at the same time and all PI.s will participate in interpreting and publishing the results. This will insure that the best possible understanding of gas records at the WAIS Divide site will be achieved, and that all work necessary to interpret the deep core is conducted in a timely fashion. The collaborative structure created by the proposal will encourage sharing of techniques, equipment, and ideas between the laboratories. The research will identify impacts of various industrial/agricultural activities and help to distinguish them from natural variations, and will include species for which there are no long records of anthropogenic impact. The work will also help to predict future atmospheric loadings. The project will contribute to training scientists at several levels, including seven undergraduates, two graduate students and one post doctoral fellow.", "east": -112.085, "geometry": "POINT(-112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GC-MS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e SPECTROMETERS \u003e SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; WAIS Divide; Firn; LABORATORY; Ice Core; Firn Air Isotope Measurements; Shallow Firn Air; FIELD INVESTIGATION; Ice Core Gas Records; GROUND-BASED OBSERVATIONS; Firn Isotopes; Wais Divide-project; Gas Data; Polar Firn Air; Not provided; Trace Gas Species; Trapped Gases; West Antarctic Ice Sheet; Deep Core; Ice Sheet; Gas; Firn Air Isotopes; FIELD SURVEYS; Air Samples; Atmospheric Gases; Isotope; Cores; Atmosphere; Ice Core Data; Surface Temperatures; Firn Air; Borehole; Antarctica", "locations": "West Antarctic Ice Sheet; Antarctica; WAIS Divide", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Battle, Mark; Mischler, John; Saltzman, Eric; Aydin, Murat; White, James; Brook, Edward J.; Orsi, Anais J.; Severinghaus, Jeffrey P.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.467, "title": "Collaborative Research: Gases in Firn Air and Shallow Ice at the Proposed WAIS Divide Drilling Site", "uid": "p0000368", "west": -112.085}, {"awards": "0126057 Brook, Edward J.; 0512971 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Antarctic and Greenland Climate Change Comparison; GISP2 (B and D Core) Methane Concentrations; GISP2 (D Core) Helium Isotopes from Interplanetary Dust; GISP2 (D Core) Methane Concentration Data; Siple Dome Methane Record", "datasets": [{"dataset_uid": "609124", "doi": "10.7265/N5KH0K8R", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Methane Record", "url": "https://www.usap-dc.org/view/dataset/609124"}, {"dataset_uid": "609361", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Kurz, Mark D.; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Helium Isotopes from Interplanetary Dust", "url": "https://www.usap-dc.org/view/dataset/609361"}, {"dataset_uid": "609360", "doi": "", "keywords": "Antarctica; Arctic; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Methane; Paleoclimate; Taylor Dome", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (D Core) Methane Concentration Data", "url": "https://www.usap-dc.org/view/dataset/609360"}, {"dataset_uid": "609253", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Vostok Ice Core", "people": "Blunier, Thomas; Brook, Edward J.; Chappellaz, Jerome; Stauffer, Bernhard", "repository": "USAP-DC", "science_program": null, "title": "Antarctic and Greenland Climate Change Comparison", "url": "https://www.usap-dc.org/view/dataset/609253"}, {"dataset_uid": "609125", "doi": "", "keywords": "Arctic; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Ice Core Records; Methane; Paleoclimate", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "GISP2 (B and D Core) Methane Concentrations", "url": "https://www.usap-dc.org/view/dataset/609125"}], "date_created": "Tue, 16 Dec 2008 00:00:00 GMT", "description": "This award supports work on trapped gases in Antarctic and other ice cores for paleoenvironmental and chronological purposes. The project will complete a ~ 100,000 year, high-resolution record of atmospheric methane from the Siple Dome ice core and use these data to construct a precise chronology for climate events recorded by the Siple Dome record. In addition, the resolution of the GISP2 (Greenland) ice core record will be increased in some critical intervals to help with the Siple Dome chronology and that of future ice cores. Finally, an upgrade to the analytical capabilities of the laboratory, including increasing precision and throughput and decreasing sample size needed for ice core methane measurements will be an important goal of this work. The proposed work will contribute to the understanding of the timing of rapid climate change in the Northern and Southern hemispheres during the last glacial period, the evolution of the global methane budget in the late Quaternary, and the late Quaternary climate history of Antarctica. It will also improve our ability to generate methane records for future ice coring projects, and inform and enrich the educational and outreach activities of our laboratory.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Isotope; Siple Coast; WAISCORES; GROUND-BASED OBSERVATIONS; Interplanetary Dust; FIELD SURVEYS; Not provided; Ice Sheet; Snow; GROUND STATIONS; Gas Measurement; Ice Core; Siple; Antarctica; Methane; Glaciology; Stratigraphy; Siple Dome", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Glaciology; Antarctic Organisms and Ecosystems; Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Chappellaz, Jerome; Stauffer, Bernhard; Kurz, Mark D.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "High Resolution Records of Atmospheric Methane in Ice Cores and Implications for Late Quaternary Climate Change", "uid": "p0000034", "west": null}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": "POINT(-148.82 -81.66)", "dataset_titles": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core; Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica; Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "datasets": [{"dataset_uid": "609356", "doi": "10.7265/N56W9807", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric; Williams, Margaret", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609356"}, {"dataset_uid": "609598", "doi": "10.7265/N5X0650D", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609598"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}, {"dataset_uid": "609599", "doi": "10.7265/N5S75D8P", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609599"}, {"dataset_uid": "609600", "doi": "10.7265/N5PG1PPB", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609600"}], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "Saltzman/0636953\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man\u0027s activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).", "east": -148.82, "geometry": "POINT(-148.82 -81.66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Methyl Bromide; Antarctic; Ice Core Gas Records; Ice Core Data; Carbonyl Sulfide; Methyl Chloride; Antarctic Ice Sheet; Siple Dome; Trace Gases; Ice Core Chemistry; Biogeochemical; Atmospheric Chemistry; West Antarctic Ice Sheet; LABORATORY; Ice Core; West Antarctica", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Siple Dome; West Antarctica; West Antarctic Ice Sheet", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "uid": "p0000042", "west": -148.82}, {"awards": "0228052 Kreutz, Karl", "bounds_geometry": "POLYGON((161.0434 -77.3002,161.241645 -77.3002,161.43989 -77.3002,161.638135 -77.3002,161.83638 -77.3002,162.034625 -77.3002,162.23287 -77.3002,162.431115 -77.3002,162.62936 -77.3002,162.827605 -77.3002,163.02585 -77.3002,163.02585 -77.3784846,163.02585 -77.4567692,163.02585 -77.5350538,163.02585 -77.6133384,163.02585 -77.691623,163.02585 -77.7699076,163.02585 -77.8481922,163.02585 -77.9264768,163.02585 -78.0047614,163.02585 -78.083046,162.827605 -78.083046,162.62936 -78.083046,162.431115 -78.083046,162.23287 -78.083046,162.034625 -78.083046,161.83638 -78.083046,161.638135 -78.083046,161.43989 -78.083046,161.241645 -78.083046,161.0434 -78.083046,161.0434 -78.0047614,161.0434 -77.9264768,161.0434 -77.8481922,161.0434 -77.7699076,161.0434 -77.691623,161.0434 -77.6133384,161.0434 -77.5350538,161.0434 -77.4567692,161.0434 -77.3784846,161.0434 -77.3002))", "dataset_titles": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "609399", "doi": "10.7265/N5FF3Q92", "keywords": "Antarctica; Borehole Temperature; Chemistry:ice; Chemistry:Ice; Dry Valleys; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Mass Balance; Paleoclimate; Physical Properties", "people": "Mayewski, Paul A.; Kreutz, Karl", "repository": "USAP-DC", "science_program": null, "title": "Late Holocene Climate Variability, Dry Valleys, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609399"}], "date_created": "Tue, 21 Oct 2008 00:00:00 GMT", "description": "This award supports a project to collect and develop high-resolution ice core records from the Dry Valleys region of Antarctica, and provide interpretations of interannual to decadal-scale climate variability during the last 2000 years (late Holocene). The project will test hypotheses related to ocean/atmosphere teleconnections (e.g., El Nino Southern Oscillation, Antarctic Oscillation) that may be responsible for major late Holocene climate events such as the Little Ice Age in the Southern Hemisphere. Conceptual and quantitative models of these processes in the Dry Valleys during the late Holocene are critical for understanding recent climate changes, and represent the main scientific merit of the project. We plan to collect intermediate-length ice cores (100-200m) at four sites along transects in Taylor Valley and Wright Valley, and analyze each core at high resolution for stable isotopes (d18O, dD), major ions (Na+, Mg2+, Ca2+, K+, NH4+, Cl-, NO3-, SO42-, MSA), and trace elements (Al, Fe, S, Sr, B). A suite of statistical techniques will be applied to the multivariate glaciochemical dataset to identify chemical associations and to calibrate the time-series records with available instrumental data. Broader impacts of the project include: 1) contributions to several ongoing interdisciplinary Antarctic research programs; 2) graduate and undergraduate student involvement in field, laboratory, and data interpretation activities; 3) use of project data and ideas in several UMaine courses and outreach activities; and 4) data dissemination through peer-reviewed publications, UMaine and other paleoclimate data archive websites, and presentations at national and international meetings.", "east": 163.02585, "geometry": "POINT(162.034625 -77.691623)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MC-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HUMIDITY SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e TEMPERATURE SENSORS", "is_usap_dc": true, "keywords": "Holocene; Climate Research; AWS Climate Data; Paleoclimate; Climate Variation; Dry Valleys; Wright Valley; Little Ice Age; Stable Isotopes; Glaciochemical; Ice Core; FIELD INVESTIGATION; Enso; Antarctic Oscillation; Climate; GPS; El Nino-Southern Oscillation; LABORATORY; Not provided; Climate Change; Ice Core Records; Antarctica; Taylor Valley; FIELD SURVEYS; Variability", "locations": "Antarctica; Dry Valleys; Taylor Valley; Wright Valley", "north": -77.3002, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Arcone, Steven; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.083046, "title": "Dry Valleys Late Holocene Climate Variability", "uid": "p0000155", "west": 161.0434}, {"awards": "0917509 Spencer, Matthew; 0440447 Spencer, Matthew", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Firn depth and bubble density for Siple Ice Core and other sites", "datasets": [{"dataset_uid": "601746", "doi": "10.15784/601746", "keywords": "Antarctica; Density; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Data; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice", "people": "Spencer, Matthew", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn depth and bubble density for Siple Ice Core and other sites", "url": "https://www.usap-dc.org/view/dataset/601746"}], "date_created": "Mon, 19 May 2008 00:00:00 GMT", "description": "This award supports a two-year collaborative effort to more fully understand the climatic history and physical properties of the Siple Dome, Antarctica deep ice core, to develop a new paleoclimatic technique based on bubble number-density, and to improve the U.S. capability to analyze ice-core physical properties rapidly and accurately. The Siple Dome ice core from West Antarctica is yielding important paleoclimatic insights, but has proven more difficult than some cores to interpret owing to the large iceflow effects on the paleoclimatic record. Paleoclimatic indicators that do not rely on iceflow corrections thus would be of value. The bubble number-density offers one such indicator, because it preserves information on mean temperature and accumulation rate during the transformation of firn to ice. We will focus on thin-section characteristics that are important to ice flow and the interpretation of the ice-core history, such as c-axis fabrics, and will use indicators that we have been developing, such as the correlation between grain elongation and the c-axis orientation, to gain additional information. To achieve this quickly and accurately, and to prepare for future projects, we propose to upgrade the automatic caxis- fabric analyzer that Wilen has built and housed at the National Ice Core Laboratory. The intellectual merit of the proposed activity includes improved estimates of paleoclimatic conditions in an important region, improved understanding of a new paleoclimatic research tool, greater understanding of ice flow and of linkages to physical properties, and a better instrument for further U.S. research in ice-core physical properties at the National Ice Core Laboratory. The broader impacts resulting from the proposed activity include providing better understanding of abrupt climate change and of ice flow, which eventually should help policy-makers, as well as an improved U.S. capability to analyze ice cores. The proposed research will assist the studies of two promising young scientists. Results of the research will be incorporated into courses and public outreach reaching at least hundreds or thousands of people per year.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Ice Core; Ice Flow; Bubble Number Density; LABORATORY; Thin Sections; Paleoclimate; FIELD INVESTIGATION; Fabric; Siple Dome; Climate; Antarctica; Antarctic; FIELD SURVEYS", "locations": "Siple Dome; Antarctica; Antarctic", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Spencer, Matthew; Wilen, Larry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Collaborative Research: Combined Physical Property Measurements at Siple Dome", "uid": "p0000658", "west": -148.81}, {"awards": "0337891 Brook, Edward J.", "bounds_geometry": "POINT(158 -77.666667)", "dataset_titles": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica; Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "609315", "doi": "10.7265/N5542KJK", "keywords": "Antarctica; Atmosphere; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Atmospheric CO2 and Climate: Taylor Dome Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609315"}, {"dataset_uid": "609314", "doi": "10.7265/N58W3B80", "keywords": "Antarctica; Atmosphere; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "people": "Brook, Edward J.; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Atmospheric CO2 and Climate: Byrd Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609314"}], "date_created": "Mon, 05 Nov 2007 00:00:00 GMT", "description": "This award supports the development of a new laboratory capability in the U.S. to measure CO2 in ice cores and investigate millennial-scale changes in CO2 during the last glacial period using samples from the Byrd and Siple Dome ice cores. Both cores have precise relative chronologies based on correlation of methane and the isotopic composition of atmospheric oxygen with counterpart records from Greenland ice cores. The proposed work will therefore allow comparison of the timing of CO2 change, Antarctic temperature change, and Greenland temperature change on common time scales. Such comparisons are vital for evaluating models that explain changes in atmospheric CO2. The techniques being developed will also be available for future projects, specifically the proposed Inland WAIS ice core, for which a highly detailed CO2 record is a major objective, and studies greenhouse and other atmospheric gases and their isotopic composition for which dry extraction is necessary (stable isotopes in CO2, for example). There are many broad impacts of the proposed work. Ice core greenhouse gas records are central contributions of paleoclimatology to research and policy-making concerning global change. The proposed work will enhance those contributions by improving our understanding of the natural cycling of the most important greenhouse gas. It will contribute to the training of a postdoctoral researcher, who will be an integral part of an established research group and benefit from the diverse paleoclimate and geochemistry community at OSU. The PI teaches major and non-major undergraduate and graduate courses on climate and global change. The proposed work will enrich those courses and the courses will provide an opportunity for the postdoctoral researcher to participate in teaching by giving guest lectures. The PI also participates in a summer climate workshop for high school teachers at Washington State University and the proposed work will enrich that contribution. The extraction device that is built and the expertise gained in using it will be resources for the ice core community and available for future projects. Data will be made available through established national data center and the equipment designs will also be made available to other researchers.", "east": 158.0, "geometry": "POINT(158 -77.666667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Climate Change; CO2; Atmospheric Chemistry; Atmospheric CO2; LABORATORY; Not provided; Ice Core Data; Climate; Ice Core Chemistry; Atmospheric Gases; Ice Core Gas Records; GROUND STATIONS; Climate Research", "locations": null, "north": -77.666667, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.666667, "title": "Developing Dry Extraction of Ice Core Gases and Application to Millennial-Scale Variability in Atmospheric CO2", "uid": "p0000268", "west": 158.0}, {"awards": "0337948 Bromwich, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001778", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to data", "url": "http://polarmet.mps.ohio-state.edu/PolarMet/ant_hindcast.html"}], "date_created": "Thu, 02 Aug 2007 00:00:00 GMT", "description": "This award supports a comprehensive investigation of the spatial and temporal characteristics of the surface mass balance of the Antarctic ice sheet and the governing mechanisms that affect it. A mesoscale atmospheric model, adapted for Antarctic conditions (Polar MM5), will be used in conjunction with the newly available reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) to resolve the surface mass balance of Antarctica at a time resolution of 3 hours and a spatial resolution of 60 km from 1957 to 2001. Polar MM5 will be upgraded to account for key processes in the simulation, including explicit consideration of blowing snow transport and sublimation as well as surface melting/runoff. The proposed 45-y hindcast of all Antarctic surface mass balance components with a limited area model has not previously been attempted and will provide a dataset of unprecedented scope to complement existing ice core measurements of recent climate, especially those collected by the International Transantarctic Scientific Expedition (ITASE). The trends and variability in space and time over 4.5 decades will be resolved and the impact of the dominant modes of atmospheric variability (Antarctic Oscillation, El Nino-Southern Oscillation, etc.) will be isolated. Hypotheses concerning the Antarctic surface mass balance response to climate change will be tested. The research will provide a sound basis for evaluating the impact of future climate change on Antarctic surface mass balance and its contribution to global sea level change as well as providing an important perspective for the interpretation of Antarctic ice core records. The broader impacts include the education of a Ph.D. student, the development of material for use in university classes, and construction of an interactive educational webpage on Antarctic surface mass balance.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e MMS", "is_usap_dc": false, "keywords": "El Nino-Southern Oscillation; ITASE; Atmospheric Model; Enso; Not provided; Antarctic Oscillation; Mesoscale; Antarctic; Polar Mm5; Climate", "locations": "Antarctic", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bromwich, David; Monaghan, Andrew", "platforms": "Not provided", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": -90.0, "title": "A 45-Y Hindcast of Antarctic Surface Mass Balance Using Polar MM5", "uid": "p0000722", "west": -180.0}, {"awards": "0230288 Anastasio, Cort", "bounds_geometry": "POLYGON((123.30014 -75.093445,123.307404 -75.093445,123.314668 -75.093445,123.321932 -75.093445,123.329196 -75.093445,123.33646 -75.093445,123.343724 -75.093445,123.350988 -75.093445,123.358252 -75.093445,123.365516 -75.093445,123.37278 -75.093445,123.37278 -75.0952669,123.37278 -75.0970888,123.37278 -75.0989107,123.37278 -75.1007326,123.37278 -75.1025545,123.37278 -75.1043764,123.37278 -75.1061983,123.37278 -75.1080202,123.37278 -75.1098421,123.37278 -75.111664,123.365516 -75.111664,123.358252 -75.111664,123.350988 -75.111664,123.343724 -75.111664,123.33646 -75.111664,123.329196 -75.111664,123.321932 -75.111664,123.314668 -75.111664,123.307404 -75.111664,123.30014 -75.111664,123.30014 -75.1098421,123.30014 -75.1080202,123.30014 -75.1061983,123.30014 -75.1043764,123.30014 -75.1025545,123.30014 -75.1007326,123.30014 -75.0989107,123.30014 -75.0970888,123.30014 -75.0952669,123.30014 -75.093445))", "dataset_titles": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "datasets": [{"dataset_uid": "609519", "doi": "10.7265/N5MS3QP0", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice", "people": "Robles, Tony; Anastasio, Cort", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Light Absorption Coefficients for Soluble Species in Snow, Dome C, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609519"}], "date_created": "Wed, 07 Mar 2007 00:00:00 GMT", "description": "Photochemical reactions in snow can have important effects on the chemistry and composition of the snowpack as well as the overlying atmosphere. For example, recent measurements in the Antarctic and Arctic have revealed that sunlit snow releases a number of important pollutants to the atmosphere. Our ability to understand and model this chemistry is currently limited, in part because we lack fundamental photochemical information for a number of important chemical species in snow. This award supports research that will help fill this gap by characterizing the low-temperature photochemistry of three of these key species: nitrite (NO2-), nitrous acid (HNO2), and hydrogen peroxide (HOOH). We will measure quantum yields for these reactions on ice using a sensitive technique that we recently developed during a study of nitrate (NO3-) photochemistry. In addition to this basic research, we will also measure the rates of formation of hydroxyl radical (OH), nitrogen oxides (NOx), and HOOH in illuminated Antarctic snow samples. These measurements will be important inputs for future models, and will allow us to test whether known species (e.g., NO3-, NO2- and HNO2) are responsible for most of snowpack reactivity (e.g., OH formation). Overall, results from this award will significantly improve our ability to understand snowpack chemistry, and the resulting effects on the atmosphere, both in the Antarctic as well as in the many other regions with permanent or seasonal snow. These results will also strengthen efforts to use ice core records to monitor global change. In addition to these impacts, this award will help train students and a postdoctoral fellow, and results from this work will be integrated into two classes in order to expose students to some of the important issues facing polar regions.", "east": 123.37278, "geometry": "POINT(123.33646 -75.1025545)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e HPLC; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Snow Chemistry; Antarctica; Snowpack Chemistry; Snow Samples; Hydrogen Peroxide; Snow Properties; Pollutants; Chemistry; Light Absorption; Antarctic; Chemical Species; Snow; East Antarctica; Organic Compounds; Photochemistry; LABORATORY", "locations": "Antarctica; East Antarctica; Antarctic", "north": -75.093445, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Anastasio, Cort; Robles, Tony", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -75.111664, "title": "Laboratory Studies of Photochemistry in Antarctic Snow and Ice", "uid": "p0000175", "west": 123.30014}, {"awards": "0126194 Harder, Susan", "bounds_geometry": null, "dataset_titles": "Access to data", "datasets": [{"dataset_uid": "001336", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access to data", "url": "http://nsidc.org/data/agdc_investigators.html"}], "date_created": "Tue, 20 Feb 2007 00:00:00 GMT", "description": "This award supports a two-year project to continue work developing the techniques to make carbon monoxide (CO) measurements in ice core samples. Carbon monoxide is an important atmospheric chemical constituent as it is a primary sink for hydroxyl radical (OH) (and therefore influences the oxidizing capacity of the atmosphere) and because the concentrations of three major greenhouses gases , carbon dioxide (CO2), methane (CH4) and ozone (O3) are directly tied to the concentration of CO. In light of recent anthropogenic increases in the emissions of CO, CO2, CH4 and NOx, it is desirable to understand this complex chemical system and the changes in the greenhouse forcing resulting from perturbation. Because it is difficult to test the accuracy of models for past and future conditions for which no direct atmospheric measurements of trace gas concentrations are available these measurements must be obtained in other ways. Polar ice cores provide a means to make these measurements. Further work is necessary to refine the analytical technique and additional measurements are necessary to investigate the accuracy of these results and to establish the nature of temporal trends in CO. It is anticipated that the CO record, combined with existing or new data for CO2, CH4 , N2O and other paleoclimate variables, will provide further constraints on model studies of the effect of changing atmospheric chemistry on greenhouse forcing.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Harder, Susan", "platforms": "Not provided", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": null, "title": "Ice Core Records of Atmospheric Carbon Monoxide", "uid": "p0000706", "west": null}, {"awards": "0230452 Severinghaus, Jeffrey", "bounds_geometry": "POINT(124.5 -80.78)", "dataset_titles": "Antarctic megadunes", "datasets": [{"dataset_uid": "000191", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Antarctic megadunes", "url": "http://nsidc.org/antarctica/megadunes/"}], "date_created": "Wed, 27 Sep 2006 00:00:00 GMT", "description": "This award supports a study of the chemical composition of air in the snow layer (firn) in a region of \"megadunes\" near Vostok station, Antarctica. It will test the hypothesis that a deep \"convective zone\" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this \"extreme end-member\" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.", "east": 124.5, "geometry": "POINT(124.5 -80.78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS", "is_usap_dc": false, "keywords": "Antarctica; Methane; Carbon-14; Permeability; CO2; Firn Core; FIELD SURVEYS; Deuterium Excess; GROUND-BASED OBSERVATIONS; LABORATORY; Isotope; Ice Core Density; Firn Air; Megadunes; Ice Core; Not provided; FIELD INVESTIGATION", "locations": "Antarctica", "north": -80.78, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Albert, Mary R.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": -80.78, "title": "How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, Antarctica", "uid": "p0000097", "west": 124.5}, {"awards": "0337933 Cole-Dai, Jihong; 0338363 Thiemens, Mark", "bounds_geometry": null, "dataset_titles": "Major Ion Concentrations in 2004 South Pole Ice Core", "datasets": [{"dataset_uid": "609542", "doi": "10.7265/N5HX19N8", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ion Chromatograph; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Major Ion Concentrations in 2004 South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609542"}], "date_created": "Fri, 11 Aug 2006 00:00:00 GMT", "description": "This award supports a collaborative study between South Dakota State University (SDSU) and University of California, San Diego (UCSD) to investigate the oxygen and sulfur isotope composition of sulfates from a number of large volcanic eruptions in the past 1000 years. The project aims to drill a number of shallow ice cores at South Pole and return them to SDSU and UCSD lab for chemical and isotope analysis. Preliminary results from measurements of isotopes in sulfate samples from several volcanic eruptions in Antarctic snow and ice indicate that isotopic composition of volcanic sulfate contains abundant valuable information on atmospheric chemical and dynamic processes that have not been previously investigated. One tentative conclusion is that mass-independently fractionated sulfur isotopes reveal that atmospheric photolysis of sulfur compounds occurs at longer UV wavelengths than those in the Archean atmosphere, possibly reflecting the atmospheric ozone and/or oxygen concentration. This suggests that isotopic composition of atmospheric sulfate may be used to understand the role of UV radiation in sulfur dioxide conversion in the atmosphere and to track the evolution (i.e., oxygenation) of the atmosphere and the origin of life on Earth. Other major research objectives include understanding what impact massive volcanic eruptions have on the oxidative capacity of the atmosphere, what oxidants and mechanisms are involved in the oxidation or conversion of volcanic sulfur dioxide to sulfate in the stratosphere and what isotopic criteria may be used to differentiate ice core signals of stratospheric eruptions from those of tropospheric eruptions. By providing educational and research opportunities to graduate and undergraduate students at both SDSU and UCSD, the proposed project will promote the integration of research and education and contribute to human resource development in science and engineering. The project will contribute to a proposed REU chemistry site program at SDSU. This collaboration will utilize the complementary strengths of both labs and promote exchange between the two institutions. International collaboration will enhance scientific cooperation between France and US.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Not provided; Ion Chromatograph; Ions; LABORATORY; GROUND-BASED OBSERVATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Investigating Atmospheric Chemistry and Dynamics through Oxygen and Sulfur Isotopes in Volcanic Sulfate from South Pole Ice Cores", "uid": "p0000031", "west": null}, {"awards": "0230316 White, James; 0230348 Dunbar, Nelia; 0230021 Sowers, Todd", "bounds_geometry": "POINT(135.1333 -76.05)", "dataset_titles": "Mount Moulton Isotopes and Other Ice Core Data", "datasets": [{"dataset_uid": "609640", "doi": "10.7265/N5FT8J0N", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "people": "Steig, Eric J.; Popp, Trevor; White, James", "repository": "USAP-DC", "science_program": null, "title": "Mount Moulton Isotopes and Other Ice Core Data", "url": "https://www.usap-dc.org/view/dataset/609640"}], "date_created": "Tue, 01 Aug 2006 00:00:00 GMT", "description": "The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.", "east": 135.1333, "geometry": "POINT(135.1333 -76.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "LABORATORY; Climate; Argon-40; 40Ar; Argon-39; FIELD SURVEYS; Chronology; Ice Core Gas Age; Gas Record; Ice Core; FIELD INVESTIGATION; Tephra; Mount Moulton; Not provided; Caldera; 39Ar; Stratigraphy; Ice Core Depth", "locations": "Mount Moulton", "north": -76.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.05, "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "uid": "p0000755", "west": 135.1333}, {"awards": "0126343 Nishiizumi, Kunihiko", "bounds_geometry": "POINT(-148.812 -81.6588)", "dataset_titles": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "datasets": [{"dataset_uid": "609307", "doi": "10.7265/N5XK8CGS", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Finkel, R. C.; Nishiizumi, Kunihiko", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609307"}], "date_created": "Mon, 12 Jun 2006 00:00:00 GMT", "description": "This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records.", "east": -148.812, "geometry": "POINT(-148.812 -81.6588)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Antarctica; Ice Core; Cosmogenic Radionuclides; Chlorine-36; GROUND STATIONS; Beryllium-10; Siple Dome; West Antarctica", "locations": "Antarctica; Siple Dome; West Antarctica", "north": -81.6588, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Finkel, R. C.; Nishiizumi, Kunihiko", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.6588, "title": "Cosmogenic Radionuclides in the Siple Dome Ice Core", "uid": "p0000358", "west": -148.812}, {"awards": "0230448 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001; Trapped Gas Composition and Chronology of the Vostok Ice Core", "datasets": [{"dataset_uid": "609311", "doi": "10.7265/N5P26W12", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "people": "Bender, Michael; Suwa, Makoto", "repository": "USAP-DC", "science_program": null, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609311"}, {"dataset_uid": "609290", "doi": "10.7265/N5FJ2DQC", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Battle, Mark; Severinghaus, Jeffrey P.; Bender, Michael", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "url": "https://www.usap-dc.org/view/dataset/609290"}], "date_created": "Wed, 18 Jan 2006 00:00:00 GMT", "description": "High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.", "east": 106.8, "geometry": "POINT(106.8 -72.4667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Paleoclimate; Siple Dome; Ice Age; Shallow Firn Air; Firn Air Isotope Measurements; Polar Firn Air; Ice Sample Gas Integrity; Oxygen Isotope; Noble Gas; Ice Core Gas Records; Atmospheric Gases; Trapped Gases; Not provided; LABORATORY; Vostok; Firn Air Isotopes; Thermal Fractionation; Ice Core Chemistry; Trapped Air Bubbles; Ice Core; Antarctica; South Pole; Ice Core Data; GROUND-BASED OBSERVATIONS; Gas Age; Firn Isotopes", "locations": "Antarctica; Vostok; Siple Dome; South Pole", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -72.4667, "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "uid": "p0000257", "west": 106.8}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br); Antarctic Ice Cores: Methyl Chloride and Methyl Bromide; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "datasets": [{"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609131", "doi": "10.7265/N5P848VP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "url": "https://www.usap-dc.org/view/dataset/609131"}, {"dataset_uid": "609279", "doi": "10.7265/N53B5X3G", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "url": "https://www.usap-dc.org/view/dataset/609279"}, {"dataset_uid": "609313", "doi": "10.7265/N5DN430Q", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "people": "Tatum, Cheryl; Saltzman, Eric; Aydin, Murat; Williams, Margaret", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "url": "https://www.usap-dc.org/view/dataset/609313"}], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Gas Records; Carbonyl Sulfide; Siple Coast; Chloride; Trapped Gases; Snow; Ice Core Chemistry; Chromatography; Siple; GROUND STATIONS; Atmospheric Gases; Ozone Depletion; AWS Siple; Ice Sheet; Ice Core Data; Antarctica; Glaciology; West Antarctica; Atmospheric Chemistry; Ice Core; Stratigraphy; LABORATORY; Methane; Mass Spectrometer; GROUND-BASED OBSERVATIONS; WAISCORES; Msa; Mass Spectrometry; Not provided; Siple Dome; Gas Measurement", "locations": "Antarctica; Siple Coast; Siple Dome; West Antarctica; Siple", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methyl chloride and methyl bromide in Antarctic ice cores", "uid": "p0000032", "west": -148.81}, {"awards": "0135989 Wilen, Larry", "bounds_geometry": null, "dataset_titles": "Ice Fabric Characteristics: Siple Dome, A Core", "datasets": [{"dataset_uid": "609255", "doi": "10.7265/N54B2Z7V", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core", "people": "Wilen, Larry", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Ice Fabric Characteristics: Siple Dome, A Core", "url": "https://www.usap-dc.org/view/dataset/609255"}], "date_created": "Wed, 02 Mar 2005 00:00:00 GMT", "description": "0135989\u003cbr/\u003eWilen\u003cbr/\u003e\u003cbr/\u003eThis is a collaborative proposal by Principal Investigators at the University of Washington and Ohio University. Detailed knowledge about the interactions between micro-structure of ice and its deformation is needed to assess the integrity of stratigraphic layering and the depth-age relationship in ice cores, which is essential for interpreting the paleoclimate record. The Principal Investigators will use micro-structure to study fabric, the orientation distribution of crystal c-axes, and texture, the size and shape of crystals. Numerical modeling of ice deformation is a useful tool in understanding these interactions. Accurate modeling of ice deformation is complicated by factors, such as the fabric, grain size, dynamic recrystallization, stress level, and precise knowledge of initial conditions. For example, ice fabric evolves as the ice is strained and the deformation depends on the fabric. This complicated feedback mechanism must be understood to correctly model ice deformation. In another example, the usual assumption is that the initial fabric is isotropic or random, but there are excellent examples of near-surface ice in the ice cores that are apparently not isotropic. One must know the initial fabric to calculate the deformation rate in ice sheets. Dr. Wilen will combine results of his new automatic fabric analyzer (AFA) with predictions of detailed ice deformation models (Dr. Thorsteinsson) to refine and better constrain such models. The AFA gives new information in thin sections because the precision and number of measured c-axis orientations are greatly improved. The Principal Investigators will analyze existing data and collect new data on fabric and texture from ice cores to address questions regarding near-surface fabric, deformation mechanisms, dynamic recrystallization, and potential sources of layer disturbances. The data will be used to constrain models of fabric evolution and recrystallization processes. With the more refined models, scientists can address different questions and important problems related to ice deformation and ice cores. For example, the recent agreement between the climate records from the Greenland Ice Core Project (GRIP) and Greenland Ice Sheet Project 2 (GISP2) ice cores of the upper-90%, and the disagreement in the lower-10% emphasizes the need to understand and predict the mechanisms and probable depths of disruption in these and future deep ice cores. Evidence suggests that the stratigraphic disturbances arise from the anisotropic nature of ice crystals at a variety of scales. To properly model the deformation of anisotropic ice, the influence of fabric on deformation must be well known.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GROUND-BASED OBSERVATIONS; Ice Core Data; Siple Dome; Ice Fabric; Ice Core; USAP-DC", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Arctic Natural Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Wilen, Larry", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Collaborative Research: Fabric and Texture Characteristics of Micro-Physical Processes in Ice", "uid": "p0000134", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Talos Dome Ice Core Deuterium Isotope Data", "datasets": [{"dataset_uid": "609252", "doi": "", "repository": "USAP-DC", "science_program": null, "title": "Talos Dome Ice Core Deuterium Isotope Data", "url": "http://www.usap-dc.org/view/dataset/609252"}], "date_created": "Fri, 27 Aug 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Talos Dome", "locations": "Talos Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stenni, Barbara; Jouzel, Jean", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Dronning Maud Land Ice Core Chemistry Data", "datasets": [{"dataset_uid": "609250", "doi": "", "repository": "USAP-DC", "science_program": null, "title": "Dronning Maud Land Ice Core Chemistry Data", "url": "http://www.usap-dc.org/view/dataset/609250"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dronning Maud Land; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate", "locations": "Dronning Maud Land; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Whitlow, Sallie; Mayewski, Paul A.; Isaksson, Elisabeth", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "9017827 Lal, Devendra", "bounds_geometry": null, "dataset_titles": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "datasets": [{"dataset_uid": "609243", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Depth-Age-Model; Dome C Ice Core; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Lorius, Claude; Lal, Devendra", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Dome C Ice Core Chemistry and Depth and Age Scale Data", "url": "https://www.usap-dc.org/view/dataset/609243"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support of a study to establish a quantitative nuclear method for determination of Antarctic ablation and accumulation rates and to provide correction factors for the carbon 14 ages of ice samples dated using trapped carbon 14. Recent studies have established the presence of cosmogenic in-situ produced carbon 14 in polar ice. In conjunction with estimated carbon 14 production rates, measured concentrations of carbon 14 per gram of ice yield, ablation rates which are in good agreement with the values determined from stake measurements. Similar studies to determine accumulation rates have been tested and the estimates are consistent with previous studies. This study will expand the preliminary work done to date in order to improve the 14CO and 14CO2 vacuum extraction techniques, by lowering blank levels and by obtaining more complete separation of 14CO and 14CO2.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lal, Devendra; Lorius, Claude; Lal, Devendra", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": null, "title": "Nuclear Studies of Accumulating and Ablation Ice Using Cosmogenic 14c", "uid": "p0000152", "west": null}, {"awards": "9714687 Brook, Edward J.", "bounds_geometry": null, "dataset_titles": "Byrd Ice Core Microparticle and Chemistry Data", "datasets": [{"dataset_uid": "609247", "doi": "", "keywords": "Antarctica; Byrd; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate", "people": "Thompson, Lonnie G.; Brook, Edward J.; Blunier, Thomas; Fluckiger, Jacqueline", "repository": "USAP-DC", "science_program": "Byrd Ice Core", "title": "Byrd Ice Core Microparticle and Chemistry Data", "url": "https://www.usap-dc.org/view/dataset/609247"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "This award is for support for a program to make high resolution studies of variations in the concentration of methane, the oxygenisotope composition of paleoatmospheric oxygen, and the total gas content of deep Antarctic ice cores. Studies of the concentration and isotopic composition of air in the firn of the Antarctic ice sheet will also be continued. One objective of this work is to use the methane concentration and oxygen-isotope composition of oxygen of air in ice as time-stratigraphic markers for the precise intercorrelation of Greenland and Antarctic ice cores as well as the correlation of ice cores to other climatic records. A second objective is to use variations in the concentration and interhemispheric gradient of methane measured in Greenland and Antarctic ice cores to deduce changes in continental climates and biogeochemistry on which the atmospheric methane distribution depends. A third objective is to use data on the variability of total gas content in the Siple Dome ice core to reconstruct aspects of the glacial history of West Antarctica during the last glacial maximum. The fourth objective is to participate in collaborative studies of firn air chemistry at Vostok, Siple Dome, and South Pole which will yield much new information about gas trapping in ice as well as the concentration history and isotopic composition of greenhouse gases, oxygen, trace biogenic gases and trace anthropogenic gases during the last 100 years.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blunier, Thomas; Fluckiger, Jacqueline; Thompson, Lonnie G.; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Studies of Trapped Gases in Firn and Ice from Antarctic Deep Ice Cores", "uid": "p0000168", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Law Dome Ice Cores Chemistry Data", "datasets": [{"dataset_uid": "609245", "doi": "", "repository": "USAP-DC", "science_program": null, "title": "Law Dome Ice Cores Chemistry Data", "url": "http://www.usap-dc.org/view/dataset/609245"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Law Dome; Paleoclimate", "locations": "Law Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Barnola, J. M.; Etheridge, David; Morgan, Vin", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data", "datasets": [{"dataset_uid": "609244", "doi": "", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "European Project for Ice Coring in Antarctica (EPICA) Dome C Ice Core Data", "url": "http://www.usap-dc.org/view/dataset/609244"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dome C Ice Core; Epica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fluckiger, Jacqueline; Monnin, Eric; Wolff, Eric W.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": null, "title": null, "uid": null, "west": null}, {"awards": "9316564 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis; Siple Dome Ice Core Chemistry and Ion Data", "datasets": [{"dataset_uid": "609266", "doi": "10.7265/N5M906KG", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit", "people": "Mayewski, Paul A.; Meeker, Loren D.; Kreutz, Karl; Whitlow, Sallie; Twickler, Mark", "repository": "USAP-DC", "science_program": null, "title": "Ross Ice Drainage System (RIDS) Glaciochemical Analysis", "url": "https://www.usap-dc.org/view/dataset/609266"}, {"dataset_uid": "609251", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Severinghaus, Jeffrey P.; Dunbar, Nelia; Mayewski, Paul A.; Kreutz, Karl; Blunier, Thomas; Brook, Edward J.", "repository": "NCEI", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Chemistry and Ion Data", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/2461"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "9316564 Mayewski This award is for support for a three year program to provide a high resolution record of the Antarctic climate through the acquisition, analysis, and interpretation of records of atmospheric chemical deposition taken from three ice cores located at sites within or immediately adjacent to the Ross Ice Drainage System (RIDS). These cores include one from Taylor Dome, and two from West Antarctic locations identified as potential deep drilling sites for the WAISCORES program. Collection of the two West Antarctic cores is intended to be a lightweight dry-drilling operation to depths of ~ 200 m, which will provide records of \u003e 2 kyr. Glaciochemical analyses will focus on the major cations and anions found in the antarctic atmosphere, plus methanesulfonic acid and selected measurements of the hydrogen ion, aluminum, iron, and silica. These analyses, and companion stable isotope and particle measurements to be carried out by other investigators require \u003c 7% by volume of each core, leaving \u003e 90% for other investigators and storage at the U.S. National Ice Core Laboratory. These records are intended to solve a variety of scientific objectives while also providing spatial sampling and reconnaissance for future U.S. efforts in West Antarctica. ***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Magnesium; GROUND STATIONS; Nitrate; Methane Sulfonic Acid; Sodium; Ice Core Chemistry; Ammonium (NH4); Sulfate; Ice Core; Chloride; Potassium (k); Calcium (ca)", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Kreutz, Karl; Twickler, Mark; Whitlow, Sallie; Blunier, Thomas; Dunbar, Nelia; Brook, Edward J.; Mayewski, Paul A.; Meeker, Loren D.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ross Ice Drainage System (RIDS) Late Holocene Climate Variability", "uid": "p0000145", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Vostok Ice Core Chemistry, Timescale, Isotope, and Temperature Data", "datasets": [{"dataset_uid": "609242", "doi": "", "repository": "USAP-DC", "science_program": null, "title": "Vostok Ice Core Chemistry, Timescale, Isotope, and Temperature Data", "url": "http://www.usap-dc.org/view/dataset/609242"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Lake Vostok; Paleoclimate; Physical Properties; Temperature; Vostok Ice Core", "locations": "Lake Vostok; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lal, Devendra; Chappellaz, Jerome; Brook, Edward J.; Bender, Michael; Fishcer, Hubertus; Blunier, Thomas; Ruddiman, William; Raymo, Maureen; Lorius, Claude; Sowers, Todd A.; Jouzel, Jean; Petit, Jean Robert; Barnola, J. M.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "8411018 Frisic, David", "bounds_geometry": null, "dataset_titles": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data; Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy; Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "datasets": [{"dataset_uid": "609249", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Physical Properties; Snow/ice; Snow/Ice; Statigraphy", "people": "Welch, Kathy A.; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Ice Core and Snow Pit Beta Profiles, Chemistry, and Stratigraphy", "url": "https://www.usap-dc.org/view/dataset/609249"}, {"dataset_uid": "609088", "doi": "10.7265/N5JM27JP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Newall Glacier; Paleoclimate; Snow/ice; Snow/Ice", "people": "Mayewski, Paul A.; Whitlow, Sallie", "repository": "USAP-DC", "science_program": null, "title": "Newall Glacier Snow Pit and Ice Core, 1987 to 1989", "url": "https://www.usap-dc.org/view/dataset/609088"}, {"dataset_uid": "609248", "doi": "", "keywords": "Antarctica; Beta Profiles; Chemistry:ice; Chemistry:Ice; Density; Dominion Range; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Physical Properties", "people": "Gow, Tony; Sowers, Todd A.; Saltzman, Eric; Watson, M. Scott; Grootes, Pieter; Mayewski, Paul A.; Meese, Deb", "repository": "USAP-DC", "science_program": null, "title": "Dominion Range Ice Core Beta Profiles, Chemistry, and Density Data", "url": "https://www.usap-dc.org/view/dataset/609248"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": "Not available", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "GROUND STATIONS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Frisic, David; Meese, Deb; Gow, Tony; Saltzman, Eric; Mayewski, Paul A.; Sowers, Todd A.; Welch, Kathy A.; Grootes, Pieter; Watson, M. Scott; Grootes, Peiter", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Characterization of Climatic Events for the Last 2 x 103y through the Retrieval of Ice Cores from the Transantarctic Mountains, Antarctica", "uid": "p0000169", "west": null}, {"awards": "0087380 Alley, Richard", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jul 2004 00:00:00 GMT", "description": "0087380\u003cbr/\u003eAlley\u003cbr/\u003e\u003cbr/\u003eThis award provides three years of support to use a broad, adaptable, multi-parameter approach, using a range of techniques including artificial neural networks to seek the relations between meteorological conditions and the snow pit and ice core records they produce. Multi-parameter, high resolution, ice core data already in hand or now being collected reflect snow accumulation, atmospheric chemistry, isotopic fractionation, and other processes, often with subannual resolution. The West Antarctic sites from which such data are available will be used as starting points for back-trajectory analyses in reanalysis data products to determine the meteorological conditions feeding the data stream. The artificial neural nets will then be used to look for optimal relations between these meteorological conditions and their products. Previous work has demonstrated the value of reanalysis products in determining snow accumulation, of back trajectory analyses in understanding glaciochemistry, and of artificial neural nets in linking meteorological conditions and their products. Preliminary work shows that neural nets are successful in downscaling from reanalysis products to automatic weather station data in West Antarctica, enabling interpolation of site-specific data to improve understanding of recent changes in West Antarctic climate.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Climate; Not provided; Feed-Forward Artificial Neural Networks; Ff-Anns", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Reusch, David", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Relating West Antarctic Ice Cores to Climate with Artificial Neural Networks", "uid": "p0000747", "west": -180.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "South Pole Snow Pit, 1988 and 1989", "datasets": [{"dataset_uid": "609086", "doi": "10.7265/N5T43R0R", "repository": "USAP-DC", "science_program": null, "title": "South Pole Snow Pit, 1988 and 1989", "url": "http://www.usap-dc.org/view/dataset/609086"}], "date_created": "Thu, 24 Jun 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "South Pole; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Whitlow, Sallie; Mayewski, Paul A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "0126286 McConnell, Joseph", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Siple Shallow Core Density Data", "datasets": [{"dataset_uid": "609129", "doi": "10.7265/N52F7KCD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Lamorey, Gregg W.", "repository": "USAP-DC", "science_program": null, "title": "Siple Shallow Core Density Data", "url": "https://www.usap-dc.org/view/dataset/609129"}], "date_created": "Mon, 19 Apr 2004 00:00:00 GMT", "description": "This award provides one year of support to use newly developed technology in which an ice-core melter is coupled with both an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and a traditional Continuous Flow Analysis (CFA) system, to measure a continuous time series of chemical and trace element deposition on the Siple Dome ice core from West Antarctica. A coupled ice-core melter, ICP-MS, and CFA system will be used to measure concentrations of a number of elements, isotopes and chemical species at very high depth resolution (~2-cm) in the top 54 m of the Siple Dome A-core. Pilot data from analyses of ~6 m from the nearby but much lower accumulation J-core site at Siple Dome, together with more extensive results from Summit, Greenland, indicate that it will be possible to obtain exactly co-registered, high-quality records of at least 12 seasonally varying elements (sodium, magnesium, aluminum, potassium, calcium, iron, manganese, rubidium, strontium, zirconium, barium, lead) and three other chemical species and ions (ammonium, nitrate, calcium ion) with this system. Under this proposed research, we will also add continuous measurements of sulfate to our system. Because more than sufficient core from Siple Dome for these depths is archived at the National Ice Core Laboratory, the proposed research will require no fieldwork. The continuous, very high-resolution, ~350-y record of these elemental tracers will enhance the value of previous chemical and isotopic measurements that have been made on the Siple Dome core and will be particularly valuable for comparisons between ice-core proxies and modern instrumental data related to El Nino-Southern Oscillation (ENSO) as well as for validation of model simulations of atmospheric circulation. These data, and the expertise gained through this research, will be invaluable when this novel chemical analysis technology is eventually applied to deep ice-core records for the study of rapid climate-change events.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "WAISCORES; Siple Coast; Glaciology; Not provided; GROUND-BASED OBSERVATIONS; Ice Core; Siple; Antarctica; Density; Snow; Ice Sheet; Siple Dome; Shallow Core; GROUND STATIONS; Stratigraphy", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lamorey, Gregg W.; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -90.0, "title": "Continuous High Resolution Ice-Core Chemistry using ICP-MS at Siple Dome", "uid": "p0000159", "west": -180.0}, {"awards": "0087151 Cole-Dai, Jihong", "bounds_geometry": null, "dataset_titles": "Sulfate-Based Volcanic Record from South Pole Ice Core", "datasets": [{"dataset_uid": "609215", "doi": "10.7265/N5CR5R88", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Solid Earth; South Pole", "people": "Cole-Dai, Jihong", "repository": "USAP-DC", "science_program": null, "title": "Sulfate-Based Volcanic Record from South Pole Ice Core", "url": "https://www.usap-dc.org/view/dataset/609215"}], "date_created": "Fri, 09 Apr 2004 00:00:00 GMT", "description": "This award supports a two year project to analyze shallow (~150 m) ice cores from South Pole in order to construct an annually resolved, sulfate-based volcanic record covering the last 1400 years. Two shallow ice cores will be recovered at the South Pole during the 00/01 field season and will be used for this work. Volcanic records from polar ice cores provide valuable information for studies of the connection between volcanism and climate. The new records are expected to be continuous and to cover at least the last 1400 years. The information from these records will verify the volcanic events found in the few existing Antarctic records and resolve discrepancies in the timing and magnitude of major explosive eruptions \u003cbr/\u003edetermined from those earlier records. In order to achieve the objectives of the proposed research, funds are provided to assist with the construction of an analytical laboratory for ice core and environmental \u003cbr/\u003echemistry research.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core; Snow Chemistry; West Antarctica; GROUND-BASED OBSERVATIONS; Antarctica; Ice Core Gas Records; Ion Chemistry; Ice Core Data", "locations": "West Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cole-Dai, Jihong", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "A Sulfate-based Volcanic Record from South Pole Ice Cores", "uid": "p0000167", "west": null}, {"awards": "9615333 Saltzman, Eric", "bounds_geometry": "POINT(-148.8 -81.7)", "dataset_titles": "Biogenic Sulfur in the Siple Dome Ice Core", "datasets": [{"dataset_uid": "609201", "doi": "10.7265/N5S180F1", "keywords": "Antarctica; Biota; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Finley, Brandon; Dioumaeva, Irina; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Biogenic Sulfur in the Siple Dome Ice Core", "url": "https://www.usap-dc.org/view/dataset/609201"}], "date_created": "Tue, 09 Mar 2004 00:00:00 GMT", "description": "This award is for support for four years of funding for a program of biogenic sulfur measurements on the Siple Dome ice core. Biogenic sulfur is a major aerosol-forming constituent of the atmosphere and has potentially important links to the earth\u0027s radiation budget. Previous work on the Vostok ice core has demonstrated a remarkable climate-related variability in biogenic sulfur, suggesting that the sulfur cycle may act to stabilize climate (keep the glacial atmosphere cool and the interglacial atmosphere warm) in the Southern Hemisphere. In this study, methane-sulfonate (MSA) will be measured on the Siple Dome ice core as part of the West Antarctic ice sheet program (WAIS). Siple Dome is located in a region which is strongly impacted by the incursion of marine air onto the Antarctic plateau. Because of its proximity to the coast and meteorological setting, it is expected that variability in high-latitude marine biogenic sulfur emissions should dominate the MSA record at this site. In addition to the deep ice core record, samples from shallow cores will also be analyzed to provide information about regional variability and decadal-to-centennial scale variability in the deposition of sulfur-containing aerosols from high latitude source regions over the past 200 years.", "east": -148.8, "geometry": "POINT(-148.8 -81.7)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; GROUND-BASED OBSERVATIONS; Biogenic Sulfur; FIELD INVESTIGATION; Not provided; LABORATORY; Methane Sulfonate", "locations": "Siple Dome", "north": -81.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Dioumaeva, Irina; Finley, Brandon", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.7, "title": "Biogenic Sulfur in the Siple Dome Ice Core", "uid": "p0000251", "west": -148.8}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609202", "doi": "10.7265/N5N877Q9", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609202"}], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "9980691\u003cbr/\u003eWahlen\u003cbr/\u003e\u003cbr/\u003eThis award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; Ice Core; USAP-DC; Carbon Dioxide", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "uid": "p0000166", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Central West Antarctic Glaciochemistry from Ice Cores", "datasets": [{"dataset_uid": "609093", "doi": "10.7265/N5959FHQ", "repository": "USAP-DC", "science_program": null, "title": "Central West Antarctic Glaciochemistry from Ice Cores", "url": "http://www.usap-dc.org/view/dataset/609093"}], "date_created": "Thu, 16 Oct 2003 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Accumulation Rate; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; West Antarctica", "locations": "West Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Reusch, David", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "9420648 Waddington, Edwin", "bounds_geometry": null, "dataset_titles": "Siple Dome Ice Core Age-Depth Scales", "datasets": [{"dataset_uid": "609130", "doi": "10.7265/N5T151KD", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Nereson, Nadine A.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Ice Core Age-Depth Scales", "url": "https://www.usap-dc.org/view/dataset/609130"}], "date_created": "Tue, 09 Sep 2003 00:00:00 GMT", "description": "This award is for support for a three year program to investigate the response of ice domes, such as Siple Dome in West Antarctica, to changing boundary conditions, for example as arising from fluctuations in thickness or position of bounding ice streams. A range of models will be used, from simple one-dimensional analytical models to coupled dynamic-thermodynamic flow models, to investigate the response of the ice dome to boundary forcing, and the record that boundary forcing can leave in the ice core record. Using radar, temperature, and ice core data from the currently funded field programs on Siple Dome, and ice flux and thickness values from the map view model as boundary conditions, a flow line across Siple Dome will be studied and possible ranges of time scales, the likely origin of ice near the bed, and the basal temperature conditions that exist now and existed in the past will be determined.The response of internal stratigraphy patterns to climate and dynamic forcing effects will be investigated and observed internal layers from ice cores will be used to infer the forcing history.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Sheet; Snow; Not provided; Stratigraphy; Shallow Core; Siple Coast; Antarctica; Ice Core; Siple Dome; Glaciology; Density; Siple; WAISCORES; GROUND STATIONS; GROUND-BASED OBSERVATIONS", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Nereson, Nadine A.; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Ice Modelling Study of Siple Dome: WAIS Ice Dynamics, WAISCORES Paleoclimate and Ice Stream/Ice Dome Interactions", "uid": "p0000058", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Taylor Dome Ice Core Data", "datasets": [{"dataset_uid": "609132", "doi": "10.7265/N5JH3J4C", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Dome Ice Core Data", "url": "http://www.usap-dc.org/view/dataset/609132"}], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "locations": "Taylor Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Steig, Eric J.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": null, "uid": null, "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Siple Dome Highlights: Stable isotopes", "datasets": [{"dataset_uid": "609134", "doi": "10.7265/N59021PM", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Highlights: Stable isotopes", "url": "http://www.usap-dc.org/view/dataset/609134"}], "date_created": "Mon, 18 Aug 2003 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Siple Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; White, James", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": null, "uid": null, "west": null}, {"awards": "9526979 White, James", "bounds_geometry": null, "dataset_titles": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "datasets": [{"dataset_uid": "609123", "doi": "10.7265/N5TX3C95", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Bender, Michael; White, James", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Core Date from Measurement of the d18O of Paleoatmospheric Oxygen", "url": "https://www.usap-dc.org/view/dataset/609123"}], "date_created": "Mon, 16 Jun 2003 00:00:00 GMT", "description": "This award is for support for a program to measure the stable isotope (deuterium to hydrogen and oxygen-18 to oxygen-16) concentrations of ice cores retrieved from Siple Dome as part of the West Antarctic ice sheet program. In addition, the deuterium excess of samples from the Taylor Dome ice core will be determined. This project will approach the question of rapid climate change using ice cores to determine the history of temperature changes, moisture source changes, and elevational changes in the West Antarctic ice sheet. Results from ice cores taken to date in the interior of Antarctica (East and West) are surprisingly lacking in indications of abrupt climate changes, such as those that have been observed in the GISP2 ice core from Summit, Greenland. This work will address the question of whether rapid climate changes, which are known to have occurred in other parts of the southern hemi-sphere, may have also occurred in the coastal regions of West Antarctica. There is some indication from existing records of isotopes in ice cores that the West Antarctic ice sheet may have flushed ice in the past (as evidenced by large changes in elevation of the ice sheet).", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; LABORATORY; WAISCORES; GROUND STATIONS; Siple Coast; Glaciology; Snow; D18O; Isotope; Thermometry; Ice Sheet; Siple; Accumulation; Ice Core; Siple Dome; Stratigraphy; Densification; GROUND-BASED OBSERVATIONS; Not provided", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Bender, Michael", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Isotopic Measurements on the WAIS/Siple Dome Ice Cores", "uid": "p0000063", "west": null}, {"awards": "9615347 Conway, Howard", "bounds_geometry": null, "dataset_titles": "Roosevelt Island Bedrock and Surface Elevations; Roosevelt Island Ice Core Density and Beta Count Data", "datasets": [{"dataset_uid": "609139", "doi": "10.7265/N55718ZW", "keywords": "Antarctica; Beta Count; Density; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Roosevelt Island", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Density and Beta Count Data", "url": "https://www.usap-dc.org/view/dataset/609139"}, {"dataset_uid": "609140", "doi": "10.7265/N51J97NB", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Roosevelt Island; Solid Earth", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Bedrock and Surface Elevations", "url": "https://www.usap-dc.org/view/dataset/609140"}], "date_created": "Fri, 23 May 2003 00:00:00 GMT", "description": "This award is for two years of support to perform radar investigations across former shear margins at Roosevelt Island and Ice Stream C in order to measure changes in the configuration and continuity of internal layers and the bed. The broad goal of these investigations is to gain an understanding of ice stream flow and the timing and mechanisms of ice stream shutdown. A high-resolution short-pulse radar system will be used for detailed examination of the uppermost hundred meters of the firn and ice, and a monopulse sounding-radar system will be used to image the rest of the ice column (including internal layers) and the bed. Changes in the shape and continuity of layers will be used to interpret mechanisms and modes of ice stream flow including the possible migration of stagnation fronts and rates of shut-down. Variations in bed reflectivity will be used to deduce basal hydrology conditions across lineations. Accumulation rates deduced from snow pits and shallow cores will be used to estimate near-surface depth-age profiles. Improved understanding of ice stream history opens the possibility of linking changes in the West Antarctic ice sheet with the geologic evidence from Northern Victoria Land and the ocean record of the retreat of the grounding line in the Ross Sea.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RA; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Radioactive Decay; Radar Echo Sounder; Antarctica; Radar Altimetry; Densification; Bedrock Elevation; Ice Sheet Elevation; Satellite Radar Data; GROUND-BASED OBSERVATIONS; Radar; Ice Core; Snow Stratigraphy; Terrain Elevation; Antarctic Ice Sheet; Stable Isotopes; Ice Surface Elevation; Surface Elevation; Glaciology; Snow Densification; Ice Core Data; GROUND STATIONS; Not provided; Altimetry; Antarctic; Ice Core Stratigraphy; Ice Stratigraphy", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radar Investigations of Former Shear Margins: Roosevelt Island and Ice Stream C", "uid": "p0000164", "west": null}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": null, "dataset_titles": "Physical and Structural Properties of the Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609128", "doi": "10.7265/N5668B34", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Gow, Tony; Meese, Deb", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609128"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Stratigraphy; Ice Sheet; GROUND-BASED OBSERVATIONS; Density; Siple; Chemical Composition; Volcanic Deposits; Siple Coast; WAISCORES; Not provided; GROUND STATIONS; Pico; Ice Core; Tephra; Fabric; Glaciology; Snow", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gow, Tony; Meese, Deb", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical and Structural Properties of the Siple Dome Core", "uid": "p0000064", "west": null}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": null, "dataset_titles": "Digital Images of Thin Sections from Siple Dome; Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "datasets": [{"dataset_uid": "609127", "doi": "10.7265/N59Z92T4", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Images of Thin Sections from Siple Dome", "url": "https://www.usap-dc.org/view/dataset/609127"}, {"dataset_uid": "609413", "doi": "10.7265/N5XG9P2G", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core", "people": "Alley, Richard; Spencer, Matthew; Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609413"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; Glaciology; Ice Sheet; Siple; Ice Core; Stratigraphy; GROUND STATIONS; Siple Dome; WAISCORES; Trapped Air Bubbles; Photo; Snow; Density; Volcanic Deposits; Not provided; Ice Core Data; GROUND-BASED OBSERVATIONS; Siple Coast; Chemical Composition", "locations": "Siple Dome; Antarctica; Siple; Siple Coast", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Digital Imaging for Ice Core Analysis", "uid": "p0000011", "west": null}, {"awards": "9526420 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "Siple Dome Cores Electrical Measurement Data", "datasets": [{"dataset_uid": "609133", "doi": "10.7265/N5DR2SDN", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Cores Electrical Measurement Data", "url": "https://www.usap-dc.org/view/dataset/609133"}], "date_created": "Thu, 08 May 2003 00:00:00 GMT", "description": "This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Densification; Siple Dome; Glaciology; Snow; Thermometry; WAISCORES; Electrical; Isotope; GROUND STATIONS; GROUND-BASED OBSERVATIONS; Not provided; Ice Sheet; Siple Coast; Ice Core; Siple; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Electrical and Optical Measurements on the Siple Dome Ice Core", "uid": "p0000163", "west": null}, {"awards": "9526449 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "WAISCORES Snow Pit Chemistry, Antarctica", "datasets": [{"dataset_uid": "609420", "doi": "10.7265/N5SQ8XBR", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; Snow Pit; WAIS; WAISCORES", "people": "Kreutz, Karl; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "WAISCORES Snow Pit Chemistry, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609420"}], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This award is for support for a program of glaciochemical analyses of shallow and deep ice cores from Siple Dome, West Antarctica. Measurements that have been proposed include chloride, nitrate, sulfate, calcium, magnesium, sodium, potassium, ammonium and methansulfonic acid. These measurements will provide information about past volcanic events, biomass source strength, sea ice fluctuations, atmospheric circulation, changes in ice-free areas and the environmental response to Earth orbit insolation changes and solar variability. The glaciochemical records from the Siple Dome core will be developed at a resolution sufficient to compare with the Summit, Greenland record, thus allowing a bipolar comparison of climate change event timing and magnitude. As part of this award, an international workshop will be held during the first year to formulate a science plan for the International Transantarctic Scientific Expedition (ITASE), a program of regional surveys documenting the spatial distribution of properties measured in ice cores .", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Ion Chemistry; Antarctic; Snow Chemistry; Stable Isotopes; Snow Density; Siple Dome; GROUND-BASED OBSERVATIONS", "locations": "Antarctic; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kreutz, Karl; Mayewski, Paul A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Siple Dome Deep Ice Core Glaciochemistry and Regional Survey - A Contribution to the WAIS Initiative", "uid": "p0000012", "west": null}, {"awards": "9526572 Bales, Roger", "bounds_geometry": null, "dataset_titles": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "datasets": [{"dataset_uid": "609122", "doi": "10.7265/N5ZP441W", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Snow/ice; Snow/Ice; WAISCORES", "people": "McConnell, Joseph; Bales, Roger", "repository": "USAP-DC", "science_program": null, "title": "Snow-atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609122"}], "date_created": "Thu, 11 Jul 2002 00:00:00 GMT", "description": "This award is for support for a program of measurements to improve our understanding of the relationship between formaldehyde (HCHO) and hydrogen peroxide (H2O2) in the atmosphere and the concentrations of the same species in Antarctic snow, firn and ice. This work aims to relate changes in concentrations in the snow, firn and ice to corresponding changes in tropospheric chemistry. Atmospheric and firn sampling for formaldehyde and hydrogen peroxide at one or more of the WAIS ice core drilling sites will be undertaken and controlled laboratory studies to estimate thermodynamic and rate parameters will be performed. In addition, this work will involve modeling of atmosphere-snow exchange processes to infer the \"transfer function\" for reactive species at the sites and atmospheric photochemical modeling to relate changes in concentrations of formaldehyde and hydrogen peroxide in snow, firn and ice to atmospheric oxidation capacity. This work will contribute to a better understanding of the relationship between atmospheric concentrations of various species and those same species measured in snow and ice samples.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Isotope; WAISCORES; GROUND-BASED OBSERVATIONS; GROUND STATIONS; Snow; Glaciology; LABORATORY; Siple; Siple Coast; Thermometry; Hydrogen Peroxide; Ice Sheet", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bales, Roger; McConnell, Joseph", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Snow-Atmosphere Transfer Function for Reversibly Deposited Chemical Species in West Antarctica", "uid": "p0000060", "west": null}, {"awards": "9615167 Dunbar, Nelia; 9527373 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Zielinski, Gregory; Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}, {"awards": "9222121 Dalziel, Ian", "bounds_geometry": null, "dataset_titles": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "datasets": [{"dataset_uid": "609107", "doi": "10.7265/N5862DCW", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; UPLC-Q-TOF; Vostok Ice Core", "people": "Bender, Michael", "repository": "USAP-DC", "science_program": null, "title": "Concentration and Isotopic Composition of O2 and N2 in Trapped Gases of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609107"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award supports an in situ and short traverse seismic reflection/refraction and magnetotelluric experiment in West Antarctica. This collaborative experiment involves four awards at four institutions. The four-fold purpose is 1) to investigate part of the Byrd Subglacial Basin, 2) to test techniques for this work that could be done in a long traverse, 3) to determine the viability of the magnetotelluric method on a thick (electrically resistive) ice sheet, and 4) to evaluate the relative merits of refraction with wide reflection versus reflection with narrow refraction seismic studies in imaging the lithosphere. The geophysical techniques that will be employed are capable of imaging the ice sheet, the continental lithosphere, and the upper mantle, as well as determining physical properties of parts of the lithosphere and mantle. Investigations of outcrop geology over the last thirty years in West Antarctica and the Transantarctic Mountains have lead to recent interpretations that the crust is made up of many different lithospheric blocks. Seismic reflection work is the only way to image the crust in detail and the refraction work is the only way to determine physical properties of the layers and blocks defined by the reflection work. The magnetotelluric work is scientifically risky because it may not yield useful information when used over the electrically resistive ice sheet; however, if it works it has the potential to image molten rock in the crust and upper mantle. In a continental rift region such as West Antarctica, the presence of melt in the lithosphere is likely and, if documented, has very important ramifications to ice sheet dynamics. Research work supported by this award is expected to provide constraints to models of a range of crustal processes from models of ice sheet dynamics to tectonic and kinematic models of lithospheric thinning and rifting.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Isotope; Vostok; USAP-DC; Antarctica; Trapped Gases; Ice Core; Glaciology; Nitrogen; GROUND STATIONS", "locations": "Antarctica; Vostok", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Bender, Michael; Dalziel, Ian W.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Seismic Traverse of the Byrd Subglacial Basin-Field Test", "uid": "p0000150", "west": null}, {"awards": "9615292 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum; Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "datasets": [{"dataset_uid": "609108", "doi": "10.7265/N54F1NN5", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Wahlen, Martin", "repository": "USAP-DC", "science_program": null, "title": "Carbon-Isotopic Composition of Atmospheric CO2 since the Last Glacial Maximum", "url": "https://www.usap-dc.org/view/dataset/609108"}, {"dataset_uid": "609246", "doi": "", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Taylor Dome; Taylor Dome Ice Core", "people": "Steig, Eric J.; Sowers, Todd A.; Smith, Jesse; Brook, Edward J.; Mayewski, Paul A.; Indermuhle, A.", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Dome Ice Core Chemistry, Ion, and Isotope Data", "url": "https://www.usap-dc.org/view/dataset/609246"}], "date_created": "Tue, 01 Jan 2002 00:00:00 GMT", "description": "This award is for support of a program to reconstruct the record of atmospheric carbon dioxide (and the carbon-13 isotopes of carbon dioxide) over several intervals, including the Last Glacial Maximum-Holocene transition, interstadial episodes, the mid-Holocene, the last 1000 years and the penultimate glacial period, using ice from the Taylor Dome and Vostok ice cores. The major objective of this study is to investigate the phase relationship between variations of the greenhouse gases occluded in the ice cores and temperature changes (indicated by oxygen and deuterium isotopes) during the last deglaciation. In addition, the concentration of atmospheric carbon dioxide over the past 1000 years and during the mid-Holocene will be determined in these cores.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "USAP-DC; Ice Core; GROUND-BASED OBSERVATIONS; Carbon; Trapped Gases; Glaciology; GROUND STATIONS; Taylor Dome; Carbon Dioxide; Isotope; Antarctica; Nitrogen", "locations": "Antarctica; Taylor Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.; Wahlen, Martin; Smith, Jesse; Brook, Edward J.; Indermuhle, A.; Mayewski, Paul A.; Sowers, Todd A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Carbon Dioxide and Carbon Isotopes in the Taylor Dome and Vostok Ice Cores", "uid": "p0000153", "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Dronning Maud Land, Antarctica, Ice Core, 1991 and 1992", "datasets": [{"dataset_uid": "609089", "doi": "10.7265/N5DZ067P", "repository": "USAP-DC", "science_program": null, "title": "Dronning Maud Land, Antarctica, Ice Core, 1991 and 1992", "url": "http://www.usap-dc.org/view/dataset/609089"}], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dronning Maud Land; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Dronning Maud Land; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Whitlow, Sallie; Mayewski, Paul A.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Dominion Range Snow Pit and Ice Core, 1984 and 1985", "datasets": [{"dataset_uid": "609087", "doi": "10.7265/N5PC308D", "repository": "USAP-DC", "science_program": null, "title": "Dominion Range Snow Pit and Ice Core, 1984 and 1985", "url": "http://www.usap-dc.org/view/dataset/609087"}], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Dominion Range; Geochemistry; Glaciology; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Dominion Range; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Mayewski, Paul A.; Whitlow, Sallie", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "9526374 Alley, Richard", "bounds_geometry": null, "dataset_titles": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "datasets": [{"dataset_uid": "609121", "doi": "10.7265/N53F4MHS", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Alley, Richard", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Visible Stratigraphic Dating, Siple Dome and Upstream C Cores", "url": "https://www.usap-dc.org/view/dataset/609121"}], "date_created": "Wed, 01 Jan 1997 00:00:00 GMT", "description": "This award is for support for a program of physical and visible studies on the shallow and deep ice cores to be retrieved from Siple Dome, West Antarctica. Visible examination of ice cores has proven to be a powerful technique for dating and paleoclimatic interpretation. Recent examination of a shallow core from Siple Dome indicates that annual-layer dating is possible and that visible examination will contribute significantly to the dating effort at Siple Dome. Once ages are obtained, distances between layers provide snow accumulation after correction for density variations and ice flow thinning. Thin- section examination of the core will contribute to understanding the visible stratigraphy, and will reveal c-axis fabrics which are related to past ice deformation. The results of this study should include a better understanding of rapid climate change in the Antarctic and should contribute to knowledge of the stability of the West Antarctic ice sheet.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Ice Core; GROUND-BASED OBSERVATIONS; Siple; Ice Sheet; Isotope; Stratigraphy; GROUND STATIONS; Accumulation; Siple Dome; WAISCORES; Densification; Antarctica; Siple Coast; Thermometry; Snow; Not provided; Bubble; Glaciology", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical Properties of the Siple Dome Deep Ice Core", "uid": "p0000059", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
None
|
None | 2024-07-23 | Iseli, Rene; Schmitt, Jochen; Brook, Edward J.; Clark, Reid; Menking, James; Bauska, Thomas; Fischer, Hubertus; Lee, James; Riddell-Young, Benjamin |
|
None | None | None | false | false | |||||||||||
None
|
0637004 |
2023-10-16 | McGwire, Kenneth C. |
|
None | None | None | false | false | |||||||||||
None
|
None | 2023-10-13 | Schoenemann, Spruce; Steig, Eric J. |
|
None | None | None | false | false | |||||||||||
Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling
|
2034874 2035078 |
2023-09-08 | Salesky, Scott; Giometto, Marco; Das, Indrani | No dataset link provided | 1. A non-technical explanation of the project's broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects the NSF statutory mission and has been deemed worthy of support through evaluation using the intellectual merit of the Foundation and broader impacts review criteria. | None | None | false | false | |||||||||||
Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference & Deep-Field Planning Workshop
|
2231558 2231559 |
2023-09-01 | Smith, Nathan; Tinto, Kirsty | No dataset link provided | PUBLIC ABSTRACT – NSF 2231558/2231559 COLLABORATIVE RESEARCH: CONFERENCE: INTERDISCIPLINARY ANTARCTIC EARTH SCIENCE CONFERENCE & DEEP-FIELD PLANNING WORKSHOP The unique Antarctic environment offers insight into processes and records not seen anywhere else on Earth, and is critical to understanding our planet’s history and future. The remoteness and logistics of Antarctic science brings together researchers from diverse disciplines who otherwise wouldn’t be presented with opportunities for collaboration, and often rarely attend the same academic conferences. The Interdisciplinary Antarctic Earth Science (IAES) conference is a biennial gathering that supports the collaboration of U.S. bio-, cryo-, geo-, and atmospheric science researchers working in the Antarctic. This proposal will support the next two IAES conferences to be held in 2022 and 2024, as well as a paired deep-field camp planning workshop. The IAES conference is important to the mission of the NSF in supporting interdisciplinary collaboration in the Antarctic earth sciences, but also fulfills recommendations by the National Academy for improving awareness, data sharing, and early career researcher mentoring and development. The size and scope of the IAES conference allow it to serve as a hub for novel, interdisciplinary collaboration, as well as an incubator for the development of the next generation of Antarctic earth scientists. The goals of the IAES conference are to develop and deepen scientific collaborations across the Antarctic earth science community, and create a framework for future deep-field, as well as non-field-based research. The conference will share science through presentations of current research and keynote talks, broaden participation through welcoming new researchers from under-represented communities and disciplines, and deepen collaboration through interdisciplinary networking highlighting potential research connections, novel mentorship activities, and promoting data re-use, and application of remote sensing and modeling. Discussions resulting from the IAES conference will be used to develop white papers on future Antarctic collaborative research and deep-field camps based on community-driven research priorities. Community surveys and feedback will be solicited throughout the project to guide the future development of the IAES conference. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
EAGER: ANT LIA: Persist or Perish: Records of Microbial Survival and Long-term Persistence from the West Antarctic Ice Sheet
|
2228257 |
2023-05-31 | Michaud, Alexander; Winski, Dominic A. | No dataset link provided | The goals of this work are to determine the taxonomic identity of viable and preserved microbial cells, and decode the genetic repertoire that confers survival of burial and long-term viability within glacial ice. We will achieve these goals by utilizing subsamples from the ~65 ka record of the West Antarctic Ice Sheet Divide (WD) Ice Core. WD samples will be melted using the Desert Research Institute’s ice core melting system that is optimized for glaciobiological sampling. Microbial cells from the meltwater will be sorted using fluorescence-activated cell sorting, and individually sorted cells will have their genomes sequenced. The fluorescence-based methods will discern the viable (metabolically active) cells from those cells that are non-viable but preserved in the ice (DNA-containing). Our genomic analysis will identify the taxonomy of each cell, presence of known genes that confer survival in permanently frozen environments, and comparatively analyze genomes to determine the core set of genes required by viable cells to persist in an ice sheet. Accomplishing these goals contains significant risk because microbial cells within the ice sheet may have damaged membranes and DNA, rendering their genomes inadequate for sequencing. However, existing methods to study ice core biology cannot produce results with the low-biomass and small sample volumes from ice coring projects. While there are unknowns surrounding the suitability of the cells for flow cytometric sorting and single cell sequencing, making this project an exploratory endeavor; it will be a transformative step toward understanding the ecology of one of the most understudied environments on Earth. | POINT(-112.05 -79.28) | POINT(-112.05 -79.28) | false | false | |||||||||||
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores
|
1745078 |
2023-05-01 | Brook, Edward | This project will develop methods to measure the ratios of carbon-13 to carbon-12, and heavy to light hydrogen in methane in air trapped in ice cores. The ratios of the different forms of carbon and hydrogen are "fingerprints" of different sources of this gas in the past--for example wetlands in the tropics versus methane frozen in the sea floor. Once the analysis method is developed, the measurements will be used to examine why methane changed abruptly in the past, both during the last ice age, and during previous warm periods. The data will be used to understand how methane sources like wildfires, methane hydrates, and wetlands respond to climate change. This information is needed to understand future risks of large changes in methane in the atmosphere as Earth warms. <br/><br/>The project involves two tasks. First, the investigators will build and test a gas extraction system for methane isotopic measurements using continuous flow methods, with the goal of equaling or bettering the precision attained by the few other laboratories that make these measurements. The system will be interfaced with existing mass spectrometers at Oregon State University. The system consists of a vacuum chamber and sequence of traps, purification columns, and furnaces that separate methane from other gases and convert it to carbon dioxide or hydrogen for mass spectrometry. Second, the team will measure the isotopic composition of methane across large changes in concentration associated with two past interglacial periods and during abrupt methane changes of the last ice age. These measurements will be used to understand if the main reason for these concentration changes is climate-driven changes in emissions from wetlands, or whether other sources are involved, for example methane hydrates or wildfires.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
Measuring an Ice-core Proxy for Relative Oxidant Abundances over Glacial-interglacial and Rapid Climate changes in a West Antarctic Ice Core
|
1542723 |
2023-02-13 | Alexander, Becky |
|
The Earth's atmosphere is a highly oxidizing medium. The abundance of oxidants such as ozone in the atmosphere strongly influences the concentrations of pollutants and greenhouse gases, with implications for human health and welfare. Because oxidants are not preserved in geological archives, knowledge of how oxidants have varied in the past under changing climate conditions is extremely limited. This award will measure a proxy for oxidant concentrations in a West Antarctic ice core over several major climate transitions over the past 50,000 years. These measurements will complement similar measurements from a Greenland ice core, which showed significant changes in atmospheric oxidants over major climate transitions covering this same time period. The addition of measurements from Antarctica will allow researchers to examine if the oxidant changes suggested by the Greenland ice core record are regional or global in scale. Knowledge of how oxidants vary naturally with climate will better inform predictions of the composition of the future atmosphere under a warming climate.<br/><br/>This award will support measurements of the isotopic composition of nitrate in a West Antarctic ice core as a proxy for oxidant concentrations in the past atmosphere. The nitrogen isotopes of nitrate provide information on the degree of preservation of nitrate in the ice core record, and thus aid in the interpretation of the observed variability in the observed nitrate concentrations and oxygen isotopes in ice core records. By providing information about the spatial scale of oxidant changes over abrupt climate change events during the last glacial period, this project may also improve our understanding of mechanisms driving these abrupt events. Insight from this project will prove valuable for forecasting the response of stratospheric circulation to climate change, which has large implications for climate feedbacks and tropospheric composition. In addition, the information gleaned from this project on the mechanisms and feedbacks during abrupt climate change events will help determine the likelihood of such rapid events occurring in the future, which would have dramatic impacts on humankind. This award will provide training for one graduate and one undergraduate student, and will support the development of a hands-on activity related to rapid climate change to be used at the annual Polar Science Weekend at the Pacific Science Center in Seattle, WA. | POINT(-112.05 -79.28) | POINT(-112.05 -79.28) | false | false | |||||||||||
Life in Ice: Probing Microbial Englacial Activity through Time
|
2037963 |
2022-10-11 | Smith, Heidi; Foreman, Christine; Dieser, Markus | No dataset link provided | Glacial ice cores serve as a museum back in time, providing detailed records of past climatic conditions. In addition to chronological records such as temperature, chemistry and gas composition, ice provides a unique environment for preserving microbes and other biological materials through time. These microbes provide invaluable insight into the physiological capabilities necessary for survival in the Earths cryosphere and other icy planetary bodies, yet little is known about them. This award supports fundamental research into the activity of microbes in ice, and directly supports major research priorities regarding Antarctic biota identified in the 2015 National Academies of Sciences, Engineering, and Medicine report, A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research. The broader impacts of this work are that it will be relevant to researchers across paleoclimate and biological fields. It will support two early career researchers, a graduate and an undergraduate student who will conduct laboratory analyses, participate in outreach activities, publish papers in scientific journals and present at conferences. This work will use previously collected ice cores to investigate englacial microbial activity from the Holocene back to the Last Glacial Maximum from the blue ice area of Taylor Glacier, Antarctica. The proposal identified making significant contributions to 1) investing how Antarctic organisms evolve and adapt to changing environment, 2) understanding how microbes alter the preservation of paleorecord-relevant gas and trace element information in ice cores, and 3) identifying microbial life in cores and their activity in relation to dust depositional events. Two recently developed complementary techniques (bio-orthogonal noncanonical amino acid tagging and deuterium isotope probing) in combination with Raman Confocal Microspectroscopy will be used to assess and quantify microbial activity in ice. During phase one of the project, these methods will be optimized using deaccessioned ice cores available at the National Science Foundations Ice Core Facility. In phase two, ice cores in a time series from the Taylor Glacier will be analyzed for geochemistry and microbial activity. Research results will provide a comprehensive view of englacial microbial communities, including their metabolic diversity and activity, and the effect of geochemical parameters on microbial assemblages from different climate periods. Given the dearth of information available on englacial microbial communities, the results of this research will be of particular significance. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||||
EAGER: Constraining the Expected Brittle-ice Behavior for the Hercules Dome Ice-core Site.
|
2218402 |
2022-09-19 | Fegyveresi, John |
|
Brittle ice has been a long-standing and consistent challenge for ice-coring projects, complicating sampling, and introducing the possibility of contamination. Several procedures have been tested to reduce brittle damage to recovered cores, but many come with high monetary and time costs. Our background research suggests that bubble size and c-axis fabric are primary drivers for brittleness and are predictable from site characteristics, enabling prediction of brittleness before coring. We propose to improve understanding of the mechanisms involved in brittle ice onset and behavior, through targeted investigations of various ice physical properties, in carefully selected samples across multiple ice-core sites, in order to guide the upcoming Hercules Dome ice-core drilling and science communities. This project will involve collaboration between Northern Arizona University, the National Science Foundation Ice Core Facility, and Pennsylvania State University, and will utilize new and existing ice-core physical properties data from several previously drilled sites. This is a high-risk, low-cost project that could yield important results, and thus is well-suited for EAGER funding. This proposal utilizes existing ice cores and does not require Antarctic fieldwork. | POLYGON((-115 -85.5,-113.5 -85.5,-112 -85.5,-110.5 -85.5,-109 -85.5,-107.5 -85.5,-106 -85.5,-104.5 -85.5,-103 -85.5,-101.5 -85.5,-100 -85.5,-100 -85.65,-100 -85.8,-100 -85.95,-100 -86.1,-100 -86.25,-100 -86.4,-100 -86.55,-100 -86.7,-100 -86.85,-100 -87,-101.5 -87,-103 -87,-104.5 -87,-106 -87,-107.5 -87,-109 -87,-110.5 -87,-112 -87,-113.5 -87,-115 -87,-115 -86.85,-115 -86.7,-115 -86.55,-115 -86.4,-115 -86.25,-115 -86.1,-115 -85.95,-115 -85.8,-115 -85.65,-115 -85.5)) | POINT(-107.5 -86.25) | false | false | |||||||||||
Collaborative Research: Testing Next Generation Measurement Techniques for Reconstruction of Paleoclimate Archives from Thin or Disturbed Ice Cores Sections
|
2149518 |
2022-08-07 | Fudge, T. J.; Fegyveresi, John M | No dataset link provided | Interpreting highly compressed portions of ice cores is increasingly important as projects target climate records in basal ice, and in ice recovered from blue-ice areas. This project will integrate precisely co-registered electrical conductivity measurements (ECM), hyperspectral imaging, laser ablation ICPMS measurements of impurities, and ice physical properties to investigate sub-cm chemical and physical variations in polar ice. This work will establish to what extent annual layer interpretations of polar ice with sub-cm layering is possible. Critical to resolving thin ice layers is understanding the across-core variations which may obscure or distort the vertical layering. Analyses will be focused on samples from WAIS Divide, SPICEcore, and GISP2, which have well established seasonal cycles that yielded benchmark timescales, as well a large diameter ice core from a blue ice area. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research: Tephrochronology of a South Pole Ice Core
|
1543454 1543361 |
2022-04-01 | Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V. |
|
Antarctic ice core tephra records tend to be dominated by proximal volcanism and infrequently contain tephra from distal volcanoes within and off of the continent. Tephra layers in East Antarctic ice cores are largely derived from Northern Victoria Land volcanoes. For example, 43 out of 55 tephra layers in Talos Dome ice core are from local volcanoes. West Antarctic ice cores are dominated by tephra from Marie Byrd Land volcanoes. Thirty-six out of the 52 tephra layers in WAIS are from Mt. Berlin or Mt.Takahe. It would be expected that the majority of the tephra layers found in cores on and adjacent to the Antarctic Peninsula and Weddell Sea should be from Sub-Antarctic islands (e.g., South Sandwich and South Shetland Islands). Unfortunately, these records are poorly characterized, making correlations to the source volcanoes very unlikely. The South Pole ice core (SPICEcore) is uniquely situated to capture the volcanic records from all of these regions of the continent, as well as sub-tropical eruptions with significant global climate signatures. Twelve visible tephra layers have been characterized in SPICEcore and represent tephra produced by volcanoes from the Sub-Antarctic Islands (6), Marie Byrd Land (5), and one from an unknown sub-tropical eruption, likely from South America. Three of these tephra layers correlate to other ice core tephra providing important “pinning points” for timescale calibrations, recently published (Winski et al, 2019). Two tephra layers from Marie Byrd Land correlate to WAIS Divide ice core tephra (15.226ka and 44.864ka), and one tephra eruptive from the South Sandwich Island can be correlated EPICA Dome C, Vostok, and RICE (3.559ka). An additional eight cryptotephra have been characterized, and one layer geochemically correlates with the 1257 C.E. eruption of Samalas volcano in Indonesia. SPICEcore does not have a tephra record dominated by one volcanic region. Instead, it contains more of the tephra layers derived from off-continent volcanic sources. The far-travelled tephra layers from non-Antarctic sources improve our understanding of tephra transport to the interior of Antarctica. The location in the middle of the continent along with the longer transport distances from the local volcanoes has allowed for a unique tephra record to be produced that begins to link more of future ice core records together. | POINT(0 -90) | POINT(0 -90) | false | false | |||||||||||
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores
|
1643394 |
2021-11-10 | Buizert, Christo; Wettstein, Justin | This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation. | POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65)) | POINT(0 -89.999) | false | false | ||||||||||||
Supporting Antarctic Research with Ongoing Operations and Development of the USAP-DC Project Catalog and Data Repository
|
1936530 2230824 |
2021-11-05 | Carbotte, Suzanne; Tinto, Kirsty; Nitsche, Frank O. | No dataset link provided | Samples and data obtained by researchers working in Antarctica are valuable, unique assets which typically require a substantial and expensive logistical effort to acquire. Preservation of these data increases the return on the significant public investment for acquisition, enabling future re-use for new analyses, and ensure that data behind scientific publications are available for others to review. The US Antarctic Program Data Center (USAP-DC) will provide an open-disciplinary hybrid repository for project metadata and the diverse research data obtained from the Antarctic region by NSF funded researchers for which other data repositories do not exist. In addition, a Project Catalog will provide a single online resource for the US Antarctic scientific community to manage information about their research activities and will link project metadata to the various distributed repositories where Antarctic data resides. In doing so, the USAP-DC will follow community best practices and standards to ensure data are citable, shareable, and discoverable. It will also facilitate registration of data descriptions into the Antarctic Master Directory to meet US goals for data sharing under the International Antarctic Treaty. With full open access to interfaces to search for and download data, USAP-DC will make a wide range of data products resulting from NSF funded research in Antarctica available not only to the research community but also to the broader public. The data center is operated using community standards for metadata and data access which helps ensure data re-usability into the future. The new Project catalog, which is designed to support consolidation of information on research products of USAP awards over the lifetime of a project, will make it simpler for NSF program managers, but also for individual researchers and especially larger collaborative research groups to keep track of datasets and related information produced as part of their projects. Through tutorials and meetings at conferences USAP-DC will contribute to raise awareness and inform the research community, especially new investigators about data management best practices. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research: Peripheral East Antarctic ice as a unique recorder of climate variability during the Last Interglacial
|
2035580 2035637 |
2021-10-06 | Aarons, Sarah; Tabor, Clay | The spatial extent of the West Antarctic Ice Sheet during the last interglacial period (129,000 to 116,000 years ago) is currently unknown, yet this information is fundamental to projections of the future stability of the ice sheet in a warming climate. Paleoclimate records and proxy evidence such as dust can inform on past environmental conditions and ice-sheet coverage. This project will combine new, high-sensitivity geochemical measurements of dust from Antarctic ice collected at Allan Hills with existing water isotope records to document climate and environmental changes through the last interglacial period. These changes will then be compared with Earth-system model simulations of dust and water isotopes to determine past conditions and constrain the sensitivity of the West Antarctic Ice Sheet to warming. The project will test the hypothesis that the uncharacteristically volcanic dust composition observed at another peripheral ice core site at Taylor Glacier during the last interglacial period is related to changes in the spatial extent of the West Antarctic Ice Sheet. This project aims to characterize mineral dust transport during the penultimate glacial-interglacial transition. The team will apply high-precision geochemical techniques to the high-volume, high-resolution ice core drilled at the Allan Hills site in combination with Earth system model simulations to: (1) determine if the volcanic dust signature found in interglacial ice from Taylor Glacier is also found at Allan Hills, (2) determine the likely dust source(s) to this site during the last interglacial, and (3) probe the atmospheric and environmental changes during the last interglacial with a diminished West Antarctic Ice Sheet. The team will develop a suite of measurements on previously drilled ice from Allan Hills, including isotopic compositions of Strontium and Neodymium, trace element concentrations, dust-size distribution, and imaging of ice-core dust to confirm the original signal observed and provide a broader spatial reconstruction of dust transport. In tandem, the team will conduct Earth system modeling with prognostic dust and water-isotope capability to test the sensitivity of dust transport under several plausible ice-sheet and freshwater-flux configurations. By comparing dust reconstruction and model simulations, the team aims to elucidate the driving mechanisms behind dust transport during the last interglacial period. | None | None | false | false | ||||||||||||
Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation
|
2103032 |
2021-09-09 | Schmittner, Andreas; Haight, Andrew ; Clark, Peter | No dataset link provided | The Antarctic ice sheet is an important component of Earth’s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability. This project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area
|
1744993 1745007 1744832 0838843 1745006 |
2021-08-27 | Mayewski, Paul A.; Kurbatov, Andrei V.; Brook, Edward J.; Severinghaus, Jeffrey P.; Higgins, John | Between about 2.8-0.9 Ma, Earth’s climate was characterized by 40 kyr cycles, driven or paced by changes in the tilt of Earth’s spin axis. Much is known about the 40k world from studies of deep-sea sediments, but our understanding of climate change during this period and the transition between the 40kyr glacial cycles from 2.8-0.9 Ma and the 100kyr glacial cycles of the last 0.9 Myr is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of >1 Ma ice discovered in shallow ice cores in the Allan Hills Blue Ice Area (BIA), Antarctica. During the 2015-2016 field season we recovered ice from two nearby drill cores that dates to > 2 million years in age using the 40Ar/38Ar ratio of the trapped gases. Our discovery of ice of this antiquity in two cores demonstrates that there is gas-record quality ice from the 40k world in the Allan Hills BIA. To further characterize the composition of Earth’s atmosphere and Antarctic climate during the 40k world we request support for two field seasons to drill new large-volume (4” or 9” diameter) ice cores at sites where we have previously identified >1 Ma ice and nearby sites where ground penetrating radar has identified bedrock features conducive to the preservation of old ice. | POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667)) | POINT(159.29167 -76.7) | false | false | ||||||||||||
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains
|
1445205 |
2021-07-16 | putkonen, jaakko; Balco, Gregory; Morgan, Daniel |
|
Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past Recently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth’s history with samples that are unavailable anywhere else. Ice survives poorly on Earth’s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today. We propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications. | POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2)) | POINT(157.7 -83.25) | false | false | |||||||||||
Collaborative Research: Reconstructing East Antarctica’s Past Response to Climate using Subglacial Precipitates
|
2045611 2042495 |
2021-06-18 | Blackburn, Terrence; Tulaczyk, Slawek; Hain, Mathis; Rasbury, Troy | Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth’s past warm periods. Large uncertainties, however, in reconstructions of past and future sea levels, result from the poorly constrained climate sensitivity of the Antarctic Ice sheet (AIS). This research project aims to develop the use of subglacial precipitates as an archive the Antarctic ice sheet (AIS) past response to climate change. The subglacial precipitates from East Antarctica form in water bodies beneath Antarctic ice and in doing so provide an entirely new and unique measure of how the AIS responds to climate change. In preliminary examination of these precipitates, we identified multiple samples consisting of cyclic opal and calcite that spans hundreds of thousands of years in duration. Our preliminary geochemical characterization of these samples indicates that the observed mineralogic changes result from a cyclic change in subglacial water compositions between isotopically and chemically distinct waters. Opal-forming waters are reduced (Ce* <1 and high Fe/Mn) and exhibit elevated 234U/238U compositions similar to the saline groundwater brines found at the periphery of the AIS. Calcite-forming waters, are rather, oxidized and exhibit δ18O compositions consistent with derivation from the depleted polar plateau (< -50 ‰). 234U-230Th dates permit construction of a robust timeseries describing these mineralogic and compositional changes through time. Comparisons of these time series with other Antarctic climate records (e.g., ice core records) reveal that calcite forming events align with millennial scale changes in local temperature or “Antarctic isotopic maximums”, which represent Southern Hemisphere warm periods during low Atlantic Meridional overturning circulation. Ultimately, this project seeks to develop a comprehensive model as to how changes in the thermohaline cycle induce a glaciologic response which in turn induces a change in the composition of subglacial waters and the mineralogic phase recorded within the precipitate archive. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw
|
1643355 1643394 |
2021-05-28 | Fudge, T. J.; Steig, Eric J.; Buizert, Christo | The main objectives of the proposed work are twofold: (1) to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores; (2) to provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores. The WAIS Divide, Siple Dome, Byrd, Taylor Dome and South Pole ice cores will be synchronized using volcanic, dust and gas (CH4 and d18Oatm) markers; this synchronization will be combined with ice-flow and firn densification modeling to create gas-age and ice-age scales for these ice cores, consistent with the highly accurate WAIS Divide chronology. The grant will support ongoing efforts to synchronize the WAIS Divide core to the Dome C and Dronning Maud Land cores, which in turn have been synchronized to several East Antarctic ice cores. Using this chronological framework, the interpolar phasing of millennial-scale climate change will be investigated during the DO cycles using 6 Antarctic ice cores, and during the last deglaciation using 11 ice cores. The relationship between accumulation rate and site temperature during the natural warming of the last deglaciation will be investigated for all the Antarctic ice cores included in the framework. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
Collaborative Research: Implementing Low-power, Autonomous Observing Systems to Improve the Measurement and Understanding of Antarctic Precipitation
|
1543325 1543377 |
2021-04-27 | Seefeldt, Mark; Landolt, Scott |
|
Accurately measuring precipitation in Antarctica is important for purposes such as calculating Antarctica?s mass balance and contribution to global sea level rise, interpreting ice core records, and validating model- and satellite-based precipitation estimates. There is a critical need for reliable, autonomous, long-term measurements of Antarctic precipitation in order to better understand its variability in space in time. Such records over time are essentially absent from the continent, despite their importance. This project will deploy and test instrumentation to measure and record rates of snowfall and blowing snow in Antarctica. Project goals are based on installation of four low-power, autonomous Antarctic precipitation systems (APS) co-located at automatic weather station (AWS) sites in the Ross Island region of Antarctica. The APSs are designed with an integrated sensor approach to provide multiple types of observations of snow accumulation types at the test sites. The APSs are designed to construct an accurate timeline of snow accumulation, and to distinguish the water equivalent of fallen precipitation from surface blowing (lofted) snow, a prime confounding factor. The standard suite of instruments to be deployed includes: precipitation gauge with double Alter windshield, laser disdrometer, laser snow height sensor, optical precipitation detector, anemometer at gauge height, and a visible /infrared webcam. These instruments have previously been shown to work well in cold regions applications. | POLYGON((166.918 -77.8675,167.2997 -77.8675,167.6814 -77.8675,168.0631 -77.8675,168.4448 -77.8675,168.8265 -77.8675,169.2082 -77.8675,169.5899 -77.8675,169.9716 -77.8675,170.3533 -77.8675,170.735 -77.8675,170.735 -77.98145,170.735 -78.0954,170.735 -78.20935,170.735 -78.3233,170.735 -78.43725,170.735 -78.5512,170.735 -78.66515,170.735 -78.7791,170.735 -78.89305,170.735 -79.007,170.3533 -79.007,169.9716 -79.007,169.5899 -79.007,169.2082 -79.007,168.8265 -79.007,168.4448 -79.007,168.0631 -79.007,167.6814 -79.007,167.2997 -79.007,166.918 -79.007,166.918 -78.89305,166.918 -78.7791,166.918 -78.66515,166.918 -78.5512,166.918 -78.43725,166.918 -78.3233,166.918 -78.20935,166.918 -78.0954,166.918 -77.98145,166.918 -77.8675)) | POINT(168.8265 -78.43725) | false | false | |||||||||||
Collaborative Research: A High-sensitivity Beryllium-10 Record from an Ice Core at South Pole
|
1443144 1443448 |
2021-02-04 | Schaefer, Joerg; Steig, Eric J. |
|
This project acquired measurements of the concentration of beryllium-10 (10Be) from an ice core from the South Pole, Antarctica. An isotope of the element beryllium, 10Be, is produced in the atmosphere by high-energy protons (cosmic rays) that enter Earth's atmosphere from space. It is removed from the atmosphere by settling or by scavenging by rain or snowfall. Hence, concentrations of 10Be in snow at the South Pole reflect the production rate of 10Be in the atmosphere. Because the rate of production of 10Be over Antarctica depends primarily on the strength of the Sun's magnetic field, measurements of 10Be in the South Pole ice core provide a record of changes in solar activity. To ain interpretation of the South Pole 10Be record, a climate model that can simulate the production of 10Be in the atmosphere, it's transport through the atmosphere, and its deposition at the snow surface in Antarctica is used to quantify the impact of climate noise on the 10Be signal. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.
|
0732917 0732450 0732711 0732983 |
2020-10-09 | McCormick, Michael; Vernet, Maria; Van Dover, Cindy; Smith, Craig | A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts. | POLYGON((-60.5 -63.1,-59.99 -63.1,-59.48 -63.1,-58.97 -63.1,-58.46 -63.1,-57.95 -63.1,-57.44 -63.1,-56.93 -63.1,-56.42 -63.1,-55.91 -63.1,-55.4 -63.1,-55.4 -63.29,-55.4 -63.48,-55.4 -63.67,-55.4 -63.86,-55.4 -64.05,-55.4 -64.24,-55.4 -64.43,-55.4 -64.62,-55.4 -64.81,-55.4 -65,-55.91 -65,-56.42 -65,-56.93 -65,-57.44 -65,-57.95 -65,-58.46 -65,-58.97 -65,-59.48 -65,-59.99 -65,-60.5 -65,-60.5 -64.81,-60.5 -64.62,-60.5 -64.43,-60.5 -64.24,-60.5 -64.05,-60.5 -63.86,-60.5 -63.67,-60.5 -63.48,-60.5 -63.29,-60.5 -63.1)) | POINT(-57.95 -64.05) | false | false | ||||||||||||
Completing the WAIS Divide Ice Core CO2 record
|
1246465 |
2020-06-22 | Brook, Edward J. |
|
This award supports a project to measure the carbon dioxide (CO2) concentration in the WAIS Divide ice core covering the time period 25,000 to 60,000 years before present, and to analyze the isotopic composition of CO2 in selected time intervals. The research will improve understanding of how and why atmospheric CO2 varied during the last ice age, focusing particularly on abrupt transitions in the concentration record that are associated with abrupt climate change. These events represents large perturbations to the global climate system and better information about the CO2 response should inform our understanding of carbon cycle-climate feedbacks and radiative forcing of climate. The research will also improve analytical methods in support of these goals, including completing development of sublimation methods to replace laborious mechanical crushing of ice to release air for analysis. The intellectual merit of the proposed work is that it will increase knowledge about the magnitude and timing of atmospheric CO2 variations during the last ice age, and their relationship to regional climate in Antarctica, global climate history, and the history of abrupt climate change in the Northern Hemisphere. The temporal resolution of the proposed record will in most intervals be ~ 4 x higher than previous data sets for this time period, and for selected intervals up to 8-10 times higher. Broader impacts of the proposed work include a significant addition to the amount of data documenting the history of the most important long-lived greenhouse gas in the atmosphere and more information about carbon cycle-climate feedbacks - important parameters for predicting future climate change. The project will contribute to training a postdoctoral researcher, research experience for an undergraduate and a high school student, and outreach to local middle school and other students. It will also improve the analytical infrastructure at OSU, which will be available for future projects. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||||||||
EAGER: Feasibility of Reconstructing the Atmospheric History of Molecular Hydrogen from Antarctic Ice
|
1907974 |
2020-06-09 | Saltzman, Eric |
|
Hydrogen (H2) is one of the most abundant trace gases in the atmosphere, with a mean level of 500 ppb and an atmospheric lifetime of about two years. Hydrogen has an impact on both air quality and climate, due to its role as a precursor for tropospheric ozone and stratospheric water vapor. Projections indicate that a future "hydrogen economy" would increase hydrogen emissions. Understanding of the atmospheric hydrogen budget is largely based on a 30-year record of surface air measurements, but there are no long-term records with which to assess either: 1) the influence of climate change on atmospheric hydrogen, or 2) the extent to which humans have impacted the hydrogen budget. Polar ice core records of hydrogen will advance our understanding of the atmospheric hydrogen cycle and provide a stronger basis for projecting future changes to atmospheric levels of hydrogen and their impacts. <br/><br/>The research will involve laboratory work to enable the collection and analysis of hydrogen in polar ice cores. Hydrogen is a highly diffusive molecule and, unlike most other atmospheric gases, diffusion of hydrogen in ice is so rapid that ice samples must be stored in impermeable containers immediately upon drilling and recovery. This project will: 1) construct a laboratory system for extracting and analyzing hydrogen in polar ice, 2) develop and test materials and construction designs for vessels to store ice core samples in the field, and 3) test the method on samples of opportunity previously stored in the field. The goal of this project is a proven, cost-effective design for storage flasks to be fabricated for use on future polar ice coring projects. This project will support the dissertation research of a graduate student in the UC Irvine Department of Earth System Science.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((129.26 -89.86,130.261 -89.86,131.262 -89.86,132.263 -89.86,133.264 -89.86,134.265 -89.86,135.266 -89.86,136.267 -89.86,137.268 -89.86,138.269 -89.86,139.27 -89.86,139.27 -89.861,139.27 -89.862,139.27 -89.863,139.27 -89.864,139.27 -89.865,139.27 -89.866,139.27 -89.867,139.27 -89.868,139.27 -89.869,139.27 -89.87,138.269 -89.87,137.268 -89.87,136.267 -89.87,135.266 -89.87,134.265 -89.87,133.264 -89.87,132.263 -89.87,131.262 -89.87,130.261 -89.87,129.26 -89.87,129.26 -89.869,129.26 -89.868,129.26 -89.867,129.26 -89.866,129.26 -89.865,129.26 -89.864,129.26 -89.863,129.26 -89.862,129.26 -89.861,129.26 -89.86)) | POINT(134.265 -89.865) | false | false | |||||||||||
A High Resolution Atmospheric Methane Record from the South Pole Ice Core
|
1643722 |
2020-06-02 | Brook, Edward J. |
|
This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. <br/><br/>Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project. | POINT(0 -90) | POINT(0 -90) | false | false | |||||||||||
Collaborative Research: Targeted resampling of deep polar ice cores using information theory
|
1807522 |
2020-05-26 | Garland, Joshua; Jones, Tyler R. | Ice cores contain detailed accounts of Earth's climate history. The collection of an ice core can be logistically challenging, and extraction of data from the core can be time-consuming as well as susceptible to both human and machine error. Furthermore, locked in measurements from ice cores is information that scientists have not yet found ways to recover. This project will apply techniques from information theory to ice-core data to unlock that information. The primary goal is to demonstrate that information theory can (a) identify regions of a specific ice-core record that are in need of further analysis and (b) provide some specific guidance for that analysis. A secondary goal is to demonstrate that information theory has practical and scientific utility for studies of past climate. This project aims to use information theory in two distinct ways: first, to identify regions of a core where information appears to be damaged or missing, perhaps due to human and/or machine error. In the segment of the West Antarctic Ice Sheet Divide core that is 5000-8000 years old, for instance, information-theoretic methods reveal significant levels of noise, probably due to a laboratory instrument, and something that was not visible in the raw data. This is a particularly important segment of the record, as it contains valuable clues about climatic shifts and the onset of the Holocene. Targeted re-sampling of this segment of the core and reanalysis with newer laboratory apparatus could resolve the data issues. The second way in which information theory can potentially aid in ice-core analysis is by extracting climate signals from the data--such as the accumulation rate at the core site over the period of its formation. This quantity usually requires significant time and effort to produce, but information theory could help to streamline that process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POINT(-112.085 -79.467) | POINT(-112.085 -79.467) | false | false | ||||||||||||
Collaborative Research: VeLveT Ice - eVoLution of Fabric and Texture in Ice at WAIS Divide, West Antarctica
|
1142167 1142035 |
2020-05-15 | Pettit, Erin; Obbard, Rachel |
|
This award supports a project to develop a better understanding of the relation between ice microstructure, impurities, and ice flow and their connection to climate history for the West Antarctic Ice Sheet (WAIS) ice core site. This work builds on several ongoing studies at Siple Dome in West Antarctica and Dome C in East Antarctica. It is well known that the microstructure of ice evolves with depth and time in an ice sheet. This evolution of microstructure depends on the ice flow field, temperature, and impurity content. The ice flow field, in turn, depends on microstructure, leading to feedbacks that create layered variation in microstructure that relates to climate and flow history. The research proposed here focuses on developing a better understanding of: 1) how ice microstructure evolves with time and stress in an ice sheet and how that relates to impurity content, temperature, and strain rate; 2) how variations in ice microstructure and impurity content affect ice flow patterns near ice divides (on both small (1cm to 1m) and large (1m to 100km) scales); and 3) in what ways is the spatial variability of ice microstructure and its effect on ice flow important for interpretation of climate history in the WAIS Divide ice core. The study will integrate existing ice core and borehole data with a detailed study of ice microstructure using Electron Backscatter Diffraction (EBSD) techniques and measurements of borehole deformation through time using Acoustic Televiewers. This will be the first study to combine these two novel techniques for studying the relation between microstructure and deformation and it will build on other data being collected as part of other WAIS Divide borehole logging projects (e.g. sonic velocity, optical dust logging, temperature and other measurements on the ice core including fabric measurements from thin section analyses as well as studies of ice chemistry and stable isotopes. The intellectual merit of the work is that it will improve interpretation of ice core data (especially information on past accumulation) and overall understanding of ice flow. The broader impacts are that the work will ultimately contribute to a better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. The work will also advance the careers of two early-career female scientists, including one with a hearing impairment disability. This project will support a PhD student at the UAF and provide research and field experience for two or three undergraduates at Dartmouth. The PIs plan to include a teacher on their field team and collaborate with UAF's "From STEM to STEAM" toward enhancing the connection between art and science. | POLYGON((-112.3 -79.2,-112.2 -79.2,-112.1 -79.2,-112 -79.2,-111.9 -79.2,-111.8 -79.2,-111.7 -79.2,-111.6 -79.2,-111.5 -79.2,-111.4 -79.2,-111.3 -79.2,-111.3 -79.23,-111.3 -79.26,-111.3 -79.29,-111.3 -79.32,-111.3 -79.35,-111.3 -79.38,-111.3 -79.41,-111.3 -79.44,-111.3 -79.47,-111.3 -79.5,-111.4 -79.5,-111.5 -79.5,-111.6 -79.5,-111.7 -79.5,-111.8 -79.5,-111.9 -79.5,-112 -79.5,-112.1 -79.5,-112.2 -79.5,-112.3 -79.5,-112.3 -79.47,-112.3 -79.44,-112.3 -79.41,-112.3 -79.38,-112.3 -79.35,-112.3 -79.32,-112.3 -79.29,-112.3 -79.26,-112.3 -79.23,-112.3 -79.2)) | POINT(-111.8 -79.35) | false | false | |||||||||||
Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core
|
1443470 |
2020-03-26 | Aydin, Murat |
|
In the past, Earth's climate underwent dramatic changes that influenced physical, chemical, geological, and biological processes on a global scale. Such changes left an imprint in Earth's atmosphere, as shown by the variability in abundances of trace gases like carbon dioxide and methane. In return, changes in the atmospheric trace gas composition affected Earth's climate. Studying compositional variations of the past atmosphere helps us understand the history of interactions between global biogeochemical cycles and Earth?s climate. The most reliable information on past atmospheric composition comes from analysis of air entrapped in polar ice cores. This project aims to generate ice-core records of relatively short-lived, very-low-abundance trace gases to determine the range of past variability in their atmospheric levels and investigate the changes in global biogeochemical cycles that caused this variability. This project measures three such gases: carbonyl sulfide, methyl chloride, and methyl bromide. Changes in carbonyl sulfide can indicate changes in primary productivity and photosynthetic update of carbon dioxide. Changes in methyl chloride and methyl bromide significantly impact natural variability in stratospheric ozone. In addition, the processes that control atmospheric levels of methyl chloride and methyl bromide are shared with those controlling levels of atmospheric methane. The measurements will be made in the new ice core from the South Pole, which is expected to provide a 40,000-year record.<br/><br/>The primary focus of this project is to develop high-quality trace gas records for the entire Holocene period (the past 11,000 years), with additional, more exploratory measurements from the last glacial period including the period from 29,000-36,000 years ago when there were large changes in atmospheric methane. Due to the cold temperatures of the South Pole ice, the proposed carbonyl sulfide measurements are expected to provide a direct measure of the past atmospheric variability of this gas without the large hydrolysis corrections that are necessary for interpretation of measurements from ice cores in warmer settings. Furthermore, we will test the expectation that contemporaneous measurements from the last glacial period in the deep West Antarctic Ice Sheet Divide ice core will not require hydrolysis loss corrections. With respect to methyl chloride, we aim to verify and improve the existing Holocene atmospheric history from the Taylor Dome ice core in Antarctica. The higher resolution of our measurements compared with those from Taylor Dome will allow us to derive a more statistically significant relationship between methyl chloride and methane. With respect to methyl bromide, we plan to extend the existing 2,000-year database to 11,000 years. Together, the methyl bromide and methyl chloride records will provide strong measurement-based constraints on the natural variability of stratospheric halogens during the Holocene period. In addition, the methyl bromide record will provide insight into the correlation between methyl chloride and methane during the Holocene period due to common sources and sinks. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative Research: Record of the Triple-oxygen Isotope and Hydrogen Isotope Composition of Ice from an Ice Core at South Pole
|
1443105 |
2019-11-17 | Steig, Eric J.; White, James | This project will develop a record of the stable-isotope ratios of water from an ice core at the South Pole, Antarctica. Water-isotope ratio measurements provide a means to determine variability in temperature through time. South Pole is distinct from most other locations in Antarctica in showing no warming in recent decades, but little is known about temperature variability in this location prior to the installation of weather stations in 1957. The measurements made as part of this project will result in a much longer temperature record, extending at least 40,000 years, aiding our ability to understand what controls Antarctic climate, and improving projections of future Antarctic climate change. Data from this project will be critical to other investigators working on the South Pole ice core, and of general interest to other scientists and the public. Data will be provided rapidly to other investigators and made public as soon as possible.<br/><br/>This project will obtain records of the stable-isotope ratios of water on the ice core currently being obtained at South Pole. The core will reach a depth of 1500 m and an age of 40,000 years. The project will use laser spectroscopy to obtain both an ultra-high-resolution record of oxygen 18/16 and deuterium-hydrogen ratios, and a lower-resolution record of oxygen 17/16 ratios. The high-resolution measurements will be used to aid in dating the core, and to provide estimates of isotope diffusion that constrain the process of firn densification. The novel 17/16 measurement provides additional constraints on the isotope fractionation due to the temperature-dependent supersaturation ratio, which affects the fractionation of water during the liquid-solid condensate transition. Together, these techniques will allow for improved accuracy in the use of the water isotope ratios as proxies for ice-sheet temperature, sea-surface temperature, and atmospheric circulation. The result will be a record of decadal through centennial and millennial scale climate change in a climatically distinct region in East Antarctica that has not been previously sampled by deep ice coring. The project will support a graduate student who will be co-advised by faculty at the University of Washington and the University of Colorado, and will be involved in all aspects of the work. | POINT(0 -90) | POINT(0 -90) | false | false | ||||||||||||
Laser Dust Logging of a South Pole Ice Core
|
1443566 |
2019-10-31 | Bay, Ryan |
|
This award supports the deployment and analysis of data from an oriented laser dust logger in the South Pole ice core borehole to complement study of the ice core record. Before the core is even processed, data from the borehole probe will immediately determine the depth-age relationship, augment 3D mapping of South Pole stratigraphy, aid in searches for the oldest ice in Antarctica, and reveal layers of volcanic or extraterrestrial fallout. Regarding the intellectual merit, the oriented borehole log will be essential for investigating features in the ice sheet that may have implications for ice core chronology, ice flow, ice sheet physical properties and stability in response to climate change. The tools and techniques developed in this program have applications in glaciology, biogeoscience and exploration of other planetary bodies. The program aims for a deeper understanding of the consequences and causes of abrupt climate change. The broader impacts of the project are that it will include outreach and education, providing a broad training ground for students and post-docs. Data and metadata will be made available through data centers and repositories such as the National Snow and Ice Data Center web portal. <br/><br/>The laser dust logger detects reproducible paleoclimate features at sub-centimeter depth scale. Dust logger data are being used for synchronizing records and dating any site on the continent, revealing accumulation anomalies and episodes of rapid ice sheet thinning, and discovering particulate horizons of special interest. In this project we will deploy a laser dust logger equipped with a magnetic compass to find direct evidence of preferentially oriented dust. Using optical scattering measurements from IceCube calibration studies at South Pole and borehole logs at WAIS Divide, we have detected a persistent anisotropy correlated with flow and crystal fabric which suggests that the majority of insoluble particulates must be located within ice grains. With typical concentrations of parts-per-billion, little is known about the location of impurities within the polycrystalline structure of polar ice. While soluble impurities are generally thought to concentrate at inter-grain boundaries and determine electrical conductivity, the fate of insoluble particulates is much less clear, and microscopic examinations are extremely challenging. These in situ borehole measurements will help to unravel intimate relationships between impurities, flow, and crystal fabric. Data from this project will further develop a unique record of South Pole surface roughness as a proxy for paleowind and provide new insights for understanding glacial radar propagation. This project has field work in Antarctica. | POINT(90 -90) | POINT(90 -90) | false | false | |||||||||||
Collaborative Research: A 1500m Ice Core from South Pole
|
1142646 1142517 1141839 |
2019-10-30 | Twickler, Mark; Souney, Joseph Jr.; Aydin, Murat; Steig, Eric J. | This proposal requests support for a project to drill and recover a new ice core from South Pole, Antarctica. The South Pole ice core will be drilled to a depth of 1500 m, providing an environmental record spanning approximately 40 kyrs. This core will be recovered using a new intermediate drill, which is under development by the U.S. Ice Drilling Design and Operations (IDDO) group in collaboration with Danish scientists. This proposal seeks support to provide: 1) scientific management and oversight for the South Pole ice core project, 2) personnel for ice core drilling and core processing, 3) data management, and 3) scientific coordination and communication via scientific workshops. The intellectual merit of the work is that the analysis of stable isotopes, atmospheric gases, and aerosol-borne chemicals in polar ice has provided unique information about the magnitude and timing of changes in climate and climate forcing through time. The international ice core research community has articulated the goal of developing spatial arrays of ice cores across Antarctica and Greenland, allowing the reconstruction of regional patterns of climate variability in order to provide greater insight into the mechanisms driving climate change. The broader impacts of the project include obtaining the South Pole ice core will support a wide range of ice core science projects, which will contribute to the societal need for a basic understanding of climate and the capability to predict climate and ice sheet stability on long time scales. Second, the project will help train the next generation of ice core scientists by providing the opportunity for hands-on field and core processing experience for graduate students and postdoctoral researchers. A postdoctoral researcher at the University of Washington will be directly supported by this project, and many other young scientists will interact with the project through individual science proposals. Third, the project will result in the development of a new intermediate drill which will become an important resource to US ice core science community. This drill will have a light logistical footprint which will enable a wide range of ice core projects to be carried out that are not currently feasible. Finally, although this project does not request funds for outreach activities, the project will run workshops that will encourage and enable proposals for coordinated outreach activities involving the South Pole ice core science team. | POINT(90 -90) | POINT(90 -90) | false | false | ||||||||||||
EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse
|
1341728 |
2019-10-08 | Stone, John | This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past few million years, and if so, when and how frequently this occurred. The principal aim is to identify climatic conditions or thresholds in the climate system that led to ice-sheet collapse in the past, and assess the threat of climate change to vulnerable ice sheets in the future. We recovered a subglacial bedrock core from beneath 150 m of ice cover in the Pirrit Hills, in West Antarctica, and measured cosmogenic nuclide profiles to determine the bedrock exposure history. Cosmic-ray-produced Be-10 and Al-26 in the core indicate: (i) Continuous Pleistocene ice cover averaging ~200 m; and (ii) One or more pre-Pleistocene deglaciations that exposed the core site for ~200-800 years in the Pliocene, or > 800 years, in the Miocene. Optically stimulated luminescence (OSL) dating of the core top precludes exposure to sunlight since ~450 ka, consistent with the Be-10 and Al-26 data. Trapped atmospheric argon in ice recovered from 80 cm above the bedrock surface indicates an age for the enclosing ice > 2 Ma (delta 40Ar/36Ar = -0.15 per-mil). Together, these results rule out any Pleistocene thinning of ice in the Pirrit Hills by more than 150 m. | POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81)) | POINT(-85.65 -81.15) | false | false | ||||||||||||
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements
|
1443336 1443397 1443663 |
2019-08-29 | Osterberg, Erich | This collaborative project explores the signatures and causes of natural climate change in the region surrounding Antarctica over the last 40,000 years as the Earth transitioned from an ice age into the modern warm period. The researchers will investigate how the wind belts that surround Antarctica changed in their strength and position through time, and document explosive volcanic eruptions and CO2 cycling in the Southern Ocean as potential climate forcing mechanisms over this interval. Understanding how and why the climate varied naturally in the past is critical for improving understanding of modern climate change and projections of future climate under higher levels of atmospheric CO2. <br/><br/>The investigators plan to conduct a suite of chemical measurements along the 1500m length of the South Pole Ice Core, including major ion and trace element concentrations, and microparticle (dust) concentrations and size distributions. These measurements will (1) extend the South Pole record of explosive volcanic eruptions to 40,000 years using sulfate and particle data; (2) establish the relative timing of climate changes in dust source regions of Patagonia, New Zealand, and Australia using dust flux data; (3) investigate changes in the strength and position of the westerly wind belt using dust size distribution data; and (4) quantify the flux of bioavailable trace metals deposited as dust to the Southern Ocean over time. These chemistry records will also be critical for creating the timescale that will be used by all researchers studying records from the South Pole core. The project will support four graduate students and several undergraduate students across three different institutions, and become a focus of the investigators' efforts to disseminate outcomes of climate change science to the broader community. | POINT(-180 -90) | POINT(-180 -90) | false | false | ||||||||||||
Controls on Variations in Atmospheric Carbon Dioxide and Nitrous Oxide During the Last 10,000 years
|
1443550 |
2019-08-06 | Brook, Edward J. |
|
The temperature of the earth is controlled, in part, by heat trapping gases that include carbon dioxide, methane, and nitrous oxide. Despite their importance to climate, direct measurements of these gases in the atmosphere are limited to the last 50 years at best. Air trapped in ice cores extends those data back hundreds of millennia, and measurements of greenhouse gases in ice cores underpin much of our understanding of global chemical cycles relevant to modern climate change. Existing records vary in quality and detail. The proposed work fills gaps in our knowledge of nitrous oxide and carbon dioxide over the last 10,000 years. New measurements from an ice core from the South Pole will be used to determine what role changes in ocean and land based processes played in controlling these gases, which decreased during the first 2,000 years of this time period, then gradually increased toward the present. The work will address a major controversy over whether early human activities could have impacted the atmosphere, and provide data to improve mathematical models of the land-ocean-atmosphere system that predict how future climate change will impact the composition of the atmosphere and climate. <br/><br/>For nitrous oxide the work will improve on existing concentration records It will also develop measurement of the isotopomers of nitrous oxide and explore their utility for understanding aspects of the Holocene nitrous oxide budget. The primary goal is to determine if marine and/or terrestrial emissions of nitrous oxide change in response to changes in Holocene climate. A new Holocene isotopic record for carbon dioxide (stable carbon and oxygen isotopes), will improve the precision of existing records by a factor 5 and increase the temporal resolution. These data will be used to evaluate controversial hypotheses about why carbon dioxide concentrations changed in the Holocene and provide insight into millennial scale processes in the carbon cycle, which are not resolved by current isotopic data. A graduate student and post doc will receive advanced training during and the student and principle investigator will conduct outreach efforts targeted at local middle school students. The proposed work will also contribute to teaching efforts by the PI and to public lectures on climate and climate change. The results will be disseminated through publications, data archive, and the OSU Ice Core Lab web site. New analytical methods of wide utility will also be developed and documented. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last
deglaciation
|
1543267 1543229 |
2019-07-10 | Severinghaus, Jeffrey P.; Brook, Edward J. | Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess. Intellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. Broader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||||||
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core
|
1443464 1443472 1443710 |
2019-02-02 | Severinghaus, Jeffrey P.; Sowers, Todd A.; Brook, Edward J. | Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today's concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base. <br/> <br/>This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole.<br/><br/>The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models. <br/><br/>The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general. | POINT(0 -90) | POINT(0 -90) | false | false | ||||||||||||
Ethane Measurements in the Intermediate Depth South Pole Ice Core (SPICECORE)
|
1644245 |
2018-11-13 | Aydin, Murat |
|
Aydin/1644245<br/><br/>This award supports a project to measure ethane in ice core air extracted from the recently drilled intermediate depth South Pole ice core (SPICECORE). Ethane is an abundant hydrocarbon in the atmosphere. The ice core samples that will be used in this analysis will span about 150 years before present to about 55,000 years before present and therefore, ethane emissions linked to human activities are not a subject of this study. The study will focus on quantifying the variability in the natural sources of ethane and the processes that govern its removal from the atmosphere. A long-term ice core ethane record will provide new knowledge on the chemistry of Earth?s atmosphere during time periods when human influence was either much smaller than present day or non-existent. The broader impacts of this work include education and training of students and a contribution to a better understanding of the chemistry of the atmosphere in the past and how it has been impacted by past changes in climate.<br/><br/>Natural sources that emit ethane are both geologic (e.g. seeps, vents, mud volcanoes etc.) and pyrogenic (wild fires) which is commonly called biomass burning. Ethane is removed from the atmosphere via oxidation reactions. The ice core ethane measurements have great potential as a proxy for gaseous emissions from biomass burning. This is especially true for time periods preceding the industrial revolution when atmospheric variability of trace gases was largely controlled by natural processes. Another objective of this study is to improve understanding of the causes of atmospheric methane variability apparent which are in the existing ice core records. Methane is a simpler hydrocarbon than ethane and more abundant in the atmosphere. Even though the project does not include any methane measurements; the commonalities between the sources and removal of atmospheric ethane and methane mean that ethane measurements can be used to gain insight into the causes of changes in atmospheric methane levels. The broader impacts of the project include partial support for one Ph.D. student and support for undergraduate researchers at UC Irvine. The PIs group currently has 4 undergraduate researchers. The PI and the graduate students in the UCI ice core laboratory regularly participate in on- and off-campus activities such as laboratory tours and lectures directed towards educating high-school students and science teachers, and the local community at large about the scientific value of polar ice cores as an environmental record of our planet's past. The results of this research will be disseminated via peer-review publications and will contribute to policy-relevant activities such as the IPCC Climate Assessment. Data resulting from this project will be archived in a national data repository. This award does not have field work in Antarctica. | None | None | false | false | |||||||||||
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area
|
1443263 1443306 |
2018-10-18 | Mayewski, Paul A.; Kurbatov, Andrei V.; Higgins, John; Bender, Michael | Bubbles of ancient air trapped in ice cores permit the direct reconstruction of atmospheric composition and allow us to link greenhouse gases and global climate over the last 800,000 years. Previous field expeditions to the Allan Hills blue ice area, Antarctica, have recovered ice cores that date to one million years, the oldest ice cores yet recovered from Antarctica. These records have revealed that interglacial CO2 concentrations decreased by 800,000 years ago and that, in the warmer world 1 million years ago, CO2 and Antarctic temperature were linked as during the last 800,000 years. This project will return to the Allan Hills blue ice area to recover additional ice cores that date to 1 million years or older. The climate records developed from the drilled ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Our results will help answer questions about issues associated with anthropogenic change. These include the relationship between temperature change and the mass balance of Antarctic ice; precipitation and aridity variations associated with radiatively forced climate change; and the climate significance of sea ice extent. The project will entrain two graduate students and a postdoctoral scholar, and will conduct outreach including workshops to engage teachers in carbon science and ice cores.<br/><br/>Between about 2.8-0.9 million years ago, Earth's climate was characterized by 40,000-year cycles, driven or paced by changes in the tilt of Earth's spin axis. Much is known about the "40,000-year" world from studies of deep-sea sediments, but our understanding of climate change during this period is incomplete because we lack records of Antarctic climate and direct records of atmospheric greenhouse gas concentrations. We propose to address these issues by building on our recent studies of ancient ice from the Main Ice Field, Allan Hills, Antarctica. During previous field seasons we recovered ice extending, discontinuously, from 0.1-1.0 million years old. Ice was dated by measuring the 40Ar/38Ar (Argon) ratio of the trapped gases. Our discovery of million year-old ice demonstrates that there is gas-record-quality ice from the 40,000-year world in the Allan Hills Main Ice Field. We have identified two different sites, each overlying bedrock at ~ 200 m depth, that are attractive targets for coring ice dating to 1 million years and older. This project aims to core the ice at these two sites, re-occupy a previous site with million year-old ice and drill it down to the bedrock, and generate 10-20 short (~10-meter) cores in areas where our previous work and terrestrial meteorite ages suggest ancient surface ice. We plan to date the ice using the 40Ar/38Ar ages of trapped Argon. We also plan to characterize the continuity of our cores by measuring the deuterium and oxygen isotope ratios in the ice, methane, ratios of Oxygen and Argon to Nitrogen in trapped gas, the Nitrogen-15 isotope (d15N) of Nitrogen, and the Oxygen-18 isotope (d18O) of Oxygen. As the ice may be stratigraphically disturbed, these measurements will provide diagnostic properties for assessing the continuity of the ice-core records. Successful retrieval of ice older than one million years will provide the opportunity for follow-up work to measure the CO2 concentration and other properties within the ice to inform on the temperature history of the Allan Hills region, dust sources and source-area aridity, moisture sources, densification conditions, global average ocean temperature, and greenhouse gas concentrations. We will analyze the data in the context of leading hypotheses of the 40,000-year world and the Mid-Pleistocene Transition to the 100,000-year world. We expect to advance understanding of climate dynamics during these periods. | None | None | false | false | ||||||||||||
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0839107 0839059 0838947 0838764 0838763 0838855 0839142 |
2018-09-10 | Tulaczyk, Slawek; Fisher, Andrew; Powell, Ross; Anandakrishnan, Sridhar; Jacobel, Robert; Scherer, Reed Paul | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. <br/><br/>INTELLECTUAL MERIT: The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. <br/><br/>BROADER IMPACTS: Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | None | None | false | false | ||||||||||||
Collaborative Research: Characterization of Upstream Ice and Firn Dynamics affecting the South Pole Ice Core
|
1443341 1443471 |
2018-06-14 | Koutnik, Michelle; Conway, Howard; Waddington, Edwin D.; Fudge, T. J.; Hawley, Robert L.; Osterberg, Erich | Ice-core records are critical to understanding past climate variations. An Antarctic ice core currently being drilled at the South Pole will allow detailed investigation of atmospheric gases and fill an important gap in understanding the pattern of climate variability across Antarctica. Critical to the interpretation of any ice core are: 1) accurate chronologies for both the ice and the trapped gas and 2) demonstration that records from the ice core reliably reflect climate. The proposed research will improve the ice and gas chronologies by making measurements of snow compaction in the upstream catchment in order to constrain age models of the ice. These measurements will be a key data set needed for better understanding and predicting time-varying conditions in the upper part of the ice sheet. The research team will measure the modern spatial gradients in accumulation rate, surface temperature, and water stable isotopes from shallow ice cores in the upstream catchment in order to determine the climate history from the ice-core record. The new ice-flow measurements will make it possible to define the path of ice from upstream to the South Pole ice-core drill site to assess spatial gradients in snowfall and to infer histories of snowfall from internal layers within the ice sheet. The project will be led by an early-career scientist, provide broad training to graduate students, and engage in public outreach on polar science.<br/><br/>Ice-core records of stable isotopes, aerosol-born particles, and atmospheric gases are critical to understanding past climate variations. The proposed research will improve the ice and gas chronologies in the South Pole ice core by making in situ measurements of firn compaction in the upstream catchment to constrain models of the gas-age ice-age difference. The firn measurements will be a key data set needed to form a constitutive relationship for firn, and will drive better understanding and prediction of transient firn evolution. The research team will measure the modern gradients in accumulation rate, surface temperature, and water stable isotopes in the upstream catchment to separate spatial (advection) variations from temporal (climate) variations in the ice-core records. The ice-flow measurements will define the flowline upstream of the drill site, assess spatial gradients in accumulation, and infer histories of accumulation from radar-observed internal layers. Results will directly enhance interpretation of South Pole ice-core records, and also advance understanding of firn densification and drive next-generation firn models. | POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89)) | POINT(145 -89.5) | false | false | ||||||||||||
Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology
|
1443232 |
2018-05-08 | Fudge, T. J.; Waddington, Edwin D. |
|
Ice cores record detailed histories of past climate variations. The South Pole ice core will allow investigation of atmospheric trace gases and fill an important gap in understanding the pattern of climate variability across Antarctica. An accurate timescale that assigns an age to the ice at each depth in the core is essential to interpretation of the ice-core records. This work will use electrical methods to identify volcanic eruptions throughout the past ~40,000 years in the core by detecting the enhanced electrical conductance in those layers due to volcanic impurities in the ice. These eruptions will be pattern-matched to other cores across Antarctica, synchronizing the timing of climate variations among cores and allowing the precise timescales developed for other Antarctic ice cores to be transferred to the South Pole ice core. The well-dated records of volcanic forcing will be combined with records of atmospheric gases, stable water-isotopes, and aerosols to better understand the large natural climate variations of the past 40,000 years. <br/> <br/>The electrical conductance method and dielectric profiling measurements will be made along the length of each section of the South Pole ice core at the National Ice Core Lab. These measurements will help to establish a timescale for the core. Electrical measurements will provide a continuous record of volcanic events for the entire core including through the brittle ice (550-1250m representing ~10,000-20,000 year-old ice) where the core quality and thin annual layers may prevent continuous melt analysis and cause discrete measurements to miss volcanic events. The electrical measurements also produce a 2-D image of the electrical layering on a longitudinal cut surface of each core. These data will be used to identify any irregular or absent layering that would indicate a stratigraphic disturbance in the core. A robust chronology is essential to interpretation of the paleoclimate records from the South Pole ice core. The investigators will engage teachers through talks and webinars with the National Science Teachers Association and will share information with the public at events such as Polar Science Weekend at the Pacific Science Center. Results will be disseminated through publications and conference presentations and the data will be archived and publicly available. | POLYGON((110 -89,117 -89,124 -89,131 -89,138 -89,145 -89,152 -89,159 -89,166 -89,173 -89,180 -89,180 -89.1,180 -89.2,180 -89.3,180 -89.4,180 -89.5,180 -89.6,180 -89.7,180 -89.8,180 -89.9,180 -90,173 -90,166 -90,159 -90,152 -90,145 -90,138 -90,131 -90,124 -90,117 -90,110 -90,110 -89.9,110 -89.8,110 -89.7,110 -89.6,110 -89.5,110 -89.4,110 -89.3,110 -89.2,110 -89.1,110 -89)) | POINT(145 -89.5) | false | false | |||||||||||
Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island
|
0944021 0943466 0944307 |
2018-02-16 | Conway, Howard; Brook, Edward J.; Hawley, Robert L. | This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices. | POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79)) | POINT(-162 -79.25) | false | false | ||||||||||||
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans
|
0732711 0732625 0732602 0732651 0732983 0732655 |
2018-02-01 | Truffer, Martin; Gordon, Arnold; Huber, Bruce; Mosley-Thompson, Ellen; Leventer, Amy; Vernet, Maria; Smith, Craig; Thompson, Lonnie G. | Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supports the cryospheric and oceano-graphic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project will bring glaciologists, oceanographers, marine geologists and biologists together, working collaboratively to address fundamentally interdisciplinary questions regarding climate change. The project will include gathering a new, high-resolution paleoclimate record from the Bruce Plateau of Graham Land, and using it to compare Holocene- and possibly glacial-epoch climate to the modern period; investigating the stability of the remaining Larsen Ice Shelf and rapid post-breakup glacier response ? in particular, the roles of surface melt and ice-ocean interactions in the speed-up and retreat; observing the contribution of, and response of, oceanographic systems to ice shelf disintegration and ice-glacier interactions. Helicopter support on board will allow access to a wide range of glacial and geological areas of interest adjacent to the Larsen embayment. At these locations, long-term in situ glacial monitoring, isostatic uplift, and ice flow GPS sites will be established, and high-resolution ice core records will be obtained using previously tested lightweight drilling equipment. Long-term monitoring of deep water outflow will, for the first time, be integrated into changes in ice shelf extent and thickness, bottom water formation, and multi-level circulation by linking near-source observations to distal sites of concentrated outflow. The broader impacts of this international, multidisciplinary effort are that it will significantly advance our understanding of linkages amongst the earth's systems in the Polar Regions, and are proposed with international participation (UK, Spain, Belgium, Germany and Argentina) and interdisciplinary engagement in the true spirit of the International Polar Year (IPY). It will also provide a means of engaging and educating the public in virtually all aspects of polar science and the effects of ongoing climate change. The research team has a long record of involving undergraduates in research, educating high-performing graduate students, and providing innovative and engaging outreach products to the K-12 education and public media forums. Moreover, forging the new links both in science and international Antarctic programs will provide a continuing legacy, beyond IPY, of improved understanding and cooperation in Antarctica. | POLYGON((-68 -57.8,-66.78 -57.8,-65.56 -57.8,-64.34 -57.8,-63.12 -57.8,-61.9 -57.8,-60.68 -57.8,-59.46 -57.8,-58.24 -57.8,-57.02 -57.8,-55.8 -57.8,-55.8 -58.8,-55.8 -59.8,-55.8 -60.8,-55.8 -61.8,-55.8 -62.8,-55.8 -63.8,-55.8 -64.8,-55.8 -65.8,-55.8 -66.8,-55.8 -67.8,-57.02 -67.8,-58.24 -67.8,-59.46 -67.8,-60.68 -67.8,-61.9 -67.8,-63.12 -67.8,-64.34 -67.8,-65.56 -67.8,-66.78 -67.8,-68 -67.8,-68 -66.8,-68 -65.8,-68 -64.8,-68 -63.8,-68 -62.8,-68 -61.8,-68 -60.8,-68 -59.8,-68 -58.8,-68 -57.8)) | POINT(-61.9 -62.8) | false | false | ||||||||||||
A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes
|
1043471 |
2017-10-29 | Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L. |
|
This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia's Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City's arts and science communities to bridge the gap between scientific knowledge and public perception. | POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468)) | POINT(-112.293 -79.484) | false | false | |||||||||||
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)
|
1142007 |
2017-10-06 | Hartman, Laura; Wheatley, Sarah D.; Kurbatov, Andrei V. |
|
Many key questions in climate research (e.g. relative timing of climate events in different geographic areas, climate-forcing mechanisms, natural threshold levels in the climate system) are dependent on accurate reconstructions of the temporal and spatial distribution of past rapid climate change events in continental, atmospheric, marine and polar realms. This collaborative interdisciplinary research project aims to consolidate, into a single user-friendly database, information about volcanic products detected in Antarctica. By consolidating information about volcanic sources, and physical and geochemical characteristics of volcanic products, this systematic data collection approach will improve the ability of researchers to identify volcanic ash, or tephra, from specific volcanic eruptions that may be spread over large areas in a geologically instantaneous amount of time. Development of this database will assist in the identification and cross-correlation of time intervals in various paleoclimate archives that contain volcanic layers from often unknown sources. The AntT project relies on a cyberinfrastructure framework developed in house through NSF funded CDI-Type I: CiiWork for data assimilation, interpretation and open distribution model. In addition to collection and integration of existing information about volcanic products, this project will focus on filling the information gaps about unique physico-chemical characteristics of very fine (<3 micrometer) volcanic particles (cryptotephra) that are present in Antarctic ice cores. This component of research will involve improving analytical methodology for detecting cryptotephra layers in ice, and will train a new generation of scientists to apply an array of modern state?of?the-art instrumentation available to the project team. <br/><br/>The recognized importance of tephra in establishing a chronological framework for volcanic and sedimentary successions has already resulted in the development of robust regional tephrochronological frameworks (e.g. Europe, Kamchatka, New Zealand, Western North America). The AntT project will provide this framework for Antarctic tephrochronology, as needed for precise correlation records between Antarctic ice cores (e.g. WAIS Divide, RICE, ITASE) and global paleoclimate archives. The results of AntT will be of particular significance to climatologists, paleoclimatologists, atmospheric chemists, geochemists, climate modelers, solar-terrestrial physicists, environmental statisticians, and policy makers for designing solutions to mitigate or cope with likely future impacts of climate change events on modern society. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||||
Climate History and Flow Processes from Physical Analyses of the SPICECORE South Pole Ice Core
|
1542778 |
2017-09-29 | Alley, Richard; Fegyveresi, John; Voigt, Donald E. |
|
This award supports a three-year effort to study physical properties of the South Pole ice core to help provide a high-time-resolution history of trace gases and other paleoclimatic indicators from an especially cold site with high preservation potential for important signals. The physical-properties studies include visual inspection to identify any flow disturbances and for identifying annual layers and other features, and combined bubble, grain and ice crystal orientation studies to better understand the processes occurring in the ice that affect the climate record and the ice-sheet behavior. Success of these efforts will provide necessary support for dating and quality control to others studying the ice core, as well as determining the climate history of the site, flow state, and key physical processes in ice.<br/><br/>The intellectual merits of the project include better understanding of physical processes, paleoclimatic reconstruction, dating of the ice, and quality assurance. Visual inspection of the core will help identify evidence of flow disturbances that would disrupt the integrity of the climate record and will reveal volcanic horizons and other features of interest. Annual layer counting will be conducted to help estimate accumulation rate over time as recorded in the ice core. Measurements of C-axis fabric, grain size and shapes, and bubble characteristics will provide information about processes occurring in the ice sheet as well as the history of ice flow, current flow state and how the ice is flowing and how easily it will flow in the future. Analysis of this data in conjunction with microCT data will help to reveal grain-scale processes. The broader impacts of the project include support for an early-career, post-doctoral researcher, and improved paleoclimatic data of societal relevance. The results will be incorporated into the active program of education and outreach which have educated many students, members of the public and policy makers through the sharing of information and educational materials about all aspects of ice core science and paleoclimate. | None | None | false | false | |||||||||||
Collaborative Research: Climate, Ice Dynamics and Biology using a Deep Ice Core from the West Antarctic Ice Sheet Ice Divide
|
0944348 0944266 |
2017-06-09 | Mark, Twickler; Taylor, Kendrick C. |
|
Taylor/0944348<br/><br/>This award supports renewal of funding of the WAIS Divide Science Coordination Office (SCO). The Science Coordination Office (SCO) was established to represent the research community and facilitates the project by working with support organizations responsible for logistics, drilling, and core curation. During the last five years, 26 projects have been individually funded to work on this effort and 1,511 m of the total 3,470 m of ice at the site has been collected. This proposal seeks funding to continue the SCO and related field operations needed to complete the WAIS Divide ice core project. Tasks for the SCO during the second five years include planning and oversight of logistics, drilling, and core curation; coordinating research activities in the field; assisting in curation of the core in the field; allocating samples to individual projects; coordinating the sampling effort; collecting, archiving, and distributing data and other information about the project; hosting an annual science meeting; and facilitating collaborative efforts among the research groups. The intellectual merit of the WAIS Divide project is to better predict how human-caused increases in greenhouse gases will alter climate requires an improved understanding of how previous natural changes in greenhouse gases influenced climate in the past. Information on previous climate changes is used to validate the physics and results of climate models that are used to predict future climate. Antarctic ice cores are the only source of samples of the paleo-atmosphere that can be used to determine previous concentrations of carbon dioxide. Ice cores also contain records of other components of the climate system such as the paleo air and ocean temperature, atmospheric loading of aerosols, and indicators of atmospheric transport. The WAIS Divide ice core project has been designed to obtain the best possible record of greenhouse gases during the last glacial cycle (last ~100,000 years). The site was selected because it has the best balance of high annual snowfall (23 cm of ice equivalent/year), low dust Antarctic ice that does not compromise the carbon dioxide record, and favorable glaciology. The main science objectives of the project are to investigate climate forcing by greenhouse gases, initiation of climate changes, stability of the West Antarctic Ice Sheet, and cryobiology in the ice core. The project has numerous broader impacts. An established provider of educational material (Teachers? Domain) will develop and distribute web-based resources related to the project and climate change for use in K?12 classrooms. These resources will consist of video and interactive graphics that explain how and why ice cores are collected, and what they tell us about future climate change. Members of the national media will be included in the field team and the SCO will assist in presenting information to the general public. Video of the project will be collected and made available for general use. Finally, an opportunity will be created for cryosphere students and early career scientists to participate in field activities and core analysis. An ice core archive will be available for future projects and scientific discoveries from the project can be used by policy makers to make informed decisions. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||||||||
Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores
|
1341360 |
2017-06-06 | Steig, Eric J. |
|
Steig/1341360<br/><br/>This award supports a two-year project to develop a method for rapid and precise measurements of the difference in 18O/16O and 17O/16O isotope ratios in water, referred to as the 17O-excess. Measurement of 17O-excess is a recent innovation in geochemistry, complementing traditional measurements of the ratios of hydrogen (D/H) and oxygen (18O/16O). Conventional measurements of 17O/16O are limited in number because of the time-consuming and laborious nature of the analyses, which involves the conversion of water to oxygen via fluorination, followed by high-precision mass spectrometry. This project will use a novel cavity ring-down spectroscopy (CRDS) system developed by a joint effort of the University of Washington and Picarro, Inc. (Santa Clara, CA), along with the Centre for Ice and Climate (Neils Bohr Institute, Copenhagen). The primary intellectual merit of the research is the improvement of the CRDS method for measurements of 17Oexcess of discrete samples of water, to obtain precision and accuracy competitive with conventional methods using mass spectrometry. This will be achieved by quantification of the effects of water vapor concentration variability and instrument memory, precise calibration of the instrument against standard waters, and improvements to the spectroscopic analyses. The CRDS system will also be coupled to continuous-flow systems for ice core analysis, in collaboration with the University of Colorado, Boulder. The goal is to have an operational system available for ice core processing associated with the next major U.S.-led ice core project at South Pole, in 2015-2017. The broader impacts of the research include the ability to measure 17O-excess in ambient atmospheric water vapor, which can be used to improve understanding of convection, moisture transport, and condensation. The instrument development work proposed here is relevant to research supported by several NSF-GEO programs, including Hydrology, Climate and Large Scale Dynamics, Paleoclimate, Atmosphere Chemistry, and both the Arctic and Antarctic Programs. This proposal will support a postdoctoral researcher. | POINT(106 -77.5) | POINT(106 -77.5) | false | false | |||||||||||
Investigating Source, Chemistry and Climate changes using the Isotopic Composition of Nitrate in Antarctic Snow and Ice
|
1246223 |
2017-05-02 | Hastings, Meredith |
|
Hastings/1246223<br/><br/>This award supports a project with the aim of distinguishing the sources of nitrate deposition to the West Antarctic Ice Sheet (WAIS) using isotopic ratios snow in archive snow and ice samples. The isotopic composition of nitrate has been shown to contain information about the source of the nitrate (i.e. nitrogen oxides = NOx = NO+NO2) and the oxidation processes that convert NOx to nitrate in the atmosphere prior to deposition. A difficulty in interpreting records in the context of NOx sources is that nitrate can be post-depositionally processed in surface snow, such that the archived record does not reflect the composition of the atmosphere. This intellectual merit of this work specifically aims to investigate variability in the isotopic composition of nitrate in snow and ice from the WAIS in the context of accumulation rate, NOx source emissions, and atmospheric chemistry. These records will be interpreted in the context of our understanding of biospheric (biomass burning, microbial processes in soils), atmospheric (lightning, transport, chemistry), and climate (temperature, accumulation rate) changes over time. A graduate student will be supported as part of this project, and both graduate student and PI will be involved in communicating the utility and results of polar research to elementary school students in the Providence, RI area. The broader impacts of the project also include making efforts to attract more young, female scientists to polar research by establishing a connection between the Earth Science Women's Network (ESWN), an organization PI Hastings helped to establish, and the Association of Polar Early Career Scientists (APECS). Finally, results of all measurements will be presented at relevant conferences, made available publicly and published in peer-reviewed journals. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||||||||
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core
|
0944191 0944197 |
2017-04-25 | Conway, Howard; Fudge, T. J.; Taylor, Kendrick C.; Waddington, Edwin D. | This award supports a project to help to establish the depth-age chronology and the histories of accumulation and ice dynamics for the WAIS Divide ice core. The depth-age relationship and the histories of accumulation and ice dynamics are coupled. An accurate age scale is needed to infer histories of accumulation rate and ice-thickness change using ice-flow models. In turn, the accumulation-rate history is needed to calculate the age difference of ice to determine the age of the trapped gases. The accumulation history is also needed to calculate atmospheric concentrations of impurities trapped in the ice and is an important characteristic of climate. The history of ice-thickness change is also fundamental to understanding the stability of the WAIS. The primary goals of the WAIS Divide ice core project are to investigate climate forcing by greenhouse gases, the initiation of climate changes, and the stability of the West Antarctic Ice Sheet (WAIS). An accurate age scale is fundamental for achieving these goals. The first objective of this project is to establish an annually resolved depth-age relationship for the past 40,000 years. This will be done by measuring variations in electrical conductivity along the ice core, which are caused by seasonal variations in chemistry. We expect to be able to resolve annual layers back to 40,000 years before present (3,000 m depth) using this method. The second objective is to search for stratigraphic disturbances in the core that would compromise the paleoclimate record. Irregular layering will be identified by measuring the electrical conductivity of the ice in a vertical plan through the core. The third objective is to derive a preliminary chronology for the entire core. For the deeper ice we will use an ice-flow model to interpolate between known age markers, such as dated volcanic horizons and tie points from the methane gas chronology. The fourth objective is to derive a refined chronology simultaneously with histories of accumulation and ice-sheet thickness. An ice-flow model and all available data will be used to formulate an inverse problem, in which we infer the most appropriate histories of accumulation and ice-thickness, together with estimates of uncertainties. The flow model associated with those preferred histories then produces the best estimate of the chronology. The research contributes directly to the primary goals of the West Antarctic Ice Sheet Initiative. The project will help develop the next generation of scientists through the education and training of one Ph.D. student and several undergraduate students. This project will result in instrumentation for measuring the electrical conductivity of ice cores being available at the National Ice Core Lab for other researchers to use on other projects. All collaborators are committed to fostering diversity and currently participate in scientific outreach and most participate in undergraduate education. Outreach will be accomplished through regularly scheduled community and K-12 outreach events at UW, talks and popular writing by the PIs, as well as through our respective press offices. | POLYGON((-180 -79,-173.3 -79,-166.6 -79,-159.9 -79,-153.2 -79,-146.5 -79,-139.8 -79,-133.1 -79,-126.4 -79,-119.7 -79,-113 -79,-113 -79.1,-113 -79.2,-113 -79.3,-113 -79.4,-113 -79.5,-113 -79.6,-113 -79.7,-113 -79.8,-113 -79.9,-113 -80,-119.7 -80,-126.4 -80,-133.1 -80,-139.8 -80,-146.5 -80,-153.2 -80,-159.9 -80,-166.6 -80,-173.3 -80,180 -80,150.9 -80,121.8 -80,92.7 -80,63.6 -80,34.5 -80,5.4 -80,-23.7 -80,-52.8 -80,-81.9 -80,-111 -80,-111 -79.9,-111 -79.8,-111 -79.7,-111 -79.6,-111 -79.5,-111 -79.4,-111 -79.3,-111 -79.2,-111 -79.1,-111 -79,-81.9 -79,-52.8 -79,-23.7 -79,5.4 -79,34.5 -79,63.6 -79,92.7 -79,121.8 -79,150.9 -79,-180 -79)) | POINT(-112 -79.5) | false | false | ||||||||||||
Collaborative Research: Multiple-isotope Analysis of Nitrate and Sulfate in the West Antarctic Ice Sheet Divide Ice Core
|
0538520 0538049 |
2017-04-25 | Alexander, Becky; Steig, Eric J.; Thiemens, Mark H. | 0538520<br/>Thiemens<br/>This award supports a project to develop the first complete record of multiple isotope ratios of nitrate and sulfate covering the last ~100,000 years, from the deep ice core planned for the central ice divide of the West Antarctic Ice Sheet (WAIS). The WAIS Divide ice core will be the highest resolution long ice core obtained from Antarctica and we can expect important complementary information to be available, including accurate knowledge of past accumulation rates, temperatures, and compounds such as H2O2, CO and CH4. These compounds play significant roles in global atmospheric chemistry and climate. Especially great potential lies in the use of multiple isotope signatures. The unique mass independent fractionation (MIF) 17O signature of ozone is observed in both nitrate and sulfate, due to the interaction of their precursors with ozone. The development of methods to measure the multiple-isotope composition of small samples of sulfate and nitrate makes continuous high resolution measurements on ice cores feasible for the first time. Recent work has shown that such measurements can be used to determine the hydroxyl radial (OH) and ozone (O3) concentrations in the paleoatmosphere as well as to apportion sulfate and nitrate sources. There is also considerable potential in using these isotope measurements to quantify post depositional changes. In the first two years, continuous measurements from the upper ~100-m of ice at WAIS divide will be obtained, to provide a detailed look at seasonal through centennial scale variability. In the third year, measurements will be made throughout the available depth of the deep core (expected to reach ~500 m at this time). The broader impacts of the project include applications to diverse fields including atmospheric chemistry, glaciology, meteorology, and paleoclimatology. Because nitrate and sulfate are important atmospheric pollutants, the results will also have direct and relevance to global environmental policy. This project will coincide with the International Polar Year (2007-2008), and contributes to goals of the IPY, which include the fostering of interdisciplinary research toward enhanced understanding of atmospheric chemistry and climate in the polar regions. | POINT(-112.085 -79.5) | POINT(-112.085 -79.5) | false | false | ||||||||||||
Collaborative Research: Investigating Upper Pleistocene Rapid Climate Change using Continuous, Ultra-High-Resolution Aerosol and Gas Measurements in the WAIS Divide Ice Core
|
1142166 |
2017-04-25 | McConnell, Joseph |
|
McConnell/1142166<br/><br/>This award supports a project to use unprecedented aerosol and continuous gas (methane, carbon monoxide) measurements of the deepest section of the West Antarctic Ice Sheet (WAIS) Divide ice core to investigate rapid climate changes in Antarctica during the ~60,000 year long Marine Isotope Stage 3 period of the late Pleistocene. These analyses, combined with others, will take advantage of the high snow accumulation of the WAIS Divide ice core to yield the highest time resolution glaciochemical and gas record of any deep Antarctic ice core for this time period. The research will expand already funded discrete gas measurements and extend currently funded continuous aerosol measurements on the WAIS Divide ice core from ~25,000 to ~60,000 years before present, spanning Heinrich events 3 to 6 and Antarctic Isotope Maximum (AIM, corresponding to the Northern Hemisphere Dansgaard-Oeschger) events 3 to 14. With other high resolution Greenland cores and lower resolution Antarctic cores, the combined record will yield new insights into worldwide climate dynamics and abrupt change. The intellectual merit of the work is that it will be used to address the science goals of the WAIS Divide project including the identification of dust and biomass burning tracers such as black carbon and carbon monoxide which reflect mid- and low-latitude climate and atmospheric circulation patterns, and fallout from these sources affects marine and terrestrial biogeochemical cycles. Similarly, sea salt and ocean productivity tracers reflect changes in sea ice extent, marine primary productivity, wind speeds above the ocean, and atmospheric circulation. Volcanic tracers address the relationship between northern, tropical, and southern climates as well as stability of the West Antarctic ice sheet and sea level change. When combined with other gas records from WAIS Divide, the records developed here will transform understanding of mid- and low-latitude drivers of Antarctic, Southern Hemisphere, and global climate rapid changes and the timing of such changes. The broader impacts of the work are that it will enhance infrastructure through expansion of continuous ice core analytical techniques, train students and support collaboration between two U.S. institutions (DRI and OSU). All data will be made available to the scientific community and the public and will include participation the WAIS Divide Outreach Program. Extensive graduate and undergraduate student involvement is planned. Student recruitment will be made from under-represented groups building on a long track record. Broad outreach will be achieved through collaborations with the global and radiative modeling communities, NESTA-related and other educational outreach efforts, and public lectures. This proposed project does not require field work in the Antarctic. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | |||||||||||
Trace and Ultra-Trace Chemistry Measurements of the WAIS Divide Ice Core
|
0538427 |
2017-04-25 | Bender, Michael; McConnell, Joseph | 0538427<br/>McConnell <br/>This award supports a project to use unique, high-depth-resolution records of a range of elements, chemical species, and ice properties measured in two WAIS Divide shallow ice cores and one shallow British ice core from West Antarctic to address critical paleoclimate, environmental, and ice-sheet mass-balance questions. Recent development of the CFA-TE method for ice-core analysis presents the opportunity to develop high-resolution, broad-spectrum glaciochemical records at WAIS Divide at relatively modest cost. Together with CFA-TE measurements from Greenland and other Antarctic sites spanning recent decades to centuries, these rich data will open new avenues for using glaciochemical data to investigate environmental and global changes issues ranging from anthropogenic and volcanic-trace-element fallout to changes in hemispheric-scale circulation, biogeochemistry, rapid-climate-change events, long-term climate change, and ice-sheet mass balance. As part of the proposed research, collaborations with U.S., Argentine, and British researchers will be initiated and expanded to directly address three major IPY themes (i.e., present environmental status, past and present environmental and human change, and polar-global interactions). Included in the contributions from these international collaborators will be ice-core samples, ice-core and meteorological model data, and extensive expertise in Antarctic glaciology, climatology, meteorology, and biogeochemistry. The broader impacts of the work include the training of students. The project will partially support one Ph.D. student and hourly undergraduate involvement. Every effort will be made to attract students from underrepresented groups to these positions. To address the challenge of introducing results of scientific research to the public policy debate, we will continue efforts to publish findings in high visibility journals, provide research results to policy makers, and work with the NSF media office to reach the public through mass-media programs. K-12 teacher and classroom involvement will be realized through outreach to local schools and NSF's Teachers Experiencing the Antarctic and Arctic (or similar) program in collaboration with WAIS Divide and other polar researchers. | POINT(-112.1115 -79.481) | POINT(-112.1115 -79.481) | false | false | ||||||||||||
Collaborative Research: Physical Properties of the WAIS Divide Deep Core
|
0539232 0539578 |
2017-01-12 | Fitzpatrick, Joan; Alley, Richard; Fegyveresi, John; Clow, Gary D.; Cuffey, Kurt M.; Cravens, Eric D. | 0539578<br/>Alley <br/>This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society. | POINT(112.083 -79.467) | POINT(112.083 -79.467) | false | false | ||||||||||||
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 1043092 |
2016-09-15 | White, James; Vaughn, Bruce; Jones, Tyler R. | Steig/1043092<br/><br/>This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | POINT(-112.08 -79.47) | POINT(-112.08 -79.47) | false | false | ||||||||||||
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica
|
0838936 0839031 |
2016-03-29 | Brook, Edward J.; Severinghaus, Jeffrey P. | Severinghaus/0839031 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the "clathrate hypothesis" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a "horizontal ice core" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica. | POINT(161.75 -77.75) | POINT(161.75 -77.75) | false | false | ||||||||||||
Collaborative Research: Completing an ultra-high resolution methane record from the WAIS Divide ice core
|
1043518 |
2016-01-12 | Rhodes, Rachel; Brook, Edward J.; McConnell, Joseph | 1043500/Sowers<br/><br/>This award supports a project to develop a 50 yr resolution methane data set that will play a pivotal role in developing the WAIS Divide timescale as well as providing a common stratigraphic framework for comparing climate records from Greenland and West Antarctica. Even higher resolution data are proposed for key intervals to assist in precisely defining the phasing of abrupt climate change between the hemispheres. Concurrent analysis of a suit of samples from both the WAIS Divide and GISP-2 cores throughout the last 110,000 years is also proposed, to establish the interpolar methan (CH4) gradient that will be used to identify geographic areas responsible for the climate related methane emission changes. The intellectual merit of the proposed work is that it will provide chronological control needed to examine the timing of changes in climate proxies, and critical chronological ties to the Greenland ice core records via methane variations. One main objective is to understand the interpolar timing of millennial-scale climate change. This is an important scientific goal relevant to understanding climate change mechanisms in general. The proposed work will help establish a chronological framework for addressing these issues. In addition, this proposal addresses the question of what methane sources were active during the ice age, through the work on the interpolar methane gradient. This work is directed at the fundamental question of what part of the biosphere controlled past methane variations, and is important for developing more sophisticated understanding of those variations. The broader impacts of the work are that the ultra-high resolution CH4 record will directly benefit all ice core paleoclimate research and the chronological refinements will impact paleoclimate studies that rely on ice core timescales for correlation purposes. The project will support both graduate and undergraduate students and the PIs will participate in outreach to the public. | POINT(-112.08648 -79.46763) | POINT(-112.08648 -79.46763) | false | false | ||||||||||||
The Relationship between Climate and Ice Rheology at Dome C, East Antarctica
|
0948247 |
2016-01-06 | Pettit, Erin; Hansen, Sharon | No dataset link provided | Pettit/0948247<br/><br/>This award supports a project to study of the relationship between fabric and climate for the ice near the EPICA Dome C ice core site, East Antarctica. The work builds on an ongoing study at Siple Dome, West Antarctica and takes advantage of collaborations with European scientists and access to the Dome C borehole to make measurements of sonic velocity. The intellectual merit of the project is that a better understanding of how fabric preserves past climate information can improve models of the ice flow near ice core sites and the interpreta-tion of ice core data (particularly paleo-accumulation), and it may allow us to extract climate information directly from fabric data. In addition, because ice deformation is sensitive to the orientation of crystals, ice flow patterns are sensitive to the fabric. Thus, variations in the fabric between glacial and interglacial ice can affect how ice deforms and how fabric in the ice sheet develops. The Dome C site is particularly important for answering these questions, because the ice core shows evidence of eight glacial cycles, not just one as found at Siple Dome or the Greenland sites. The research will improve the understanding of the proxy relationship between sonic-velocity data and fabric; will help to model the pattern of ice flow caused by the fabric variation between glacial and interglacial time periods using these data, existing ice core chemistry and existing and new thin section data, improved surface strain data, and borehole deformation data; and will help to better understand the positive feedback mechanism that enhances fabric (and corresponding rheological) variability through a focused study of several climate transitions and the associated fabric changes. Borehole compressional-wave sonic-velocity will be measured which will complement the sonic-velocity data that already exist for boreholes in Greenland and West Antarctica. These will be the first sonic-velocity measurements in East Antarctica and the first measurements that extend for more than a single glacial/interglacial transition. The project will ultimately contribute to better interpretation of ice core records for both paleoclimate studies and for ice flow history, both of which connect to the broader questions of the role of ice in the climate system. This project will also strengthen the international collaborations within the paleoclimate and ice sheet modeling communities. This project will partially support a graduate student at the University of Alaska Fairbanks who is currently working on modeling ice including anisotropy and it will support the growth of a young scientist through a Post-Doc position. This Post Doc will gain important experience collaborating with the EPICA scientists in studying the climate-fabric relationship. Erin Pettit is active in field-science education for high school students, under-graduates, teachers, and adults. This project will help support the continued development and enhancement of Girls on Ice a program that encourages young women to explore science and the natural world. | POINT(-123.35 -75.1) | POINT(-123.35 -75.1) | false | false | |||||||||||
Molecular Level Characterization of Dissolved Organic Carbon and Microbial Diversity in the WAIS Divide Replicate Core
|
1141936 |
2015-11-05 | Foreman, Christine |
|
This award supports a detailed, molecular level characterization of dissolved organic carbon and microbes in Antarctic ice cores. Using the most modern biological (genomic), geochemical techniques, and advanced chemical instrumentation researchers will 1) optimize protocols for collecting, extracting and amplifying DNA from deep ice cores suitable for use in next generation pyrosequencing; 2) determine the microbial diversity within the ice core; and 3) obtain and analyze detailed molecular characterizations of the carbon in the ice by ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). With this pilot study investigators will be able to quantify the amount of material (microbial biomass and carbon) required to perform these characterizations, which is needed to inform future ice coring projects. The ultimate goal will be to develop protocols that maximize the yield, while minimizing the amount of ice required. The broader impacts include education and outreach at both the local and national levels. As a faculty mentor with the American Indian Research Opportunities and BRIDGES programs at Montana State University, Foreman will serve as a mentor to a Native American student in the lab during the summer months. Susan Kelly is an Education and Outreach Coordinator with a MS degree in Geology and over 10 years of experience in science outreach. She will coordinate efforts for comprehensive educational collaboration with the Hardin School District on the Crow Indian Reservation in South-central Montana. | POINT(112.085 -79.467) | POINT(112.085 -79.467) | false | false | |||||||||||
Optical Fabric and Fiber Logging of Glacial Ice
|
1142173 1142010 |
2015-11-05 | Talghader, Joseph; Bay, Ryan |
|
1142010/Talghader<br/><br/>This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum. | POINT(112.085 -79.467) | POINT(112.085 -79.467) | false | false | |||||||||||
Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)
|
1042883 |
2015-10-27 | Haines, Skylar; Kurbatov, Andrei V.; Mayewski, Paul A.; Beers, Thomas M. |
|
1042883/Mayewski<br/><br/>This award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used. | None | None | false | false | |||||||||||
Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core
|
1043780 |
2015-10-27 | Aydin, Murat; Saltzman, Eric |
|
Aydin/1043780<br/>This award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities. | None | None | false | false | |||||||||||
Collaborative Research: Replicate Coring at WAIS Divide to Obtain Additional Samples at Events of High Scientific Interest
|
1043421 1043522 |
2015-07-13 | Severinghaus, Jeffrey P.; Brook, Edward J. |
|
1043421/Severinghaus<br/><br/>This award supports a project to obtain samples of ice in selected intervals for replication and verification of the validity and spatial representativeness of key results in the WAIS Divide ice core, and to obtain additional ice samples in areas of intense scientific interest where demand is high. The US Ice Core Working Group recommended in 2003 that NSF pursue the means to take replicate samples, termed "replicate coring". This recommendation was part of an agreement to reduce the diameter of the (then) new drilling system (the DISC drill) core to 12.2 cm to lighten logistics burdens, and the science community accepted the reduction in ice sample with the understanding that replicate coring would be able to provide extra sample volume in key intervals. The WAIS Divide effort would particularly benefit from replicate coring, because of the unique quality of the expected gas record and the large samples needed for gases and gas isotopes; thus this proposal to employ replicate coring at WAIS Divide. In addition, scientific demand for ice samples has been, and will continue to be, very unevenly distributed, with the ice core archive being completely depleted in depth intervals of high scientific interest (abrupt climate changes, volcanic sulfate horizons, meteor impact horizons, for example). The broader impacts of the proposed research may include identification of leads and lags between Greenland, tropical, and Antarctic climate change, enabling critical tests of hypotheses for the mechanism of abrupt climate change. Improved understanding of volcanic impacts on atmospheric chemistry and climate may also emerge. This understanding may ultimately help improve climate models and prediction of the Earth System feedback response to ongoing human perturbation in coming centuries. Outreach and public education about climate change are integral components of the PIs' activities and the proposed work will enhance these efforts. Broader impacts also include education and training of 2 postdoctoral scholars and 1 graduate student, and invaluable field experience for the graduate and undergraduate students who will likely make up the core processing team at WAIS Divide. | POINT(-112.09 -79.47) | POINT(-112.09 -79.47) | false | false | |||||||||||
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245659 1246148 1245821 |
2015-07-13 | Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI | This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | POINT(162.167 -77.733) | POINT(162.167 -77.733) | false | false | ||||||||||||
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica
|
0732804 0732906 0732730 0732869 |
2014-12-30 | Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G. |
|
Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 <br/>Title: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica<br/><br/>The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. <br/><br/>Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the "Multidisciplinary Study of the Amundsen Sea Embayment" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded "Polar Palooza" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | POINT(-100.728 -75.0427) | POINT(-100.728 -75.0427) | false | false | |||||||||||
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 0838843 |
2014-12-10 | Spaulding, Nicole; Introne, Douglas; Bender, Michael; Kurbatov, Andrei V.; Mayewski, Paul A. |
|
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an "International Climate Park" in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16 |