{"dp_type": "Dataset", "free_text": "Iron"}
[{"awards": "2147553 Rotella, Jay; 1640481 Rotella, Jay", "bounds_geometry": ["POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))"], "date_created": "Fri, 27 Sep 2024 00:00:00 GMT", "description": "The Erebus Bay population of Weddell seals in the Ross Sea of Antarctica is the most southerly breeding population of mammal in the world, closely associated with persistent shore-fast ice, and one that has been intensively studied since 1969. The resulting long-term database, which includes data for over 29,000 marked individuals, contains detailed population information that provides an excellent opportunity to study linkages between environmental conditions and demographic processes in the Antarctic. The study population is of special interest as the Ross Sea is one of the most productive areas of the Southern Ocean and one of the most pristine marine environments on the planet. The study provides long-term demographic data for individual seals. The Access database contains information for 3 types of data on Weddell seals for the period 1969-2017. (1) Mark-recapture Data with resighting records for all individuals tagged in and around the McMurdo Sound area, as well as seals tagged at White Island; (2) Mass Dynamics Data contains physical masses and photographic records and measurements that include the date, ID number, sex, age class, weight (if successfully collected), and perspectives from which photographs were collected for each sampling occurrence; and (3) Research Procedures Data contains records of handling and research procedures conducted on Erebus Bay Weddell seals by various research teams in recent years.\r\n\u003cbr/\u003e", "east": 170.0, "geometry": ["POINT(166 -76.9)"], "keywords": "AMD; Amd/Us; Antarctica; Cryosphere; McMurdo Sound; Population Dynamics; USA/NSF; USAP-DC; Weddell Seal", "locations": "Antarctica; McMurdo Sound", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Rotella, Jay", "project_titles": "Collaborative Research: The Drivers and Role of Immigration in the Dynamics of the Largest Population of Weddell Seals in Antarctica under Changing Conditions; The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator", "projects": [{"proj_uid": "p0010198", "repository": "USAP-DC", "title": "The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator"}, {"proj_uid": "p0010361", "repository": "USAP-DC", "title": "Collaborative Research: The Drivers and Role of Immigration in the Dynamics of the Largest Population of Weddell Seals in Antarctica under Changing Conditions"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.8, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season", "uid": "601837", "west": 162.0}, {"awards": "0838937 Costa, Daniel; 0838892 Burns, Jennifer; 1853377 Shero, Michelle", "bounds_geometry": ["POLYGON((-180 -72,-179.8 -72,-179.6 -72,-179.4 -72,-179.2 -72,-179 -72,-178.8 -72,-178.6 -72,-178.4 -72,-178.2 -72,-178 -72,-178 -72.7,-178 -73.4,-178 -74.1,-178 -74.8,-178 -75.5,-178 -76.2,-178 -76.9,-178 -77.6,-178 -78.3,-178 -79,-178.2 -79,-178.4 -79,-178.6 -79,-178.8 -79,-179 -79,-179.2 -79,-179.4 -79,-179.6 -79,-179.8 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.3,162 -77.6,162 -76.9,162 -76.2,162 -75.5,162 -74.8,162 -74.1,162 -73.4,162 -72.7,162 -72,163.8 -72,165.6 -72,167.4 -72,169.2 -72,171 -72,172.8 -72,174.6 -72,176.4 -72,178.2 -72,-180 -72))"], "date_created": "Fri, 20 Sep 2024 00:00:00 GMT", "description": "Diel vertical migrations (DVM) have been well-documented across numerous taxa, with prey descend through the water column during daylight hours to avoid visual predators and feed at the surface at night. However, the ability of marine mammals such as Weddell seals (Leptonychotes weddellii) to follow prey to depths is likely constrained by limited breath-hold capacities and the physiological consequences of pushing aerobic thresholds. In particular, dives that exceed the aerobic dive limit require exponentially longer surface recuperation times to clear lactate byproducts from circulation. This is time that the animals then cannot spend foraging. In this study, we assess the circadian organization of the Weddell seal\u0027s dive efforts and when animals make their longest/deepest (most \u0027extreme\u0027) dives that far exceed aerobic thresholds. Sixty-two adult Weddell seals were instrumented with satellite linked relay loggers in the Ross Sea to collect behavioral information across the austral winter. Daily activities are likely to shift across the year in a highly-seasonal polar environment, and through this \u0027natural experiment\u0027 we test how free-ranging seals alter foraging behavior during Polar Day and Night (continuous light, LL and dark, DD, respectively) and varying light/dark (LD) cycling across the year.", "east": -178.0, "geometry": ["POINT(172 -75.5)"], "keywords": "Aerobic; Antarctica; Cryosphere; Weddell Seal", "locations": "Antarctica; Antarctica", "north": -72.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Shero, Michelle", "project_titles": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals; Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0010369", "repository": "USAP-DC", "title": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals"}, {"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea", "uid": "601835", "west": 162.0}, {"awards": "1840058 Jenouvrier, Stephanie", "bounds_geometry": ["POINT(140.017 -66.66)"], "date_created": "Mon, 16 Sep 2024 00:00:00 GMT", "description": "Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated\u201d mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. \r\n\u003cbr/\u003e", "east": 140.017, "geometry": ["POINT(140.017 -66.66)"], "keywords": "Antarctica; Climate Change; Cryosphere; Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.", "locations": "Ile des Petrels, Pointe Geologie Archipelago (66\u25e640\u2032 S, 140\u25e601\u2032 106 E), Terre Adelie, Antarctica.; Antarctica", "north": -66.66, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "jenouvrier, stephanie", "project_titles": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.66, "title": "Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)", "uid": "601832", "west": 140.017}, {"awards": "1929991 Pettit, Erin C", "bounds_geometry": ["POLYGON((-112.31 -74.8,-111.61500000000001 -74.8,-110.92 -74.8,-110.225 -74.8,-109.53 -74.8,-108.83500000000001 -74.8,-108.14 -74.8,-107.445 -74.8,-106.75 -74.8,-106.055 -74.8,-105.36 -74.8,-105.36 -74.83,-105.36 -74.86,-105.36 -74.89,-105.36 -74.92,-105.36 -74.94999999999999,-105.36 -74.97999999999999,-105.36 -75.00999999999999,-105.36 -75.03999999999999,-105.36 -75.07,-105.36 -75.1,-106.055 -75.1,-106.75 -75.1,-107.445 -75.1,-108.14 -75.1,-108.83500000000001 -75.1,-109.53 -75.1,-110.225 -75.1,-110.92 -75.1,-111.61500000000001 -75.1,-112.31 -75.1,-112.31 -75.07,-112.31 -75.03999999999999,-112.31 -75.00999999999999,-112.31 -74.97999999999999,-112.31 -74.94999999999999,-112.31 -74.92,-112.31 -74.89,-112.31 -74.86,-112.31 -74.83,-112.31 -74.8))"], "date_created": "Fri, 23 Aug 2024 00:00:00 GMT", "description": "This is a dataset of elevations of sub-ice-shelf seafloor and ice-shelf bottom derived from active-source-seismic sounding conducted at discrete points distributed over the Thwaites Eastern Ice Shelf (TEIS) and Dotson Ice Shelf (DIS). Also included are the ice-shelf surface elevation at each seismic-shot location derived from the concurrent GNSS recording and P-wave speed profile through firn derived from shallow refraction-seismic surveys on each ice shelf. Raw seismic records are also provided as SEGY files.", "east": -105.36, "geometry": ["POINT(-108.83500000000001 -74.94999999999999)"], "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "locations": "Dotson Ice Shelf; Thwaites Glacier; Antarctica", "north": -74.8, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Muto, Atsuhiro; Alley, Karen; Roccaro, Alexander; Pettit, Erin; Truffer, Martin; Scambos, Ted; Wild, Christian; Pomraning, Dale; Wallin, Bruce", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.1, "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "uid": "601827", "west": -112.31}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POLYGON((100 -62,104.4 -62,108.8 -62,113.2 -62,117.6 -62,122 -62,126.4 -62,130.8 -62,135.2 -62,139.6 -62,144 -62,144 -64,144 -66,144 -68,144 -70,144 -72,144 -74,144 -76,144 -78,144 -80,144 -82,139.6 -82,135.2 -82,130.8 -82,126.4 -82,122 -82,117.6 -82,113.19999999999999 -82,108.8 -82,104.4 -82,100 -82,100 -80,100 -78,100 -76,100 -74,100 -72,100 -70,100 -68,100 -66,100 -64,100 -62))"], "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "This dataset includes quantitative diatom assemblage data from 60 samples from IODP Site U1357B on the Adelie Basin. The record spans from 11,000 yBP to present.", "east": 144.0, "geometry": ["POINT(122 -72)"], "keywords": "Antarctica; Cryosphere; Geochemistry; Sediment; Wilkes Land", "locations": "Wilkes Land; Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.0, "title": "Diatom assemblage from IODP Site U1357", "uid": "601818", "west": 100.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POLYGON((100 -62,104.4 -62,108.8 -62,113.2 -62,117.6 -62,122 -62,126.4 -62,130.8 -62,135.2 -62,139.6 -62,144 -62,144 -64,144 -66,144 -68,144 -70,144 -72,144 -74,144 -76,144 -78,144 -80,144 -82,139.6 -82,135.2 -82,130.8 -82,126.4 -82,122 -82,117.6 -82,113.19999999999999 -82,108.8 -82,104.4 -82,100 -82,100 -80,100 -78,100 -76,100 -74,100 -72,100 -70,100 -68,100 -66,100 -64,100 -62))"], "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; \u2030 vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; \u2030 vs air), and total nitrogen (wt%) from 121 samples from IODP Site U1357B in the Adelie Basin. The sediments are Holocene age (11 kyBP to present).", "east": 144.0, "geometry": ["POINT(122 -72)"], "keywords": "Antarctica; Cryosphere; Wilkes Land", "locations": "Antarctica; Wilkes Land", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel; Kelly, Roger; Robinson, Rebecca", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.0, "title": "Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357", "uid": "601817", "west": 100.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POLYGON((-80 -59,-76.8 -59,-73.6 -59,-70.4 -59,-67.2 -59,-64 -59,-60.8 -59,-57.599999999999994 -59,-54.4 -59,-51.2 -59,-48 -59,-48 -60.6,-48 -62.2,-48 -63.8,-48 -65.4,-48 -67,-48 -68.6,-48 -70.2,-48 -71.8,-48 -73.4,-48 -75,-51.2 -75,-54.4 -75,-57.6 -75,-60.8 -75,-64 -75,-67.2 -75,-70.4 -75,-73.6 -75,-76.8 -75,-80 -75,-80 -73.4,-80 -71.8,-80 -70.2,-80 -68.6,-80 -67,-80 -65.4,-80 -63.8,-80 -62.2,-80 -60.6,-80 -59))"], "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; \u2030 vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; \u2030 vs air), and total nitrogen (wt%) from 81 Holocene and late deglacial-aged samples from ODP Site 1098B on the western Antarctic Peninsula.", "east": -48.0, "geometry": ["POINT(-64 -67)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Geochemistry; Sediment", "locations": "Antarctic Peninsula; Antarctica", "north": -59.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel; Jones, Colin; Kelly, Roger; Robinson, Rebecca", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0, "title": "Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula", "uid": "601816", "west": -80.0}, {"awards": "1543383 Postlethwait, John; 1440435 Ducklow, Hugh; 2026045 Schofield, Oscar; 0636696 DeVries, Arthur; 1142158 Cheng, Chi-Hing", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 22 Jul 2024 00:00:00 GMT", "description": "This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric", "project_titles": "Antarctic Fish and MicroRNA Control of Development and Physiology; Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold; Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes; Evolution of hemoglobin genes in notothenioid fishes; LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}, {"proj_uid": "p0010085", "repository": "USAP-DC", "title": "Antarctic Fish and MicroRNA Control of Development and Physiology"}, {"proj_uid": "p0000133", "repository": "USAP-DC", "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem"}, {"proj_uid": "p0010091", "repository": "USAP-DC", "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold"}, {"proj_uid": "p0000560", "repository": "USAP-DC", "title": "Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -90.0, "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "uid": "601811", "west": -180.0}, {"awards": "1443534 Bell, Robin; 1444690 Bell, Robin; 0958658 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Wed, 22 May 2024 00:00:00 GMT", "description": "This Shallow Ice Radar (SIR) dataset is from the Frequency Modulated Continuous Wave (LFMCW) radar system on board the IcePod while deployed with the ROSETTA-Ice project during the austral summers of November 2015 - December 2017. SIR data was collected along the ROSETTA-Ice Survey Grid where possible. More detailed information is included in the ReadMe. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, using CReSIS 2013/14 MCoRDS scripts as a foundation. All levels of processed data are Matfiles as a result.\r\nIncluded in this dataset are the following: \r\n* SIR level1a Matfiles separated by ROSETTA-Ice Survey Grid Line Number;\r\n* SIR long-line images at 300dpi (PNGs) for easy data viewing, rendered in MATLAB from level1 data;\r\n* SIR internal reflector digitization picks (CSV), rendered manually using MATLAB picking scripts;\r\n* SIR digitization frame images (picked and un-picked) as JPGs output from picking process", "east": -150.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Antarctica; Cryosphere; Remote Sensing; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Integrated System Science; Antarctic Astrophysics and Geospace Sciences", "persons": "Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Keeshin, Skye; Wearing, Martin; Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani; Bell, Robin", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130", "projects": [{"proj_uid": "p0010462", "repository": "USAP-DC", "title": "Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)", "uid": "601794", "west": 161.0}, {"awards": "1443534 Bell, Robin; 0958658 Bell, Robin; 1444690 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Mon, 20 May 2024 00:00:00 GMT", "description": "This Deep ICE (DICE) radar dataset is from the pulse-chirp depth sounding radar system on board the IcePod while deployed with the ROSETTA-Ice Project during the austral summers of November 2015 - December 2017. DICE data was collected along the ROSETTA-Ice Survey grid where possible. More detailed information is included in the ReadMe, including flight lines with data loss. DICE is a dual channel sensor with pulse-chirp rate of 1us and 3us, which means the data can be processed in four pulse/channel configurations: 1usCh1, 3usCh1, 1usCh2, and 3usCh2. The included dataset is 3usCh1 DICE, which is the preferred configuration. The preferred configuration is 3usCh1, which is included in this dataset. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, with CReSIS 2014 MCoRDS scripts as a foundation. As such, all processed levels of this data product are Matfiles. Included in this dataset are the following:\r\n* DICE level2a data Matfiles, separated by ROSETTA-Ice Survey Grid Line Number;\r\n* DICE long-line images at 300dpi (PNGs) for easy data viewing rendered in MATLAB from level2 data;\r\n* DICE Ice Base digitization picks, rendered manually using MATLAB picking script;\r\n* DICE digitization frame images (picked and un-picked) as JPGs output from picking process", "east": -150.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Airborne Radar; Antarctica; Cryosphere; Ice Thickness; Remote Sensing; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Astrophysics and Geospace Sciences; Antarctic Instrumentation and Support", "persons": "Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130", "projects": [{"proj_uid": "p0010462", "repository": "USAP-DC", "title": "Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)", "uid": "601789", "west": 161.0}, {"awards": "1443534 Bell, Robin; 0958658 Bell, Robin; 1444690 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Fri, 17 May 2024 00:00:00 GMT", "description": "This LiDAR data is from the RIEGL VQ-580 Airborne Laser Scanner onboard IcePod while deployed with the ROSETTA-Ice Project during November 2015 - December 2017. This data was processed at Lamont-Doherty Earth Observatory using RIEGL\u0027s RiPROCESS Data Processing Software.\r\n\r\nLiDAR data was collected along the ROSETTA-Ice Survey Grid where possible. Survey flights with no data are listed in the ReadMe. Clouds have been removed where possible.\r\n", "east": -150.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Antarctica; Cryosphere; Ross Ice Shelf", "locations": "Ross Ice Shelf; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences; Antarctic Instrumentation and Support; Antarctic Integrated System Science", "persons": "Locke, Caitlin; Bertinato, Christopher; Dhakal, Tejendra; Becker, Maya K; Starke, Sarah; Boghosian, Alexandra", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)", "uid": "601788", "west": 161.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POINT(-64.207 -64.86)"], "date_created": "Wed, 24 Apr 2024 00:00:00 GMT", "description": "This dataset includes measurements of opal (wt %), total organic carbon (wt %), total nitrogen (wt%), bulk nitrogen isotopic composition (d15Nbulk; \u2030 vs air), and diatom-bound nitrogen isotopic composition (d15Ndb; \u2030 vs air) from 36 samples from ODP sediment core 1098B-5H-7 on the western Antarctic Peninsula. The sediments were deposited during a period of deglaciation about 12.5-12.3 ka.", "east": -64.207, "geometry": ["POINT(-64.207 -64.86)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "locations": "Antarctica; Antarctic Peninsula", "north": -64.86, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.86, "title": "Sediment chemistry of ODP Site 1098", "uid": "601778", "west": -64.207}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": ["POINT(-64 -65)"], "date_created": "Wed, 24 Apr 2024 00:00:00 GMT", "description": "This dataset includes diatom assemblage and surface area data from ODP sediment core 1098B-5H-7 on the western Antarctic Peninsula. The sediments are laminated and were deposited during a period of deglaciation about 12.5-12.3 ka. Quantitative diatom assemblage counts and surface area measurements are reported for 12 samples.", "east": -64.0, "geometry": ["POINT(-64 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Sediment Core Data", "locations": "Antarctic Peninsula; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "ODP Site 1098 deglacial diatom assemblage", "uid": "601777", "west": -64.0}, {"awards": "1443677 Padman, Laurence; 9896041 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.161699999999996,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.138600000000004,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"], "date_created": "Wed, 27 Mar 2024 00:00:00 GMT", "description": "CATS2008_v2023 is an update of the original CATS2008 tide model (Howard et al., 2019 [https://doi.org/10.15784/601235]; Padman et al., 2002 [https://doi.org/10.3189/172756402781817752]). It introduces a new model file format, increased resolution, more accurate coastlines, and a simple scaling for ice shelf flexure near grounding lines. The changes included in the new CATS2008_v2023 model are: (1) The CATS2008 model has been interpolated to a finer grid (2 km for CATS2008_v2023 vs 4 km for CATS2008) to provide a better representation of coastlines and ice shelf grounding lines. (2) Coastlines have been adjusted to match BedMachine Antarctica v3 (Morlighem et al., 2020 [https://doi.org/10.1038/s41561-019-0510-8]; Morlighem, 2022 [https://doi.org/10.5067/FPSU0V1MWUB6]). Areas that were previously grounded and had no tidal constituent data in CATS2008 have been filled using MATLAB\u0027s \u2018regionfill\u2019 function, applied to the real and imaginary components of tidal constituents individually. An ocean mask matching BedMachine Antarctica v3 is provided in the model file to mask out grounded areas. (3) Water depth (water column thickness under ice shelves) has been adjusted to match BedMachine Antarctica v3. (4) An ice shelf flexure model has been included for estimating tidal deflections in grounding zones. Flexure is approximated by a forward 1D linear elastic model applied to BedMachine Antarctica v3 ice geometry, with elastic modulus E=4.8 GPa and Poisson\u0027s ratio nu=0.4. The ice flexure can be included as an option when using TMD3.0 (Greene et al., 2024 [https://doi.org/10.21105/joss.06018]) and pyTMD (Sutterley, 2024 [https://doi.org/10.5281/zenodo.10501349]) software packages. (5) The model is provided as a consolidated NetCDF file that can be used with TMD3.0 and pyTMD, but not with earlier TMD versions. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "locations": "Sea Surface; Southern Ocean; Antarctica", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana; Sutterley, Tyler", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "uid": "601772", "west": -180.0}, {"awards": "1951500 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 27 Feb 2024 00:00:00 GMT", "description": "1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically.\r\n\r\n\t2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate).\r\n\r\n\t3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation.\r\n\r\n\t4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Demography; Sub-Antarctic", "locations": "Sub-Antarctic; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Joanie, Van de Walle; Jenouvrier, Stephanie", "project_titles": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment", "projects": [{"proj_uid": "p0010283", "repository": "USAP-DC", "title": "NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross", "uid": "601770", "west": -180.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": ["POLYGON((50 -84,55 -84,60 -84,65 -84,70 -84,75 -84,80 -84,85 -84,90 -84,95 -84,100 -84,100 -84.6,100 -85.2,100 -85.8,100 -86.4,100 -87,100 -87.6,100 -88.2,100 -88.8,100 -89.4,100 -90,95 -90,90 -90,85 -90,80 -90,75 -90,70 -90,65 -90,60 -90,55 -90,50 -90,50 -89.4,50 -88.8,50 -88.2,50 -87.6,50 -87,50 -86.4,50 -85.8,50 -85.2,50 -84.6,50 -84))"], "date_created": "Mon, 19 Feb 2024 00:00:00 GMT", "description": "This dataset constitutes the as-recorded echo data from the MARFA radar system. The data was recorded by a National Instruments acquisition system, simultaneously with GPS, magnetics, laser range data, outside air temperature and IMU data. The data was acquired using the Environment for Linked Serial Acquisition (ELSA).\r\n\r\nThe data is provided in two forms: \r\n\u2022 Flight based and as recorded on the aircraft in raw packets\r\n\u2022 Transect based, reorganized into transects corresponding to the survey design, and demultiplexed into text tables and flat binary files.\r\n", "east": 100.0, "geometry": ["POINT(75 -87)"], "keywords": "Antarctica; East Antarctic Plateau", "locations": "East Antarctic Plateau; Antarctica", "north": -84.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin; Kerr, Megan; Buhl, Dillon; Ng, Gregory; Kempf, Scott D.; Chan, Kristian", "project_titles": "Center for Oldest Ice Exploration", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "COLDEX Raw MARFA Ice Penetrating Radar data", "uid": "601768", "west": 50.0}, {"awards": "1745064 Perez-Huerta, Alberto; 1745080 Gillikin, David; 1745057 Walker, Sally; 0739512 Walker, Sally", "bounds_geometry": null, "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "Adamussium colbecki is a large thin-shelled scallop common in Antarctic waters and well represented in the fossil record. Shell nitrogen isotopes in carbonate bound organic matter (d15NCBOM) have the potential to record sea ice state over time. Recent studies illustrated that d15NCBOM values provide a similar proxy as soft tissue d15N values which are in turn are predicably related to food d15N values (Gillikin et al., 2017, GCA, 200, 55\u201366, doi: 10.1016/j.gca.2016.12.008). Sea-ice organic N should have higher d15N values compared to open water organics due to nitrate draw down in the ice (Fripiat et al., 2014, Global Biogeochem. Cycles, 28, 115\u2013130, doi:10.1002/2013GB004729). To test this hypothesis we analyzed A. colbecki shells from Explorers Cove and Bay of Sails, western McMurdo Sound, Antarctica. These sites have different sea ice states: persistent (multiannual) sea ice at Explorers Cove and annual sea ice (that melts out every year) at Bay of Sails. Six adults shells collected at these sites in 2008 (3 from each site) and two juveniles collected in 2016 from Explorers Cove were be serially sampled for d15NCBOM values from the growing shell margin to the umbo. d15NCBOM values from Explorers Cove with persistent sea ice cover were consistently higher (+10 \u00b1 0.7 \u2030) than those from Bay of Sails where the sea ice melts out every year (+8 \u00b1 0.5 \u2030; t-test p\u003c0.0001). d15NCBOM data from Mid- to Late Holocene shells that grew in these locations will also be presented. We posit that nitrogen isotopes in A. colbecki shells have a high potential to record sea ice cover.", "east": null, "geometry": null, "keywords": "Adamussium Colbecki; Antarctica; Biota; Carbon Isotopes; Explorers Cove; Nitrogen Isotopes; Oxygen Isotope; Scallop", "locations": "Explorers Cove; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Gillikin, David; Puhalski, Emma; Camarra, Steve; Cronin, Kelly; Verheyden, Anouk; Walker, Sally", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}, {"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.", "uid": "601764", "west": null}, {"awards": "1914698 Hansen, Samantha", "bounds_geometry": ["POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))"], "date_created": "Wed, 24 Jan 2024 00:00:00 GMT", "description": "Recent investigations in polar environments have examined solid-Earth-ice-sheet feedbacks and have emphasized that glacial isostatic adjustment, tectonic, and geothermal forcings exert first-order control on the physical conditions at and below the ice-bed interface and must be taken into account when evaluating ice-sheet evolution. However, the solid-Earth structure beneath much of Antarctica is still poorly constrained given the sparse distribution of seismic stations across the continent and the generally low seismicity rate. One region of particular interest is the Wilkes Subglacial Basin (WSB) in East Antarctica. During the mid-Pliocene warm period, the WSB may have contributed 3-4 m to the estimated 20 m rise in sea-level, indicating that this region could also play an important role in future warming scenarios. However, the WSB may have experienced notable bedrock uplift since the Pliocene; therefore, past geologic inferences of instability may not serve as a simple analogue for the future.\r\n\r\nUsing records of ambient seismic noise recorded by both temporary and long-term seismic networks, along with a full-waveform tomographic inversion technique, we have developed improved images of the lithospheric structure beneath East Antarctica, including the WSB. Empirical Green\u2019s Functions with periods between 40 and 340 s have been extracted using a frequency-time normalization technique, and a finite-difference approach with a spherical grid has been employed to numerically model synthetic seismograms. Associated sensitivity kernels have also been constructed using a scattering integral method. Our results suggest the WSB is underlain by slow seismic velocities, with faster seismic structure beneath the adjacent Transantarctic Mountains and the Belgica Subglacial Highlands. This may indicate that the WSB is associated with a region of thinner lithosphere, possibly associated with prior continental rifting. The seismic heterogeneity highlighted in our model could have significant implications for understanding the geodynamic origin of WSB topography and its influence on ice-sheet behavior.\r\n\r\nThe model file and associated plotting scripts are provided.", "east": 180.0, "geometry": ["POINT(135 -77.5)"], "keywords": "Ambient Noise; Antarctica; East Antarctica; Geoscientificinformation; Seismic Tomography; Seismology", "locations": "East Antarctica; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hansen, Samantha; Emry, Erica", "project_titles": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "projects": [{"proj_uid": "p0010204", "repository": "USAP-DC", "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Full Waveform Ambient Noise Tomography for East Antarctica", "uid": "601763", "west": 90.0}, {"awards": "0739512 Walker, Sally; 1745057 Walker, Sally; 1341612 Bowser, Samuel; 1745080 Gillikin, David; 1745064 Perez-Huerta, Alberto", "bounds_geometry": ["POLYGON((163 -77.2,163.2 -77.2,163.4 -77.2,163.6 -77.2,163.8 -77.2,164 -77.2,164.2 -77.2,164.4 -77.2,164.6 -77.2,164.8 -77.2,165 -77.2,165 -77.25,165 -77.3,165 -77.35000000000001,165 -77.4,165 -77.45,165 -77.5,165 -77.55,165 -77.60000000000001,165 -77.65,165 -77.7,164.8 -77.7,164.6 -77.7,164.4 -77.7,164.2 -77.7,164 -77.7,163.8 -77.7,163.6 -77.7,163.4 -77.7,163.2 -77.7,163 -77.7,163 -77.65,163 -77.60000000000001,163 -77.55,163 -77.5,163 -77.45,163 -77.4,163 -77.35000000000001,163 -77.3,163 -77.25,163 -77.2))"], "date_created": "Fri, 12 Jan 2024 00:00:00 GMT", "description": "This dataset contains stable isotopes of carbon and oxygen sampled from 6 adult and 2 juvenile Adamussium colbecki valves. Three of the adults were collected live from Bay of Sails. Three of the adults and the two juveniles were collected from Explorers Cove. ", "east": 165.0, "geometry": ["POINT(164 -77.45)"], "keywords": "Adamussium Colbecki; Antarctica; Bay Of Sails; Carbon; Explorers Cove; McMurdo Sound; Oxygen; Stable Isotopes", "locations": "McMurdo Sound; Antarctica; Bay Of Sails; Explorers Cove", "north": -77.2, "nsf_funding_programs": null, "persons": "Cronin, Kelly; Gillikin, David; Puhalski, Emma; Camarra, Steve; Andrus, Fred; Perez-Huerta, Alberto; Verheyden, Anouk; Bowser, Samuel S.; Walker, Sally", "project_titles": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails", "uid": "601761", "west": 163.0}, {"awards": "1744871 Robinson, Rebecca", "bounds_geometry": null, "date_created": "Wed, 30 Aug 2023 00:00:00 GMT", "description": "This dataset is the results of 3 experiments in which the spore-forming diatom Chaetoceros socialis was grown in culture and induced into resting spores by nitrate limitation. The nitrogen isotopic composition of accumulated biomass (\u03b415Nbiomass; \u2030 vs air) and of diatom-bound organic N (\u03b415Ndb; \u2030 vs air) are reported at two timepoints from each experiment: prior to and after resting spore formation. Experiments 1 and 2 provide measurements for CRS mixed with vegetative Chaetoceros cells, while Experiment 3 provides measurements for isolated CRS. Fluorescence and nitrate concentration was tracked throughout each experiment, with dissolved silica, ammonium, and total reduced nitrogen also measured in Experiment 3.", "east": null, "geometry": null, "keywords": "Antarctica", "locations": "Antarctica; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dove, Isabel", "project_titles": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?", "projects": [{"proj_uid": "p0010234", "repository": "USAP-DC", "title": "The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments", "uid": "601727", "west": null}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.366767 -62.681,-51.868477 -62.681,-39.370186999999994 -62.681,-26.87189699999999 -62.681,-14.373606999999993 -62.681,-1.875316999999996 -62.681,10.622973000000016 -62.681,23.121263000000013 -62.681,35.61955300000001 -62.681,48.11784300000001 -62.681,60.616133 -62.681,60.616133 -62.9536677,60.616133 -63.226335399999996,60.616133 -63.4990031,60.616133 -63.7716708,60.616133 -64.04433850000001,60.616133 -64.31700620000001,60.616133 -64.58967390000001,60.616133 -64.86234160000001,60.616133 -65.13500930000001,60.616133 -65.407677,48.11784299999999 -65.407677,35.619552999999996 -65.407677,23.121262999999992 -65.407677,10.622972999999995 -65.407677,-1.875317000000003 -65.407677,-14.373607000000014 -65.407677,-26.87189700000001 -65.407677,-39.37018700000001 -65.407677,-51.868477000000006 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"], "date_created": "Sun, 11 Jun 2023 00:00:00 GMT", "description": "Antarctic winters are challenging for terrestrial invertebrates, and species that\r\nlive there have specialised adaptations to conserve energy and protect against\r\ncold injury in the winter. However, rapidly occurring climate change in these\r\nregions will increase the unpredictability of winter conditions, and there is\r\ncurrently a dearth of knowledge on how the highly adapted invertebrates of\r\nAntarctica will respond to changes in winter temperatures.\r\n2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica,\r\nto simulated winters at three ecologically relevant mean temperature scenarios:\r\nwarm (\u22121\u00b0C), normal (\u22123\u00b0C) and cold (\u22125\u00b0C). Within each scenario, larvae were\r\nplaced into three distinct habitat types in which they are commonly observed\r\n(decaying organic matter, living moss, and Prasiola crispa algae). Following the\r\nsimulated overwintering period, a range of physiological outcomes were measured,\r\nnamely survival, locomotor activity, tissue damage, energy store levels and\r\nmolecular stress responses.\r\n3. Survival, energy stores and locomotor activity were significantly lower following\r\nthe Warm overwintering environment than at lower temperatures, but tissue\r\ndamage and heat shock protein expression (a proxy for protein damage) did not\r\nsignificantly differ between the three temperatures. Survival was also significantly\r\nlower in larvae overwintered in Prasiola crispa algae, although the underlying\r\nmechanism is unclear. Heat shock proteins were expressed least in larvae\r\noverwintering in living moss, suggesting it is less stressful to overwinter in this\r\nsubstrate, perhaps due to a more defined structure affording less direct contact\r\nwith ice.\r\n4. Our results demonstrate that a realistic 2\u00b0C increase in winter microhabitat temperature\r\nreduces survival and causes energy deficits that have implications for subsequent\r\ndevelopment and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters\r\nare expected to become more common in response to climate change. Conversely,\r\nif climate change reduces the length of winter, some of the negative consequences\r\nof winter warming may be attenuated, so it will be important to consider this factor\r\nin future studies. Nonetheless, our results indicate that winter warming could\r\nnegatively impact cold-adapted insects such as the Antarctic midge.", "east": 60.616133, "geometry": ["POINT(-1.875316999999996 -64.04433850000001)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -62.681, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -65.407677, "title": "Simulated winter warming negatively impacts survival of Antarctica\u0027s only endemic insect", "uid": "601694", "west": -64.366767}, {"awards": "1543347 Rosenheim, Brad", "bounds_geometry": ["POINT(-149.59134 -84.640287)"], "date_created": "Mon, 13 Mar 2023 00:00:00 GMT", "description": "This dataset includes radiocarbon (\u00b9\u2074C) and stable carbon isotope (\u03b4\u00b9\u00b3C) data for a sediment core from Mercer Subglacial Lake. In addition, this dataset includes \u00b9\u2074C and \u03b4\u00b9\u00b3C for dissolved organic carbon, dissolved inorganic carbon, and particulate organic carbon from the Mercer Subglacial Lake water column. ", "east": -149.59134, "geometry": ["POINT(-149.59134 -84.640287)"], "keywords": "Antarctica; Isotope; Mercer Subglacial Lake; Radiocarbon; Subglacial Lake", "locations": "Mercer Subglacial Lake; Antarctica", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Venturelli, Ryan; Rosenheim, Brad", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Mercer Subglacial Lake radiocarbon and stable isotope data ", "uid": "601672", "west": -149.59134}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Fri, 03 Feb 2023 00:00:00 GMT", "description": "This dataset contains measurements of sediment porewater properties from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: specific conductance; water stable isotopes (\u03b42H and \u03b418O); dissolved gases (methane and its stable isotopes \u03b413C and \u03b42H, ethylene, and ethane); and major anions and cations.", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Gas; Geochemistry; Glacier; Glaciology; Mercer Subglacial Lake; Methane; SALSA; Sediment Core; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica; Mercer Subglacial Lake; Mercer Subglacial Lake", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Michaud, Alexander; Skidmore, Mark; Tranter, Martyn; Steigmeyer, August; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Sediment porewater properties data from Mercer Subglacial Lake", "uid": "601664", "west": -149.50134}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Wed, 01 Feb 2023 00:00:00 GMT", "description": "This dataset contains water column biogeochemical properties measured on discrete samples collected from Mercer Subglacial Lake by the SALSA project. Data included are: specific conductance; carbonic acid system parameters (total alkalinity, total inorganic carbon, and pH); water stable isotopes (\u03b42H and \u03b418O); dissolved gases (oxygen, methane, nitrous oxide, and hydrogen); dissolved nutrients (ammonium, nitrite and phosphate), major anions (including nitrate) and cations; size-fractionated colloidal and dissolved trace elements); dissolved organic carbon; and microbial cell and virus-like particle counts.", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Carbon; Cell Counts; Geochemistry; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mercer Subglacial Lake; Microbes; Nutrients; SALSA; Stable Isotopes; Trace Elements; West Antarctic Ice Sheet", "locations": "Antarctica; Mercer Subglacial Lake; West Antarctic Ice Sheet; Mercer Subglacial Lake", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Priscu, John; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Water column biogeochemical data from Mercer Subglacial Lake", "uid": "601663", "west": -149.50134}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Wed, 01 Feb 2023 00:00:00 GMT", "description": "This dataset contains bulk sediment properties measurements from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: physical properties (bulk density, mass water content, porosity, shear strength, particle size distribution, and mineralogy); carbon (inorganic and organic); iron (ascorbate- and dithionite-extractable); and sulfur (acid-volatile and chromium-reducible).", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Carbon; Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iron; Mercer Subglacial Lake; Mineralogy; Particle Size; Physical Properties; SALSA; Sediment Core; Sulfur; West Antarctic Ice Sheet", "locations": "Mercer Subglacial Lake; Antarctica; West Antarctic Ice Sheet; Mercer Subglacial Lake", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Campbell, Timothy; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Science Team, SALSA", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Discrete bulk sediment properties data from Mercer Subglacial Lake", "uid": "601661", "west": -149.50134}, {"awards": "1543537 Priscu, John", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Tue, 17 Jan 2023 00:00:00 GMT", "description": "This dataset includes binned conductivity, temperature and pressure measurements from Mercer Subglacial Lake and the borehole drilled to access the lake by the SALSA project, as well as additional physical parameters derived from these measurements using the TEOS-10 equation of state.", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Conductivity; CTD; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hot Water Drill; Mercer Subglacial Lake; Physical Properties; SALSA; Subglacial Lake; Temperature", "locations": "Mercer Subglacial Lake; Antarctica", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Dore, John; Priscu, John; Leventer, Amy; Rosenheim, Brad", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "CTD data from Mercer Subglacial Lake and access borehole", "uid": "601657", "west": -149.50134}, {"awards": "1543450 Countway, Peter", "bounds_geometry": ["POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))"], "date_created": "Tue, 03 Jan 2023 00:00:00 GMT", "description": "Rates of heterotrophic bacterial production (BP) via 3H-Leu uptake were estimated for samples collected from Station E (Palmer Station, Antarctica) and associated incubation experiments. Rates of BP in seawater incubations greatly exceeded BP rates in the environment, likely due to stimulation of phytoplankton blooms and addition of DMSP in experimental treatments. \r\nMethods for determining BP were identical to those used by Palmer LTER investigators. References for the analytical methods used for these analyses are included in a secondary tab with the uploaded data. ", "east": -63.0, "geometry": ["POINT(-64.5 -64.5)"], "keywords": "3H-Leu; Antarctica; Bacteria; Biota; DMSP; Heterotrophic Bacterial Production; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Countway, Peter; Matrai, Patricia", "project_titles": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean", "projects": [{"proj_uid": "p0010120", "repository": "USAP-DC", "title": "Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.0, "title": "Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments", "uid": "601644", "west": -66.0}, {"awards": "1744584 Klein, Andrew", "bounds_geometry": ["POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.8,-60 -62.6,-60 -63.4,-60 -64.2,-60 -65,-60 -65.8,-60 -66.6,-60 -67.4,-60 -68.2,-60 -69,-61 -69,-62 -69,-63 -69,-64 -69,-65 -69,-66 -69,-67 -69,-68 -69,-69 -69,-70 -69,-70 -68.2,-70 -67.4,-70 -66.6,-70 -65.8,-70 -65,-70 -64.2,-70 -63.4,-70 -62.6,-70 -61.8,-70 -61))"], "date_created": "Thu, 29 Dec 2022 00:00:00 GMT", "description": "This csv dataset includes the fetch distances for the 15 study sites visited by projects ANT-1744550, -1744570, -1744584, and -1744602 during ARSV Laurence M. Gould cruise LMG 19-04 in April and May 2019. The fetch distances were computed for each of the following eight cardinal directions (0\u00b0,45\u00b0,90\u00b0,135\u00b0,180\u00b0,225\u00b0,270\u00b0,315\u00b0). The fetches are all reported in meters (m). Fetch was determined by computing the distance along each of the eight directions to the nearest shoreline based on a 100 m resolution land/water grid. The grid was constructed using a vector-to-raster conversion of the Scientific Council of Antarctic Research (SCAR) Antarctic Digital Database\u2019s High resolution vector polylines of the Antarctic coastline. The fetch computations utilized an ArcGIS toolbox based on code by Finlayson (2006) that computes fetch using the recommended procedures from the US Army Corp of Engineers Shore Protection Manual (USACE, 1984).\r\nFinlayson, D.P. 2006. The geomorphology of Puget Sound beaches. Ph.D. dissertation. University of Washington, Seattle. 216 p.\r\nGerrish, L., Fretwell, P., \u0026 Cooper, P. (2021). High resolution vector polylines of the Antarctic coastline (7.4) [Data set]. UK Polar Data Centre, Natural Environment Research Council, UK Research \u0026 Innovation. https://doi.org/10.5285/e46be5bc-ef8e-4fd5-967b-92863fbe2835\u0027.\r\nUSACE, 1984. Shore Protection Manual, Coastal Engineering Research Center, Fort Belvoir, Virginia.\r\n", "east": -60.0, "geometry": ["POINT(-65 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Fetch; LMG1904; R/v Laurence M. Gould", "locations": "Antarctic Peninsula; Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Klein, Andrew", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Computed fetch for project study sites", "uid": "601639", "west": -70.0}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": null, "date_created": "Mon, 19 Dec 2022 00:00:00 GMT", "description": "This dataset includes ground-penetrating radar (GPR) data collected on Livingston Island in the Antarctic Peninsula.", "east": null, "geometry": null, "keywords": "Antarctica; Joinville Island", "locations": "Joinville Island; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Simms, Alexander", "project_titles": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "projects": [{"proj_uid": "p0010132", "repository": "USAP-DC", "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula", "uid": "601633", "west": null}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": null, "date_created": "Mon, 19 Dec 2022 00:00:00 GMT", "description": "This dataset provides the raw and processed ground-penetrating radar (GPR) data collected on Joinville Island in the Antarctic Peninsula. ", "east": null, "geometry": null, "keywords": "Antarctica; Joinville Island", "locations": "Joinville Island; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Simms, Alexander", "project_titles": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "projects": [{"proj_uid": "p0010132", "repository": "USAP-DC", "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula", "uid": "601632", "west": null}, {"awards": "1644197 Simms, Alexander", "bounds_geometry": null, "date_created": "Mon, 19 Dec 2022 00:00:00 GMT", "description": "This dataset consists of the location, elevation, and age of samples obtained from Joinville Island along the Antarctic Peninsula", "east": null, "geometry": null, "keywords": "Antarctica; Joinville Island; Raised Beaches; Sea Level", "locations": "Joinville Island; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Simms, Alexander", "project_titles": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "projects": [{"proj_uid": "p0010132", "repository": "USAP-DC", "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula", "uid": "601634", "west": null}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": null, "date_created": "Tue, 13 Dec 2022 00:00:00 GMT", "description": "These data were collected in 2017 and 2019 in McMurdo Sound, Antarctica. Included are reported dose of sedation drugs administered to Weddell seal pups during a longitudinal study at 4 age timepoints during early devleopment. Vital signs including heart rate (HR) and respiration rate (RR) during sedation are included, as are reactions to the drugs, such as if and how many apnea events were recorded, whether an animal exhibited cyanosis. \r\nThis study was conducted with ethical approval from NOAA Fisheries under the Marine Mammal Protection Act (permit # 21006-01), the Antarctic Conservation Act (permit # 2018-013 M#1) and the California Polytechnic University Institutional Animal Care and Use Committee (#1605 and 1904).", "east": null, "geometry": null, "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "locations": "Antarctica; McMurdo Sound", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pearson, Linnea", "project_titles": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "projects": [{"proj_uid": "p0010144", "repository": "USAP-DC", "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Sedation dose and response", "uid": "601631", "west": null}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"], "date_created": "Tue, 05 Jul 2022 00:00:00 GMT", "description": "The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. However, in addition to calories, we tested whether high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. To answer this question adult female Weddell seals (Leptonychotes weddellii) were handled across the austral summer. This included post-partum females during lactation and post-weaning. To demonstrate that any observed changes in iron dynamics were due to lactation, equivalent skip-breeding females (i.e., that did not produce a pup) were also handled. We measured numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation, milk iron concentration), hemoprotein concentrations, and oxygen stores.", "east": 168.0, "geometry": ["POINT(165 -77)"], "keywords": "Aerobic; Antarctica; Dive Capacity; Iron; McMurdo Sound; Weddell Seal", "locations": "McMurdo Sound; Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Shero, Michelle", "project_titles": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals; The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}, {"proj_uid": "p0010369", "repository": "USAP-DC", "title": "Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Weddell seal iron dynamics and oxygen stores across lactation", "uid": "601587", "west": 162.0}, {"awards": "1543245 Rynearson, Tatiana", "bounds_geometry": ["POLYGON((-179 -59,-167.7 -59,-156.4 -59,-145.1 -59,-133.8 -59,-122.5 -59,-111.19999999999999 -59,-99.89999999999999 -59,-88.6 -59,-77.3 -59,-66 -59,-66 -60.9,-66 -62.8,-66 -64.7,-66 -66.6,-66 -68.5,-66 -70.4,-66 -72.3,-66 -74.2,-66 -76.1,-66 -78,-77.3 -78,-88.6 -78,-99.9 -78,-111.2 -78,-122.5 -78,-133.8 -78,-145.10000000000002 -78,-156.4 -78,-167.7 -78,-179 -78,-179 -76.1,-179 -74.2,-179 -72.3,-179 -70.4,-179 -68.5,-179 -66.6,-179 -64.7,-179 -62.8,-179 -60.900000000000006,-179 -59))"], "date_created": "Mon, 27 Jun 2022 00:00:00 GMT", "description": "This dataset includes records of the specific growth rates measured for 43 clonal diatom strains originally isolated during the research cruise NBP-1701 across the Pacific sector of the Southern Ocean during December 2016-January 2017. Strains were grown under continuous light (130 \u00b5mol m-2\u00a0s-1) at up to 8 temperatures that span all or most of each strain\u2019s thermal niche width, from 0-12 degrees C, which encompasses each strain\u2019s optimum temperature for growth. Strains have been molecularly identified to species via 18S Sanger sequencing. Data include the following information for each record: Internal lab strain reference ID, date collected, latitude, longitude, Southern Ocean region, species, tested temperature, replicate number and specific growth rate. Data are provided in comma-separated values (csv) format.", "east": -66.0, "geometry": ["POINT(-122.5 -68.5)"], "keywords": "Antarctica; Biota; NBP1701; Phytoplankton; R/v Nathaniel B. Palmer; Specific Growth Rate; Thermal Optimum Temperature", "locations": "Antarctica", "north": -59.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Bishop, Ian", "project_titles": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change", "projects": [{"proj_uid": "p0000850", "repository": "USAP-DC", "title": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Specific growth rate measurements for 43 Southern Ocean diatoms", "uid": "601586", "west": -179.0}, {"awards": "1840058 Jenouvrier, Stephanie; 1246407 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 27 Jun 2022 00:00:00 GMT", "description": "Individuals differ in many ways. Most produce few offspring; a handful produce many. Some\r\ndie early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is\r\nmore to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due\r\nto individual stochasticity, i.e., to chance. Quantifying the contributions of heterogeneity and\r\nchance is essential to understanding natural variability. Inter-individual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favorable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.\r\n\r\nSpecifically, three life-history complexes exist in a population of southern fulmar (defined as sets of life-history characteristics that occur together through the lifetime of an individual). They are reminiscent of the gradient of life- history strategy observed among species:\r\n\r\n1. Group 1 (14% of offspring at fledging) is a slow-paced life history where individuals tend to delay recruitment, recruit successfully, and extend their reproductive lifespan.\r\n2. Group 2 (67% of offspring at fledging) consists of individuals that are less likely to recruit, have high adult survival, and skip breeding often.\r\n3. Group 3 (19% of offspring at fledging) is a fast-paced life history where individuals recruit early and attempt to breed often but have a short lifespan.\r\n\r\nIndividuals in groups 1 and 3 are considered \u201chigh-quality\u201d individuals because they produce, on average, more offspring over their lives than do individuals in group 2. But group 2 is made-up of individuals that experience the highest levels of adult survival.\r\n \r\nDifferences between these groups, i.e. individual heterogeneity, only explains a small fraction of variance in life expectancy (5.9%) and lifetime reproduction (22%) when environmental conditions are ordinary. We expect that the environmental context experienced, especially when environmental conditions get extreme, is key to characterizing individual heterogeneity and its contribution to life history outcomes. Here, we build on previous studies to quantify the impact of extreme environmental conditions on the relative contributions of individual heterogeneity and stochasticity to variance in life history outcomes.\r\nWe found that the differences in vital rates and demographic outcomes among complexes depend on the sea ice conditions individuals experience. Importantly, differences across life history complexes are amplified when sea ice concentration get extremely low. Sea ice conditions did not only affect patterns of life history traits, but also the variance of life history outcomes and the relative proportion of individual unobserved heterogeneity to the total variance. These new results advance the current debate on the relative importance heterogeneity (i.e. potentially adaptive) and stochasticity (i.e. enhances genetic drift) in shaping potentially neutral vs. adaptive changes in life histories.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Birds; East Antarctica; Southern Fulmar", "locations": "Antarctica; East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change; Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics", "projects": [{"proj_uid": "p0010090", "repository": "USAP-DC", "title": "Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics"}, {"proj_uid": "p0010002", "repository": "USAP-DC", "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.", "uid": "601585", "west": -180.0}, {"awards": "1929991 Pettit, Erin C", "bounds_geometry": ["POLYGON((-117.45625697487581 -73.79754996487824,-116.50673841062198 -73.79754996487824,-115.55721984636816 -73.79754996487824,-114.60770128211433 -73.79754996487824,-113.6581827178605 -73.79754996487824,-112.70866415360666 -73.79754996487824,-111.75914558935284 -73.79754996487824,-110.80962702509902 -73.79754996487824,-109.86010846084518 -73.79754996487824,-108.91058989659135 -73.79754996487824,-107.96107133233753 -73.79754996487824,-107.96107133233753 -74.04840280405163,-107.96107133233753 -74.29925564322501,-107.96107133233753 -74.5501084823984,-107.96107133233753 -74.80096132157178,-107.96107133233753 -75.05181416074517,-107.96107133233753 -75.30266699991856,-107.96107133233753 -75.55351983909193,-107.96107133233753 -75.80437267826532,-107.96107133233753 -76.0552255174387,-107.96107133233753 -76.30607835661209,-108.91058989659135 -76.30607835661209,-109.86010846084518 -76.30607835661209,-110.80962702509902 -76.30607835661209,-111.75914558935284 -76.30607835661209,-112.70866415360666 -76.30607835661209,-113.6581827178605 -76.30607835661209,-114.60770128211433 -76.30607835661209,-115.55721984636816 -76.30607835661209,-116.50673841062198 -76.30607835661209,-117.45625697487581 -76.30607835661209,-117.45625697487581 -76.0552255174387,-117.45625697487581 -75.80437267826532,-117.45625697487581 -75.55351983909193,-117.45625697487581 -75.30266699991856,-117.45625697487581 -75.05181416074517,-117.45625697487581 -74.80096132157178,-117.45625697487581 -74.5501084823984,-117.45625697487581 -74.29925564322501,-117.45625697487581 -74.04840280405163,-117.45625697487581 -73.79754996487824))"], "date_created": "Thu, 09 Jun 2022 00:00:00 GMT", "description": "This data set includes maps of height above flotation, surface lowering rates, dynamic thickness change, basal melt rates and grounding-line projections from the Dotson-Crosson Ice Shelf System. Furthermore, we included point clouds of migrated ICESat data and ship-based measurents of ocean current and mean potential temperature along the Dotson Ice Shelf\u0027s front.", "east": -107.96107133233753, "geometry": ["POINT(-112.70866415360666 -75.05181416074517)"], "keywords": "Antarctica; Dotson Ice Shelf; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "locations": "Dotson Ice Shelf; Antarctica", "north": -73.79754996487824, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Wild, Christian; Segabinazzi-Dotto, Tiago", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.30607835661209, "title": "Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper", "uid": "601578", "west": -117.45625697487581}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"], "date_created": "Tue, 29 Mar 2022 00:00:00 GMT", "description": "Campbell Scientific data loggers with eight platinum resistance thermometers (PRTs) and an acoustic snow height detector were installed as part of the AMIGOS-III instrumentation (AMIGOS: Automated Meteorology Ice Geophysics Observing System) The data are hourly reports of snow and near-surface air temperatures at different depths. At Cavity AMIGOS site, snow temperatures at ~1.2 meters depth (four PRTs) were used to provide reference temperatures for a coil of Distributed Thermal Sensing (DTS) fiber optic cable. At both sites, PRTs were attached to the tower (wrapped in reflective metal foil tape) as a means of investigating inversion strength and snow burial. At both sites, hourly snow height data using an acoustic sensor placed (initially) at 6.75 meters above the snow on a sensor cross-arm were acquired. A correction based on separately-measured air temperature was applied as per Campbell Scientifics correction algorithm. Both snow height sensors failed after just over one year (Cavity) or 10 months (Channel). Thermistor data continued to be acquired for 13 months (Cavity) or 19 months (Channel) \r\n\r\nThe two sites latest positions (01 Oct, 2021) are:\r\nCavity AMIGOS: 75.037\u00b0S, 105.58\u00b0W\r\nChannel AMIGOS: 75.049\u00b0S, 105.44\u00b0W\r\nboth stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020.", "east": -105.35, "geometry": ["POINT(-105.45 -75.045)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Snow Accumulation; Snow Temperature; Thwaites Glacier", "locations": "Amundsen Sea; Antarctica; Thwaites Glacier; Pine Island Bay; Thwaites Glacier", "north": -75.03, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.06, "title": "AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data", "uid": "601552", "west": -105.55}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"], "date_created": "Mon, 28 Mar 2022 00:00:00 GMT", "description": "Visalia WXT520 weather station hourly data spanning 20 months (with data gaps) at the Cavity and Channel AMIGOS-III sites (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the values from the sensors delivered through the Iridium modem via SBD from the AMIGOS. The units were installed at ~6.5m above the surface initially, with snow accumulation gradually reducing that to an estimated 3.5 m after 20 months. The stations report wind direction and speed, air temperature, humidity, pressure, and station power.\r\n\r\nThe two sites latest positions (01 Oct, 2021) are:\r\nCavity AMIGOS: 75.037\u00b0S, 105.58\u00b0W\r\nChannel AMIGOS: 75.049\u00b0S, 105.44\u00b0W\r\nboth stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020.", "east": -105.35, "geometry": ["POINT(-105.45 -75.045)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Pine Island Bay; Thwaites Glacier", "locations": "Thwaites Glacier; Antarctica; Thwaites Glacier; Amundsen Sea; Pine Island Bay", "north": -75.03, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.06, "title": "Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites", "uid": "601549", "west": -105.55}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.45 -75.04,-105.44 -75.04,-105.43 -75.04,-105.42 -75.04,-105.41 -75.04,-105.4 -75.04,-105.39 -75.04,-105.38 -75.04,-105.37 -75.04,-105.36 -75.04,-105.35 -75.04,-105.35 -75.042,-105.35 -75.044,-105.35 -75.046,-105.35 -75.048,-105.35 -75.05,-105.35 -75.052,-105.35 -75.054,-105.35 -75.056,-105.35 -75.058,-105.35 -75.06,-105.36 -75.06,-105.37 -75.06,-105.38 -75.06,-105.39 -75.06,-105.4 -75.06,-105.41 -75.06,-105.42 -75.06,-105.43 -75.06,-105.44 -75.06,-105.45 -75.06,-105.45 -75.058,-105.45 -75.056,-105.45 -75.054,-105.45 -75.052,-105.45 -75.05,-105.45 -75.048,-105.45 -75.046,-105.45 -75.044,-105.45 -75.042,-105.45 -75.04))"], "date_created": "Mon, 28 Mar 2022 00:00:00 GMT", "description": "Aquadopp 6000m data spanning 14 months (with data gaps) at the Channel site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. The units were installed two meters below each of the Seabird CTD sensors on the mooring line below the AMIGOS-3a Channel ice shelf mooring. ", "east": -105.35, "geometry": ["POINT(-105.4 -75.05)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "locations": "Amundsen Sea; Pine Island Bay; Thwaites Glacier; Antarctica", "north": -75.04, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.06, "title": "AMIGOS-IIIc \"Channel\" Aquadopp current data Jan 2020 - Mar 2021", "uid": "601548", "west": -105.45}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.65 -75.04,-105.64 -75.04,-105.63 -75.04,-105.62 -75.04,-105.61 -75.04,-105.6 -75.04,-105.59 -75.04,-105.58 -75.04,-105.57 -75.04,-105.56 -75.04,-105.55 -75.04,-105.55 -75.042,-105.55 -75.044,-105.55 -75.046,-105.55 -75.048,-105.55 -75.05,-105.55 -75.052,-105.55 -75.054,-105.55 -75.056,-105.55 -75.058,-105.55 -75.06,-105.56 -75.06,-105.57 -75.06,-105.58 -75.06,-105.59 -75.06,-105.6 -75.06,-105.61 -75.06,-105.62 -75.06,-105.63 -75.06,-105.64 -75.06,-105.65 -75.06,-105.65 -75.058,-105.65 -75.056,-105.65 -75.054,-105.65 -75.052,-105.65 -75.05,-105.65 -75.048,-105.65 -75.046,-105.65 -75.044,-105.65 -75.042,-105.65 -75.04))"], "date_created": "Mon, 28 Mar 2022 00:00:00 GMT", "description": "Aquadopp 6000m data spanning 14 months (with data gaps) at the Cavity site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. The units were installed two meters below each of the Seabird CTD sensors on the mooring line below the AMIGOS-3a Cavity ice shelf mooring. ", "east": -105.55, "geometry": ["POINT(-105.6 -75.05)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Temperature; Thwaites Glacier", "locations": "Amundsen Sea; Antarctica; Pine Island Bay; Thwaites Glacier", "north": -75.04, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.06, "title": "AMIGOS-IIIa \"Cavity\" Aquadopp current data Jan 2020 - Mar 2021", "uid": "601547", "west": -105.65}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.43 -75.045,-105.425 -75.045,-105.42 -75.045,-105.415 -75.045,-105.41 -75.045,-105.405 -75.045,-105.4 -75.045,-105.395 -75.045,-105.39 -75.045,-105.385 -75.045,-105.38 -75.045,-105.38 -75.047,-105.38 -75.049,-105.38 -75.051,-105.38 -75.053,-105.38 -75.055,-105.38 -75.057,-105.38 -75.059,-105.38 -75.061,-105.38 -75.063,-105.38 -75.065,-105.385 -75.065,-105.39 -75.065,-105.395 -75.065,-105.4 -75.065,-105.405 -75.065,-105.41 -75.065,-105.415 -75.065,-105.42 -75.065,-105.425 -75.065,-105.43 -75.065,-105.43 -75.063,-105.43 -75.061,-105.43 -75.059,-105.43 -75.057,-105.43 -75.055,-105.43 -75.053,-105.43 -75.051,-105.43 -75.049,-105.43 -75.047,-105.43 -75.045))"], "date_created": "Sat, 26 Mar 2022 00:00:00 GMT", "description": "Seabird MicroCAT SBE37IMP data spanning two years (with data gaps) at the Channel site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. Calibration information and test runs against a retrieved CTD unit are provided.", "east": -105.38, "geometry": ["POINT(-105.405 -75.055)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "locations": "Thwaites Glacier; Antarctica; Pine Island Bay; Amundsen Sea", "north": -75.045, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.065, "title": "AMIGOS-IIIc \"Channel\" Seabird CTD data Jan 2020 - Dec 2021", "uid": "601545", "west": -105.43}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-105.6 -75.045,-105.595 -75.045,-105.59 -75.045,-105.585 -75.045,-105.58 -75.045,-105.575 -75.045,-105.57 -75.045,-105.565 -75.045,-105.56 -75.045,-105.555 -75.045,-105.55 -75.045,-105.55 -75.047,-105.55 -75.049,-105.55 -75.051,-105.55 -75.053,-105.55 -75.055,-105.55 -75.057,-105.55 -75.059,-105.55 -75.061,-105.55 -75.063,-105.55 -75.065,-105.555 -75.065,-105.56 -75.065,-105.565 -75.065,-105.57 -75.065,-105.575 -75.065,-105.58 -75.065,-105.585 -75.065,-105.59 -75.065,-105.595 -75.065,-105.6 -75.065,-105.6 -75.063,-105.6 -75.061,-105.6 -75.059,-105.6 -75.057,-105.6 -75.055,-105.6 -75.053,-105.6 -75.051,-105.6 -75.049,-105.6 -75.047,-105.6 -75.045))"], "date_created": "Sat, 26 Mar 2022 00:00:00 GMT", "description": "Seabird MicroCAT SBE37IMP data spanning two years (with data gaps) at the Cavity site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. Calibration information and test runs against a retrieved CTD unit are provided.", "east": -105.55, "geometry": ["POINT(-105.575 -75.055)"], "keywords": "Amundsen Sea; Antarctica; Ice Shelf; Mooring; Pine Island Bay; Pressure; Salinity; Temperature; Thwaites Glacier", "locations": "Antarctica; Pine Island Bay; Amundsen Sea; Thwaites Glacier", "north": -75.045, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Scambos, Ted", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.065, "title": "AMIGOS-IIIa \"Cavity\" Seabird CTD data Jan 2020 - Dec 2021", "uid": "601544", "west": -105.6}, {"awards": "1643877 Friedlaender, Ari", "bounds_geometry": ["POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.4,-60 -62.8,-60 -63.2,-60 -63.6,-60 -64,-60 -64.4,-60 -64.8,-60 -65.2,-60 -65.6,-60 -66,-60.5 -66,-61 -66,-61.5 -66,-62 -66,-62.5 -66,-63 -66,-63.5 -66,-64 -66,-64.5 -66,-65 -66,-65 -65.6,-65 -65.2,-65 -64.8,-65 -64.4,-65 -64,-65 -63.6,-65 -63.2,-65 -62.8,-65 -62.4,-65 -62))"], "date_created": "Wed, 23 Mar 2022 00:00:00 GMT", "description": "This dataset contains motion-sensing and video recording data from CATS biologging tags deployed on Antarctic minke whales in 2018 and 2019. The data are used to determine underwater behavior and link foraging rates to environmental covariates to better understand the ecological role of this poorly known krill predator. Specifically, we are interested in how the presence and amount of ice affects the behavior of this species in the nearshore waters on the western side of the Antarctic Peninsula, a region experiencing rapid climate change.", "east": -60.0, "geometry": ["POINT(-62.5 -64)"], "keywords": "Antarctica; Antarctic Peninsula; Biologging; Foraging; Ice; Minke Whales", "locations": "Antarctica; Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Friedlaender, Ari", "project_titles": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)", "projects": [{"proj_uid": "p0010207", "repository": "USAP-DC", "title": "Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.0, "title": "Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula", "uid": "601542", "west": -65.0}, {"awards": "1643868 DeWitt, Regina; 1644197 Simms, Alexander", "bounds_geometry": ["POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))"], "date_created": "Fri, 11 Mar 2022 00:00:00 GMT", "description": "raw OSL data for rock and sediment samples collected on Joinville and Livingston Islands", "east": -55.0, "geometry": ["POINT(-60 -63)"], "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "locations": "Antarctica; Livingston Island; Joinville Island", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "DeWitt, Regina", "project_titles": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "projects": [{"proj_uid": "p0010132", "repository": "USAP-DC", "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "OSL data - Joinville and Livingston Islands - Raw data", "uid": "601532", "west": -65.0}, {"awards": "1644197 Simms, Alexander; 1643868 DeWitt, Regina", "bounds_geometry": ["POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))"], "date_created": "Fri, 11 Mar 2022 00:00:00 GMT", "description": "detailed results for rock and sediment OSL ages; De calculation; dose rate calculation, fading, signal measurement", "east": -55.0, "geometry": ["POINT(-60 -63)"], "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "locations": "Joinville Island; Livingston Island; Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "DeWitt, Regina", "project_titles": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "projects": [{"proj_uid": "p0010132", "repository": "USAP-DC", "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Joinville and Livingston Islands - rock and sediment OSL ages", "uid": "601534", "west": -65.0}, {"awards": "1644197 Simms, Alexander; 1643868 DeWitt, Regina", "bounds_geometry": ["POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))"], "date_created": "Fri, 11 Mar 2022 00:00:00 GMT", "description": "sediment and rock samples were collected on Joinville and Livingston Islands for OSL dating; feldspar separates were prepared; data set includes Electron microprobe analysis of selected feldspar extracts; includes bmp and tif with elemental maps plus elemental concentrations and Ca:Na:K ratios for feldspar analysis", "east": -55.0, "geometry": ["POINT(-60 -63)"], "keywords": "Antarctica; Geochronology; Joinville Island; Livingston Island; OSL dating; Raised Beaches", "locations": "Joinville Island; Livingston Island; Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "DeWitt, Regina", "project_titles": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "projects": [{"proj_uid": "p0010132", "repository": "USAP-DC", "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches", "uid": "601531", "west": -65.0}, {"awards": "1745036 Marchetti, Adrian; 1744760 Hopkinson, Brian", "bounds_geometry": null, "date_created": "Sat, 05 Mar 2022 00:00:00 GMT", "description": "This dataset contains measurements of photosynthetic physiological traits of various species of Southern Ocean marine diatoms when grown under differing levels of iron availability ", "east": null, "geometry": null, "keywords": "Antarctica; Diatom", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Hopkinson, Brian; Plumb, Kaylie; Marchetti, Adrian; Andrew, Sarah", "project_titles": "Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response", "projects": [{"proj_uid": "p0010033", "repository": "USAP-DC", "title": "Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities", "uid": "601530", "west": null}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": null, "date_created": "Fri, 18 Feb 2022 00:00:00 GMT", "description": "Oxygen consumption of Weddell seal pups (n = 8) placed in a metabolic chamber filed with air or water. Data were collected during 2017 and 2019. Each pup was measured every 2 weeks starting from 1 week of age to 7 weeks of age, resulting in 4 age timepoints. ", "east": null, "geometry": null, "keywords": "Antarctica; McMurdo Sound; Metabolic Rate; Thermoregulation; Weddell Seal", "locations": "McMurdo Sound; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pearson, Linnea", "project_titles": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "projects": [{"proj_uid": "p0010144", "repository": "USAP-DC", "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "metabolic measurements", "uid": "601524", "west": null}, {"awards": "2001033 Makovicky, Peter", "bounds_geometry": ["POLYGON((-180 -84,-178.5 -84,-177 -84,-175.5 -84,-174 -84,-172.5 -84,-171 -84,-169.5 -84,-168 -84,-166.5 -84,-165 -84,-165 -84.2,-165 -84.4,-165 -84.6,-165 -84.8,-165 -85,-165 -85.2,-165 -85.4,-165 -85.6,-165 -85.8,-165 -86,-166.5 -86,-168 -86,-169.5 -86,-171 -86,-172.5 -86,-174 -86,-175.5 -86,-177 -86,-178.5 -86,180 -86,178 -86,176 -86,174 -86,172 -86,170 -86,168 -86,166 -86,164 -86,162 -86,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85,160 -84.8,160 -84.6,160 -84.4,160 -84.2,160 -84,162 -84,164 -84,166 -84,168 -84,170 -84,172 -84,174 -84,176 -84,178 -84,-180 -84))"], "date_created": "Sat, 22 Jan 2022 00:00:00 GMT", "description": "Spreadsheet with provisional taxonomic identification and locality data for Early Triassic vertebrate fossils from the Allen Hills region accessioned at Field Museum, Chicago, IL", "east": 160.0, "geometry": ["POINT(177.5 -85)"], "keywords": "Allan Hills; Antarctica; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "locations": "Antarctica; Fremouw Formation; Allan Hills", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Makovicky, Peter", "project_titles": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "projects": [{"proj_uid": "p0010213", "repository": "USAP-DC", "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "uid": "601511", "west": -165.0}, {"awards": "1929991 Pettit, Erin C", "bounds_geometry": ["POLYGON((-108 -74.5,-107.6 -74.5,-107.2 -74.5,-106.8 -74.5,-106.4 -74.5,-106 -74.5,-105.6 -74.5,-105.2 -74.5,-104.8 -74.5,-104.4 -74.5,-104 -74.5,-104 -74.6,-104 -74.7,-104 -74.8,-104 -74.9,-104 -75,-104 -75.1,-104 -75.2,-104 -75.3,-104 -75.4,-104 -75.5,-104.4 -75.5,-104.8 -75.5,-105.2 -75.5,-105.6 -75.5,-106 -75.5,-106.4 -75.5,-106.8 -75.5,-107.2 -75.5,-107.6 -75.5,-108 -75.5,-108 -75.4,-108 -75.3,-108 -75.2,-108 -75.1,-108 -75,-108 -74.9,-108 -74.8,-108 -74.7,-108 -74.6,-108 -74.5))"], "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This data set includes two grounding-line products of Thwaites Glacier and a series of offshore pinning points for 2014 and 2019/20. The grounding lines where delineated manually from height above flotation calculations using the bathymetry model from Jordan et al. (2020), the REMA digital surface elevation model (Howat et al., 2019) for the 2014 product and ICESat-2 surface altimetry data (Smith et al., 2019) for the 2019/20 product. More details about the processing, corrections and uncertainties can be found in our publication. We would appreciate if users who think the grounding-line products are useful for your own research would cite our manuscript.", "east": -104.0, "geometry": ["POINT(-106 -75)"], "keywords": "Amundsen Sea; Antarctica; Glaciology; Grounding Line; Ice Shelf; Thwaites Glacier", "locations": "Antarctica; Thwaites Glacier; Thwaites Glacier; Antarctica; Amundsen Sea", "north": -74.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Wild, Christian; Alley, Karen; Muto, Atsu; Truffer, Martin; Scambos, Ted; Pettit, Erin", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.5, "title": "Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation", "uid": "601499", "west": -108.0}, {"awards": "1543453 Lyons, W. Berry", "bounds_geometry": ["POINT(-149.50134 -84.640287)"], "date_created": "Thu, 23 Dec 2021 00:00:00 GMT", "description": "This dataset includes the following measurements from Niskin casts at Mercer Subglacial Lake as part of the SALSA project: noble gases and their isotopes, d13C-DIC, Ge, 87Sr/86Sr, and 234U/238U", "east": -149.50134, "geometry": ["POINT(-149.50134 -84.640287)"], "keywords": "Antarctica; Mercer Subglacial Lake; Noble Gas", "locations": "Mercer Subglacial Lake; Antarctica", "north": -84.640287, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Gardner, Christopher B.; Lyons, W. Berry", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.640287, "title": "Mercer Subglacial Lake (SLM) noble gas and isotopic data", "uid": "601498", "west": -149.50134}, {"awards": "2037561 Jenouvrier, Stephanie; 1744794 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. \r\n\r\nIn Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. \r\n\r\nThis data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. \r\n\r\nIn Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins; Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts", "projects": [{"proj_uid": "p0010282", "repository": "USAP-DC", "title": "Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts"}, {"proj_uid": "p0010229", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}, {"proj_uid": "p0010447", "repository": "USAP-DC", "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Detecting climate signals in populations: case of emperor penguin", "uid": "601491", "west": -180.0}, {"awards": "0732625 Leventer, Amy; 1433140 Domack, Eugene", "bounds_geometry": ["POLYGON((-69 -58,-67.7 -58,-66.4 -58,-65.1 -58,-63.8 -58,-62.5 -58,-61.2 -58,-59.9 -58,-58.6 -58,-57.3 -58,-56 -58,-56 -59,-56 -60,-56 -61,-56 -62,-56 -63,-56 -64,-56 -65,-56 -66,-56 -67,-56 -68,-57.3 -68,-58.6 -68,-59.9 -68,-61.2 -68,-62.5 -68,-63.8 -68,-65.1 -68,-66.4 -68,-67.7 -68,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60,-69 -59,-69 -58))"], "date_created": "Mon, 15 Nov 2021 00:00:00 GMT", "description": "This data set contains an age vs depth model and measurements of magnetic susceptibility, benthic foraminifera Bulimina aculeata d18O and d13C, bulk sediment GDGT data, and diatom assemblage data from USAP LMG13-11 JKC-1 sediment core (0-100 cm) archived at the Oregon State University ACC repository. All stable isotope and GDGT measurements were made at the University of South Florida College of Marine Science. Diatom assemblages were counted at Colgate University. The data set includes all replicate measurements. Details of the entire data set and all relevant methods are provided in Browne et al (submitted, 2021)", "east": -56.0, "geometry": ["POINT(-62.5 -63)"], "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "locations": "Antarctic Peninsula; Antarctica", "north": -58.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Shevenell, Amelia", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "LMG13-11 JKC-1 Paleoceanographic data", "uid": "601485", "west": -69.0}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))"], "date_created": "Mon, 11 Oct 2021 00:00:00 GMT", "description": "This dataset includes GeoTiffs of two-year averages of ice flow velocity (including x- and y-components and flow speed) and longitudinal, transverse, and shear strain rates for the Thwaites Eastern Ice Shelf (TEIS) from 2001-2020. The grids were derived from feature tracking on MODIS, Landsat-7, and Landsat-8 imagery. Each pixel in a grid represents the median value of a stack of all available pixels for each time period. Data are gridded at a 500 m spatial resolution in a polar stereographic (EPSG:3031) projection. Speed units are m/day and strain rates are in units of /day. In addition, we provide videos of each variable (excluding x- and y-velocity components) placed alongside a MODIS image of the same extent and from around the same time to provide context. In addition to the variables noted above, we include videos for flow direction (in degrees from grid north in an EPSG:3031 projection) and a zoomed-in version of flow direction, which were calculated from the provided grids.", "east": -104.0, "geometry": ["POINT(-109 -75)"], "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "locations": "Antarctica; Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Alley, Karen; Wild, Christian; Scambos, Ted; Muto, Atsu; Pettit, Erin; Truffer, Martin; Wallin, Bruce; Klinger, Marin", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "uid": "601478", "west": -114.0}, {"awards": "1745043 Simkins, Lauren; 1246353 Anderson, John; 1745055 Stearns, Leigh", "bounds_geometry": ["POLYGON((174 -75,174.4 -75,174.8 -75,175.2 -75,175.6 -75,176 -75,176.4 -75,176.8 -75,177.2 -75,177.6 -75,178 -75,178 -75.2,178 -75.4,178 -75.6,178 -75.8,178 -76,178 -76.2,178 -76.4,178 -76.6,178 -76.8,178 -77,177.6 -77,177.2 -77,176.8 -77,176.4 -77,176 -77,175.6 -77,175.2 -77,174.8 -77,174.4 -77,174 -77,174 -76.8,174 -76.6,174 -76.4,174 -76.2,174 -76,174 -75.8,174 -75.6,174 -75.4,174 -75.2,174 -75))"], "date_created": "Mon, 04 Oct 2021 00:00:00 GMT", "description": "Bathymetry from multibeam echo sounding data in Pennell Trough, Ross Sea, Antarctica was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with a 1\u00b0\u00d71\u00b0 beam width, swath angular coverage set to 62\u00b0\u00d762\u00b0, and 30-60% overlap between survey lines. All raw, ping-edited geophysical data collected on NBP15-02 can be accessed using the Marine Geoscience Data System (Cruise DOI: 10.7284/901477). The bathymetry dataset here is gridded at 20-m resolution with a water depth-dependent vertical resolution on the order of decimeters. Two shapefiles are provided for ice-marginal landforms and meltwater landforms observable in the bathymetry data. The purpose of collecting the bathymetry data on cruise NBP15-02 was to better understand the glacial history of the Ross Sea, and the dataset, inclusive of bathymetry data and shapefiles of glacial landforms, from Pennell Trough are used to understand impacts on subglacial channel morphology and organization during the deglaciation of the region following the Last Glacial Maximum. The published dataset was used and analyzed in the article \"Topographic controls on channelized meltwater in the subglacial environment\" by Simkins, L.M., Greenwood, S.L., Munevar Garcia, S., Eareckson, E.A., Anderson, J.B., and Prothro, L.O, which was published in Geophysical Research Letters in 2021 (DOI: 10.1029/2021GL094678).", "east": 178.0, "geometry": ["POINT(176 -76)"], "keywords": "Antarctica; Bathymetry; Elevation; Geomorphology; Glacial History; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; NBP1502; Pennell Trough; Ross Sea; R/v Nathaniel B. Palmer", "locations": "Antarctica; Pennell Trough; Ross Sea", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Prothro, Lindsay; Simkins, Lauren", "project_titles": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations; Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum.", "projects": [{"proj_uid": "p0010269", "repository": "USAP-DC", "title": "Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations"}, {"proj_uid": "p0000395", "repository": "USAP-DC", "title": "Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Pennell Trough, Ross Sea bathymetry and glacial landforms", "uid": "601474", "west": 174.0}, {"awards": "1656518 Gumport, Patricia; 1543441 Fricker, Helen", "bounds_geometry": null, "date_created": "Tue, 14 Sep 2021 00:00:00 GMT", "description": "This dataset includes raw, uncalibrated voltage vs time measurements from a bistatic radar receiver. We also include some processed data including upsampled matched filtered data, GPS receiver position, antenna separation", "east": null, "geometry": null, "keywords": "Antarctica; Bistatic Radar; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS Data; Greenland; Lake Whillans; Radar; Store Glacier; Whillans Ice Stream; WISSARD", "locations": "Greenland; Whillans Ice Stream; Lake Whillans; Store Glacier; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Bienert, Nicole; Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WISSARD", "south": null, "title": "Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland", "uid": "601472", "west": null}, {"awards": "1745057 Walker, Sally", "bounds_geometry": ["POLYGON((163.4 -77.3,163.46 -77.3,163.52 -77.3,163.58 -77.3,163.64 -77.3,163.7 -77.3,163.76 -77.3,163.82 -77.3,163.88 -77.3,163.94 -77.3,164 -77.3,164 -77.33,164 -77.36,164 -77.39,164 -77.42,164 -77.45,164 -77.48,164 -77.51,164 -77.54,164 -77.57,164 -77.6,163.94 -77.6,163.88 -77.6,163.82 -77.6,163.76 -77.6,163.7 -77.6,163.64 -77.6,163.58 -77.6,163.52 -77.6,163.46 -77.6,163.4 -77.6,163.4 -77.57,163.4 -77.54,163.4 -77.51,163.4 -77.48,163.4 -77.45,163.4 -77.42,163.4 -77.39,163.4 -77.36,163.4 -77.33,163.4 -77.3))"], "date_created": "Thu, 12 Aug 2021 00:00:00 GMT", "description": "This data set includes measurements of shell growth between striae (small, comarginal ridges on valve surfaces) and visual analysis of striae groups. The script analyses the variation among striae groups, and time series analysis of interstrial increments. ", "east": 164.0, "geometry": ["POINT(163.7 -77.45)"], "keywords": "Adamussium Colbecki; Antarctica; McMurdo", "locations": "Antarctica; McMurdo", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Cronin, Kelly; Walker, Sally", "project_titles": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Analysis of striae groups and interstrial increments from Adamussium colbecki valves from Explorers Cove and Bay of Sails", "uid": "601469", "west": 163.4}, {"awards": "1745057 Walker, Sally", "bounds_geometry": ["POLYGON((163.4 -77.3,163.46 -77.3,163.52 -77.3,163.58 -77.3,163.64 -77.3,163.7 -77.3,163.76 -77.3,163.82 -77.3,163.88 -77.3,163.94 -77.3,164 -77.3,164 -77.33,164 -77.36,164 -77.39,164 -77.42,164 -77.45,164 -77.48,164 -77.51,164 -77.54,164 -77.57,164 -77.6,163.94 -77.6,163.88 -77.6,163.82 -77.6,163.76 -77.6,163.7 -77.6,163.64 -77.6,163.58 -77.6,163.52 -77.6,163.46 -77.6,163.4 -77.6,163.4 -77.57,163.4 -77.54,163.4 -77.51,163.4 -77.48,163.4 -77.45,163.4 -77.42,163.4 -77.39,163.4 -77.36,163.4 -77.33,163.4 -77.3))"], "date_created": "Wed, 11 Aug 2021 00:00:00 GMT", "description": "This dataset contains yearly growth increments (mm) of live-collected Adamussium colbecki from Explorers Cove and Bay of Sails in Western McMurdo Sound. Annual growth is delineated by annuli (external growth bands; see Cronin et al., 2020). Straight length measurements were taken with digital calipers from umbo to ventral margin along the central axis. The purpose of data collection was to compare growth and lifespan of A. colbecki under annual and multiannual sea ice. ", "east": 164.0, "geometry": ["POINT(163.7 -77.45)"], "keywords": "Adamussium Colbecki; Antarctica; Growth; McMurdo Sound; Shell Fish", "locations": "Antarctica; McMurdo Sound", "north": -77.3, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Cronin, Kelly; Walker, Sally", "project_titles": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.6, "title": "Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails", "uid": "601468", "west": 163.4}, {"awards": "0342484 Harwood, David", "bounds_geometry": ["POINT(167 -78)"], "date_created": "Mon, 14 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 167.0, "geometry": ["POINT(167 -78)"], "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "locations": "McMurdo Sound; Antarctica", "north": -78.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Candice, Falk", "project_titles": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "projects": [{"proj_uid": "p0010297", "repository": "USAP-DC", "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.0, "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "uid": "601451", "west": 167.0}, {"awards": "1543539 Liwanag, Heather", "bounds_geometry": ["POINT(166 -77)"], "date_created": "Fri, 26 Feb 2021 00:00:00 GMT", "description": "This dataset contains dive records from 18 Weddell seal pups collected during 2017 and 2019. Additionally, there are weather data taken during the same time period from a temporary weather station at Turtle Rock.", "east": 166.0, "geometry": ["POINT(166 -77)"], "keywords": "Antarctica; McMurdo Sound; Weddell Seal", "locations": "McMurdo Sound; Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pearson, Linnea; Weitzner, Emma; Liwanag, Heather", "project_titles": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments", "projects": [{"proj_uid": "p0010144", "repository": "USAP-DC", "title": "RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "TDR and weather data", "uid": "601435", "west": 166.0}, {"awards": "1643684 Saito, Mak", "bounds_geometry": ["POLYGON((-180 -70,-173.5 -70,-167 -70,-160.5 -70,-154 -70,-147.5 -70,-141 -70,-134.5 -70,-128 -70,-121.5 -70,-115 -70,-115 -70.8,-115 -71.6,-115 -72.4,-115 -73.2,-115 -74,-115 -74.8,-115 -75.6,-115 -76.4,-115 -77.2,-115 -78,-121.5 -78,-128 -78,-134.5 -78,-141 -78,-147.5 -78,-154 -78,-160.5 -78,-167 -78,-173.5 -78,180 -78,179.2 -78,178.4 -78,177.6 -78,176.8 -78,176 -78,175.2 -78,174.4 -78,173.6 -78,172.8 -78,172 -78,172 -77.2,172 -76.4,172 -75.6,172 -74.8,172 -74,172 -73.2,172 -72.4,172 -71.6,172 -70.8,172 -70,172.8 -70,173.6 -70,174.4 -70,175.2 -70,176 -70,176.8 -70,177.6 -70,178.4 -70,179.2 -70,-180 -70))"], "date_created": "Wed, 20 Jan 2021 00:00:00 GMT", "description": "Nutrient from Amundsen Sea Ross Sea and Terra Nova Bay. Parameters include phosphate, N+N (nitrate + nitrite), silicic acid, nitrite and ammonia. Measured by Joe Jennings (OSU) using protocols described by Noble et al., 2012 (Limnol. Oceanogr.). Trace metal rosette CTD sensor data also included for bottle depths. ", "east": 172.0, "geometry": ["POINT(-151.5 -74)"], "keywords": "Amundsen Sea; Antarctica; NBP1801; Nitrate; Nitrite; Nutrients; Phosphate; Ross Sea; R/v Nathaniel B. Palmer; Silicic Acid; Terra Nova Bay", "locations": "Ross Sea; Terra Nova Bay; Antarctica; Amundsen Sea", "north": -70.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Saito, Mak", "project_titles": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "projects": [{"proj_uid": "p0010045", "repository": "USAP-DC", "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Nutrients from NBP18-01 CICLOPS", "uid": "601428", "west": -115.0}, {"awards": "1341663 O\u0027Brien, Kristin; 1341602 Crockett, Elizabeth", "bounds_geometry": null, "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "In fishes, the spleen can function as an important reservoir for red blood cells (RBCs), which, following splenic contraction, may be released into the circulation to increase haematocrit during energy\u2010demanding activities. This trait is particularly pronounced in red\u2010blooded Antarctic fishes in which the spleen can sequester a large proportion of RBCs during rest, thereby reducing blood viscosity, which may serve as an adaptation to life in cold environments. In one species, Pagothenia borchgrevinki, it has previously been shown that splenic contraction primarily depends on cholinergic stimulation. The aim of the present study was to investigate the regulation of splenic contraction in five other Antarctic fish species, three red\u2010blooded notothenioids (Dissostichus mawsoni Norman, 1937, Gobionotothen gibberifrons L\u00f6nnberg, 1905, Notothenia coriiceps Richardson 1844) and two white\u2010blooded \u201cicefish\u201d (Chaenocephalus aceratus L\u00f6nnberg, 1906 and Champsocephalus gunnari L\u00f6nnberg, 1905), which lack haemoglobin and RBCs, but nevertheless possess a large spleen. In all species, splenic strips constricted in response to both cholinergic (carbachol) and adrenergic (adrenaline) agonists. Surprisingly, in the two species of icefish, the spleen responded with similar sensitivity to red\u2010blooded species, despite contraction being of little obvious benefit for releasing RBCs into the circulation. Although the icefish lineage lost functional haemoglobin before diversifying over the past 7.8\u20134.8 millions of years, they retain the capacity to contract the spleen, likely as a vestige inherited from their red\u2010blooded ancestors.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula", "locations": "Antarctica; Antarctic Peninsula", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "O\u0027Brien, Kristin; Joyce, William; Axelsson, Michael", "project_titles": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010084", "repository": "USAP-DC", "title": "Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Measurements of splenic contraction in Antarctic fishes", "uid": "601407", "west": null}, {"awards": "0724929 Simms, Alexander", "bounds_geometry": ["POLYGON((-61.8 -61.3,-61.07 -61.3,-60.34 -61.3,-59.61 -61.3,-58.88 -61.3,-58.15 -61.3,-57.42 -61.3,-56.69 -61.3,-55.96 -61.3,-55.23 -61.3,-54.5 -61.3,-54.5 -61.55,-54.5 -61.8,-54.5 -62.05,-54.5 -62.3,-54.5 -62.55,-54.5 -62.8,-54.5 -63.05,-54.5 -63.3,-54.5 -63.55,-54.5 -63.8,-55.23 -63.8,-55.96 -63.8,-56.69 -63.8,-57.42 -63.8,-58.15 -63.8,-58.88 -63.8,-59.61 -63.8,-60.34 -63.8,-61.07 -63.8,-61.8 -63.8,-61.8 -63.55,-61.8 -63.3,-61.8 -63.05,-61.8 -62.8,-61.8 -62.55,-61.8 -62.3,-61.8 -62.05,-61.8 -61.8,-61.8 -61.55,-61.8 -61.3))"], "date_created": "Fri, 06 Nov 2020 00:00:00 GMT", "description": "", "east": -54.5, "geometry": ["POINT(-58.15 -62.55)"], "keywords": "Antarctica; Grain Size; Granulometry; Joinville Island; Livingston Island; LMG0412; Raised Beaches", "locations": "Antarctica; Joinville Island; Livingston Island", "north": -61.3, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Theilen, Brittany; Simms, Alexander", "project_titles": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches", "projects": [{"proj_uid": "p0010132", "repository": "USAP-DC", "title": "Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -63.8, "title": "Granulometry of Joinville and Livingston Island beaches", "uid": "601400", "west": -61.8}, {"awards": "1644187 Tulaczyk, Slawek", "bounds_geometry": ["POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9))"], "date_created": "Sat, 12 Sep 2020 00:00:00 GMT", "description": " The ANTAEM survey was carried out in the period November 12th to 28th, 2018, with the SkyTEM 312 system. Twenty-one missions (flights) were conducted over 11 production days of helicopter service, resulting in a total of approximately ~3400 line km of data. The SkyTEM system records data from take-off until landing resulting in multiple lines converging to the landing pads in McMurdo and at Marble Point. The production without overlapping lines adds up to approximately 2900 line km. The flight speed was approximately 120 km/h at a target flight altitude of ~50 m (sensor height), but the actual sensor height varies depending on the terrain. The surveys were carried out with a Bell 212 helicopter, which carried the SkyTEM sensor as a sling load. The SkyTEM system was configured in a standard two-moment setup (low moment, LM and high moment, HM). Areas with extremely resistive dry and/or frozen sediment/bedrock, and glacier ice often produce EM-signals with amplitudes below the detection level of the system. Data from these low signal environments cannot be inverted into resistivity models. Data with strong induced polarization effects cannot be inverted for resistivity either. These data were discharged in this standard data delivery. \r\n The EM-data and inversion result (resistivity models) are delivered in the SkyTEM2018_dat.xyz and SkyTEM2018_inv.xyz files respectably. The RECORD number in the two files links data and model together. EM-data and data uncertainty for data entering inversion. Info stated in file Header: NAN value, Data unit, Coordinate system, Gate times. The SkyTEM system uses at High-Low moment data recording cycle, therefore only a subset of the total 40 time gates are preset for each moment. The standard lateral constraints inversion (LCI), delivered in the SkyTEM2018_inv.xyz file, was carried out with a smooth 30 layered resistivity model discretized to a depth of 500 m. A depth of investigation (DOI) was estimated for each resistivity model.\r\n", "east": 168.5, "geometry": ["POINT(164.75 -77.6)"], "keywords": "Antarctica; Dry Valleys; Hydrology; Ice Shelf; McMurdo; Permafrost", "locations": "Antarctica; McMurdo; Dry Valleys", "north": -76.9, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Tulaczyk, Slawek", "project_titles": "Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica", "projects": [{"proj_uid": "p0010129", "repository": "USAP-DC", "title": "Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "ANTAEM project airborne EM resistivity data from McMurdo Region", "uid": "601373", "west": 161.0}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": ["POINT(64 64)"], "date_created": "Mon, 24 Aug 2020 00:00:00 GMT", "description": "The dataset includes the concentrations and particle size distributions of aerosol trace elements (TEs) through the sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. The estimated dry deposition fluxes of these elements were derived from these new results.", "east": 64.0, "geometry": ["POINT(64 64)"], "keywords": "Antarctica; Antarctic Peninsula; Palmer Station; Trace Elements", "locations": "Palmer Station; Palmer Station; Antarctica; Antarctic Peninsula", "north": 64.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Gao, Yuan", "project_titles": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "projects": [{"proj_uid": "p0010082", "repository": "USAP-DC", "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 64.0, "title": "Concentrations and Particle Size Distributions of Aerosol Trace Elements", "uid": "601370", "west": 64.0}, {"awards": null, "bounds_geometry": ["POINT(-163.61187 -84.33543)"], "date_created": "Wed, 15 Jul 2020 00:00:00 GMT", "description": "This dataset contains total organic carbon (%TOC) and carbon isotopic data (\u03b4\u00b9\u00b3C, \u0394\u00b9\u2074C) from sediments retrieved from the Whillans Ice Stream grounding zone during the 2015 Antarctic field season. All %TOC and sediment preparations were done at the University of South Florida. Radiocarbon measurements were done at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) laboratory. ", "east": -163.61187, "geometry": ["POINT(-163.61187 -84.33543)"], "keywords": "Antarctica; Radiocarbon; Sediment; Whillans Ice Stream", "locations": "Antarctica; Whillans Ice Stream", "north": -84.33543, "nsf_funding_programs": null, "persons": "Venturelli, Ryan A", "project_titles": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments", "projects": [{"proj_uid": "p0010119", "repository": "USAP-DC", "title": "Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WISSARD", "south": -84.33543, "title": "Isotopic data from Whillans Ice Stream grounding zone, West Antarctica", "uid": "601360", "west": -163.61187}, {"awards": "0732651 Gordon, Arnold; 1141890 Huber, Bruce", "bounds_geometry": ["POLYGON((-63 -60,-62.2 -60,-61.4 -60,-60.6 -60,-59.8 -60,-59 -60,-58.2 -60,-57.4 -60,-56.6 -60,-55.8 -60,-55 -60,-55 -60.5,-55 -61,-55 -61.5,-55 -62,-55 -62.5,-55 -63,-55 -63.5,-55 -64,-55 -64.5,-55 -65,-55.8 -65,-56.6 -65,-57.4 -65,-58.2 -65,-59 -65,-59.8 -65,-60.6 -65,-61.4 -65,-62.2 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a Sea-Bird SBE 9Plus CTD during Nathaniel B. Palmer expedition NBP1203 conducted in 2012 (Chief Scientist: Dr. Maria Vernet; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Funding was provided by NSF grant(s): ANT11-41890.", "east": -55.0, "geometry": ["POINT(-59 -62.5)"], "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "locations": "Antarctic Peninsula; Antarctica; Larsen Ice Shelf", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "persons": "Huber, Bruce; Gordon, Arnold", "project_titles": "Cape Adare Long Term Moorings (CALM): Analysis Phase; Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000495", "repository": "USAP-DC", "title": "Cape Adare Long Term Moorings (CALM): Analysis Phase"}, {"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "uid": "601348", "west": -63.0}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-130 -64,-126.5 -64,-123 -64,-119.5 -64,-116 -64,-112.5 -64,-109 -64,-105.5 -64,-102 -64,-98.5 -64,-95 -64,-95 -65.15,-95 -66.3,-95 -67.45,-95 -68.6,-95 -69.75,-95 -70.9,-95 -72.05,-95 -73.2,-95 -74.35,-95 -75.5,-98.5 -75.5,-102 -75.5,-105.5 -75.5,-109 -75.5,-112.5 -75.5,-116 -75.5,-119.5 -75.5,-123 -75.5,-126.5 -75.5,-130 -75.5,-130 -74.35,-130 -73.2,-130 -72.05,-130 -70.9,-130 -69.75,-130 -68.6,-130 -67.45,-130 -66.3,-130 -65.15,-130 -64))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was derived from data acquired during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Stan Jacobs and Dr. Bruce Huber). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282.", "east": -95.0, "geometry": ["POINT(-112.5 -69.75)"], "keywords": "Amundsen Sea; Antarctic; Antarctica; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "locations": "Antarctica; Antarctic; Amundsen Sea; Southern Ocean; Pine Island Glacier; Pine Island Bay", "north": -64.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Huber, Bruce; Jacobs, Stanley", "project_titles": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "projects": [{"proj_uid": "p0000332", "repository": "USAP-DC", "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.5, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "uid": "601350", "west": -130.0}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": ["POLYGON((-130 -66,-127 -66,-124 -66,-121 -66,-118 -66,-115 -66,-112 -66,-109 -66,-106 -66,-103 -66,-100 -66,-100 -66.95,-100 -67.9,-100 -68.85,-100 -69.8,-100 -70.75,-100 -71.7,-100 -72.65,-100 -73.6,-100 -74.55,-100 -75.5,-103 -75.5,-106 -75.5,-109 -75.5,-112 -75.5,-115 -75.5,-118 -75.5,-121 -75.5,-124 -75.5,-127 -75.5,-130 -75.5,-130 -74.55,-130 -73.6,-130 -72.65,-130 -71.7,-130 -70.75,-130 -69.8,-130 -68.85,-130 -67.9,-130 -66.95,-130 -66))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Andreas Thurnherr). These data files are of ASCII format and include Current Measurement data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282.", "east": -100.0, "geometry": ["POINT(-115 -70.75)"], "keywords": "Amundsen Sea; Antarctica; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Antarctica; Amundsen Sea; Pine Island Bay; Southern Ocean", "north": -66.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Thurnherr, Andreas", "project_titles": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "projects": [{"proj_uid": "p0000332", "repository": "USAP-DC", "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.5, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "uid": "601349", "west": -130.0}, {"awards": "0338097 DiTullio, Giacomo; 0338157 Smith, Walker", "bounds_geometry": ["POLYGON((-180 -76,-179.7 -76,-179.4 -76,-179.1 -76,-178.8 -76,-178.5 -76,-178.2 -76,-177.9 -76,-177.6 -76,-177.3 -76,-177 -76,-177 -76.2,-177 -76.4,-177 -76.6,-177 -76.8,-177 -77,-177 -77.2,-177 -77.4,-177 -77.6,-177 -77.8,-177 -78,-177.3 -78,-177.6 -78,-177.9 -78,-178.2 -78,-178.5 -78,-178.8 -78,-179.1 -78,-179.4 -78,-179.7 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -77.8,165 -77.6,165 -77.4,165 -77.2,165 -77,165 -76.8,165 -76.6,165 -76.4,165 -76.2,165 -76,166.5 -76,168 -76,169.5 -76,171 -76,172.5 -76,174 -76,175.5 -76,177 -76,178.5 -76,-180 -76))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a Niskin Bottle Fluid Sampler during Nathaniel B. Palmer expedition NBP0601 conducted in 2005 (Chief Scientist: Dr. Giacomo DiTullio). The data files are in XLS format and include Fluid Chemistry data that have been processed. The data was acquired as part of the project called Interaction of iron, light and CO2 on phytoplankton community dynamics in the Ross Sea. Funding was provided by NSF grants: ANT03-38097, ANT03-38157, ANT03-38164, and ANT03-38350.\r\n", "east": -177.0, "geometry": ["POINT(174 -77)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Fluid Chemistry Data; Geochemistry; NBP0601; Niskin Bottle; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Measurements", "locations": "Antarctica; Antarctica; Ross Sea; Ross Sea; Southern Ocean", "north": -76.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "DiTullio, Giacomo; Smith, Walker", "project_titles": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "projects": [{"proj_uid": "p0000540", "repository": "USAP-DC", "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601", "uid": "601340", "west": 165.0}, {"awards": "0839039 Kustka, Adam; 0538148 Huber, Bruce", "bounds_geometry": ["POLYGON((172 -71,172.1 -71,172.2 -71,172.3 -71,172.4 -71,172.5 -71,172.6 -71,172.7 -71,172.8 -71,172.9 -71,173 -71,173 -71.1,173 -71.2,173 -71.3,173 -71.4,173 -71.5,173 -71.6,173 -71.7,173 -71.8,173 -71.9,173 -72,172.9 -72,172.8 -72,172.7 -72,172.6 -72,172.5 -72,172.4 -72,172.3 -72,172.2 -72,172.1 -72,172 -72,172 -71.9,172 -71.8,172 -71.7,172 -71.6,172 -71.5,172 -71.4,172 -71.3,172 -71.2,172 -71.1,172 -71))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a CurrentMeter during Nathaniel B. Palmer expedition NBP1101 conducted in 2011 (Chief Scientist: Dr. Josh Kohut; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Temperature, Current Measurement, and Salinity data and were processed after data collection. Data were acquired as part of the project(s): Ross Sea Expedition, and funding was provided by NSF grant(s): ANT08-39039.", "east": 173.0, "geometry": ["POINT(172.5 -71.5)"], "keywords": "Antarctica; Mooring; NBP1101; Ross Sea; Salinity; Southern Ocean; Temperature", "locations": "Southern Ocean; Antarctica; Ross Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Huber, Bruce; Gordon, Arnold", "project_titles": "Cape Adare Long-term Mooring (CALM); Collaborate Research:Modified Circumpolar Deep Water Intrusions as an Iron Source to the Summer Ross Sea Ecosystem", "projects": [{"proj_uid": "p0000843", "repository": "USAP-DC", "title": "Collaborate Research:Modified Circumpolar Deep Water Intrusions as an Iron Source to the Summer Ross Sea Ecosystem"}, {"proj_uid": "p0000838", "repository": "USAP-DC", "title": "Cape Adare Long-term Mooring (CALM)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.0, "title": "Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101 ", "uid": "601343", "west": 172.0}, {"awards": "0732467 Domack, Eugene; 0732651 Gordon, Arnold", "bounds_geometry": ["POLYGON((-68 -60,-66.7 -60,-65.4 -60,-64.1 -60,-62.8 -60,-61.5 -60,-60.2 -60,-58.9 -60,-57.6 -60,-56.3 -60,-55 -60,-55 -60.6,-55 -61.2,-55 -61.8,-55 -62.4,-55 -63,-55 -63.6,-55 -64.2,-55 -64.8,-55 -65.4,-55 -66,-56.3 -66,-57.6 -66,-58.9 -66,-60.2 -66,-61.5 -66,-62.8 -66,-64.1 -66,-65.4 -66,-66.7 -66,-68 -66,-68 -65.4,-68 -64.8,-68 -64.2,-68 -63.6,-68 -63,-68 -62.4,-68 -61.8,-68 -61.2,-68 -60.6,-68 -60))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a Sea-Bird SBE 9Plus CTD during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Temperature, Current Measurement, and Salinity data and were processed after data collection. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA), and funding was provided by NSF grant(s): ANT07-32467.", "east": -55.0, "geometry": ["POINT(-61.5 -63)"], "keywords": "Antarctica; Antarctic Peninsula; CTD; CTD Data; LARISSA; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer; Salinity; Temperature", "locations": "Larsen Ice Shelf; Antarctic Peninsula; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Huber, Bruce; Gordon, Arnold", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans; Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}, {"proj_uid": "p0000841", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -66.0, "title": "Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "uid": "601345", "west": -68.0}, {"awards": "0732651 Gordon, Arnold; 0732467 Domack, Eugene", "bounds_geometry": ["POLYGON((-68 -60,-66.7 -60,-65.4 -60,-64.1 -60,-62.8 -60,-61.5 -60,-60.2 -60,-58.9 -60,-57.6 -60,-56.3 -60,-55 -60,-55 -60.6,-55 -61.2,-55 -61.8,-55 -62.4,-55 -63,-55 -63.6,-55 -64.2,-55 -64.8,-55 -65.4,-55 -66,-56.3 -66,-57.6 -66,-58.9 -66,-60.2 -66,-61.5 -66,-62.8 -66,-64.1 -66,-65.4 -66,-66.7 -66,-68 -66,-68 -65.4,-68 -64.8,-68 -64.2,-68 -63.6,-68 -63,-68 -62.4,-68 -61.8,-68 -61.2,-68 -60.6,-68 -60))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a ship-based LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement data and were processed after data collection. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA), and funding was provided by NSF grant(s): ANT07-32467.", "east": -55.0, "geometry": ["POINT(-61.5 -63)"], "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; Larsen Ice Shelf; NBP1001; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "locations": "Antarctica; Larsen Ice Shelf; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Huber, Bruce; Gordon, Arnold", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans; Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences", "projects": [{"proj_uid": "p0000841", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences"}, {"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -66.0, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001", "uid": "601346", "west": -68.0}, {"awards": "0732651 Gordon, Arnold; 1141890 Huber, Bruce", "bounds_geometry": ["POLYGON((-62 -61,-61.3 -61,-60.6 -61,-59.9 -61,-59.2 -61,-58.5 -61,-57.8 -61,-57.1 -61,-56.4 -61,-55.7 -61,-55 -61,-55 -61.44,-55 -61.88,-55 -62.32,-55 -62.76,-55 -63.2,-55 -63.64,-55 -64.08,-55 -64.52,-55 -64.96,-55 -65.4,-55.7 -65.4,-56.4 -65.4,-57.1 -65.4,-57.8 -65.4,-58.5 -65.4,-59.2 -65.4,-59.9 -65.4,-60.6 -65.4,-61.3 -65.4,-62 -65.4,-62 -64.96,-62 -64.52,-62 -64.08,-62 -63.64,-62 -63.2,-62 -62.76,-62 -62.32,-62 -61.88,-62 -61.44,-62 -61))"], "date_created": "Thu, 25 Jun 2020 00:00:00 GMT", "description": "This data set was acquired with a ship-based LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP1203 conducted in 2012 (Chief Scientist: Dr. Maria Vernet; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement data and were processed after data collection. Funding was provided by NSF grant(s): ANT11-41890.", "east": -55.0, "geometry": ["POINT(-58.5 -63.2)"], "keywords": "Antarctica; Antarctic Peninsula; Current Measurements; LADCP; LARISSA; Larsen Ice Shelf; NBP1203; Oceans; Physical Oceanography; R/v Nathaniel B. Palmer", "locations": "Antarctic Peninsula; Larsen Ice Shelf; Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "persons": "Huber, Bruce; Gordon, Arnold", "project_titles": "Cape Adare Long Term Moorings (CALM): Analysis Phase; Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000495", "repository": "USAP-DC", "title": "Cape Adare Long Term Moorings (CALM): Analysis Phase"}, {"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.4, "title": "Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203", "uid": "601347", "west": -62.0}, {"awards": "1341669 DeMaster, David; 0732711 Smith, Craig", "bounds_geometry": ["POLYGON((-61 -64,-60.5 -64,-60 -64,-59.5 -64,-59 -64,-58.5 -64,-58 -64,-57.5 -64,-57 -64,-56.5 -64,-56 -64,-56 -64.1,-56 -64.2,-56 -64.3,-56 -64.4,-56 -64.5,-56 -64.6,-56 -64.7,-56 -64.8,-56 -64.9,-56 -65,-56.5 -65,-57 -65,-57.5 -65,-58 -65,-58.5 -65,-59 -65,-59.5 -65,-60 -65,-60.5 -65,-61 -65,-61 -64.9,-61 -64.8,-61 -64.7,-61 -64.6,-61 -64.5,-61 -64.4,-61 -64.3,-61 -64.2,-61 -64.1,-61 -64))"], "date_created": "Fri, 19 Jun 2020 00:00:00 GMT", "description": "This file contains Pb-210 data from bulk sediments beneath the collapsed Larsen A Ice Shelf and C-14 data from the organic fraction of the same samples.", "east": -56.0, "geometry": ["POINT(-58.5 -64.5)"], "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "locations": "Larsen Ice Shelf; Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "persons": "DeMaster, David; Taylor, Richard", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}, {"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "uid": "601336", "west": -61.0}, {"awards": "1143836 Leventer, Amy", "bounds_geometry": ["POLYGON((118 -65.5,118.3 -65.5,118.6 -65.5,118.9 -65.5,119.2 -65.5,119.5 -65.5,119.8 -65.5,120.1 -65.5,120.4 -65.5,120.7 -65.5,121 -65.5,121 -65.65,121 -65.8,121 -65.95,121 -66.1,121 -66.25,121 -66.4,121 -66.55,121 -66.7,121 -66.85,121 -67,120.7 -67,120.4 -67,120.1 -67,119.8 -67,119.5 -67,119.2 -67,118.9 -67,118.6 -67,118.3 -67,118 -67,118 -66.85,118 -66.7,118 -66.55,118 -66.4,118 -66.25,118 -66.1,118 -65.95,118 -65.8,118 -65.65,118 -65.5))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA).", "east": 121.0, "geometry": ["POINT(119.5 -66.25)"], "keywords": "Antarctica; Benthic Images; Camera; East Antarctica; Marine Geoscience; NBP1402; Photo/video; Photo/Video; R/v Nathaniel B. Palmer; Sabrina Coast; Totten Glacier; Video Data; Yoyo Camera", "locations": "Totten Glacier; Sabrina Coast; Antarctica; East Antarctica", "north": -65.5, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Leventer, Amy; Post, Alexandra; Blankenship, Donald D.; Domack, Eugene Walter; Gulick, Sean; Huber, Bruce; Orsi, Alejandro; Shevenell, Amelia", "project_titles": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics", "projects": [{"proj_uid": "p0000008", "repository": "USAP-DC", "title": "Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402", "uid": "601312", "west": 118.0}, {"awards": "0732711 Smith, Craig", "bounds_geometry": ["POLYGON((-69 -61,-67.6 -61,-66.2 -61,-64.8 -61,-63.4 -61,-62 -61,-60.6 -61,-59.2 -61,-57.8 -61,-56.4 -61,-55 -61,-55 -61.68,-55 -62.36,-55 -63.04,-55 -63.72,-55 -64.4,-55 -65.08,-55 -65.76,-55 -66.44,-55 -67.12,-55 -67.8,-56.4 -67.8,-57.8 -67.8,-59.2 -67.8,-60.6 -67.8,-62 -67.8,-63.4 -67.8,-64.8 -67.8,-66.2 -67.8,-67.6 -67.8,-69 -67.8,-69 -67.12,-69 -66.44,-69 -65.76,-69 -65.08,-69 -64.4,-69 -63.72,-69 -63.04,-69 -62.36,-69 -61.68,-69 -61))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA).", "east": -55.0, "geometry": ["POINT(-62 -64.4)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "locations": "Antarctica; Larsen Ice Shelf; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Smith, Craig", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "uid": "601305", "west": -69.0}, {"awards": "1341669 DeMaster, David; 0732711 Smith, Craig", "bounds_geometry": ["POLYGON((-61 -62,-60.4 -62,-59.8 -62,-59.2 -62,-58.6 -62,-58 -62,-57.4 -62,-56.8 -62,-56.2 -62,-55.6 -62,-55 -62,-55 -62.34,-55 -62.68,-55 -63.02,-55 -63.36,-55 -63.7,-55 -64.04,-55 -64.38,-55 -64.72,-55 -65.06,-55 -65.4,-55.6 -65.4,-56.2 -65.4,-56.8 -65.4,-57.4 -65.4,-58 -65.4,-58.6 -65.4,-59.2 -65.4,-59.8 -65.4,-60.4 -65.4,-61 -65.4,-61 -65.06,-61 -64.72,-61 -64.38,-61 -64.04,-61 -63.7,-61 -63.36,-61 -63.02,-61 -62.68,-61 -62.34,-61 -62))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems (LARISSA); and Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change.", "east": -55.0, "geometry": ["POINT(-58 -63.7)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "locations": "Antarctica; Antarctic Peninsula; Larsen Ice Shelf", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "persons": "Smith, Craig", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.; Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "projects": [{"proj_uid": "p0010135", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems."}, {"proj_uid": "p0000382", "repository": "USAP-DC", "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.4, "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "uid": "601304", "west": -61.0}, {"awards": "0732711 Smith, Craig", "bounds_geometry": ["POLYGON((-69 -61,-67.6 -61,-66.2 -61,-64.8 -61,-63.4 -61,-62 -61,-60.6 -61,-59.2 -61,-57.8 -61,-56.4 -61,-55 -61,-55 -61.68,-55 -62.36,-55 -63.04,-55 -63.72,-55 -64.4,-55 -65.08,-55 -65.76,-55 -66.44,-55 -67.12,-55 -67.8,-56.4 -67.8,-57.8 -67.8,-59.2 -67.8,-60.6 -67.8,-62 -67.8,-63.4 -67.8,-64.8 -67.8,-66.2 -67.8,-67.6 -67.8,-69 -67.8,-69 -67.12,-69 -66.44,-69 -65.76,-69 -65.08,-69 -64.4,-69 -63.72,-69 -63.04,-69 -62.36,-69 -61.68,-69 -61))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA).", "east": -55.0, "geometry": ["POINT(-62 -64.4)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; NBP1001; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "locations": "Larsen Ice Shelf; Larsen Ice Shelf; Antarctic Peninsula; Antarctica", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Smith, Craig", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -67.8, "title": "Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001", "uid": "601306", "west": -69.0}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": ["POINT(62.99 -67.13)"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This data set was acquired with a Jumbo Piston Core Sediment Sampler during R/V Nathaniel B. Palmer expedition NBP0101 conducted in 2001. This data file is of Microsoft Excel format and includes Quantitative Diatom Assemblage data; counts completed on randomly settled slides (Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12 (1), 171-178, doi:10.1007/BF00678093). These counts were completed at closely spaced intervals in NBP0101 JPC41, a jumbo piston core from Iceberg Alley, Mac.Robertson Shelf, East Antarctica", "east": 62.99, "geometry": ["POINT(62.99 -67.13)"], "keywords": "Antarctica; Biota; Diatom; East Antarctica; Mac. Robertson Shelf; Marine Geoscience; Microscope; NBP0101; Paleoclimate; Piston Corer; R/v Nathaniel B. Palmer; Sediment Core; Species Abundance", "locations": "Mac. Robertson Shelf; East Antarctica; Antarctica; Mac. Robertson Shelf", "north": -67.13, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Leventer, Amy", "project_titles": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "projects": [{"proj_uid": "p0000609", "repository": "USAP-DC", "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.13, "title": "Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "uid": "601307", "west": 62.99}, {"awards": "9978236 Bell, Robin; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Surface Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Surface Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Altimetry; Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Elevation; Ice Surface; Lake Vostok; Radar Echo Sounder; SOAR; Surface Elevation", "locations": "East Antarctica; Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}, {"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey surface elevation data", "uid": "601298", "west": 101.5}, {"awards": "9978236 Bell, Robin; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Processed Gravimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000). This data set was acquired with a Gravimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Free Air Anomaly Gravity data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work.", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Gravity; Airplane; Antarctica; East Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Lake Vostok; Potential Field; Solid Earth", "locations": "East Antarctica; Lake Vostok; Antarctica", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}, {"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey Gravity data", "uid": "601295", "west": 101.5}, {"awards": "9911617 Blankenship, Donald; 9978236 Bell, Robin", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Processed Magnetometer Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was acquired with a Magnetometer during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include IGRF Anomaly Magnetic data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Magnetic; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Lake Vostok; Magnetic; Magnetic Anomaly; Magnetometer; Potential Field; SOAR; Solid Earth", "locations": "Antarctica; East Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}, {"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok survey magnetic anomaly data", "uid": "601296", "west": 101.5}, {"awards": "9978236 Bell, Robin; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Processed IcePenetrating Radar Altimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was acquired with a IcePenetrating Radar Altimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Ice LayerThickness data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "locations": "East Antarctica; Lake Vostok; Antarctica", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}, {"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey ice thickness data", "uid": "601297", "west": 101.5}, {"awards": "9978236 Bell, Robin; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Bedrock Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Bedrock Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Laser Altimeters; Airborne Laser Altimetry; Airborne Radar; Airplane; Antarctica; Bed Elevation; Bedrock Elevation; Digital Elevation Model; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Lake Vostok; Radar; Radar Echo Sounder; SOAR", "locations": "Antarctica; Lake Vostok; East Antarctica", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}, {"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey bed elevation data", "uid": "601299", "west": 101.5}, {"awards": "9978236 Bell, Robin; 9911617 Blankenship, Donald", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Processed IcePenetrating Radar Altimeter Shot Data (version 2) acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was acquired with a IcePenetrating Radar Altimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of SEGY format and include Reflection Radar shot data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Lake Vostok; Navigation; Radar; SOAR; Subglacial Lakes", "locations": "East Antarctica; Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}, {"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey airborne radar data", "uid": "601300", "west": 101.5}, {"awards": "1341494 Gao, Yuan", "bounds_geometry": ["POINT(-64.05 -64.766)"], "date_created": "Thu, 20 Feb 2020 00:00:00 GMT", "description": "The dataset includes the particle size measurements of aerosol iron (Fe) through sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. New results include particle-size distributions of total Fe, labile Fe, and fractional Fe solubility in aerosols from these samples.", "east": -64.05, "geometry": ["POINT(-64.05 -64.766)"], "keywords": "Aerosol Concentration; Antarctica; Chemistry:gas; Chemistry:Gas; Iron; Palmer Station; Particle Size", "locations": "Palmer Station; Antarctica", "north": -64.766, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Gao, Yuan", "project_titles": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula", "projects": [{"proj_uid": "p0010082", "repository": "USAP-DC", "title": "Quantifying Atmospheric Iron Properties over West Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.766, "title": "Particle sizes of aerosol iron", "uid": "601257", "west": -64.05}, {"awards": "1443677 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -68,-175.85 -68,-171.7 -68,-167.55 -68,-163.4 -68,-159.25 -68,-155.1 -68,-150.95 -68,-146.8 -68,-142.65 -68,-138.5 -68,-138.5 -69.7,-138.5 -71.4,-138.5 -73.1,-138.5 -74.8,-138.5 -76.5,-138.5 -78.2,-138.5 -79.9,-138.5 -81.6,-138.5 -83.3,-138.5 -85,-142.65 -85,-146.8 -85,-150.95 -85,-155.1 -85,-159.25 -85,-163.4 -85,-167.55 -85,-171.7 -85,-175.85 -85,180 -85,177.4 -85,174.8 -85,172.2 -85,169.6 -85,167 -85,164.4 -85,161.8 -85,159.2 -85,156.6 -85,154 -85,154 -83.3,154 -81.6,154 -79.9,154 -78.2,154 -76.5,154 -74.8,154 -73.1,154 -71.4,154 -69.7,154 -68,156.6 -68,159.2 -68,161.8 -68,164.4 -68,167 -68,169.6 -68,172.2 -68,174.8 -68,177.4 -68,-180 -68))"], "date_created": "Fri, 14 Feb 2020 00:00:00 GMT", "description": "This dataset contains a regional ocean-ice shelf model used to support and interpret the ROSETTA-Ice field program. A gzipped tar file containing the regional ROMS model code, configuration files, input files, and selected output files. The model simulation covers three years following a ten year spin up. Two sets of output files from the simulation are included. The first is the complete model output (T,S,u,v, etc.) averaged over 30 day intervals. The second is selected variable (T, S, and passive dye tracers) averaged over one day. Included Matlab scripts process these daily passive dye files into water masses and make a simple movie of the time evolution of the water mass distributions. For futher information, see the Supplemental Information of the associated publication (Tinto et al., 2019).\r\n\r\n", "east": 154.0, "geometry": ["POINT(-172.25 -76.5)"], "keywords": "Antarctica; Basal Melt; Ice Shelf; Model Output; Ocean Circulation Model; Ross Ice Shelf; Ross Sea", "locations": "Ross Sea; Ross Ice Shelf; Antarctica; Ross Sea", "north": -68.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Springer, Scott; Howard, Susan L.; Padman, Laurence", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Ross Sea ocean model simulation used to support ROSETTA-Ice ", "uid": "601255", "west": -138.5}, {"awards": "1443534 Bell, Robin", "bounds_geometry": ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"], "date_created": "Fri, 10 Jan 2020 00:00:00 GMT", "description": "This dataset was produced for the manuscript \\\"Multi-decadal basal melt rates and structure of the Ross Ice Shelf, Antarctica using airborne ice penetrating radar\\\" by Das et al., 2020 in Journal of Geophysical Research-Earth Surface. It has total ice thickness, thickness of the LMI layer, strain induced thickness change, basal melt rates and the error estimate for basal melt rates.", "east": 161.0, "geometry": ["POINT(-174.5 -81.5)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Penetrating Radar; Ice-Shelf Basal Melting; Radar Echo Sounder; Radar Echo Sounding; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Das, Indrani; Padman, Laurence; Bell, Robin; Fricker, Helen; Hulbe, Christina; Siddoway, Christine; Dhakal, Tejendra; Frearson, Nicholas; Mosbeux, Cyrille; Cordero, Isabel; Siegfried, Matt; Tinto, Kirsty", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)", "projects": [{"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data", "uid": "601242", "west": -150.0}, {"awards": "1443677 Padman, Laurence; 9896041 Padman, Laurence", "bounds_geometry": ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"], "date_created": "Thu, 19 Dec 2019 00:00:00 GMT", "description": "CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry.\r\n\nModel type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). \nGrid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) \nConstituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. \nUnits: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). \nCoordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. \nCitation: \"\u2026 an update to the inverse model described by Padman et al. [2002].\" \n\nSee CATS2008_README.pdf for further details.\r", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "locations": "Sea Surface; Antarctica", "north": -40.231, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana", "project_titles": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE); Ocean Tides around Antarctica and in the Southern Ocean", "projects": [{"proj_uid": "p0010116", "repository": "USAP-DC", "title": "Ocean Tides around Antarctica and in the Southern Ocean"}, {"proj_uid": "p0010035", "repository": "USAP-DC", "title": "Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "uid": "601235", "west": -180.0}, {"awards": "1644073 DiTullio, Giacomo", "bounds_geometry": ["POLYGON((-180 -72.45,-179.354 -72.45,-178.708 -72.45,-178.062 -72.45,-177.416 -72.45,-176.77 -72.45,-176.124 -72.45,-175.478 -72.45,-174.832 -72.45,-174.186 -72.45,-173.54 -72.45,-173.54 -73.068,-173.54 -73.686,-173.54 -74.304,-173.54 -74.922,-173.54 -75.54,-173.54 -76.158,-173.54 -76.776,-173.54 -77.394,-173.54 -78.012,-173.54 -78.63,-174.186 -78.63,-174.832 -78.63,-175.478 -78.63,-176.124 -78.63,-176.77 -78.63,-177.416 -78.63,-178.062 -78.63,-178.708 -78.63,-179.354 -78.63,180 -78.63,179.818 -78.63,179.636 -78.63,179.454 -78.63,179.272 -78.63,179.09 -78.63,178.908 -78.63,178.726 -78.63,178.544 -78.63,178.362 -78.63,178.18 -78.63,178.18 -78.012,178.18 -77.394,178.18 -76.776,178.18 -76.158,178.18 -75.54,178.18 -74.922,178.18 -74.304,178.18 -73.686,178.18 -73.068,178.18 -72.45,178.362 -72.45,178.544 -72.45,178.726 -72.45,178.908 -72.45,179.09 -72.45,179.272 -72.45,179.454 -72.45,179.636 -72.45,179.818 -72.45,-180 -72.45))"], "date_created": "Wed, 13 Nov 2019 00:00:00 GMT", "description": "Biogenic silica concentrations collected from CTD casts during RVIB Nathaniel B. Palmer cruise in the Ross Sea, Southern Ocean from December 2017-February 2018", "east": -173.54, "geometry": ["POINT(-177.68 -75.54)"], "keywords": "Antarctica; Biogenic Silica; Biogenic Silica Concentrations; Chemistry:Water; Geochemistry; NBP1801; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Southern Ocean; Spectroscopy; Water Measurements; Water Samples", "locations": "Antarctica; Southern Ocean; Ross Sea", "north": -72.45, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ditullio, Giacomo; Schanke, Nicole", "project_titles": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "projects": [{"proj_uid": "p0010045", "repository": "USAP-DC", "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.63, "title": "Biogenic silica concentrations from the Ross Sea", "uid": "601225", "west": 178.18}, {"awards": "0732625 Leventer, Amy; 9714371 Leventer, Amy", "bounds_geometry": ["POLYGON((-64 -63,-63.1 -63,-62.2 -63,-61.3 -63,-60.4 -63,-59.5 -63,-58.6 -63,-57.7 -63,-56.8 -63,-55.9 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.9 -67,-56.8 -67,-57.7 -67,-58.6 -67,-59.5 -67,-60.4 -67,-61.3 -67,-62.2 -67,-63.1 -67,-64 -67,-64 -66.6,-64 -66.2,-64 -65.8,-64 -65.4,-64 -65,-64 -64.6,-64 -64.2,-64 -63.8,-64 -63.4,-64 -63))"], "date_created": "Mon, 16 Sep 2019 00:00:00 GMT", "description": "Diatom data from eastern side of Antarctic Peninsula:\r\n\r\nThis file includes quantitative diatom data for surface samples collected on numerous cruises to the eastern side of the Antarctic Peninsula, including NBP0003, NBP0107, LMG0502, NBP0603, and NBP1203. Samples were collected using a variety of tools including Smith-McIntyre Grab, Kasten Core and Jumbo Kasten Core. These data were generated by Amy Leventer (aleventer@colgate.edu) and undergraduate students at Colgate University. All questions regarding the specifics of these data should be directed to Amy Leventer. \r\n\r\nQuantitative diatom slides were prepared according to the settling technique of Scherer (1995). Cover slips were adhered to the slides using Norland Optical Adhesive #61. Slides were observed under Olympus CX31, BX50 and BX60, and Zeiss Primo Star light microscopes, using a 100X oil immersion objective for a total magnification of 1000X. A minimum of 400 valves or 10 transects was counted for each slide, depending on the absolute diatom abundance. Valves were only counted if \u003e50% complete. Diatoms were identified to species level when possible (Crosta et al., 2005; Armand et al., 2005; Cefarelli et al., 2010).\r\n\r\nArmand, L.K., X. Crosta, O. Romero, J. J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Paleogeography, Paleoclimatology, Paleoecology, 223, 93-126. \r\n\r\nCefarelli, A.O., M. E. Ferrario, G. O. Almandoz, A. G. Atencio, R. Akselman, M. Vernet (2010), Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance, Polar Biology, 33(2), 1463-1484. \r\n\r\nCrosta, X., O. Romero, L. K. Armand, J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 66-92. \r\n\r\nScherer, R. P., A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles, J. Paleolimnol., 12, 171\u2013178, 1995.\r\n", "east": -55.0, "geometry": ["POINT(-59.5 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Benthos; Biota; Diatom; Geology/Geophysics - Other; LMG0502; Marine Geoscience; Marine Sediments; Microscope; NBP0003; NBP0107; NBP0603; NBP1203; R/v Nathaniel B. Palmer; Surface Sediment", "locations": "Antarctica; Antarctic Peninsula", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Ocean and Atmospheric Sciences", "persons": "Leventer, Amy", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -67.0, "title": "Easten Antarctic Peninsula Surface Sediment Diatom Data", "uid": "601211", "west": -64.0}, {"awards": "1643901 Zhang, Weifeng", "bounds_geometry": ["POLYGON((55 -62,65 -62,75 -62,85 -62,95 -62,105 -62,115 -62,125 -62,135 -62,145 -62,155 -62,155 -62.8,155 -63.6,155 -64.4,155 -65.2,155 -66,155 -66.8,155 -67.6,155 -68.4,155 -69.2,155 -70,145 -70,135 -70,125 -70,115 -70,105 -70,95 -70,85 -70,75 -70,65 -70,55 -70,55 -69.2,55 -68.4,55 -67.6,55 -66.8,55 -66,55 -65.2,55 -64.4,55 -63.6,55 -62.8,55 -62))"], "date_created": "Tue, 10 Sep 2019 00:00:00 GMT", "description": "The emperor penguin, an iconic species threatened by projected sea-ice loss in Antarctica, has long been considered to forage at the fast ice edge, presumably relying on large/yearly-persistent polynyas as their main foraging habitat during the breeding season. Using newly developed fine-scale sea-icescape data and historical penguin tracking data, this study for the first time suggests the importance of less-recognized small openings, including cracks, flaw leads and ephemeral short-term polynyas, as foraging habitats for emperor penguins. The tracking data retrieved from 47 emperor penguins in two different colonies in East Antarctica suggest that those penguins spent 23% of their time in ephemeral polynyas and did not use the large/yearly-persistent, well-studied polynyas, even they occur much more regularly with predictable locations. These findings challenge our previous understanding of emperor penguin breeding habitats, highlighting the need for incorporating fine-scale seascape features when assessing the population persistence in a rapidly changing polar environment.", "east": 155.0, "geometry": ["POINT(105 -66)"], "keywords": "Animal Behavior Observation; Antarctica; Biota; East Antarctica; GPS; Oceans; Penguin; Southern Ocean", "locations": "Southern Ocean; East Antarctica; Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Labrousse, Sara; Fraser, Alexander; Tamura, Takeshi; Pinaud, David; Wienecke, Barbara; Kirkwood, Roger; Ropert-Coudert, Yan; Resinger, Ryan; Jonsen, Ian; Porter-Smith, Rick; Barbraud, Christophe; Bost, Charles-Andr\u00e9; Ji, Rubao; Jenouvrier, Stephanie; Sumner, Michael", "project_titles": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability", "projects": [{"proj_uid": "p0010044", "repository": "USAP-DC", "title": "Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica", "uid": "601209", "west": 55.0}, {"awards": "1644073 DiTullio, Giacomo", "bounds_geometry": ["POLYGON((-180 -72.448188333,-179.35369 -72.448188333,-178.70738 -72.448188333,-178.06107 -72.448188333,-177.41476 -72.448188333,-176.76845 -72.448188333,-176.12214 -72.448188333,-175.47583 -72.448188333,-174.82952 -72.448188333,-174.18321 -72.448188333,-173.5369 -72.448188333,-173.5369 -73.0663094997,-173.5369 -73.6844306664,-173.5369 -74.3025518331,-173.5369 -74.9206729998,-173.5369 -75.5387941665,-173.5369 -76.1569153332,-173.5369 -76.7750364999,-173.5369 -77.3931576666,-173.5369 -78.0112788333,-173.5369 -78.6294,-174.18321 -78.6294,-174.82952 -78.6294,-175.47583 -78.6294,-176.12214 -78.6294,-176.76845 -78.6294,-177.41476 -78.6294,-178.06107 -78.6294,-178.70738 -78.6294,-179.35369 -78.6294,180 -78.6294,179.818135 -78.6294,179.63627 -78.6294,179.454405 -78.6294,179.27254 -78.6294,179.090675 -78.6294,178.90881 -78.6294,178.726945 -78.6294,178.54508 -78.6294,178.363215 -78.6294,178.18135 -78.6294,178.18135 -78.0112788333,178.18135 -77.3931576666,178.18135 -76.7750364999,178.18135 -76.1569153332,178.18135 -75.5387941665,178.18135 -74.9206729998,178.18135 -74.3025518331,178.18135 -73.6844306664,178.18135 -73.0663094997,178.18135 -72.448188333,178.363215 -72.448188333,178.54508 -72.448188333,178.726945 -72.448188333,178.90881 -72.448188333,179.090675 -72.448188333,179.27254 -72.448188333,179.454405 -72.448188333,179.63627 -72.448188333,179.818135 -72.448188333,-180 -72.448188333))"], "date_created": "Tue, 27 Aug 2019 00:00:00 GMT", "description": "Algal pigment concentrations as measured by HPLC from RV/IB Nathaniel B. Palmer cruise in the Ross Sea from 2017-2018", "east": -173.5369, "geometry": ["POINT(-177.677775 -75.5387941665)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chlorophyll; Chromatography; Liquid Chromatograph; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Seawater Measurements; Southern Ocean; Water Measurements; Water Samples", "locations": "Ross Sea; Southern Ocean; Antarctica", "north": -72.448188333, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ditullio, Giacomo", "project_titles": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "projects": [{"proj_uid": "p0010045", "repository": "USAP-DC", "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.6294, "title": "Algal pigment concentrations from the Ross Sea", "uid": "601205", "west": 178.18135}, {"awards": "1246378 Shevenell, Amelia", "bounds_geometry": ["POLYGON((70 -68,70.5 -68,71 -68,71.5 -68,72 -68,72.5 -68,73 -68,73.5 -68,74 -68,74.5 -68,75 -68,75 -68.2,75 -68.4,75 -68.6,75 -68.8,75 -69,75 -69.2,75 -69.4,75 -69.6,75 -69.8,75 -70,74.5 -70,74 -70,73.5 -70,73 -70,72.5 -70,72 -70,71.5 -70,71 -70,70.5 -70,70 -70,70 -69.8,70 -69.6,70 -69.4,70 -69.2,70 -69,70 -68.8,70 -68.6,70 -68.4,70 -68.2,70 -68))"], "date_created": "Fri, 10 May 2019 00:00:00 GMT", "description": "This dataset contains 14C data, magnetic susceptibility, relative grain size percentages, 10Be", "east": 75.0, "geometry": ["POINT(72.5 -69)"], "keywords": "Antarctica; Be-10; Glaciers/ice Sheet; Glaciers/Ice Sheet; Grain Size; Late Quaternary; Magnetic Susceptibility; Mass Spectrometry; NBP0101; Paleoenvironment; Prydz Bay; Radiocarbon; R/v Nathaniel B. Palmer; Sediment; Sediment Core; Sediment Core Data", "locations": "Antarctica; Prydz Bay", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Shevenell, Amelia", "project_titles": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica", "projects": [{"proj_uid": "p0000381", "repository": "USAP-DC", "title": "Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Geochemical and sedimentologic data from NBP01-01 JPC-34", "uid": "601180", "west": 70.0}, {"awards": "1144176 Lyons, W. Berry", "bounds_geometry": ["POLYGON((162.250099 -77.719928,162.2519358 -77.719928,162.2537726 -77.719928,162.2556094 -77.719928,162.2574462 -77.719928,162.259283 -77.719928,162.2611198 -77.719928,162.2629566 -77.719928,162.2647934 -77.719928,162.2666302 -77.719928,162.268467 -77.719928,162.268467 -77.7201251,162.268467 -77.7203222,162.268467 -77.7205193,162.268467 -77.7207164,162.268467 -77.7209135,162.268467 -77.7211106,162.268467 -77.7213077,162.268467 -77.7215048,162.268467 -77.7217019,162.268467 -77.721899,162.2666302 -77.721899,162.2647934 -77.721899,162.2629566 -77.721899,162.2611198 -77.721899,162.259283 -77.721899,162.2574462 -77.721899,162.2556094 -77.721899,162.2537726 -77.721899,162.2519358 -77.721899,162.250099 -77.721899,162.250099 -77.7217019,162.250099 -77.7215048,162.250099 -77.7213077,162.250099 -77.7211106,162.250099 -77.7209135,162.250099 -77.7207164,162.250099 -77.7205193,162.250099 -77.7203222,162.250099 -77.7201251,162.250099 -77.719928))"], "date_created": "Tue, 07 May 2019 00:00:00 GMT", "description": "Blood Falls is a hypersaline, iron\u2010rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean\u2010entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including \u03b4D and \u03b418O of water, \u03b434S and \u03b418O of sulfate, 234U, 238U, \u03b411B, 87Sr/86Sr, and \u03b481Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted as end\u2010member brines.", "east": 162.268467, "geometry": ["POINT(162.259283 -77.7209135)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Subglacial Brine", "locations": "Antarctica", "north": -77.719928, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Lyons, W. Berry; Gardner, Christopher B.", "project_titles": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys", "projects": [{"proj_uid": "p0000002", "repository": "USAP-DC", "title": "Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.721899, "title": "The Geochemistry of englacial brine from Taylor Glacier, Antarctica.", "uid": "601179", "west": 162.250099}, {"awards": "1822289 Vernet, Maria", "bounds_geometry": ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"], "date_created": "Mon, 29 Apr 2019 00:00:00 GMT", "description": "Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. \r\n\r\n\r\n\r\nThis RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored.", "east": -55.020546, "geometry": ["POINT(-57.2113475 -63.396513)"], "keywords": "Antarctica; Biota; Chlorophyll; CTD; Glacier; Iceberg; Ice Shelf; Larsen C Ice Shelf; Oceans; Physical Oceanography; Phytoplankton; Sample Location; Sea Ice; Southern Ocean; Station List", "locations": "Larsen C Ice Shelf; Antarctica; Southern Ocean", "north": -62.131908, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pan, B. Jack; Vernet, Maria", "project_titles": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\"", "projects": [{"proj_uid": "p0010029", "repository": "USAP-DC", "title": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\""}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.661118, "title": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C", "uid": "601178", "west": -59.402149}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": ["POLYGON((57 -66,57.3 -66,57.6 -66,57.9 -66,58.2 -66,58.5 -66,58.8 -66,59.1 -66,59.4 -66,59.7 -66,60 -66,60 -66.1,60 -66.2,60 -66.3,60 -66.4,60 -66.5,60 -66.6,60 -66.7,60 -66.8,60 -66.9,60 -67,59.7 -67,59.4 -67,59.1 -67,58.8 -67,58.5 -67,58.2 -67,57.9 -67,57.6 -67,57.3 -67,57 -67,57 -66.9,57 -66.8,57 -66.7,57 -66.6,57 -66.5,57 -66.4,57 -66.3,57 -66.2,57 -66.1,57 -66))"], "date_created": "Thu, 25 Apr 2019 00:00:00 GMT", "description": "This data set describes diatom assemblages and abundances from two sediment cores retrieved from Edward VIII Gulf. The assemblages are used to reconstruct paleoceanographic conditions throughout the Holocene.", "east": 60.0, "geometry": ["POINT(58.5 -66.5)"], "keywords": "Antarctica; Biota; Diatom; East Antarctica; Microscopy; NBP0101; Oceans; Paleoceanography; Paleoclimate; R/v Nathaniel B. Palmer; Sediment Corer", "locations": "East Antarctica; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Leventer, Amy", "project_titles": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "projects": [{"proj_uid": "p0000609", "repository": "USAP-DC", "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica", "uid": "601177", "west": 57.0}, {"awards": "1246407 Jenouvrier, Stephanie", "bounds_geometry": ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"], "date_created": "Mon, 03 Dec 2018 00:00:00 GMT", "description": "1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics.\r\n2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance.\r\n3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success.\r\n4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics.", "east": 70.75, "geometry": ["POINT(69.625 -49.25)"], "keywords": "Albatross; Animal Behavior Observation; Antarctica; Biota; Birds; Black-Browed Albatross (thalassarche Melanophris); Field Investigations; Foraging; Kerguelen Island; Ocean Island/plateau; Ocean Island/Plateau; Southern Ocean", "locations": "Antarctica; Southern Ocean; Kerguelen Island", "north": -48.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Jenouvrier, Stephanie", "project_titles": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change", "projects": [{"proj_uid": "p0010002", "repository": "USAP-DC", "title": "Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -50.0, "title": "Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird", "uid": "601140", "west": 68.5}, {"awards": "1246463 Burns, Jennifer", "bounds_geometry": null, "date_created": "Mon, 22 Oct 2018 00:00:00 GMT", "description": "Animals can respond to dynamic environments through phenological plasticity of life history events; however, changes in one part of the annual cycle can diminish the success of subsequent life history events. Our aims were to determine the associations between reproduction and moult phenology across years and to quantify phenological plasticity across varying environmental conditions. We conducted demographic surveys of 4,252 flipper-tagged Weddell seals (Leptonychotes weddellii) in the Ross Sea, Antarctica during four austral summers. At each sighting, seals were assigned a moult code based on the visible presence of new fur, and the start date of each animal\u2019s moult was back-calculated. This dataset contains data on pupping and moult timing for each animal used to address this question.", "east": null, "geometry": null, "keywords": "Antarctica; B-292-M; Biota; Ross Sea; Seals; Southern Ocean; Weddell Seal", "locations": "Southern Ocean; Ross Sea; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Burns, Jennifer", "project_titles": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals", "projects": [{"proj_uid": "p0000229", "repository": "USAP-DC", "title": "The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Weddell Seal Molt Phenology Dataset", "uid": "601131", "west": null}, {"awards": "1640481 Rotella, Jay; 1141326 Rotella, Jay", "bounds_geometry": ["POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))"], "date_created": "Tue, 02 Oct 2018 00:00:00 GMT", "description": "The Access database contains information for 3 types of data on Weddell seals for the period 1969-2017. (1) Mark-recapture Data with 278,723 resighting records for 25,589 different individuals tagged in and around the McMurdo Sound area, as well as 740 records from 162 seals tagged at White Island; (2) Mass Dynamics Data contains 5,737 physical masses and 1,271 photographic records and measurements that include the date, ID number, sex, age class, weight (if successfully collected), and perspectives from which photographs were collected for each sampling occurrence; and (3) Research Procedures Data contains 1,005 records of handling and research procedures conducted on Erebus Bay Weddell seals by various research teams in recent years.", "east": 170.0, "geometry": ["POINT(166 -76.9)"], "keywords": "Antarctica; Biota; Sea Ice", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Rotella, Jay", "project_titles": "The Demographic Consequences of Environmental Variability and Individual Heterogeneity in Life-history Tactics of a Long-lived Antarctic Marine Predator", "projects": [{"proj_uid": "p0000299", "repository": "USAP-DC", "title": "The Demographic Consequences of Environmental Variability and Individual Heterogeneity in Life-history Tactics of a Long-lived Antarctic Marine Predator"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.8, "title": "Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season", "uid": "601125", "west": 162.0}, {"awards": "1142052 MacPhee, Ross", "bounds_geometry": ["POINT(-56.62 -64.23)"], "date_created": "Mon, 13 Aug 2018 00:00:00 GMT", "description": "Fossils collected on Antarctic expeditions between 2008 and 2016 that have been accessioned into the collection of the Paleontology Division, AMNH ", "east": -56.62, "geometry": ["POINT(-56.62 -64.23)"], "keywords": "Antarctica; Biota; Penguin; Seymour Island; Vertebrates", "locations": "Antarctica; Seymour Island", "north": -64.23, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "MacPhee, Ross", "project_titles": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana", "projects": [{"proj_uid": "p0000380", "repository": "USAP-DC", "title": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.23, "title": "2008-2016 AMNH accessioned vertebrate fossils from Seymour Island ", "uid": "601112", "west": -56.62}, {"awards": "1245899 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"], "date_created": "Tue, 16 Jan 2018 00:00:00 GMT", "description": "Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene.", "east": 240.0, "geometry": ["POINT(-160 -77.5)"], "keywords": "Antarctica; Climate Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model; McMurdo; Paleoclimate; Ross Sea", "locations": "Ross Sea; McMurdo; Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Kowalewski, Douglas", "project_titles": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound", "projects": [{"proj_uid": "p0000391", "repository": "USAP-DC", "title": "Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Region Climate Model Output Plio-Pleistocene", "uid": "601080", "west": 160.0}, {"awards": "0732917 McCormick, Michael", "bounds_geometry": ["POLYGON((299.4 -63.1,299.92 -63.1,300.44 -63.1,300.96 -63.1,301.48 -63.1,302 -63.1,302.52 -63.1,303.04 -63.1,303.56 -63.1,304.08 -63.1,304.6 -63.1,304.6 -63.29,304.6 -63.48,304.6 -63.67,304.6 -63.86,304.6 -64.05,304.6 -64.24,304.6 -64.43,304.6 -64.62,304.6 -64.81,304.6 -65,304.08 -65,303.56 -65,303.04 -65,302.52 -65,302 -65,301.48 -65,300.96 -65,300.44 -65,299.92 -65,299.4 -65,299.4 -64.81,299.4 -64.62,299.4 -64.43,299.4 -64.24,299.4 -64.05,299.4 -63.86,299.4 -63.67,299.4 -63.48,299.4 -63.29,299.4 -63.1))"], "date_created": "Sun, 17 Dec 2017 00:00:00 GMT", "description": "Ice-shelf loss along the east coast of the Antarctic Peninsula over recent decades has brought new sources of carbon and energy to the marine benthos likely affecting sediment geochemistry and microbial community composition. To better understand the long-term effects of ice-shelf loss on benthic microbial communities, we conducted a five-station survey along a 160 km transect following the historic path of retreat of the Larsen A ice shelf. All microbial community sequence data is publicly available through the Metagenomics Analysis Server at Argonne National Laboratory (MG-RAST). The project title is \"Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula\". A key word search using terms from this title at the MG-RAST portal (http://metagenomics.anl.gov/) will return the complete sample list. This submitted dataset summarizes the measured environmental parameters for these same samples (lat., long., water depth, sediment depth, pH, alkalinity, dissolved oxygen, silicate, phosphate, nitrate, nitrite, and ammonium).", "east": 304.6, "geometry": ["POINT(-58 -64.05)"], "keywords": "Antarctica; Antarctic Peninsula; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; LARISSA; Microbiology", "locations": "Antarctica; Antarctic Peninsula", "north": -63.1, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "McCormick, Michael", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems.", "projects": [{"proj_uid": "p0010135", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula", "uid": "601073", "west": 299.4}, {"awards": "0839075 Priscu, John", "bounds_geometry": ["POINT(-112 -79)"], "date_created": "Tue, 12 Dec 2017 00:00:00 GMT", "description": "This data set includes raw concentration of prokaryotic cells for the WAIS Divide deep core, WDC06A, from 1,764 m to 2,709 m. Data were collected by a method that combines acquisition of discrete samples using a continuous ice-core melting system (McConnell et al., 2002) coupled with flow cytometry of DNA-stained samples. The method is described in detail in Santibanez et al., 2016. \r\r\nWe present the first long-term, highly resolved prokaryotic cell concentration record obtained from a polar ice core. This record, obtained from the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core, spanned from the Last Glacial Maximum (LGM) to the early Holocene (EH) and showed distinct fluctuations in prokaryotic cell concentration coincident with major climatic states. This record provided strong evidence that airborne prokaryotic cell deposition differed during the LGM, LDG and EH, and that these changes in cell densities could be explained by different environmental conditions during each of these climatic periods. Our observations provide the first ice core time-series evidence for a prokaryotic response to long-term climatic and environmental processes.", "east": -112.0, "geometry": ["POINT(-112 -79)"], "keywords": "Antarctica; Biota; Cell Counts; Glaciology; Microbiology; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Santibanez, Pamela; Priscu, John", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.0, "title": "Prokaryotic cell concentration record from the WAIS Divide ice core", "uid": "601072", "west": -112.0}, {"awards": "1141820 Clarke, Julia; 1142129 Lamanna, Matthew", "bounds_geometry": ["POLYGON((-60 -63.5,-59.6 -63.5,-59.2 -63.5,-58.8 -63.5,-58.4 -63.5,-58 -63.5,-57.6 -63.5,-57.2 -63.5,-56.8 -63.5,-56.4 -63.5,-56 -63.5,-56 -63.7,-56 -63.9,-56 -64.1,-56 -64.3,-56 -64.5,-56 -64.7,-56 -64.9,-56 -65.1,-56 -65.3,-56 -65.5,-56.4 -65.5,-56.8 -65.5,-57.2 -65.5,-57.6 -65.5,-58 -65.5,-58.4 -65.5,-58.8 -65.5,-59.2 -65.5,-59.6 -65.5,-60 -65.5,-60 -65.3,-60 -65.1,-60 -64.9,-60 -64.7,-60 -64.5,-60 -64.3,-60 -64.1,-60 -63.9,-60 -63.7,-60 -63.5))"], "date_created": "Fri, 30 Jun 2017 00:00:00 GMT", "description": "We provide three-dimensional digital reconstructions, generated from computed tomographic (CT) data, of the vocal organs of the Antarctic Cretaceous bird Vegavis iaai (MACN-PV 19.748) and the North American Paleogene bird Presbyornis sp. (USNM PAL 617185). These were published as online Supplementary Information for the following paper: \n\nClarke, J.A., Chatterjee, S., Li, Z., Riede, T., Agnolin, F., Goller, F., Isasi, M.P., Martinioni, D.R., Mussel, F.J. and Novas, F.E., 2016. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538: 502-505.", "east": -56.0, "geometry": ["POINT(-58 -64.5)"], "keywords": "Antarctica; Biota; Birds", "locations": "Antarctica", "north": -63.5, "nsf_funding_programs": null, "persons": "Lamanna, Matthew; Salisbury, Steven; Clarke, Julia", "project_titles": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana", "projects": [{"proj_uid": "p0000380", "repository": "USAP-DC", "title": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.5, "title": "3D digital reconstructions of vocal organs of Antarctic Cretaceous bird Vegavis and Paleogene bird Presbyornis", "uid": "601035", "west": -60.0}, {"awards": "1141993 Rich, Jeremy", "bounds_geometry": ["POINT(-64.05 -64.77)"], "date_created": "Mon, 12 Jun 2017 00:00:00 GMT", "description": "From winter to late summer during the 2013-2014 season at Palmer Station, Antarctica, we collected weekly to bi-weekly samples of the seawater intake to measure changes in bacterial community composition, based on sequencing 16S rRNA genes. Along with the sequences, we collected data on environmental parameters in the samples (chlorophyll a, bacterial production, salinity, nutrients, bacterial cell numbers, and particulate organic carbon and nitrogen).", "east": -64.05, "geometry": ["POINT(-64.05 -64.77)"], "keywords": "Antarctica; Antarctic Peninsula; Bacteria; Biota; Genetic; Geochemistry; Palmer Station; Sample/collection Description; Sample/Collection Description; Sea Water; Southern Ocean", "locations": "Antarctica; Southern Ocean; Palmer Station; Antarctic Peninsula", "north": -64.77, "nsf_funding_programs": null, "persons": "Rich, Jeremy", "project_titles": "Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula", "projects": [{"proj_uid": "p0000409", "repository": "USAP-DC", "title": "Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula", "uid": "601032", "west": -64.05}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": null, "date_created": "Tue, 10 Jan 2017 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Marguerite Bay; Antarctica; Antarctic Peninsula; Southern Ocean; Anvers Island", "north": null, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600385", "west": null}, {"awards": "1142083 Kyle, Philip", "bounds_geometry": ["POINT(167.15334 -77.529724)"], "date_created": "Sat, 03 Dec 2016 00:00:00 GMT", "description": "Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data.\n An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers.\nThis dataset contains video taken from a series of cameras that were installed at Shackleton\u0027s Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter.", "east": 167.15334, "geometry": ["POINT(167.15334 -77.529724)"], "keywords": "Antarctica; Cable Observatory; Geology/Geophysics - Other; Infrared Imagery; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Island; Solid Earth; Thermal Camera; Volcano", "locations": "Antarctica; Mount Erebus; Ross Island", "north": -77.529724, "nsf_funding_programs": null, "persons": "Oppenheimer, Clive; Kyle, Philip", "project_titles": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "projects": [{"proj_uid": "p0000383", "repository": "USAP-DC", "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": -77.529724, "title": "Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)", "uid": "600381", "west": 167.15334}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": ["POINT(161.5 -77.5)"], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\nThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": ["POINT(161.5 -77.5)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -77.5, "nsf_funding_programs": null, "persons": "Willenbring, Jane", "project_titles": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "projects": [{"proj_uid": "p0000429", "repository": "USAP-DC", "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "600379", "west": 161.5}, {"awards": "0838817 Kyle, Philip", "bounds_geometry": null, "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica\u0027s most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth\u0027s active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus\u0027 seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": null, "geometry": null, "keywords": "Antarctica; Cable Observatory; Intracontinental Magmatism; IntraContinental Magmatism; MEVO; Mount Erebus; Photo/video; Photo/Video; Ross Sea; Solid Earth; Volcano", "locations": "Ross Sea; Antarctica; Mount Erebus", "north": null, "nsf_funding_programs": null, "persons": "Kyle, Philip", "project_titles": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "projects": [{"proj_uid": "p0000488", "repository": "USAP-DC", "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "MEVO", "south": null, "title": "Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance", "uid": "600153", "west": null}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": ["POINT(-82.425 -64.21)"], "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Antarctica; Marguerite Bay; Anvers Island; Southern Ocean; Antarctic Peninsula", "north": -49.98, "nsf_funding_programs": null, "persons": "Aronson, Richard", "project_titles": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "projects": [{"proj_uid": "p0000303", "repository": "USAP-DC", "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.44, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "600171", "west": -111.18}, {"awards": "0839059 Powell, Ross", "bounds_geometry": ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -168.6, "geometry": ["POINT(-168.65 -82.35)"], "keywords": "Antarctica; Biota; Diatom; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Whillans; Paleoclimate; Ross Sea; Southern Ocean; Subglacial Lake; WISSARD", "locations": "Antarctica; Southern Ocean; Lake Whillans; Ross Sea", "north": -82.3, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.4, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)", "uid": "600154", "west": -168.7}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Taylor Glacier; Antarctica; Transantarctic Mountains", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": ["POINT(175 -86)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time?\nThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": ["POINT(175 -86)"], "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "locations": "Beardmore Glacier; Antarctica; Transantarctic Mountains", "north": -86.0, "nsf_funding_programs": null, "persons": "Hasiotis, Stephen", "project_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0000423", "repository": "USAP-DC", "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "600156", "west": 175.0}, {"awards": "0839107 Powell, Ross", "bounds_geometry": ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -163.5, "geometry": ["POINT(-163.6 -84.25)"], "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "locations": "Antarctica; Southern Ocean", "north": -84.0, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "uid": "600155", "west": -163.7}, {"awards": "0944659 Kiene, Ronald", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Ross Sea", "locations": "Antarctica; Ross Sea", "north": -68.0, "nsf_funding_programs": null, "persons": "Kiene, Ronald", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600150", "west": -160.0}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction.\n\nThe PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student\u0027s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \u0027Explore Your World\u0027 website with images and findings from their field season.\n", "east": 172.4, "geometry": ["POINT(167.405 -84.685)"], "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "locations": "Transantarctic Mountains; Antarctica", "north": -84.27, "nsf_funding_programs": null, "persons": "Sidor, Christian", "project_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "projects": [{"proj_uid": "p0000418", "repository": "USAP-DC", "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "600144", "west": 162.41}, {"awards": "1343649 Levy, Joseph", "bounds_geometry": ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics.\n\nNon-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.\n", "east": 164.225, "geometry": ["POINT(163.5385 -77.82215)"], "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "locations": "Dry Valleys; Antarctica", "north": -77.6111, "nsf_funding_programs": null, "persons": "Levy, Joseph", "project_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "projects": [{"proj_uid": "p0000407", "repository": "USAP-DC", "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "600139", "west": 162.852}, {"awards": "1332492 Lohmann, Rainer", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants.\n\nThe broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Animal Tracking; Antarctica; Antarctic Peninsula; Atmosphere; Biota; Chemistry:fluid; Chemistry:Fluid; Human Dimensions; McMurdo Sound; Oceans; Palmer Station; Pollution; Ross Sea; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean; Weddell Sea", "locations": "Antarctica; Antarctic Peninsula; Weddell Sea; McMurdo Sound; Palmer Station; Ross Sea; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Lohmann, Rainer", "project_titles": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB", "projects": [{"proj_uid": "p0000344", "repository": "USAP-DC", "title": "RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web", "uid": "600138", "west": -180.0}, {"awards": "1043485 Curtice, Josh", "bounds_geometry": ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.\n", "east": 169.248, "geometry": ["POINT(166.324 -77.908945)"], "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "locations": "Antarctica; Southern Ocean; Ross Sea; WAIS", "north": -77.47989, "nsf_funding_programs": null, "persons": "Kurz, Mark D.; Curtice, Josh", "project_titles": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "projects": [{"proj_uid": "p0000194", "repository": "USAP-DC", "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.338, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "600123", "west": 163.4}, {"awards": "0636731 Bender, Michael", "bounds_geometry": ["POINT(160.35 -77.87)"], "date_created": "Wed, 26 Nov 2014 00:00:00 GMT", "description": "These data describe the analyses of the elemental and isotopic composition of O2, N2, and Ar and total air content made on the trapped air from three shallow ice cores (\u003c34m depth) collected during the 2009 field campaign to Mullins Valley of the Dry Valleys, Antarctica.", "east": 160.35, "geometry": ["POINT(160.35 -77.87)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Radar Interferometer", "locations": "Dry Valleys; Antarctica", "north": -77.87, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael; Yau, Audrey M.", "project_titles": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "projects": [{"proj_uid": "p0000039", "repository": "USAP-DC", "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87, "title": "Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica", "uid": "609597", "west": 160.35}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"], "date_created": "Tue, 29 Apr 2014 00:00:00 GMT", "description": "This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability.", "east": -55.0, "geometry": ["POINT(-59 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "locations": "Antarctic Peninsula; Larsen B Ice Shelf; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacAyeal, Douglas", "project_titles": "Model Studies of Surface Water Behavior on Ice Shelves", "projects": [{"proj_uid": "p0000052", "repository": "USAP-DC", "title": "Model Studies of Surface Water Behavior on Ice Shelves"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Standing Water Depth on Larsen B Ice Shelf", "uid": "609584", "west": -63.0}, {"awards": "0838937 Costa, Daniel", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.\n", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean; Antarctica", "north": -75.0, "nsf_funding_programs": null, "persons": "Costa, Daniel", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600025", "west": 162.0}, {"awards": "1043740 Lenczewski, Melissa", "bounds_geometry": ["POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research.\nThis proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research.\n", "east": 168.0, "geometry": ["POINT(166.5 -78)"], "keywords": "Andrill; Antarctica; Chemistry:fluid; Chemistry:Fluid; Chemistry:rock; Chemistry:Rock; Drilling Fluid; Geochemistry; McMurdo; Ross Sea; Sediment Core", "locations": "McMurdo; Antarctica; Ross Sea", "north": -77.5, "nsf_funding_programs": null, "persons": "Lenczewski, Melissa", "project_titles": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "projects": [{"proj_uid": "p0000468", "repository": "USAP-DC", "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.5, "title": "Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)", "uid": "600129", "west": 165.0}, {"awards": "1139739 Hansen, Samantha", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent.\n\nBroader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups.\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Geology/Geophysics - Other; Lithosphere; Seismic Tomography; Solid Earth", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "projects": [{"proj_uid": "p0000354", "repository": "USAP-DC", "title": "New Approach to Investigate the Seismic Velocity Structure beneath Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica", "uid": "600132", "west": -180.0}, {"awards": "1354231 Kowalewski, Douglas", "bounds_geometry": ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award.\n", "east": -120.0, "geometry": ["POINT(-140 -77.5)"], "keywords": "Antarctica; Atmosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Model Data; Paleoclimate; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -70.0, "nsf_funding_programs": null, "persons": "Kowalewski, Douglas", "project_titles": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "projects": [{"proj_uid": "p0000463", "repository": "USAP-DC", "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains", "uid": "600140", "west": -160.0}, {"awards": "0838996 Hollibaugh, James", "bounds_geometry": ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the \u0027winter water\u0027 (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the \u0027circumpolar deep water\u0027 (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP \u0027grows in\u0027 during spring and summer after this water mass forms.\n\nThe study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.\u0027s laboratory over the summer.\n", "east": -64.0, "geometry": ["POINT(-71.5 -67)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; LMG1006; LMG1101; LTER Palmer Station; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -63.0, "nsf_funding_programs": null, "persons": "Hollibaugh, James T.", "project_titles": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "projects": [{"proj_uid": "p0000359", "repository": "USAP-DC", "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula", "uid": "600105", "west": -79.0}, {"awards": "0732983 Vernet, Maria", "bounds_geometry": ["POLYGON((-66 -62,-65.3 -62,-64.6 -62,-63.9 -62,-63.2 -62,-62.5 -62,-61.8 -62,-61.1 -62,-60.4 -62,-59.7 -62,-59 -62,-59 -62.8,-59 -63.6,-59 -64.4,-59 -65.2,-59 -66,-59 -66.8,-59 -67.6,-59 -68.4,-59 -69.2,-59 -70,-59.7 -70,-60.4 -70,-61.1 -70,-61.8 -70,-62.5 -70,-63.2 -70,-63.9 -70,-64.6 -70,-65.3 -70,-66 -70,-66 -69.2,-66 -68.4,-66 -67.6,-66 -66.8,-66 -66,-66 -65.2,-66 -64.4,-66 -63.6,-66 -62.8,-66 -62))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts.\n", "east": -59.0, "geometry": ["POINT(-62.5 -66)"], "keywords": "Antarctica; Antarctic Peninsula; Araon1304; Biota; LARISSA; Larsen B Ice Shelf; NBP1001; NBP1203; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Antarctic Peninsula; Antarctica; Southern Ocean; Larsen B Ice Shelf; Weddell Sea", "north": -62.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -70.0, "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems", "uid": "600073", "west": -66.0}, {"awards": "0732804 McPhee, Miles", "bounds_geometry": ["POINT(166.25 -77.42)"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \n\nBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \u0027Multidisciplinary Study of the Amundsen Sea Embayment\u0027 proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \u0027Polar Palooza\u0027 education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.\n", "east": 166.25, "geometry": ["POINT(166.25 -77.42)"], "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "locations": "Southern Ocean; Antarctica; McMurdo; Ross Island", "north": -77.42, "nsf_funding_programs": null, "persons": "McPhee, Miles G.", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.42, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "uid": "600072", "west": 166.25}, {"awards": "0636731 Bender, Michael", "bounds_geometry": ["POLYGON((-180 -72.6,-176.887 -72.6,-173.774 -72.6,-170.661 -72.6,-167.548 -72.6,-164.435 -72.6,-161.322 -72.6,-158.209 -72.6,-155.096 -72.6,-151.983 -72.6,-148.87 -72.6,-148.87 -73.533,-148.87 -74.466,-148.87 -75.399,-148.87 -76.332,-148.87 -77.265,-148.87 -78.198,-148.87 -79.131,-148.87 -80.064,-148.87 -80.997,-148.87 -81.93,-151.983 -81.93,-155.096 -81.93,-158.209 -81.93,-161.322 -81.93,-164.435 -81.93,-167.548 -81.93,-170.661 -81.93,-173.774 -81.93,-176.887 -81.93,180 -81.93,174.335 -81.93,168.67 -81.93,163.005 -81.93,157.34 -81.93,151.675 -81.93,146.01 -81.93,140.345 -81.93,134.68 -81.93,129.015 -81.93,123.35 -81.93,123.35 -80.997,123.35 -80.064,123.35 -79.131,123.35 -78.198,123.35 -77.265,123.35 -76.332,123.35 -75.399,123.35 -74.466,123.35 -73.533,123.35 -72.6,129.015 -72.6,134.68 -72.6,140.345 -72.6,146.01 -72.6,151.675 -72.6,157.34 -72.6,163.005 -72.6,168.67 -72.6,174.335 -72.6,-180 -72.6))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth\u0027s atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society\u0027s understanding of global climate change and sea level rise.\n", "east": 123.35, "geometry": ["POINT(167.24 -77.265)"], "keywords": "Antarctica; Dry Valleys; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Lake Vostok; Paleoclimate", "locations": "Lake Vostok; Dry Valleys; Antarctica", "north": -72.6, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "projects": [{"proj_uid": "p0000039", "repository": "USAP-DC", "title": "Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.93, "title": "Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica", "uid": "600069", "west": -148.87}, {"awards": "0838970 Foreman, Christine", "bounds_geometry": ["POINT(161.667 -77.117)"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Dissolved organic matter (DOM) comprises a significant pool of Earth\u0027s organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls\u0027 schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.\n", "east": 161.667, "geometry": ["POINT(161.667 -77.117)"], "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": null, "persons": "Foreman, Christine", "project_titles": "Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "projects": [{"proj_uid": "p0000458", "repository": "USAP-DC", "title": "Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "uid": "600104", "west": 161.667}, {"awards": "0944686 Kieber, David", "bounds_geometry": ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world\u0027s highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis\u0027 ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project.\n", "east": -150.0, "geometry": ["POINT(-155 -73)"], "keywords": "Biota; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -68.0, "nsf_funding_programs": null, "persons": "Kieber, David John", "project_titles": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "projects": [{"proj_uid": "p0000085", "repository": "USAP-DC", "title": "Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica", "uid": "600117", "west": -160.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": ["POINT(-136.404633 -82.39955)"], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This data set is a collection of video data of basal ice taken in a borehole on the Kamb Ice Stream in West Antarctica. Ice streams are an expression of the inherent instability of the West Antarctic Ice Sheet, and their behavior is a key control on the overall ice-sheet mass balance. Understanding the response of the ice sheet in a warming climate requires a thorough understanding of the internal dynamics of ice streams, in addition to the relevant ice-atmosphere and ice-ocean interactions in the region. The basal environment of the ice streams and of many glaciers is a key scientific interest, including conditions, mainly basal sliding, that lead to fast flow of the ice. The purpose of this data set is to present a review of the full range of original video recordings from the basal ice of the Kamb Ice Stream. Direct observations at the ice-stream bed are a crucial complement to modeling efforts predicting future scenarios in a warming climate.", "east": -136.404633, "geometry": ["POINT(-136.404633 -82.39955)"], "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "locations": "Antarctica; Kamb Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Engelhardt, Hermann", "project_titles": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "projects": [{"proj_uid": "p0000181", "repository": "USAP-DC", "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "uid": "609528", "west": -136.404633}, {"awards": "0838955 Gast, Rebecca", "bounds_geometry": ["POLYGON((71.504166 -76.159164,71.5142214 -76.159164,71.5242768 -76.159164,71.5343322 -76.159164,71.5443876 -76.159164,71.554443 -76.159164,71.5644984 -76.159164,71.5745538 -76.159164,71.5846092 -76.159164,71.5946646 -76.159164,71.60472 -76.159164,71.60472 -76.2018032,71.60472 -76.2444424,71.60472 -76.2870816,71.60472 -76.3297208,71.60472 -76.37236,71.60472 -76.4149992,71.60472 -76.4576384,71.60472 -76.5002776,71.60472 -76.5429168,71.60472 -76.585556,71.5946646 -76.585556,71.5846092 -76.585556,71.5745538 -76.585556,71.5644984 -76.585556,71.554443 -76.585556,71.5443876 -76.585556,71.5343322 -76.585556,71.5242768 -76.585556,71.5142214 -76.585556,71.504166 -76.585556,71.504166 -76.5429168,71.504166 -76.5002776,71.504166 -76.4576384,71.504166 -76.4149992,71.504166 -76.37236,71.504166 -76.3297208,71.504166 -76.2870816,71.504166 -76.2444424,71.504166 -76.2018032,71.504166 -76.159164))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\n\nMost organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs.\n\nThe goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. \n\nThe project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs\u0027 websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England.\n", "east": 71.60472, "geometry": ["POINT(71.554443 -76.37236)"], "keywords": "Biota; Microbiology; NBP0305; NBP0405; NBP0508; NBP1101; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -76.159164, "nsf_funding_programs": null, "persons": "Gast, Rebecca", "project_titles": "Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists", "projects": [{"proj_uid": "p0000490", "repository": "USAP-DC", "title": "Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.585556, "title": "Alternative Nutritional Strategies in Antarctic Protists", "uid": "600103", "west": 71.504166}, {"awards": "0838892 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Biota; Oceans; Ross Sea; Seals; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -75.0, "nsf_funding_programs": null, "persons": "Burns, Jennifer", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600101", "west": 162.0}, {"awards": "0838850 Gooseff, Michael", "bounds_geometry": ["POLYGON((-163.3 -77.62,-163.202 -77.62,-163.104 -77.62,-163.006 -77.62,-162.908 -77.62,-162.81 -77.62,-162.712 -77.62,-162.614 -77.62,-162.516 -77.62,-162.418 -77.62,-162.32 -77.62,-162.32 -77.631,-162.32 -77.642,-162.32 -77.653,-162.32 -77.664,-162.32 -77.675,-162.32 -77.686,-162.32 -77.697,-162.32 -77.708,-162.32 -77.719,-162.32 -77.73,-162.418 -77.73,-162.516 -77.73,-162.614 -77.73,-162.712 -77.73,-162.81 -77.73,-162.908 -77.73,-163.006 -77.73,-163.104 -77.73,-163.202 -77.73,-163.3 -77.73,-163.3 -77.719,-163.3 -77.708,-163.3 -77.697,-163.3 -77.686,-163.3 -77.675,-163.3 -77.664,-163.3 -77.653,-163.3 -77.642,-163.3 -77.631,-163.3 -77.62))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities.\n", "east": -162.32, "geometry": ["POINT(-162.81 -77.675)"], "keywords": "Antarctica; Critical Zone; Mps-1 Water Potential Sensor; Physical Properties; Soil Moisture; Soil Temperature", "locations": "Antarctica", "north": -77.62, "nsf_funding_programs": null, "persons": "Gooseff, Michael N.", "project_titles": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "projects": [{"proj_uid": "p0000489", "repository": "USAP-DC", "title": "Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.73, "title": "The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys", "uid": "600100", "west": -163.3}, {"awards": "0739681 Murray, Alison; 0739698 Doran, Peter", "bounds_geometry": ["POINT(161.931 -77.3885)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Lake Vida is the largest lake of the McMurdo Dry Valleys, with an approximately 20 m ice cover overlaying a brine of unknown depth with at least 7 times seawater salinity and temperatures below -10 degrees C year-round. Samples of brine collected from ice above the main water body contain 1) the highest nitrous oxide levels of any natural water body on Earth, 2) unusual geochemistry including anomalously high ammonia and iron concentrations, 3) high microbial counts with an unusual proportion (99%) of ultramicrobacteria. The microbial community is unique even compared to other Dry Valley Lakes. The research proposes to enter, for the first time the main brine body below the thick ice of Lake Vida and perform in situ measurements, collect samples of the brine column, and collect sediment cores from the lake bottom for detailed geochemical and microbiological analyses. The results will allow the characterization of present and past life in the lake, assessment of modern and past sedimentary processes, and determination of the lake\u0027s history. The research will be conducted by a multidisciplinary team that will uncover the biogeochemical processes associated with a non-photosynthetic microbial community isolated for a significant period of time. This research will address diversity, adaptive mechanisms and evolutionary processes in the context of the physical evolution of the environment of Lake Vida. Results will be widely disseminated through publications, presentations at national and international meetings, through the Subglacial Antarctic Lake Exploration (SALE) web site and the McMurdo LTER web site. The research will support three graduate students and three undergraduate research assistants. The results will be incorporated into a new undergraduate biogeosciences course at the University of Illinois at Chicago which has an extremely diverse student body, dominated by minorities.", "east": 161.931, "geometry": ["POINT(161.931 -77.3885)"], "keywords": "Antarctica; Biota; Carbon-14; Chemistry:fluid; Chemistry:Fluid; Chemistry:ice; Chemistry:Ice; Dry Valleys; Geochronology; Ice Core Records; Lake Vida; Microbiology", "locations": "Dry Valleys; Lake Vida; Antarctica", "north": -77.3885, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "projects": [{"proj_uid": "p0000485", "repository": "USAP-DC", "title": "Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.3885, "title": "Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica", "uid": "600080", "west": 161.931}, {"awards": "0739648 Cary, Stephen", "bounds_geometry": ["POINT(163 -77.5)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The glacial streams of the McMurdo Dry Valleys have extensive cyanobacterial mats that are a probable source of fixed C and N to the Valleys. The research will examine the interplay between the microbial mats in the ephemeral glacial streams and the microbiota of the hyporheic soils (wetted soil zone) underlying and adjacent to those mats. It is hypothesized that the mats are important sources of organic carbon and fixed nitrogen for the soil communities of the hyporheic zone, and release dissolved organic carbon (DOC) and nitrogen (DON) that serves the entire Dry Valley ecosystem. Field efforts will entail both observational and experimental components. Direct comparisons will be made between the mats and microbial populations underlying naturally rehydrated and desiccated mat areas, and between mat areas in the melt streams of the Adams and Miers Glaciers in Miers Valley. Both physiological and phylogenetic indices of the soil microbiota will be examined. Observations will include estimates of rates of mat carbon and nitrogen fixation, soil respiration and leucine and thymidine uptake (as measures of protein \u0026 DNA synthesis, respectively) by soil bacteria, bacterial densities and their molecular ecology. Experimental manipulations will include experimental re-wetting of soils and observations of the time course of response of the microbial community. The research will integrate modern molecular genetic approaches (ARISA-DNA fingerprinting and ultra deep 16S rDNA microbial phylogenetic analysis) with geochemistry to study the diversity, ecology, and function of microbial communities that thrive in these extreme environments. The broader impacts of the project include research and educational opportunities for graduate students and a postdoctoral associate. The P.I.s will involve undergraduates as work-study students and in REU programs, and will participate in educational and outreach programs.", "east": 163.0, "geometry": ["POINT(163 -77.5)"], "keywords": "Antarctica; Biota; Cell Counts; Dry Valleys; Microbiology", "locations": "Antarctica; Dry Valleys", "north": -77.5, "nsf_funding_programs": null, "persons": "Cary, S. Craig", "project_titles": "Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams", "projects": [{"proj_uid": "p0000476", "repository": "USAP-DC", "title": "Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams", "uid": "600079", "west": 163.0}, {"awards": "0944743 Buckley, Bradley", "bounds_geometry": ["POINT(166.66667 -77.83333)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University.\n", "east": 166.66667, "geometry": ["POINT(166.66667 -77.83333)"], "keywords": "Biota; Southern Ocean", "locations": "Southern Ocean", "north": -77.83333, "nsf_funding_programs": null, "persons": "Buckley, Bradley", "project_titles": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "projects": [{"proj_uid": "p0000493", "repository": "USAP-DC", "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.83333, "title": "The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.", "uid": "600118", "west": 166.66667}, {"awards": "1019838 Wendt, Dean", "bounds_geometry": null, "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Ad\u00e9lie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Ad\u00e9lie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Ad\u00e9lie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access\n", "east": null, "geometry": null, "keywords": "Biota; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Wendt, Dean; Moline, Mark", "project_titles": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "projects": [{"proj_uid": "p0000662", "repository": "USAP-DC", "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle", "uid": "600120", "west": null}, {"awards": "1043779 Mellish, Jo-Ann", "bounds_geometry": ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk.\n", "east": 166.73334, "geometry": ["POINT(166.283335 -77.69653)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Sea Ice; Seals; Sea Surface; Southern Ocean", "locations": "Southern Ocean; Ross Sea; Antarctica; Sea Surface", "north": -77.51528, "nsf_funding_programs": null, "persons": "Mellish, Jo-Ann", "project_titles": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING", "projects": [{"proj_uid": "p0000343", "repository": "USAP-DC", "title": "Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.87778, "title": "Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling", "uid": "600130", "west": 165.83333}, {"awards": "0732655 Mosley-Thompson, Ellen", "bounds_geometry": ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change.", "east": -59.0, "geometry": ["POINT(-61 -62.5)"], "keywords": "Antarctica; Antarctic Peninsula; Bruce Plateau; Glaciology; Ice Core Records; Isotope; LARISSA; Paleoclimate; Sample/collection Description; Sample/Collection Description; Snow Accumulation", "locations": "Antarctic Peninsula; Antarctica; Bruce Plateau", "north": -60.0, "nsf_funding_programs": null, "persons": "Thompson, Lonnie G.; Mosley-Thompson, Ellen", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -65.0, "title": "Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans", "uid": "600167", "west": -63.0}, {"awards": "0838914 Wannamaker, Philip", "bounds_geometry": ["POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.\n", "east": 179.94691, "geometry": ["POINT(160.482115 -83.239175)"], "keywords": "Antarctica; Magnetotelluric; Potential Field; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -82.13, "nsf_funding_programs": null, "persons": "Wannamaker, Philip", "project_titles": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "projects": [{"proj_uid": "p0000247", "repository": "USAP-DC", "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.34835, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "uid": "600102", "west": 141.01732}, {"awards": "0838773 McClintock, James", "bounds_geometry": ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": -53.0, "geometry": ["POINT(-66 -65)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}, {"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600095", "west": -79.0}, {"awards": "0838776 Baker, Bill", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Baker, Bill", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600096", "west": -180.0}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.117 -79.666)"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records.", "east": -112.117, "geometry": ["POINT(-112.117 -79.666)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.666, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.", "project_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "projects": [{"proj_uid": "p0000022", "repository": "USAP-DC", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "600142", "west": -112.117}, {"awards": "0632389 Murray, Alison", "bounds_geometry": ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey\u0027s ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.", "east": -62.889, "geometry": ["POINT(-64.13585 -64.6736)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean; Antarctic Peninsula", "north": -64.4213, "nsf_funding_programs": null, "persons": "Grzymski, Joseph; Murray, Alison", "project_titles": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "projects": [{"proj_uid": "p0000091", "repository": "USAP-DC", "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.9259, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "uid": "600061", "west": -65.3827}, {"awards": "0636319 Shaw, Timothy", "bounds_geometry": ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.6638, "geometry": ["POINT(-47.29195 -60.14805)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Sea Ice; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Southern Ocean; Sea Surface", "north": -57.5061, "nsf_funding_programs": null, "persons": "Shaw, Tim; Twining, Benjamin", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.79, "title": "Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600064", "west": -51.9201}, {"awards": "0836061 Dennett, Mark", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "locations": "Antarctica; Southern Ocean; Amundsen Sea", "north": -69.0, "nsf_funding_programs": null, "persons": "Dennett, Mark", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600091", "west": -170.0}, {"awards": "0944474 Robinson, Laura", "bounds_geometry": ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award \"Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage\" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF\u0027s Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean\u0027s influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media.", "east": -35.0, "geometry": ["POINT(-52.75 -58)"], "keywords": "Biota; Corals; Cruise Report; Drake Passage; NBP1103; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Drake Passage", "north": -54.5, "nsf_funding_programs": null, "persons": "Robinson, Laura", "project_titles": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage", "projects": [{"proj_uid": "p0000514", "repository": "USAP-DC", "title": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage", "uid": "600114", "west": -70.5}, {"awards": "0636543 Murray, Alison", "bounds_geometry": ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.57138, "geometry": ["POINT(-47.277705 -60.21953)"], "keywords": "Biota; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Ice; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Southern Ocean", "north": -57.58068, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.85838, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600065", "west": -51.98403}, {"awards": "0538479 Seibel, Brad", "bounds_geometry": ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project.", "east": 167.0, "geometry": ["POINT(166.5 -77.5)"], "keywords": "Biota; CO2; Mcmurdo Station; Oceans; Ross Island; Sample/collection Description; Sample/Collection Description; Shell Fish; Southern Ocean", "locations": "Ross Island; Southern Ocean", "north": -77.0, "nsf_funding_programs": null, "persons": "Seibel, Brad", "project_titles": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "projects": [{"proj_uid": "p0000694", "repository": "USAP-DC", "title": "Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea", "uid": "600055", "west": 166.0}, {"awards": "0840398 Mende, Stephen", "bounds_geometry": ["POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The PENGUIn team will continue investigating in depth a multi-scale electrodynamic system that comprises space environment of Planet Earth (geospace). Several science topics important to the space physics and aeronomy are outlines in this proposal that can be broadly categorized as the following objectives: (a) to study reconnection and waves in the southern cusp region; (b) to investigate unraveling global geomagnetic substorm signatures; (c) to understand the dayside wave-particle interactions; and (d) to observe and investigate various polar cap phenomena and neutral atmosphere dynamics. Cutting-edge science on these critical topics will be accomplished by acquiring multi-instrument data from a distributed network of autonomous observatories in Antarctica, built and deployed with the matured technological achievements. In the last several years, advances in power supply systems and Iridium data transmission for the Automatic Geophysical Observatories (AGOs) have proven effective for providing real-time geophysical data reliably. Five AGOs that span from the auroral zone to deep in the polar cap will be maintained providing a wealth of data for science analyses. Additional instrumentation as GPS-based receivers measuring total electron content in the ionosphere will be deployed at AGOs. These scientific investigations will be enriched by complementary measurements from manned stations in the Antarctic, from magnetically conjugate regions in the Arctic, and from a fleet of magnetospheric and ionospheric spacecraft. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Keogram; Potential Field", "locations": "Antarctica", "north": -75.0, "nsf_funding_programs": null, "persons": "Frey, Harald; Mende, Stephen", "project_titles": "Collaborative Research: PENGUIn - A High-Latitude Window to Geospace Dynamics", "projects": [{"proj_uid": "p0000685", "repository": "USAP-DC", "title": "Collaborative Research: PENGUIn - A High-Latitude Window to Geospace Dynamics"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "PENGUIn - A High-Latitude Window to Geospace Dynamics", "uid": "600109", "west": -180.0}, {"awards": "0439906 Koch, Paul", "bounds_geometry": ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.\n\nBecause of extreme isolation of the Antarctic continent since the \nEarly Oligocene, one expects a unique invertebrate benthic fauna with \na high degree of endemism. Yet some invertebrate taxa that constitute \nimportant ecological components of sedimentary benthic communities \ninclude more than 40 percent non-endemic species (e.g., benthic \npolychaetes). To account for non-endemic species, intermittent genetic \nexchange must occur between Antarctic and other (e.g. South American) \npopulations. The most likely mechanism for such gene flow, at least \nfor in-faunal and mobile macrobenthos, is dispersal of planktonic \nlarvae across the sub- Antarctic and Antarctic polar fronts. To test \nfor larval dispersal as a mechanism of maintaining genetic continuity \nacross polar fronts, the scientists propose to (1) take plankton \nsamples along transects across Drake passage during both the austral \nsummer and winter seasons while concurrently collecting the \nappropriate hydrographic data. Such data will help elucidate the \nhydrographic mechanisms that allow dispersal across Drake Passage. \nUsing a molecular phylogenetic approach, they will (2) compare \nseemingly identical adult forms from Antarctic and South America \ncontinents to identify genetic breaks, historical gene flow, and \ncontrol for the presence of cryptic species. (3) Similar molecular \ntools will be used to relate planktonic larvae to their adult forms. \nThrough this procedure, they propose to link the larval forms \nrespectively to their Antarctic or South America origins. The proposed \nwork builds on previous research that provides the basis for this \neffort to develop a synthetic understanding of historical gene flow \nand present day dispersal mechanism in South American/Drake Passage/ \nAntarctic Peninsular region. Furthermore, this work represents one of \nthe first attempts to examine recent gene flow in Antarctic benthic \ninvertebrates. Graduate students and a postdoctoral fellow will be \ntrained during this research\n", "east": 168.0, "geometry": ["POINT(165 -75)"], "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -72.0, "nsf_funding_programs": null, "persons": "Koch, Paul", "project_titles": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "projects": [{"proj_uid": "p0000533", "repository": "USAP-DC", "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "600041", "west": 162.0}, {"awards": "0338097 DiTullio, Giacomo", "bounds_geometry": ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": -165.03, "geometry": ["POINT(-167.485 -65.435)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -52.24, "nsf_funding_programs": null, "persons": "DiTullio, Giacomo", "project_titles": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "projects": [{"proj_uid": "p0000540", "repository": "USAP-DC", "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.63, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "600036", "west": -169.94}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.\n", "east": -54.0, "geometry": ["POINT(-59 -62)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "locations": "Southern Ocean; Bellingshausen Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel", "project_titles": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "projects": [{"proj_uid": "p0000082", "repository": "USAP-DC", "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "600044", "west": -64.0}, {"awards": "0840375 Costa, Daniel", "bounds_geometry": ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Long-lived animals such as elephant seals may endure variation in food resources over large spatial and temporal scales. Understanding how they respond to these fluctuations requires knowledge of how their foraging behavior and habitat utilization varies over time. Advances in satellite-linked data logging have made it possible to correlate the foraging behavior of marine mammals with their physical and chemical environment and provide insight into the mechanisms controlling at-sea movements, foraging behavior and, ultimately, reproductive success of these pelagic predators. In addition, these technological advances enable marine mammals to be used as highly cost-effective platforms from which detailed oceanographic data can be collected on a scale not possible with conventional methods. The project will extend the four-year-time-series collected on the foraging behavior and habitat utilization of southern elephant seal (Mirounga leonina) foraging in the Western Antarctic Peninsula. It also will extend the oceanographic time-series of CTD profiles collected by the elephant seals foraging from the Livingston Island rookery. Seals have been collecting CTD profiles in the vicinity of the Wilkins Ice Shelf (WIS) since 2005. We thus have a 4 year data set that preceding and during the breakup of the WIS that occurred during March 2008. Deployment of additional tags on seals will provide a unique opportunity to collect oceanographic data after the ice shelf has collapsed.", "east": -54.0, "geometry": ["POINT(-59 -62)"], "keywords": "Biota; CTD Data; Oceans; Physical Oceanography; Seals; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Goebel, Michael; Costa, Daniel", "project_titles": "SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf", "projects": [{"proj_uid": "p0000158", "repository": "USAP-DC", "title": "SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf", "uid": "600108", "west": -64.0}, {"awards": "0836112 Smith, Walker", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.\n", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "locations": "Amundsen Sea; Antarctica; Southern Ocean; Sea Surface", "north": -69.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600092", "west": -170.0}, {"awards": "0649609 Horning, Markus", "bounds_geometry": ["POLYGON((165.975 -77.54,166.0631 -77.54,166.1512 -77.54,166.2393 -77.54,166.3274 -77.54,166.4155 -77.54,166.5036 -77.54,166.5917 -77.54,166.6798 -77.54,166.7679 -77.54,166.856 -77.54,166.856 -77.5709,166.856 -77.6018,166.856 -77.6327,166.856 -77.6636,166.856 -77.6945,166.856 -77.7254,166.856 -77.7563,166.856 -77.7872,166.856 -77.8181,166.856 -77.849,166.7679 -77.849,166.6798 -77.849,166.5917 -77.849,166.5036 -77.849,166.4155 -77.849,166.3274 -77.849,166.2393 -77.849,166.1512 -77.849,166.0631 -77.849,165.975 -77.849,165.975 -77.8181,165.975 -77.7872,165.975 -77.7563,165.975 -77.7254,165.975 -77.6945,165.975 -77.6636,165.975 -77.6327,165.975 -77.6018,165.975 -77.5709,165.975 -77.54))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds; and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of muscle morphology, oxidant status and oxygen storage with age will be examined. The effects of age on skeletal muscular function and exercise performance will also be examined. The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging and develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years but basic mammalian aging is an area of study the still requires considerable effort. The development of new models for the study of aging has tremendous potential benefits to society at large.", "east": 166.856, "geometry": ["POINT(166.4155 -77.6945)"], "keywords": "Antarctica; Biota; McMurdo; Oceans; Seals; Southern Ocean", "locations": "Antarctica; McMurdo; Southern Ocean", "north": -77.54, "nsf_funding_programs": null, "persons": "Horning, Markus", "project_titles": "Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "projects": [{"proj_uid": "p0000487", "repository": "USAP-DC", "title": "Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.849, "title": "Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment", "uid": "600071", "west": 165.975}, {"awards": "0636730 Vernet, Maria", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.\n", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Southern Ocean; Sea Surface; Antarctica", "north": -52.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean.", "projects": [{"proj_uid": "p0000532", "repository": "USAP-DC", "title": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600068", "west": -55.0}, {"awards": "0636723 Helly, John", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; NBP0902; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Southern Ocean; Antarctica", "north": -52.0, "nsf_funding_programs": null, "persons": "Helly, John", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600067", "west": -55.0}, {"awards": "0196105 Steig, Eric; 0440414 Steig, Eric", "bounds_geometry": ["POLYGON((-130 -65,-125.8 -65,-121.6 -65,-117.4 -65,-113.2 -65,-109 -65,-104.8 -65,-100.6 -65,-96.4 -65,-92.2 -65,-88 -65,-88 -67.5,-88 -70,-88 -72.5,-88 -75,-88 -77.5,-88 -80,-88 -82.5,-88 -85,-88 -87.5,-88 -90,-92.2 -90,-96.4 -90,-100.6 -90,-104.8 -90,-109 -90,-113.2 -90,-117.4 -90,-121.6 -90,-125.8 -90,-130 -90,-130 -87.5,-130 -85,-130 -82.5,-130 -80,-130 -77.5,-130 -75,-130 -72.5,-130 -70,-130 -67.5,-130 -65))"], "date_created": "Thu, 01 Oct 2009 00:00:00 GMT", "description": "This data set includes stable isotope measurements from snow pits, firn, and ice cores collected by the the US component of the International Trans-Antarctic Scientific Expedition ( ITASE). The ITASE program aims to collect and interpret a continental-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations.\n\nThese data were collected between 1999 and 2007. The data have been compiled into single files for each sampling site, though in some cases a file contains data from more than one ice core or snow pit. Each file in the data set includes deuterium/hydrogen (\u0026#948;D) and/or 18-oxygen/16-oxygen (\u0026#948;18O) ratios, depths, and in some cases ice age or other information. Further details regarding the data are provided in each data file. Data are available via FTP in ASCII text format (.txt). Data were collected during five Antarctic field seasons from 1999 to 2007. Data from 1999 to 2002 are currently available. Data from 2003 to 2007 will be added in the future.", "east": -88.0, "geometry": ["POINT(-109 -77.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; ITASE; Paleoclimate; WAIS", "locations": "WAIS; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at West Antarctic ITASE Sites", "projects": [{"proj_uid": "p0000013", "repository": "USAP-DC", "title": "Stable Isotope Studies at West Antarctic ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "US ITASE Stable Isotope Data, Antarctica", "uid": "609425", "west": -130.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Sidell, Bruce", "project_titles": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "projects": [{"proj_uid": "p0000527", "repository": "USAP-DC", "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "uid": "600039", "west": -180.0}, {"awards": "0440414 Steig, Eric", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Steig, Eric J.", "project_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "projects": [{"proj_uid": "p0000202", "repository": "USAP-DC", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "600042", "west": -180.0}, {"awards": "0440478 Tang, Kam", "bounds_geometry": ["POINT(166.66267 -77.85067)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. \n\nThe research objective of this proposal is therefore to address these over-arching questions: \n1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? \n3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? \n\nExperiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": ["POINT(166.66267 -77.85067)"], "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "locations": "Ross Sea; McMurdo Sound; Southern Ocean", "north": -77.85067, "nsf_funding_programs": null, "persons": "Smith, Walker; Tang, Kam", "project_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "projects": [{"proj_uid": "p0000214", "repository": "USAP-DC", "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "uid": "600043", "west": 166.66267}, {"awards": "0230276 Ward, Bess", "bounds_geometry": ["POLYGON((162 -77.2,162.16 -77.2,162.32 -77.2,162.48 -77.2,162.64 -77.2,162.8 -77.2,162.96 -77.2,163.12 -77.2,163.28 -77.2,163.44 -77.2,163.6 -77.2,163.6 -77.26,163.6 -77.32,163.6 -77.38,163.6 -77.44,163.6 -77.5,163.6 -77.56,163.6 -77.62,163.6 -77.68,163.6 -77.74,163.6 -77.8,163.44 -77.8,163.28 -77.8,163.12 -77.8,162.96 -77.8,162.8 -77.8,162.64 -77.8,162.48 -77.8,162.32 -77.8,162.16 -77.8,162 -77.8,162 -77.74,162 -77.68,162 -77.62,162 -77.56,162 -77.5,162 -77.44,162 -77.38,162 -77.32,162 -77.26,162 -77.2))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Denitrification is the main process by which fixed nitrogen is lost from ecosystems and the regulation of this process may directly affect primary production and carbon cycling over short and long time scales. Previous investigations of the role of bioactive metals in regulating denitrification in bacteria from permanently ice-covered Lake Bonney in the Taylor Valley of East Antarctica indicated that denitrifying bacteria can be negatively affected by metals such as copper, iron, cadmium, lead, chromium, nickel, silver and zinc; and that there is a distinct difference in denitrifying activity between the east and west lobes of the lake. \n\nLow iron concentrations were found to exacerbate the potential toxicity of the other metals, while silver has the potential to specifically inhibit denitrification because of its ability to interfere with copper binding in redox proteins, such as nitrite reductase and nitrous oxide reductase. High silver concentrations might prevent the functioning of nitrous oxide reductase in the same way that simple copper limitation does, thereby causing the buildup of nitrous oxide and resulting in a nonfunctional nitrogen cycle. Other factors, such as oxygen concentration, are likely also to affect bacterial activity in Lake Bonney.\n\nThis project will investigate silver toxicity, general metal toxicity and oxygen concentration to determine their effect on denitrification in the lake by using a suite of \u0027sentinel\u0027 strains of denitrifying bacteria (isolated from the lake) incubated in Lake Bonney water and subjected to various treatments. The physiological responses of these strains to changes in metal and oxygen concentration will be quantified by flow cytometric detection of single cell molecular probes whose sensitivity and interpretation have been optimized for the sentinel strains. Understanding the relationships between metals and denitrification is expected to enhance our understanding of not only Lake Bonney\u0027s unusual nitrogen cycle, but more generally, of the potential role of metals in the regulation of microbial nitrogen transformations. The broader impacts of this work include not only a better understanding of regional biogeochemistry and global perspectives on these processes; but also the training of graduate students and a substantial outreach effort for school children.", "east": 163.6, "geometry": ["POINT(162.8 -77.5)"], "keywords": "Antarctica; Biota; CTD Data; Dry Valleys; Lake Bonney; Lake Vanda; Microbiology; Taylor Valley", "locations": "Dry Valleys; Antarctica; Taylor Valley; Lake Vanda; Lake Bonney", "north": -77.2, "nsf_funding_programs": null, "persons": "Ward, Bess", "project_titles": "Collaborative Research: What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "projects": [{"proj_uid": "p0000223", "repository": "USAP-DC", "title": "Collaborative Research: What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "uid": "600033", "west": 162.0}, {"awards": "0230069 Naveen, Ron", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The Antarctic Site Inventory Project has collected biological data and site-descriptive information in the Antarctic Peninsula region since 1994. This research effort has provided data on those sites which are visited by tourists on shipboard expeditions in the region. The aim is to obtain data on the population status of several key species of Antarctic seabirds, which might be affected by the cumulative impact resulting from visits to the sites. This project will continue the effort by focusing on two heavily-visited Antarctic Peninsula sites: Paulet Island, in the northwestern Weddell Sea and Petermann Island, in the Lemaire Channel near Anvers Island. These sites were selected because both rank among the ten most visited sites in Antarctica each year in terms of numbers of visitors and zodiac landings; both are diverse in species composition, and both are sensitive to potential environmental disruptions from visitors. These data collected focus on two important biological parameters for penguins and blue-eyed shags: (1) breeding population size (number of occupied nests) and (2) breeding success (number of chicks per occupied nests). A long-term data program will be supported, with studies at the two sites over a five-year period. The main focus will be at Petermann Island, selected for intensive study due to its visitor status and location in the region near Palmer Station. This will allow for comparative data with the Palmer Long Term Ecological Research program. Demographic data will be collected in accordance with Standard Methods established by the Convention for the Conservation of Antarctic Marine Living Resources Ecosystem Monitoring Program and thus will be comparable with similar data sets being collected by other international Antarctic Treaty nation research programs. While separating human-induced change from change resulting from a combination of environmental factors will be difficult, this work will provide a first step to identify potential impacts. These long-term data sets will contribute to a better understanding of biological processes in the entire region and will contribute valuable information to be used by the Antarctic Treaty Parties as they address issues in environmental stewardship in Antarctica.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Penguin; Petermann Island", "locations": "Antarctica; Petermann Island", "north": -60.0, "nsf_funding_programs": null, "persons": "Naveen, Ronald", "project_titles": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "projects": [{"proj_uid": "p0000122", "repository": "USAP-DC", "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Long-term Data Collection at Select Antarctic Peninsula Visitor Sites", "uid": "600032", "west": -180.0}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. \n\nOther data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": ["POINT(55 -75)"], "keywords": "Antarctica; Biota; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "locations": "Ross Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven", "project_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "projects": [{"proj_uid": "p0000220", "repository": "USAP-DC", "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "600028", "west": -50.0}, {"awards": "0538683 Lal, Devendra", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The principal aim of this research is to determine the precise manner in which solar activity has varied in the past 1000 years. During this period, four periods of very low solar activity have been identified: Wolf (1305-1345 AD), Spoerer (1418-1540 AD), Maunder (1645-1715), and one period of high solar activity (1100-1250 A.D.) have been deduced based on available historical records of sunspot numbers and aurora. Our proposal aims to study the solar activity during the past 1000 years in detail using a new method, based on studies of polar ice, as developed earlier (Earth and Planetary Science Letters, 234, 335-349, 2005). The method is based on the fact that greater solar activity leads to production of greater magnetic fields in the heliosphere, which reduces the primary cosmic ray flux in the near Earth environment, and vice-versa. Consequently if one can measure the primary cosmic ray flux in the near Earth space, it becomes a direct measure of the solar activity. Lal et al. (Earth and Planetary Science Letters, 234, 335-349, 2005) concluded that the best way of measuring the primary cosmic ray flux would be to measure the concentration of cosmogenic in-situ produced 14C in polar ice sheets, which was discovered by Lal et al. (Nature 346, 350-352, 1990). Following this idea Lal et al. (op. cit.) measured cosmogenic in-situ produced in 19 samples from the GISP 2 core covering time range of 375-31,250 yrs B.P. Their studies showed that there were two periods of very low solar activity in this time bracket (during 8500-9500 B.P and 27,000-32,000 B.P.), and one high solar activity period during 12,000-16,000 yrs B.P. In order to provide an independent check on the veracity of the new method, we decided to apply it to the historical period, \u003c 1000 yrs B.P. The inferred Solar activities based on the study of cosmogenic in-situ produced 14C in South Pole ice samples clearly establish that there was a period of high Solar activity during 1100-1250 A.D., and a period of very low solar activity during 1416-1534 A.D, designated as the Spoerer Minimum. These results however do not confirm the proposed dates for the Dalton and the Maunder Minimum periods, predicted to be 1795-1825 A.D. and 1654-1714 A.D. respectively. Instead, our studies show that there was a long duration period of low solar activity during 1750-1860 A.D. These results make it quite clear that we should carry out more studies to fully establish the temporal behavior of the Solar activity in the past 1000 yrs.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Carbon-14; Cosmos; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Solar Activity; South Pole", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": null, "persons": "Lal, Devendra", "project_titles": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores", "projects": [{"proj_uid": "p0000555", "repository": "USAP-DC", "title": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "uid": "600058", "west": -180.0}, {"awards": "0634682 Kanatous, Shane", "bounds_geometry": ["POLYGON((160 -77,160.7 -77,161.4 -77,162.1 -77,162.8 -77,163.5 -77,164.2 -77,164.9 -77,165.6 -77,166.3 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.3 -78,165.6 -78,164.9 -78,164.2 -78,163.5 -78,162.8 -78,162.1 -78,161.4 -78,160.7 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "During the past three decades, intensive field studies have revealed much about the behavior, physiology, life history, and population dynamics of the Weddell seal (Leptonychotes weddelli) population of McMurdo Sound, Antarctica. These animals are marine predators that are highly adapted for an aquatic life in shore-fast and pack ice habitats. They must locate and capture sparsely distributed under the ice. Most of what is known about their diving behavior is based on studies of adult animals with little known about the development or the genetic controls of diving behavior of young animals. The goal of this project is to examine the temporal development of aerobic capacity, lipid metabolism and oxygen stores in the skeletal muscles of young Weddell seals and to determine which aspects of the cellular environment are important in the regulation of these adaptations during maturation. This project builds on past results to investigate the molecular controls that underlie the development of these adaptations. The first objective is to further characterize the ontogenetic changes in muscle aerobic capacity, lipid metabolism and myoglobin concentration and distribution using enzymatic, immuno-histochemical and myoglobin assays in newly weaned, subadult, and adult seals. The second objective is to determine the molecular controls that regulate these changes in aerobic capacity, fiber type distribution and myoglobin in skeletal muscles during maturation. Through subtractive hybridization and subsequent analysis, differences in mRNA populations in the swimming muscles of the different age classes of Weddell seals will be determined. These techniques will allow for the identification of the proteins and transcription factors that influence the ontogenetic changes in myoglobin concentration, fiber type distribution and aerobic capacity. These results will increase our understanding of both the ontogeny and molecular mechanisms by which young seals acquire the physiological capabilities to make deep (up to 700 m) and long aerobic dives (ca 20 min). This study will advance knowledge of the molecular regulation for the adaptations that enable active skeletal muscle to function under hypoxic conditions; this has a broader application for human medicine especially in regards to cardiac and pulmonary disease. Additional broader impacts include the participation of underrepresented scientists and a continuation of a website in collaboration with the Science Teachers Access to Resources at Southwestern University (STARS Program) which involves weekly updates about research efforts during the field season, weekly questions/answer session involving students and teachers, and updates on research results throughout the year.", "east": 167.0, "geometry": ["POINT(163.5 -77.5)"], "keywords": "Antarctica; Biota; Oceans; Seals; Sea Surface; Southern Ocean", "locations": "Antarctica; Sea Surface; Southern Ocean", "north": -77.0, "nsf_funding_programs": null, "persons": "Lyons, W. Berry; Kanatous, Shane", "project_titles": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "projects": [{"proj_uid": "p0000536", "repository": "USAP-DC", "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Molecular Signals that Regulate the Ontogeny of Aerobic Capacity, Lipid Metabolism and Elevated Myoglobin Concentrations in the Skeletal Muscles of Weddell Seals", "uid": "600063", "west": 160.0}, {"awards": "0739496 Miller, Molly", "bounds_geometry": ["POLYGON((163.41667 -77.33333,163.46667 -77.33333,163.51667 -77.33333,163.56667 -77.33333,163.61667 -77.33333,163.66667 -77.33333,163.71667 -77.33333,163.76667 -77.33333,163.81667 -77.33333,163.86667 -77.33333,163.91667 -77.33333,163.91667 -77.369997,163.91667 -77.406664,163.91667 -77.443331,163.91667 -77.479998,163.91667 -77.516665,163.91667 -77.553332,163.91667 -77.589999,163.91667 -77.626666,163.91667 -77.663333,163.91667 -77.7,163.86667 -77.7,163.81667 -77.7,163.76667 -77.7,163.71667 -77.7,163.66667 -77.7,163.61667 -77.7,163.56667 -77.7,163.51667 -77.7,163.46667 -77.7,163.41667 -77.7,163.41667 -77.663333,163.41667 -77.626666,163.41667 -77.589999,163.41667 -77.553332,163.41667 -77.516665,163.41667 -77.479998,163.41667 -77.443331,163.41667 -77.406664,163.41667 -77.369997,163.41667 -77.33333))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 163.91667, "geometry": ["POINT(163.66667 -77.516665)"], "keywords": "Biota; Geochronology; Marine Sediments; Oceans; Southern Ocean", "locations": "Southern Ocean", "north": -77.33333, "nsf_funding_programs": null, "persons": "Furbish, David; Miller, Molly", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "projects": [{"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.7, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600076", "west": 163.41667}, {"awards": "0739512 Walker, Sally", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project answers a simple question: why are there so few fossils in sediment cores from Antarctica\u0027s continental shelf? Antarctica\u0027s benthos are as biologically rich as those of the tropics. Shell-secreting organisms should have left a trail throughout geologic time, but have not. This trail is particularly important because these organisms record regional climate in ways that are critical to interpreting the global climate record. This study uses field experiments and targeted observations of modern benthic systems to examine the biases inflicted by fossil preservation. By examining a spectrum of ice-affected habitats, this project provides paleoenvironmental insights into carbonate preservation, sedimentation rates, and burial processes; and will provide new approaches to reconstructing the Cenozoic history of Antarctica. Broader impacts include graduate and undergraduate research and education, development of undergraduate curricula to link art and science, K12 outreach, public outreach via the web, and societal relevance through improved understanding of records of global climate change.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; McMurdo Sound; Oceans; Sample/collection Description; Sample/Collection Description", "locations": "Antarctica; McMurdo Sound", "north": -60.0, "nsf_funding_programs": null, "persons": "Walker, Sally", "project_titles": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores; Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past", "projects": [{"proj_uid": "p0010238", "repository": "USAP-DC", "title": "Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past"}, {"proj_uid": "p0000203", "repository": "USAP-DC", "title": "Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores", "uid": "600077", "west": -180.0}, {"awards": "0739693 Ashworth, Allan", "bounds_geometry": ["POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project studies the last vestiges of life in Antarctica from exceptionally well-preserved fossils of tundra life--mosses, diatoms, ostracods, Nothofagus leaves, wood, and insect remains recently discovered in ancient lake sediments from the McMurdo Dry Valleys. The area will be studied by an interdisciplinary team to elucidate information about climate and biogeography. These deposits offer unique and direct information about the characteristics of Antarctica during a key period in its history, the time when it was freezing. This information is critical for correlation with indirect proxies, such as though obtained from drill cores, for climate and state of the ice sheet. The results will also help understand the origin and migration of similar organisms found in South America, India and Australia. In terms of broader impacts, this project supports an early career researcher, undergraduate and graduate student research, various forms of outreach to K12 students, and extensive international collaboration. The work also has societal relevance in that the outcomes will offer direct constraints on Antarctica\u0027s ice sheet during a time with atmospheric CO2 contents similar to those of the earth in the coming centuries, and thus may help predictive models of sea level rise.", "east": 162.0, "geometry": ["POINT(161 -77.5)"], "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; GPS; Solid Earth", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ashworth, Allan; Lewis, Adam", "project_titles": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "projects": [{"proj_uid": "p0000188", "repository": "USAP-DC", "title": "Collaborative Research: Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Integrating Geomorphological and Paleoecological Studies to Reconstruct Neogene Environments of the Transantarctic Mountains", "uid": "600081", "west": 160.0}, {"awards": "0741380 Smith, Walker", "bounds_geometry": ["POLYGON((-160 -65,-154 -65,-148 -65,-142 -65,-136 -65,-130 -65,-124 -65,-118 -65,-112 -65,-106 -65,-100 -65,-100 -66.1,-100 -67.2,-100 -68.3,-100 -69.4,-100 -70.5,-100 -71.6,-100 -72.7,-100 -73.8,-100 -74.9,-100 -76,-106 -76,-112 -76,-118 -76,-124 -76,-130 -76,-136 -76,-142 -76,-148 -76,-154 -76,-160 -76,-160 -74.9,-160 -73.8,-160 -72.7,-160 -71.6,-160 -70.5,-160 -69.4,-160 -68.3,-160 -67.2,-160 -66.1,-160 -65))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine the relative importance of the physical and chemical controls on phytoplankton dynamics and carbon flux in continental margin regions of the Southern Ocean, and elucidate mechanisms by which plankton populations and carbon export might be altered by climate change. We specifically will address (1) how the phytoplankton on the continental margins of the southern Ocean respond to spatial and temporal changes in temperature, light, iron supply, and carbon dioxide levels, (2) how these factors initiate changes in phytoplankton assemblage structure, and (3) how carbon export and the efficiency of the biological pump are impacted by the biomass and composition of the phytoplankton. Two regions of study (the Amundsen and Ross Seas) will be investigated, one well studied (Ross Sea) and one poorly described (Amundsen Sea). It is hypothesized that each region will have markedly different physical forcing, giving rise to distinct chemical conditions and therefore biological responses. As such, the comparison of the two may give us insights into the mechanisms of how Antarctic continental margins will respond under changing environmental conditions. Broader impacts include participation by an international graduate student from Brazil, outreach via seminars to the general public, collaboration with the teachers-in-residence on the cruise, development of a cruise web site and interactive email exchanges with local middle school students while at sea.", "east": -100.0, "geometry": ["POINT(-130 -70.5)"], "keywords": "Amundsen Sea; Chemistry:fluid; Chemistry:Fluid; CTD Data; Geochemistry; Oceans; Oden; OSO2007; Sea Surface; Southern Ocean", "locations": "Sea Surface; Amundsen Sea; Southern Ocean", "north": -65.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:", "projects": [{"proj_uid": "p0000217", "repository": "USAP-DC", "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas:"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Small Grants for Exploratory Research - Oceanographic Research in the Amundsen and Ross Seas", "uid": "600085", "west": -160.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-178 -60,-149.2 -60,-120.4 -60,-91.6 -60,-62.8 -60,-34 -60,-5.2 -60,23.6 -60,52.4 -60,81.2 -60,110 -60,110 -61.8,110 -63.6,110 -65.4,110 -67.2,110 -69,110 -70.8,110 -72.6,110 -74.4,110 -76.2,110 -78,81.2 -78,52.4 -78,23.6 -78,-5.2 -78,-34 -78,-62.8 -78,-91.6 -78,-120.4 -78,-149.2 -78,-178 -78,-178 -76.2,-178 -74.4,-178 -72.6,-178 -70.8,-178 -69,-178 -67.2,-178 -65.4,-178 -63.6,-178 -61.8,-178 -60))"], "date_created": "Mon, 20 Oct 2008 00:00:00 GMT", "description": "During 2001-2006, 6 giant icebergs (B15A, B15J, B15K, C16 and C25) adrift in the southwestern Ross Sea, Antarctica, were instrumented with global positioning system (GPS) receivers, magnetic compasses and automatic weather stations (AWS), to monitor their behavior in the near-coastal environment and to record their exit into the Southern Ocean. The GPS and AWS data were collected on a 20-minute interval, Many of the station data timeseries are continuous for periods of up to 7 years, with icebergs C16 and B15J having the longest records.\n\nThe data is considered useful for examining the processes of iceberg drift (and other behaviors) on time scales that are shorter than what is possible through satellite image iceberg tracking. Data are available in comma-delimited ASCII format and Matlab native mat files.", "east": 110.0, "geometry": ["POINT(-34 -69)"], "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "locations": "Southern Ocean; Ross Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "uid": "609350", "west": -178.0}, {"awards": "0238281 Marsh, Adam", "bounds_geometry": ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "Although we envision the coastal margins of Antarctica as an extreme environment challenging to the existence of life, there are many marine invertebrates that are adapted to live and thrive under the sea ice. For two field seasons, the SCUBA diving activities of this project routinely involved photographing these animals in all the dive locations as a way to document what we observed as the dominant organisms at each site. Ice diving is very strenuous for humans, and often the constraints of managing the work on a dive, monitoring air reserves, tracking proximity to the dive hole, and the 50 minute exposure to subfreezing temperatures limits a divers ability to \"catalog\" observations that are not essential to the current dive plan. The photographs archived here have provided the project\u0027s dive team with the ability to \"debrief\" following a dive and more or less reenact the dive by moving through the photograph images. Studying these images often served as a visual trigger for divers to recall more specific observations and in many cases details in the photographs were captured without the photographer (A. Marsh) realizing that they were there (such as small, cryptic species hiding in a shadow until the strobe light fires for the photo, illuminating these secondary subjects). These photographs are intended to serve as a record of what organisms we encountered in the McMurdo Sound area in 2004 and 2005. All photographs were taken with a Nikon D-70 in a polycarbonate underwater housing using either a 18 mm (wide) or 60 mm (macro) lens.", "east": 167.0, "geometry": ["POINT(165 -77.5)"], "keywords": "Antarctica; Biota; McMurdo Sound; Oceans; Photo/video; Photo/Video; Southern Ocean", "locations": "Antarctica; McMurdo Sound; Southern Ocean", "north": -77.0, "nsf_funding_programs": null, "persons": "Marsh, Adam G.", "project_titles": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates", "projects": [{"proj_uid": "p0000240", "repository": "USAP-DC", "title": "CAREER: Genomic Networks for Cold-Adaptation in Embryos of Polar Marine Invertebrates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Marine Invertebrates of McMurdo Sound", "uid": "600034", "west": 163.0}, {"awards": null, "bounds_geometry": null, "date_created": "Fri, 12 May 2006 00:00:00 GMT", "description": "The data set include a table summary of the distribution of the authigenic vs. detrital smectite, zeolites, and other authigenic minerals within the extent of drill core-3 of the Cape Roberts Project ranging from 22.40 to 902.64 meters below sea-floor. Also included in this table are summaries of unit and interval lithologic descriptions along with corresponding environments of deposition, provided by the Cape Roberts Science Team, 2000. In addition, the data set includes numerous micrographs of fracture samples from CRP-3 used in the investigation.", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Priestas, Anthony M.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Cape Roberts Core-3 Authigenic Clays", "uid": "600018", "west": null}, {"awards": "9980538 Lohmann, Kyger", "bounds_geometry": null, "date_created": "Mon, 11 Jun 2001 00:00:00 GMT", "description": "Geochemical composition of shells of the bivalve, Cucullaea from the La Meseta Formation, Seymour Island, Antarctica.", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": "Lohmann, Kyger", "project_titles": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene", "projects": [{"proj_uid": "p0000613", "repository": "USAP-DC", "title": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "uid": "600019", "west": null}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior.\n\nThis project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar.\n\nData in this collection were obtained during two Antarctic field seasons in 1994\u201395 and 1996\u201397. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files.", "east": -145.0, "geometry": ["POINT(-150 -82)"], "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jacobel, Robert", "project_titles": "Siple Dome Glaciology and Ice Stream History", "projects": [{"proj_uid": "p0000190", "repository": "USAP-DC", "title": "Siple Dome Glaciology and Ice Stream History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.0, "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "uid": "609085", "west": -155.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Demographic data for Weddell Seal colonies in Erebus Bay through the 2023 Antarctic field season
|
2147553 1640481 |
2024-09-27 | Rotella, Jay |
The consequences of maternal effects and environmental conditions on offspring success in an Antarctic predator Collaborative Research: The Drivers and Role of Immigration in the Dynamics of the Largest Population of Weddell Seals in Antarctica under Changing Conditions |
The Erebus Bay population of Weddell seals in the Ross Sea of Antarctica is the most southerly breeding population of mammal in the world, closely associated with persistent shore-fast ice, and one that has been intensively studied since 1969. The resulting long-term database, which includes data for over 29,000 marked individuals, contains detailed population information that provides an excellent opportunity to study linkages between environmental conditions and demographic processes in the Antarctic. The study population is of special interest as the Ross Sea is one of the most productive areas of the Southern Ocean and one of the most pristine marine environments on the planet. The study provides long-term demographic data for individual seals. The Access database contains information for 3 types of data on Weddell seals for the period 1969-2017. (1) Mark-recapture Data with resighting records for all individuals tagged in and around the McMurdo Sound area, as well as seals tagged at White Island; (2) Mass Dynamics Data contains physical masses and photographic records and measurements that include the date, ID number, sex, age class, weight (if successfully collected), and perspectives from which photographs were collected for each sampling occurrence; and (3) Research Procedures Data contains records of handling and research procedures conducted on Erebus Bay Weddell seals by various research teams in recent years. <br/> | ["POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))"] | ["POINT(166 -76.9)"] | false | false |
Weddell seal dive behavior and rhythmicity from 2010-2012 in the Ross Sea
|
0838937 0838892 1853377 |
2024-09-20 | Shero, Michelle |
Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Diel vertical migrations (DVM) have been well-documented across numerous taxa, with prey descend through the water column during daylight hours to avoid visual predators and feed at the surface at night. However, the ability of marine mammals such as Weddell seals (Leptonychotes weddellii) to follow prey to depths is likely constrained by limited breath-hold capacities and the physiological consequences of pushing aerobic thresholds. In particular, dives that exceed the aerobic dive limit require exponentially longer surface recuperation times to clear lactate byproducts from circulation. This is time that the animals then cannot spend foraging. In this study, we assess the circadian organization of the Weddell seal's dive efforts and when animals make their longest/deepest (most 'extreme') dives that far exceed aerobic thresholds. Sixty-two adult Weddell seals were instrumented with satellite linked relay loggers in the Ross Sea to collect behavioral information across the austral winter. Daily activities are likely to shift across the year in a highly-seasonal polar environment, and through this 'natural experiment' we test how free-ranging seals alter foraging behavior during Polar Day and Night (continuous light, LL and dark, DD, respectively) and varying light/dark (LD) cycling across the year. | ["POLYGON((-180 -72,-179.8 -72,-179.6 -72,-179.4 -72,-179.2 -72,-179 -72,-178.8 -72,-178.6 -72,-178.4 -72,-178.2 -72,-178 -72,-178 -72.7,-178 -73.4,-178 -74.1,-178 -74.8,-178 -75.5,-178 -76.2,-178 -76.9,-178 -77.6,-178 -78.3,-178 -79,-178.2 -79,-178.4 -79,-178.6 -79,-178.8 -79,-179 -79,-179.2 -79,-179.4 -79,-179.6 -79,-179.8 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.3,162 -77.6,162 -76.9,162 -76.2,162 -75.5,162 -74.8,162 -74.1,162 -73.4,162 -72.7,162 -72,163.8 -72,165.6 -72,167.4 -72,169.2 -72,171 -72,172.8 -72,174.6 -72,176.4 -72,178.2 -72,-180 -72))"] | ["POINT(172 -75.5)"] | false | false |
Impact of Climate Change on Pair-Bond Dynamics of Snow Petrels (Pagodroma nivea)
|
1840058 |
2024-09-16 | jenouvrier, stephanie |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics |
Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the ``Habitat-mediated” mechanisms. Generally, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change. <br/> | ["POINT(140.017 -66.66)"] | ["POINT(140.017 -66.66)"] | false | false |
Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020
|
1929991 |
2024-08-23 | Muto, Atsuhiro; Alley, Karen; Roccaro, Alexander; Pettit, Erin; Truffer, Martin; Scambos, Ted; Wild, Christian; Pomraning, Dale; Wallin, Bruce |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This is a dataset of elevations of sub-ice-shelf seafloor and ice-shelf bottom derived from active-source-seismic sounding conducted at discrete points distributed over the Thwaites Eastern Ice Shelf (TEIS) and Dotson Ice Shelf (DIS). Also included are the ice-shelf surface elevation at each seismic-shot location derived from the concurrent GNSS recording and P-wave speed profile through firn derived from shallow refraction-seismic surveys on each ice shelf. Raw seismic records are also provided as SEGY files. | ["POLYGON((-112.31 -74.8,-111.61500000000001 -74.8,-110.92 -74.8,-110.225 -74.8,-109.53 -74.8,-108.83500000000001 -74.8,-108.14 -74.8,-107.445 -74.8,-106.75 -74.8,-106.055 -74.8,-105.36 -74.8,-105.36 -74.83,-105.36 -74.86,-105.36 -74.89,-105.36 -74.92,-105.36 -74.94999999999999,-105.36 -74.97999999999999,-105.36 -75.00999999999999,-105.36 -75.03999999999999,-105.36 -75.07,-105.36 -75.1,-106.055 -75.1,-106.75 -75.1,-107.445 -75.1,-108.14 -75.1,-108.83500000000001 -75.1,-109.53 -75.1,-110.225 -75.1,-110.92 -75.1,-111.61500000000001 -75.1,-112.31 -75.1,-112.31 -75.07,-112.31 -75.03999999999999,-112.31 -75.00999999999999,-112.31 -74.97999999999999,-112.31 -74.94999999999999,-112.31 -74.92,-112.31 -74.89,-112.31 -74.86,-112.31 -74.83,-112.31 -74.8))"] | ["POINT(-108.83500000000001 -74.94999999999999)"] | false | false |
Diatom assemblage from IODP Site U1357
|
1744871 |
2024-08-13 | Dove, Isabel |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes quantitative diatom assemblage data from 60 samples from IODP Site U1357B on the Adelie Basin. The record spans from 11,000 yBP to present. | ["POLYGON((100 -62,104.4 -62,108.8 -62,113.2 -62,117.6 -62,122 -62,126.4 -62,130.8 -62,135.2 -62,139.6 -62,144 -62,144 -64,144 -66,144 -68,144 -70,144 -72,144 -74,144 -76,144 -78,144 -80,144 -82,139.6 -82,135.2 -82,130.8 -82,126.4 -82,122 -82,117.6 -82,113.19999999999999 -82,108.8 -82,104.4 -82,100 -82,100 -80,100 -78,100 -76,100 -74,100 -72,100 -70,100 -68,100 -66,100 -64,100 -62))"] | ["POINT(122 -72)"] | false | false |
Diatom-bound and bulk sedimentary nitrogen isotopes from IODP Site U1357
|
1744871 |
2024-08-13 | Dove, Isabel; Kelly, Roger; Robinson, Rebecca |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; ‰ vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; ‰ vs air), and total nitrogen (wt%) from 121 samples from IODP Site U1357B in the Adelie Basin. The sediments are Holocene age (11 kyBP to present). | ["POLYGON((100 -62,104.4 -62,108.8 -62,113.2 -62,117.6 -62,122 -62,126.4 -62,130.8 -62,135.2 -62,139.6 -62,144 -62,144 -64,144 -66,144 -68,144 -70,144 -72,144 -74,144 -76,144 -78,144 -80,144 -82,139.6 -82,135.2 -82,130.8 -82,126.4 -82,122 -82,117.6 -82,113.19999999999999 -82,108.8 -82,104.4 -82,100 -82,100 -80,100 -78,100 -76,100 -74,100 -72,100 -70,100 -68,100 -66,100 -64,100 -62))"] | ["POINT(122 -72)"] | false | false |
Diatom-bound and bulk sedimentary N isotopes from ODP Site 1098, Western Antarctic Peninsula
|
1744871 |
2024-08-13 | Dove, Isabel; Jones, Colin; Kelly, Roger; Robinson, Rebecca |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes measurements of diatom-bound nitrogen isotopic composition (d15Ndb; ‰ vs air), bulk sedimentary nitrogen isotopic composition (d15Nbulk; ‰ vs air), and total nitrogen (wt%) from 81 Holocene and late deglacial-aged samples from ODP Site 1098B on the western Antarctic Peninsula. | ["POLYGON((-80 -59,-76.8 -59,-73.6 -59,-70.4 -59,-67.2 -59,-64 -59,-60.8 -59,-57.599999999999994 -59,-54.4 -59,-51.2 -59,-48 -59,-48 -60.6,-48 -62.2,-48 -63.8,-48 -65.4,-48 -67,-48 -68.6,-48 -70.2,-48 -71.8,-48 -73.4,-48 -75,-51.2 -75,-54.4 -75,-57.6 -75,-60.8 -75,-64 -75,-67.2 -75,-70.4 -75,-73.6 -75,-76.8 -75,-80 -75,-80 -73.4,-80 -71.8,-80 -70.2,-80 -68.6,-80 -67,-80 -65.4,-80 -63.8,-80 -62.2,-80 -60.6,-80 -59))"] | ["POINT(-64 -67)"] | false | false |
Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)
|
1543383 1440435 2026045 0636696 1142158 |
2024-07-22 | Corso, Andrew; Desvignes, Thomas; McDowell, Jan; Cheng, Chi-Hing; Biesack, Ellen; Steinberg, Deborah; Hilton, Eric |
Evolution of hemoglobin genes in notothenioid fishes Antarctic Fish and MicroRNA Control of Development and Physiology LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold Environmental, Organismal and Evolutionary Physiology of Freeze Avoidance in Antarctic Notothenioid Fishes |
This data set includes photographs and metadata from phylogenetic analyses associated with the description of Akarotaxis gouldae n. sp., or the Banded Dragonfish (Bathydraconidae). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Shallow Ice Radar (SIR) Dataset from Ross Ice Shelf (ROSETTA-Ice)
|
1443534 1444690 0958658 |
2024-05-22 | Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Chu, Winnie; Keeshin, Skye; Wearing, Martin; Spergel, Julian; Packard, Sarah; Dong, LingLing; Das, Indrani; Bell, Robin |
Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130 Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This Shallow Ice Radar (SIR) dataset is from the Frequency Modulated Continuous Wave (LFMCW) radar system on board the IcePod while deployed with the ROSETTA-Ice project during the austral summers of November 2015 - December 2017. SIR data was collected along the ROSETTA-Ice Survey Grid where possible. More detailed information is included in the ReadMe. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, using CReSIS 2013/14 MCoRDS scripts as a foundation. All levels of processed data are Matfiles as a result. Included in this dataset are the following: * SIR level1a Matfiles separated by ROSETTA-Ice Survey Grid Line Number; * SIR long-line images at 300dpi (PNGs) for easy data viewing, rendered in MATLAB from level1 data; * SIR internal reflector digitization picks (CSV), rendered manually using MATLAB picking scripts; * SIR digitization frame images (picked and un-picked) as JPGs output from picking process | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
Deep ICE (DICE) Radar Dataset from Ross Ice Shelf (ROSETTA-Ice)
|
1443534 0958658 1444690 |
2024-05-20 | Cordero, Isabel; Frearson, Nicholas; Dhakal, Tejendra; Bertinato, Christopher; Millstein, Joanna; Wilner, Joel; Dong, LingLing; Das, Indrani; Spergel, Julian; Chu, Winnie; Bell, Robin |
Development of an Ice Imaging System for Monitoring Changing Ice Sheets Mounted on the NYANG LC-130 Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This Deep ICE (DICE) radar dataset is from the pulse-chirp depth sounding radar system on board the IcePod while deployed with the ROSETTA-Ice Project during the austral summers of November 2015 - December 2017. DICE data was collected along the ROSETTA-Ice Survey grid where possible. More detailed information is included in the ReadMe, including flight lines with data loss. DICE is a dual channel sensor with pulse-chirp rate of 1us and 3us, which means the data can be processed in four pulse/channel configurations: 1usCh1, 3usCh1, 1usCh2, and 3usCh2. The included dataset is 3usCh1 DICE, which is the preferred configuration. The preferred configuration is 3usCh1, which is included in this dataset. This data was processed at Lamont-Doherty Earth Observatory using MATLAB scripts developed in-house by Tejendra Dhakal and Nicholas Frearson, with CReSIS 2014 MCoRDS scripts as a foundation. As such, all processed levels of this data product are Matfiles. Included in this dataset are the following: * DICE level2a data Matfiles, separated by ROSETTA-Ice Survey Grid Line Number; * DICE long-line images at 300dpi (PNGs) for easy data viewing rendered in MATLAB from level2 data; * DICE Ice Base digitization picks, rendered manually using MATLAB picking script; * DICE digitization frame images (picked and un-picked) as JPGs output from picking process | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
LiDAR Nadir and Swath Data from Ross Ice Shelf, Antarctica (ROSETTA-Ice)
|
1443534 0958658 1444690 |
2024-05-17 | Locke, Caitlin; Bertinato, Christopher; Dhakal, Tejendra; Becker, Maya K; Starke, Sarah; Boghosian, Alexandra |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This LiDAR data is from the RIEGL VQ-580 Airborne Laser Scanner onboard IcePod while deployed with the ROSETTA-Ice Project during November 2015 - December 2017. This data was processed at Lamont-Doherty Earth Observatory using RIEGL's RiPROCESS Data Processing Software. LiDAR data was collected along the ROSETTA-Ice Survey Grid where possible. Survey flights with no data are listed in the ReadMe. Clouds have been removed where possible. | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
Sediment chemistry of ODP Site 1098
|
1744871 |
2024-04-24 | Dove, Isabel |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes measurements of opal (wt %), total organic carbon (wt %), total nitrogen (wt%), bulk nitrogen isotopic composition (d15Nbulk; ‰ vs air), and diatom-bound nitrogen isotopic composition (d15Ndb; ‰ vs air) from 36 samples from ODP sediment core 1098B-5H-7 on the western Antarctic Peninsula. The sediments were deposited during a period of deglaciation about 12.5-12.3 ka. | ["POINT(-64.207 -64.86)"] | ["POINT(-64.207 -64.86)"] | false | false |
ODP Site 1098 deglacial diatom assemblage
|
1744871 |
2024-04-24 | Dove, Isabel |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset includes diatom assemblage and surface area data from ODP sediment core 1098B-5H-7 on the western Antarctic Peninsula. The sediments are laminated and were deposited during a period of deglaciation about 12.5-12.3 ka. Quantitative diatom assemblage counts and surface area measurements are reported for 12 samples. | ["POINT(-64 -65)"] | ["POINT(-64 -65)"] | false | false |
CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023
|
1443677 9896041 |
2024-03-27 | Howard, Susan L.; Greene, Chad A.; Padman, Laurence; Erofeeva, Svetlana; Sutterley, Tyler |
Ocean Tides around Antarctica and in the Southern Ocean Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
CATS2008_v2023 is an update of the original CATS2008 tide model (Howard et al., 2019 [https://doi.org/10.15784/601235]; Padman et al., 2002 [https://doi.org/10.3189/172756402781817752]). It introduces a new model file format, increased resolution, more accurate coastlines, and a simple scaling for ice shelf flexure near grounding lines. The changes included in the new CATS2008_v2023 model are: (1) The CATS2008 model has been interpolated to a finer grid (2 km for CATS2008_v2023 vs 4 km for CATS2008) to provide a better representation of coastlines and ice shelf grounding lines. (2) Coastlines have been adjusted to match BedMachine Antarctica v3 (Morlighem et al., 2020 [https://doi.org/10.1038/s41561-019-0510-8]; Morlighem, 2022 [https://doi.org/10.5067/FPSU0V1MWUB6]). Areas that were previously grounded and had no tidal constituent data in CATS2008 have been filled using MATLAB's ‘regionfill’ function, applied to the real and imaginary components of tidal constituents individually. An ocean mask matching BedMachine Antarctica v3 is provided in the model file to mask out grounded areas. (3) Water depth (water column thickness under ice shelves) has been adjusted to match BedMachine Antarctica v3. (4) An ice shelf flexure model has been included for estimating tidal deflections in grounding zones. Flexure is approximated by a forward 1D linear elastic model applied to BedMachine Antarctica v3 ice geometry, with elastic modulus E=4.8 GPa and Poisson's ratio nu=0.4. The ice flexure can be included as an option when using TMD3.0 (Greene et al., 2024 [https://doi.org/10.21105/joss.06018]) and pyTMD (Sutterley, 2024 [https://doi.org/10.5281/zenodo.10501349]) software packages. (5) The model is provided as a consolidated NetCDF file that can be used with TMD3.0 and pyTMD, but not with earlier TMD versions. | ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.161699999999996,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.138600000000004,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"] | ["POINT(0 -89.999)"] | false | false |
The impact of boldness on demographic rates and lifehistory outcomes in the wandering albatross
|
1951500 |
2024-02-27 | Joanie, Van de Walle; Jenouvrier, Stephanie |
NSFGEO-NERC: Integrating Individual Personality Differences in the Evolutionary Ecology of a Seabird in the Rapidly Changing Polar Environment |
1. Differences among individuals within a population are ubiquitous. Those differences are known to affect the entire life cycle with important consequences for all demographic rates and outcomes. One source of among-individual phenotypic variation that has received little attention from a demographic perspective is animal personality, which is defined as consistent and heritable behavioral differences between individuals. While many studies have shown that individual variation in individual personality can generate individual differences in survival and reproductive rates, the impact of personality on all demographic rates and outcomes remains to be assessed empirically. 2. Here, we used a unique, long-term, dataset coupling demography and personality of wandering albatross (Diomedea exulans) in the Crozet Archipelago and a comprehensive analysis based on a suite of approaches (capture-mark-recapture statistical models, Markov chains models and structured matrix population models). We assessed the effect of boldness on annual demographic rates (survival, breeding probability, breeding success), life-history out-comes (life expectancy, lifetime reproductive outcome, occupancy times), and an integrative demographic outcome (population growth rate). 3. We found that boldness had little impact on female demographic rates, but was very likely associated with lower breeding probabilities in males. By integrating the effects of boldness over the entire life cycle, we found that bolder males had slightly lower lifetime reproductive success compared to shyer males. Indeed, bolder males spent a greater proportion of their lifetime as non-breeders, which suggests longer inter-breeding intervals due to higher reproductive allocation. 4. Our results reveal that the link between boldness and demography is more complex than anticipated by the pace-of-life literature and highlight the importance of considering the entire life cycle with a comprehensive approach when assessing the role of personality on individual performance and demography. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
COLDEX Raw MARFA Ice Penetrating Radar data
|
2019719 |
2024-02-19 | Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin; Kerr, Megan; Buhl, Dillon; Ng, Gregory; Kempf, Scott D.; Chan, Kristian |
Center for Oldest Ice Exploration |
This dataset constitutes the as-recorded echo data from the MARFA radar system. The data was recorded by a National Instruments acquisition system, simultaneously with GPS, magnetics, laser range data, outside air temperature and IMU data. The data was acquired using the Environment for Linked Serial Acquisition (ELSA). The data is provided in two forms: • Flight based and as recorded on the aircraft in raw packets • Transect based, reorganized into transects corresponding to the survey design, and demultiplexed into text tables and flat binary files. | ["POLYGON((50 -84,55 -84,60 -84,65 -84,70 -84,75 -84,80 -84,85 -84,90 -84,95 -84,100 -84,100 -84.6,100 -85.2,100 -85.8,100 -86.4,100 -87,100 -87.6,100 -88.2,100 -88.8,100 -89.4,100 -90,95 -90,90 -90,85 -90,80 -90,75 -90,70 -90,65 -90,60 -90,55 -90,50 -90,50 -89.4,50 -88.8,50 -88.2,50 -87.6,50 -87,50 -86.4,50 -85.8,50 -85.2,50 -84.6,50 -84))"] | ["POINT(75 -87)"] | false | false |
Nitrogen, carbon, and oxygen isotopes in the shell of the Antarctic scallop Adamussium colbecki as a proxy for sea ice cover in Antarctica.
|
1745064 1745080 1745057 0739512 |
2024-02-05 | Gillikin, David; Puhalski, Emma; Camarra, Steve; Cronin, Kelly; Verheyden, Anouk; Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past Collaborative Research: Linking Modern Benthic Communities and Taphonomic Processes to the Stratigraphic Record of Antarctic Cores |
Adamussium colbecki is a large thin-shelled scallop common in Antarctic waters and well represented in the fossil record. Shell nitrogen isotopes in carbonate bound organic matter (d15NCBOM) have the potential to record sea ice state over time. Recent studies illustrated that d15NCBOM values provide a similar proxy as soft tissue d15N values which are in turn are predicably related to food d15N values (Gillikin et al., 2017, GCA, 200, 55–66, doi: 10.1016/j.gca.2016.12.008). Sea-ice organic N should have higher d15N values compared to open water organics due to nitrate draw down in the ice (Fripiat et al., 2014, Global Biogeochem. Cycles, 28, 115–130, doi:10.1002/2013GB004729). To test this hypothesis we analyzed A. colbecki shells from Explorers Cove and Bay of Sails, western McMurdo Sound, Antarctica. These sites have different sea ice states: persistent (multiannual) sea ice at Explorers Cove and annual sea ice (that melts out every year) at Bay of Sails. Six adults shells collected at these sites in 2008 (3 from each site) and two juveniles collected in 2016 from Explorers Cove were be serially sampled for d15NCBOM values from the growing shell margin to the umbo. d15NCBOM values from Explorers Cove with persistent sea ice cover were consistently higher (+10 ± 0.7 ‰) than those from Bay of Sails where the sea ice melts out every year (+8 ± 0.5 ‰; t-test p<0.0001). d15NCBOM data from Mid- to Late Holocene shells that grew in these locations will also be presented. We posit that nitrogen isotopes in A. colbecki shells have a high potential to record sea ice cover. | [] | [] | false | false |
Full Waveform Ambient Noise Tomography for East Antarctica
|
1914698 |
2024-01-24 | Hansen, Samantha; Emry, Erica |
Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes
Subglacial Basin (RESISSt) |
Recent investigations in polar environments have examined solid-Earth-ice-sheet feedbacks and have emphasized that glacial isostatic adjustment, tectonic, and geothermal forcings exert first-order control on the physical conditions at and below the ice-bed interface and must be taken into account when evaluating ice-sheet evolution. However, the solid-Earth structure beneath much of Antarctica is still poorly constrained given the sparse distribution of seismic stations across the continent and the generally low seismicity rate. One region of particular interest is the Wilkes Subglacial Basin (WSB) in East Antarctica. During the mid-Pliocene warm period, the WSB may have contributed 3-4 m to the estimated 20 m rise in sea-level, indicating that this region could also play an important role in future warming scenarios. However, the WSB may have experienced notable bedrock uplift since the Pliocene; therefore, past geologic inferences of instability may not serve as a simple analogue for the future. Using records of ambient seismic noise recorded by both temporary and long-term seismic networks, along with a full-waveform tomographic inversion technique, we have developed improved images of the lithospheric structure beneath East Antarctica, including the WSB. Empirical Green’s Functions with periods between 40 and 340 s have been extracted using a frequency-time normalization technique, and a finite-difference approach with a spherical grid has been employed to numerically model synthetic seismograms. Associated sensitivity kernels have also been constructed using a scattering integral method. Our results suggest the WSB is underlain by slow seismic velocities, with faster seismic structure beneath the adjacent Transantarctic Mountains and the Belgica Subglacial Highlands. This may indicate that the WSB is associated with a region of thinner lithosphere, possibly associated with prior continental rifting. The seismic heterogeneity highlighted in our model could have significant implications for understanding the geodynamic origin of WSB topography and its influence on ice-sheet behavior. The model file and associated plotting scripts are provided. | ["POLYGON((90 -65,99 -65,108 -65,117 -65,126 -65,135 -65,144 -65,153 -65,162 -65,171 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,171 -90,162 -90,153 -90,144 -90,135 -90,126 -90,117 -90,108 -90,99 -90,90 -90,90 -87.5,90 -85,90 -82.5,90 -80,90 -77.5,90 -75,90 -72.5,90 -70,90 -67.5,90 -65))"] | ["POINT(135 -77.5)"] | false | false |
Stable isotopes of Oxygen and Carbon in Adamissium colbecki from Explorers Cove and Bay of Sails
|
0739512 1745057 1341612 1745080 1745064 |
2024-01-12 | Cronin, Kelly; Gillikin, David; Puhalski, Emma; Camarra, Steve; Andrus, Fred; Perez-Huerta, Alberto; Verheyden, Anouk; Bowser, Samuel S.; Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past |
This dataset contains stable isotopes of carbon and oxygen sampled from 6 adult and 2 juvenile Adamussium colbecki valves. Three of the adults were collected live from Bay of Sails. Three of the adults and the two juveniles were collected from Explorers Cove. | ["POLYGON((163 -77.2,163.2 -77.2,163.4 -77.2,163.6 -77.2,163.8 -77.2,164 -77.2,164.2 -77.2,164.4 -77.2,164.6 -77.2,164.8 -77.2,165 -77.2,165 -77.25,165 -77.3,165 -77.35000000000001,165 -77.4,165 -77.45,165 -77.5,165 -77.55,165 -77.60000000000001,165 -77.65,165 -77.7,164.8 -77.7,164.6 -77.7,164.4 -77.7,164.2 -77.7,164 -77.7,163.8 -77.7,163.6 -77.7,163.4 -77.7,163.2 -77.7,163 -77.7,163 -77.65,163 -77.60000000000001,163 -77.55,163 -77.5,163 -77.45,163 -77.4,163 -77.35000000000001,163 -77.3,163 -77.25,163 -77.2))"] | ["POINT(164 -77.45)"] | false | false |
Dissolved nutrients, cell counts, and nitrogen isotope measurements from Chaetoceros socialis culture experiments
|
1744871 |
2023-08-30 | Dove, Isabel |
The nitrogen isotopic composition of diatom resting spores in Southern Ocean sediments: A source of bias and/or paleoenvironmental information? |
This dataset is the results of 3 experiments in which the spore-forming diatom Chaetoceros socialis was grown in culture and induced into resting spores by nitrate limitation. The nitrogen isotopic composition of accumulated biomass (δ15Nbiomass; ‰ vs air) and of diatom-bound organic N (δ15Ndb; ‰ vs air) are reported at two timepoints from each experiment: prior to and after resting spore formation. Experiments 1 and 2 provide measurements for CRS mixed with vegetative Chaetoceros cells, while Experiment 3 provides measurements for isolated CRS. Fluorescence and nitrate concentration was tracked throughout each experiment, with dissolved silica, ammonium, and total reduced nitrogen also measured in Experiment 3. | [] | [] | false | false |
Simulated winter warming negatively impacts survival of Antarctica's only endemic insect
|
1850988 |
2023-06-11 | Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas | No project link provided | Antarctic winters are challenging for terrestrial invertebrates, and species that live there have specialised adaptations to conserve energy and protect against cold injury in the winter. However, rapidly occurring climate change in these regions will increase the unpredictability of winter conditions, and there is currently a dearth of knowledge on how the highly adapted invertebrates of Antarctica will respond to changes in winter temperatures. 2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica, to simulated winters at three ecologically relevant mean temperature scenarios: warm (−1°C), normal (−3°C) and cold (−5°C). Within each scenario, larvae were placed into three distinct habitat types in which they are commonly observed (decaying organic matter, living moss, and Prasiola crispa algae). Following the simulated overwintering period, a range of physiological outcomes were measured, namely survival, locomotor activity, tissue damage, energy store levels and molecular stress responses. 3. Survival, energy stores and locomotor activity were significantly lower following the Warm overwintering environment than at lower temperatures, but tissue damage and heat shock protein expression (a proxy for protein damage) did not significantly differ between the three temperatures. Survival was also significantly lower in larvae overwintered in Prasiola crispa algae, although the underlying mechanism is unclear. Heat shock proteins were expressed least in larvae overwintering in living moss, suggesting it is less stressful to overwinter in this substrate, perhaps due to a more defined structure affording less direct contact with ice. 4. Our results demonstrate that a realistic 2°C increase in winter microhabitat temperature reduces survival and causes energy deficits that have implications for subsequent development and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters are expected to become more common in response to climate change. Conversely, if climate change reduces the length of winter, some of the negative consequences of winter warming may be attenuated, so it will be important to consider this factor in future studies. Nonetheless, our results indicate that winter warming could negatively impact cold-adapted insects such as the Antarctic midge. | ["POLYGON((-64.366767 -62.681,-51.868477 -62.681,-39.370186999999994 -62.681,-26.87189699999999 -62.681,-14.373606999999993 -62.681,-1.875316999999996 -62.681,10.622973000000016 -62.681,23.121263000000013 -62.681,35.61955300000001 -62.681,48.11784300000001 -62.681,60.616133 -62.681,60.616133 -62.9536677,60.616133 -63.226335399999996,60.616133 -63.4990031,60.616133 -63.7716708,60.616133 -64.04433850000001,60.616133 -64.31700620000001,60.616133 -64.58967390000001,60.616133 -64.86234160000001,60.616133 -65.13500930000001,60.616133 -65.407677,48.11784299999999 -65.407677,35.619552999999996 -65.407677,23.121262999999992 -65.407677,10.622972999999995 -65.407677,-1.875317000000003 -65.407677,-14.373607000000014 -65.407677,-26.87189700000001 -65.407677,-39.37018700000001 -65.407677,-51.868477000000006 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"] | ["POINT(-1.875316999999996 -64.04433850000001)"] | false | false |
Mercer Subglacial Lake radiocarbon and stable isotope data
|
1543347 |
2023-03-13 | Venturelli, Ryan; Rosenheim, Brad |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes radiocarbon (¹⁴C) and stable carbon isotope (δ¹³C) data for a sediment core from Mercer Subglacial Lake. In addition, this dataset includes ¹⁴C and δ¹³C for dissolved organic carbon, dissolved inorganic carbon, and particulate organic carbon from the Mercer Subglacial Lake water column. | ["POINT(-149.59134 -84.640287)"] | ["POINT(-149.59134 -84.640287)"] | false | false |
Sediment porewater properties data from Mercer Subglacial Lake
|
1543537 |
2023-02-03 | Dore, John; Michaud, Alexander; Skidmore, Mark; Tranter, Martyn; Steigmeyer, August; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains measurements of sediment porewater properties from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: specific conductance; water stable isotopes (δ2H and δ18O); dissolved gases (methane and its stable isotopes δ13C and δ2H, ethylene, and ethane); and major anions and cations. | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Water column biogeochemical data from Mercer Subglacial Lake
|
1543537 |
2023-02-01 | Dore, John; Skidmore, Mark; Hawkings, Jon; Steigmeyer, August; Li, Wei; Barker, Joel; Tranter, Martyn; Priscu, John; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains water column biogeochemical properties measured on discrete samples collected from Mercer Subglacial Lake by the SALSA project. Data included are: specific conductance; carbonic acid system parameters (total alkalinity, total inorganic carbon, and pH); water stable isotopes (δ2H and δ18O); dissolved gases (oxygen, methane, nitrous oxide, and hydrogen); dissolved nutrients (ammonium, nitrite and phosphate), major anions (including nitrate) and cations; size-fractionated colloidal and dissolved trace elements); dissolved organic carbon; and microbial cell and virus-like particle counts. | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Discrete bulk sediment properties data from Mercer Subglacial Lake
|
1543537 |
2023-02-01 | Dore, John; Campbell, Timothy; Michaud, Alexander; Hawkings, Jon; Skidmore, Mark; Tranter, Martyn; Venturelli, Ryan A; Science Team, SALSA |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains bulk sediment properties measurements from cores collected from Mercer Subglacial Lake by the SALSA project. Included are: physical properties (bulk density, mass water content, porosity, shear strength, particle size distribution, and mineralogy); carbon (inorganic and organic); iron (ascorbate- and dithionite-extractable); and sulfur (acid-volatile and chromium-reducible). | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
CTD data from Mercer Subglacial Lake and access borehole
|
1543537 |
2023-01-17 | Dore, John; Priscu, John; Leventer, Amy; Rosenheim, Brad |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes binned conductivity, temperature and pressure measurements from Mercer Subglacial Lake and the borehole drilled to access the lake by the SALSA project, as well as additional physical parameters derived from these measurements using the TEOS-10 equation of state. | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Heterotrophic Bacterial Production Samples from Station E (Palmer Station, Antarctica) and Associated Incubation Experiments
|
1543450 |
2023-01-03 | Countway, Peter; Matrai, Patricia |
Microbial Community Structure and Expression of Functional Genes Involved in the Seasonal Cycling of DMSP in the Southern Ocean |
Rates of heterotrophic bacterial production (BP) via 3H-Leu uptake were estimated for samples collected from Station E (Palmer Station, Antarctica) and associated incubation experiments. Rates of BP in seawater incubations greatly exceeded BP rates in the environment, likely due to stimulation of phytoplankton blooms and addition of DMSP in experimental treatments. Methods for determining BP were identical to those used by Palmer LTER investigators. References for the analytical methods used for these analyses are included in a secondary tab with the uploaded data. | ["POLYGON((-66 -63,-65.7 -63,-65.4 -63,-65.1 -63,-64.8 -63,-64.5 -63,-64.2 -63,-63.9 -63,-63.6 -63,-63.3 -63,-63 -63,-63 -63.3,-63 -63.6,-63 -63.9,-63 -64.2,-63 -64.5,-63 -64.8,-63 -65.1,-63 -65.4,-63 -65.7,-63 -66,-63.3 -66,-63.6 -66,-63.9 -66,-64.2 -66,-64.5 -66,-64.8 -66,-65.1 -66,-65.4 -66,-65.7 -66,-66 -66,-66 -65.7,-66 -65.4,-66 -65.1,-66 -64.8,-66 -64.5,-66 -64.2,-66 -63.9,-66 -63.6,-66 -63.3,-66 -63))"] | ["POINT(-64.5 -64.5)"] | false | false |
Computed fetch for project study sites
|
1744584 |
2022-12-29 | Klein, Andrew |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
This csv dataset includes the fetch distances for the 15 study sites visited by projects ANT-1744550, -1744570, -1744584, and -1744602 during ARSV Laurence M. Gould cruise LMG 19-04 in April and May 2019. The fetch distances were computed for each of the following eight cardinal directions (0°,45°,90°,135°,180°,225°,270°,315°). The fetches are all reported in meters (m). Fetch was determined by computing the distance along each of the eight directions to the nearest shoreline based on a 100 m resolution land/water grid. The grid was constructed using a vector-to-raster conversion of the Scientific Council of Antarctic Research (SCAR) Antarctic Digital Database’s High resolution vector polylines of the Antarctic coastline. The fetch computations utilized an ArcGIS toolbox based on code by Finlayson (2006) that computes fetch using the recommended procedures from the US Army Corp of Engineers Shore Protection Manual (USACE, 1984). Finlayson, D.P. 2006. The geomorphology of Puget Sound beaches. Ph.D. dissertation. University of Washington, Seattle. 216 p. Gerrish, L., Fretwell, P., & Cooper, P. (2021). High resolution vector polylines of the Antarctic coastline (7.4) [Data set]. UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation. https://doi.org/10.5285/e46be5bc-ef8e-4fd5-967b-92863fbe2835'. USACE, 1984. Shore Protection Manual, Coastal Engineering Research Center, Fort Belvoir, Virginia. | ["POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.8,-60 -62.6,-60 -63.4,-60 -64.2,-60 -65,-60 -65.8,-60 -66.6,-60 -67.4,-60 -68.2,-60 -69,-61 -69,-62 -69,-63 -69,-64 -69,-65 -69,-66 -69,-67 -69,-68 -69,-69 -69,-70 -69,-70 -68.2,-70 -67.4,-70 -66.6,-70 -65.8,-70 -65,-70 -64.2,-70 -63.4,-70 -62.6,-70 -61.8,-70 -61))"] | ["POINT(-65 -65)"] | false | false |
Ground-Penetrating Radar data from Livingston Island in the Antarctic Peninsula
|
1644197 |
2022-12-19 | Simms, Alexander |
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches |
This dataset includes ground-penetrating radar (GPR) data collected on Livingston Island in the Antarctic Peninsula. | [] | [] | false | false |
Ground Penetrating Radar Profiles from Beaches on Joinville Island, Antarctic Peninsula
|
1644197 |
2022-12-19 | Simms, Alexander |
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches |
This dataset provides the raw and processed ground-penetrating radar (GPR) data collected on Joinville Island in the Antarctic Peninsula. | [] | [] | false | false |
Radiocarbon Ages from Beaches on Joinville Island, Antarctic Peninsula
|
1644197 |
2022-12-19 | Simms, Alexander |
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches |
This dataset consists of the location, elevation, and age of samples obtained from Joinville Island along the Antarctic Peninsula | [] | [] | false | false |
Sedation dose and response
|
1543539 |
2022-12-13 | Pearson, Linnea |
RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments |
These data were collected in 2017 and 2019 in McMurdo Sound, Antarctica. Included are reported dose of sedation drugs administered to Weddell seal pups during a longitudinal study at 4 age timepoints during early devleopment. Vital signs including heart rate (HR) and respiration rate (RR) during sedation are included, as are reactions to the drugs, such as if and how many apnea events were recorded, whether an animal exhibited cyanosis. This study was conducted with ethical approval from NOAA Fisheries under the Marine Mammal Protection Act (permit # 21006-01), the Antarctic Conservation Act (permit # 2018-013 M#1) and the California Polytechnic University Institutional Animal Care and Use Committee (#1605 and 1904). | [] | [] | false | false |
Weddell seal iron dynamics and oxygen stores across lactation
|
1246463 |
2022-07-05 | Shero, Michelle |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals Collaborative Research: Physiological and Genetic Correlates of Reproductive Success in High- versus Low-Quality Weddell seals |
The profound impacts that maternal provisioning of finite energy resources has on offspring survival have been extensively studied across mammals. However, in addition to calories, we tested whether high hemoprotein concentrations in diving mammals necessitates exceptional female-to-pup iron transfer. To answer this question adult female Weddell seals (Leptonychotes weddellii) were handled across the austral summer. This included post-partum females during lactation and post-weaning. To demonstrate that any observed changes in iron dynamics were due to lactation, equivalent skip-breeding females (i.e., that did not produce a pup) were also handled. We measured numerous indices of iron mobilization (ferritin, serum iron, total-iron-binding-capacity, transferrin saturation, milk iron concentration), hemoprotein concentrations, and oxygen stores. | ["POLYGON((162 -75,162.6 -75,163.2 -75,163.8 -75,164.4 -75,165 -75,165.6 -75,166.2 -75,166.8 -75,167.4 -75,168 -75,168 -75.4,168 -75.8,168 -76.2,168 -76.6,168 -77,168 -77.4,168 -77.8,168 -78.2,168 -78.6,168 -79,167.4 -79,166.8 -79,166.2 -79,165.6 -79,165 -79,164.4 -79,163.8 -79,163.2 -79,162.6 -79,162 -79,162 -78.6,162 -78.2,162 -77.8,162 -77.4,162 -77,162 -76.6,162 -76.2,162 -75.8,162 -75.4,162 -75))"] | ["POINT(165 -77)"] | false | false |
Specific growth rate measurements for 43 Southern Ocean diatoms
|
1543245 |
2022-06-27 | Bishop, Ian |
NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change |
This dataset includes records of the specific growth rates measured for 43 clonal diatom strains originally isolated during the research cruise NBP-1701 across the Pacific sector of the Southern Ocean during December 2016-January 2017. Strains were grown under continuous light (130 µmol m-2 s-1) at up to 8 temperatures that span all or most of each strain’s thermal niche width, from 0-12 degrees C, which encompasses each strain’s optimum temperature for growth. Strains have been molecularly identified to species via 18S Sanger sequencing. Data include the following information for each record: Internal lab strain reference ID, date collected, latitude, longitude, Southern Ocean region, species, tested temperature, replicate number and specific growth rate. Data are provided in comma-separated values (csv) format. | ["POLYGON((-179 -59,-167.7 -59,-156.4 -59,-145.1 -59,-133.8 -59,-122.5 -59,-111.19999999999999 -59,-99.89999999999999 -59,-88.6 -59,-77.3 -59,-66 -59,-66 -60.9,-66 -62.8,-66 -64.7,-66 -66.6,-66 -68.5,-66 -70.4,-66 -72.3,-66 -74.2,-66 -76.1,-66 -78,-77.3 -78,-88.6 -78,-99.9 -78,-111.2 -78,-122.5 -78,-133.8 -78,-145.10000000000002 -78,-156.4 -78,-167.7 -78,-179 -78,-179 -76.1,-179 -74.2,-179 -72.3,-179 -70.4,-179 -68.5,-179 -66.6,-179 -64.7,-179 -62.8,-179 -60.900000000000006,-179 -59))"] | ["POINT(-122.5 -68.5)"] | false | false |
Demographic outputs and their variances for three life history complexes for the Southern Fulmar across contrasted sea ice conditions.
|
1840058 1246407 |
2022-06-27 | Jenouvrier, Stephanie |
Polar Seabirds with Long-term Pair Bonds: Effects of Mating on Individual Fitness and Population Dynamics Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change |
Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, i.e., to chance. Quantifying the contributions of heterogeneity and chance is essential to understanding natural variability. Inter-individual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favorable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies. Specifically, three life-history complexes exist in a population of southern fulmar (defined as sets of life-history characteristics that occur together through the lifetime of an individual). They are reminiscent of the gradient of life- history strategy observed among species: 1. Group 1 (14% of offspring at fledging) is a slow-paced life history where individuals tend to delay recruitment, recruit successfully, and extend their reproductive lifespan. 2. Group 2 (67% of offspring at fledging) consists of individuals that are less likely to recruit, have high adult survival, and skip breeding often. 3. Group 3 (19% of offspring at fledging) is a fast-paced life history where individuals recruit early and attempt to breed often but have a short lifespan. Individuals in groups 1 and 3 are considered “high-quality” individuals because they produce, on average, more offspring over their lives than do individuals in group 2. But group 2 is made-up of individuals that experience the highest levels of adult survival. Differences between these groups, i.e. individual heterogeneity, only explains a small fraction of variance in life expectancy (5.9%) and lifetime reproduction (22%) when environmental conditions are ordinary. We expect that the environmental context experienced, especially when environmental conditions get extreme, is key to characterizing individual heterogeneity and its contribution to life history outcomes. Here, we build on previous studies to quantify the impact of extreme environmental conditions on the relative contributions of individual heterogeneity and stochasticity to variance in life history outcomes. We found that the differences in vital rates and demographic outcomes among complexes depend on the sea ice conditions individuals experience. Importantly, differences across life history complexes are amplified when sea ice concentration get extremely low. Sea ice conditions did not only affect patterns of life history traits, but also the variance of life history outcomes and the relative proportion of individual unobserved heterogeneity to the total variance. These new results advance the current debate on the relative importance heterogeneity (i.e. potentially adaptive) and stochasticity (i.e. enhances genetic drift) in shaping potentially neutral vs. adaptive changes in life histories. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Dotson-Crosson Ice Shelf data from a tale of two ice shelves paper
|
1929991 |
2022-06-09 | Wild, Christian; Segabinazzi-Dotto, Tiago |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This data set includes maps of height above flotation, surface lowering rates, dynamic thickness change, basal melt rates and grounding-line projections from the Dotson-Crosson Ice Shelf System. Furthermore, we included point clouds of migrated ICESat data and ship-based measurents of ocean current and mean potential temperature along the Dotson Ice Shelf's front. | ["POLYGON((-117.45625697487581 -73.79754996487824,-116.50673841062198 -73.79754996487824,-115.55721984636816 -73.79754996487824,-114.60770128211433 -73.79754996487824,-113.6581827178605 -73.79754996487824,-112.70866415360666 -73.79754996487824,-111.75914558935284 -73.79754996487824,-110.80962702509902 -73.79754996487824,-109.86010846084518 -73.79754996487824,-108.91058989659135 -73.79754996487824,-107.96107133233753 -73.79754996487824,-107.96107133233753 -74.04840280405163,-107.96107133233753 -74.29925564322501,-107.96107133233753 -74.5501084823984,-107.96107133233753 -74.80096132157178,-107.96107133233753 -75.05181416074517,-107.96107133233753 -75.30266699991856,-107.96107133233753 -75.55351983909193,-107.96107133233753 -75.80437267826532,-107.96107133233753 -76.0552255174387,-107.96107133233753 -76.30607835661209,-108.91058989659135 -76.30607835661209,-109.86010846084518 -76.30607835661209,-110.80962702509902 -76.30607835661209,-111.75914558935284 -76.30607835661209,-112.70866415360666 -76.30607835661209,-113.6581827178605 -76.30607835661209,-114.60770128211433 -76.30607835661209,-115.55721984636816 -76.30607835661209,-116.50673841062198 -76.30607835661209,-117.45625697487581 -76.30607835661209,-117.45625697487581 -76.0552255174387,-117.45625697487581 -75.80437267826532,-117.45625697487581 -75.55351983909193,-117.45625697487581 -75.30266699991856,-117.45625697487581 -75.05181416074517,-117.45625697487581 -74.80096132157178,-117.45625697487581 -74.5501084823984,-117.45625697487581 -74.29925564322501,-117.45625697487581 -74.04840280405163,-117.45625697487581 -73.79754996487824))"] | ["POINT(-112.70866415360666 -75.05181416074517)"] | false | false |
AMIGOS-III Cavity and Channel Snow Height and Thermistor Snow Temperature Data
|
1738992 |
2022-03-29 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Campbell Scientific data loggers with eight platinum resistance thermometers (PRTs) and an acoustic snow height detector were installed as part of the AMIGOS-III instrumentation (AMIGOS: Automated Meteorology Ice Geophysics Observing System) The data are hourly reports of snow and near-surface air temperatures at different depths. At Cavity AMIGOS site, snow temperatures at ~1.2 meters depth (four PRTs) were used to provide reference temperatures for a coil of Distributed Thermal Sensing (DTS) fiber optic cable. At both sites, PRTs were attached to the tower (wrapped in reflective metal foil tape) as a means of investigating inversion strength and snow burial. At both sites, hourly snow height data using an acoustic sensor placed (initially) at 6.75 meters above the snow on a sensor cross-arm were acquired. A correction based on separately-measured air temperature was applied as per Campbell Scientifics correction algorithm. Both snow height sensors failed after just over one year (Cavity) or 10 months (Channel). Thermistor data continued to be acquired for 13 months (Cavity) or 19 months (Channel) The two sites latest positions (01 Oct, 2021) are: Cavity AMIGOS: 75.037°S, 105.58°W Channel AMIGOS: 75.049°S, 105.44°W both stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020. | ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"] | ["POINT(-105.45 -75.045)"] | false | false |
Visala WXT520 weather station data at the Cavity and Channel AMIGOS-III sites
|
1738992 |
2022-03-28 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Visalia WXT520 weather station hourly data spanning 20 months (with data gaps) at the Cavity and Channel AMIGOS-III sites (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the values from the sensors delivered through the Iridium modem via SBD from the AMIGOS. The units were installed at ~6.5m above the surface initially, with snow accumulation gradually reducing that to an estimated 3.5 m after 20 months. The stations report wind direction and speed, air temperature, humidity, pressure, and station power. The two sites latest positions (01 Oct, 2021) are: Cavity AMIGOS: 75.037°S, 105.58°W Channel AMIGOS: 75.049°S, 105.44°W both stations are moving NNE at roughly 850 m.yr, having accelerated from about 650 m/yr in early 2020. | ["POLYGON((-105.55 -75.03,-105.53 -75.03,-105.51 -75.03,-105.49 -75.03,-105.47 -75.03,-105.45 -75.03,-105.43 -75.03,-105.41 -75.03,-105.39 -75.03,-105.37 -75.03,-105.35 -75.03,-105.35 -75.033,-105.35 -75.036,-105.35 -75.039,-105.35 -75.042,-105.35 -75.045,-105.35 -75.048,-105.35 -75.051,-105.35 -75.054,-105.35 -75.057,-105.35 -75.06,-105.37 -75.06,-105.39 -75.06,-105.41 -75.06,-105.43 -75.06,-105.45 -75.06,-105.47 -75.06,-105.49 -75.06,-105.51 -75.06,-105.53 -75.06,-105.55 -75.06,-105.55 -75.057,-105.55 -75.054,-105.55 -75.051,-105.55 -75.048,-105.55 -75.045,-105.55 -75.042,-105.55 -75.039,-105.55 -75.036,-105.55 -75.033,-105.55 -75.03))"] | ["POINT(-105.45 -75.045)"] | false | false |
AMIGOS-IIIc "Channel" Aquadopp current data Jan 2020 - Mar 2021
|
1738992 |
2022-03-28 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Aquadopp 6000m data spanning 14 months (with data gaps) at the Channel site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. The units were installed two meters below each of the Seabird CTD sensors on the mooring line below the AMIGOS-3a Channel ice shelf mooring. | ["POLYGON((-105.45 -75.04,-105.44 -75.04,-105.43 -75.04,-105.42 -75.04,-105.41 -75.04,-105.4 -75.04,-105.39 -75.04,-105.38 -75.04,-105.37 -75.04,-105.36 -75.04,-105.35 -75.04,-105.35 -75.042,-105.35 -75.044,-105.35 -75.046,-105.35 -75.048,-105.35 -75.05,-105.35 -75.052,-105.35 -75.054,-105.35 -75.056,-105.35 -75.058,-105.35 -75.06,-105.36 -75.06,-105.37 -75.06,-105.38 -75.06,-105.39 -75.06,-105.4 -75.06,-105.41 -75.06,-105.42 -75.06,-105.43 -75.06,-105.44 -75.06,-105.45 -75.06,-105.45 -75.058,-105.45 -75.056,-105.45 -75.054,-105.45 -75.052,-105.45 -75.05,-105.45 -75.048,-105.45 -75.046,-105.45 -75.044,-105.45 -75.042,-105.45 -75.04))"] | ["POINT(-105.4 -75.05)"] | false | false |
AMIGOS-IIIa "Cavity" Aquadopp current data Jan 2020 - Mar 2021
|
1738992 |
2022-03-28 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Aquadopp 6000m data spanning 14 months (with data gaps) at the Cavity site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. The units were installed two meters below each of the Seabird CTD sensors on the mooring line below the AMIGOS-3a Cavity ice shelf mooring. | ["POLYGON((-105.65 -75.04,-105.64 -75.04,-105.63 -75.04,-105.62 -75.04,-105.61 -75.04,-105.6 -75.04,-105.59 -75.04,-105.58 -75.04,-105.57 -75.04,-105.56 -75.04,-105.55 -75.04,-105.55 -75.042,-105.55 -75.044,-105.55 -75.046,-105.55 -75.048,-105.55 -75.05,-105.55 -75.052,-105.55 -75.054,-105.55 -75.056,-105.55 -75.058,-105.55 -75.06,-105.56 -75.06,-105.57 -75.06,-105.58 -75.06,-105.59 -75.06,-105.6 -75.06,-105.61 -75.06,-105.62 -75.06,-105.63 -75.06,-105.64 -75.06,-105.65 -75.06,-105.65 -75.058,-105.65 -75.056,-105.65 -75.054,-105.65 -75.052,-105.65 -75.05,-105.65 -75.048,-105.65 -75.046,-105.65 -75.044,-105.65 -75.042,-105.65 -75.04))"] | ["POINT(-105.6 -75.05)"] | false | false |
AMIGOS-IIIc "Channel" Seabird CTD data Jan 2020 - Dec 2021
|
1738992 |
2022-03-26 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Seabird MicroCAT SBE37IMP data spanning two years (with data gaps) at the Channel site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. Calibration information and test runs against a retrieved CTD unit are provided. | ["POLYGON((-105.43 -75.045,-105.425 -75.045,-105.42 -75.045,-105.415 -75.045,-105.41 -75.045,-105.405 -75.045,-105.4 -75.045,-105.395 -75.045,-105.39 -75.045,-105.385 -75.045,-105.38 -75.045,-105.38 -75.047,-105.38 -75.049,-105.38 -75.051,-105.38 -75.053,-105.38 -75.055,-105.38 -75.057,-105.38 -75.059,-105.38 -75.061,-105.38 -75.063,-105.38 -75.065,-105.385 -75.065,-105.39 -75.065,-105.395 -75.065,-105.4 -75.065,-105.405 -75.065,-105.41 -75.065,-105.415 -75.065,-105.42 -75.065,-105.425 -75.065,-105.43 -75.065,-105.43 -75.063,-105.43 -75.061,-105.43 -75.059,-105.43 -75.057,-105.43 -75.055,-105.43 -75.053,-105.43 -75.051,-105.43 -75.049,-105.43 -75.047,-105.43 -75.045))"] | ["POINT(-105.405 -75.055)"] | false | false |
AMIGOS-IIIa "Cavity" Seabird CTD data Jan 2020 - Dec 2021
|
1738992 |
2022-03-26 | Scambos, Ted |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
Seabird MicroCAT SBE37IMP data spanning two years (with data gaps) at the Cavity site AMIGOS (Automated Meteorology-Ice-Geophysics Observing System) on the Thwaites Eastern Ice Shelf, Antarctica. Data are reported as the uncalibrated numbers from the sensors delivered through the inductive modem to the AMIGOS system and uplinked via Iridium. Calibration information and test runs against a retrieved CTD unit are provided. | ["POLYGON((-105.6 -75.045,-105.595 -75.045,-105.59 -75.045,-105.585 -75.045,-105.58 -75.045,-105.575 -75.045,-105.57 -75.045,-105.565 -75.045,-105.56 -75.045,-105.555 -75.045,-105.55 -75.045,-105.55 -75.047,-105.55 -75.049,-105.55 -75.051,-105.55 -75.053,-105.55 -75.055,-105.55 -75.057,-105.55 -75.059,-105.55 -75.061,-105.55 -75.063,-105.55 -75.065,-105.555 -75.065,-105.56 -75.065,-105.565 -75.065,-105.57 -75.065,-105.575 -75.065,-105.58 -75.065,-105.585 -75.065,-105.59 -75.065,-105.595 -75.065,-105.6 -75.065,-105.6 -75.063,-105.6 -75.061,-105.6 -75.059,-105.6 -75.057,-105.6 -75.055,-105.6 -75.053,-105.6 -75.051,-105.6 -75.049,-105.6 -75.047,-105.6 -75.045))"] | ["POINT(-105.575 -75.055)"] | false | false |
Motion-sensing biologging data from Antarctic minke whales, West Antarctic Peninsula
|
1643877 |
2022-03-23 | Friedlaender, Ari |
Foraging Behavior and Ecological Role of the Least Studied Antarctic Krill Predator, the Antarctic Minke Whale (Balaenoptera Bonaerensis) |
This dataset contains motion-sensing and video recording data from CATS biologging tags deployed on Antarctic minke whales in 2018 and 2019. The data are used to determine underwater behavior and link foraging rates to environmental covariates to better understand the ecological role of this poorly known krill predator. Specifically, we are interested in how the presence and amount of ice affects the behavior of this species in the nearshore waters on the western side of the Antarctic Peninsula, a region experiencing rapid climate change. | ["POLYGON((-65 -62,-64.5 -62,-64 -62,-63.5 -62,-63 -62,-62.5 -62,-62 -62,-61.5 -62,-61 -62,-60.5 -62,-60 -62,-60 -62.4,-60 -62.8,-60 -63.2,-60 -63.6,-60 -64,-60 -64.4,-60 -64.8,-60 -65.2,-60 -65.6,-60 -66,-60.5 -66,-61 -66,-61.5 -66,-62 -66,-62.5 -66,-63 -66,-63.5 -66,-64 -66,-64.5 -66,-65 -66,-65 -65.6,-65 -65.2,-65 -64.8,-65 -64.4,-65 -64,-65 -63.6,-65 -63.2,-65 -62.8,-65 -62.4,-65 -62))"] | ["POINT(-62.5 -64)"] | false | false |
OSL data - Joinville and Livingston Islands - Raw data
|
1643868 1644197 |
2022-03-11 | DeWitt, Regina |
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches |
raw OSL data for rock and sediment samples collected on Joinville and Livingston Islands | ["POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))"] | ["POINT(-60 -63)"] | false | false |
Joinville and Livingston Islands - rock and sediment OSL ages
|
1644197 1643868 |
2022-03-11 | DeWitt, Regina |
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches |
detailed results for rock and sediment OSL ages; De calculation; dose rate calculation, fading, signal measurement | ["POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))"] | ["POINT(-60 -63)"] | false | false |
Electron Microprobe Analysis of feldspar separates from rock and sediment OSL samples from Joinville and Livingston Island Beaches
|
1644197 1643868 |
2022-03-11 | DeWitt, Regina |
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches |
sediment and rock samples were collected on Joinville and Livingston Islands for OSL dating; feldspar separates were prepared; data set includes Electron microprobe analysis of selected feldspar extracts; includes bmp and tif with elemental maps plus elemental concentrations and Ca:Na:K ratios for feldspar analysis | ["POLYGON((-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-59 -61,-58 -61,-57 -61,-56 -61,-55 -61,-55 -61.4,-55 -61.8,-55 -62.2,-55 -62.6,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-64 -65,-65 -65,-65 -64.6,-65 -64.2,-65 -63.8,-65 -63.4,-65 -63,-65 -62.6,-65 -62.2,-65 -61.8,-65 -61.4,-65 -61))"] | ["POINT(-60 -63)"] | false | false |
Photosynthetic physiological data of Proteorhodopsin containing diatoms under differing iron availabilities
|
1745036 1744760 |
2022-03-05 | Hopkinson, Brian; Plumb, Kaylie; Marchetti, Adrian; Andrew, Sarah |
Collaborative research: Antarctic diatom proteorhodopsins: Characterization and a potential role in the iron-limitation response |
This dataset contains measurements of photosynthetic physiological traits of various species of Southern Ocean marine diatoms when grown under differing levels of iron availability | [] | [] | false | false |
metabolic measurements
|
1543539 |
2022-02-18 | Pearson, Linnea |
RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments |
Oxygen consumption of Weddell seal pups (n = 8) placed in a metabolic chamber filed with air or water. Data were collected during 2017 and 2019. Each pup was measured every 2 weeks starting from 1 week of age to 7 weeks of age, resulting in 4 age timepoints. | [] | [] | false | false |
Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL
|
2001033 |
2022-01-22 | Makovicky, Peter |
Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities |
Spreadsheet with provisional taxonomic identification and locality data for Early Triassic vertebrate fossils from the Allen Hills region accessioned at Field Museum, Chicago, IL | ["POLYGON((-180 -84,-178.5 -84,-177 -84,-175.5 -84,-174 -84,-172.5 -84,-171 -84,-169.5 -84,-168 -84,-166.5 -84,-165 -84,-165 -84.2,-165 -84.4,-165 -84.6,-165 -84.8,-165 -85,-165 -85.2,-165 -85.4,-165 -85.6,-165 -85.8,-165 -86,-166.5 -86,-168 -86,-169.5 -86,-171 -86,-172.5 -86,-174 -86,-175.5 -86,-177 -86,-178.5 -86,180 -86,178 -86,176 -86,174 -86,172 -86,170 -86,168 -86,166 -86,164 -86,162 -86,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85,160 -84.8,160 -84.6,160 -84.4,160 -84.2,160 -84,162 -84,164 -84,166 -84,168 -84,170 -84,172 -84,174 -84,176 -84,178 -84,-180 -84))"] | ["POINT(177.5 -85)"] | false | false |
Thwaites Glacier grounding lines for 2014 and 2019/20 from height above flotation
|
1929991 |
2021-12-23 | Wild, Christian; Alley, Karen; Muto, Atsu; Truffer, Martin; Scambos, Ted; Pettit, Erin |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This data set includes two grounding-line products of Thwaites Glacier and a series of offshore pinning points for 2014 and 2019/20. The grounding lines where delineated manually from height above flotation calculations using the bathymetry model from Jordan et al. (2020), the REMA digital surface elevation model (Howat et al., 2019) for the 2014 product and ICESat-2 surface altimetry data (Smith et al., 2019) for the 2019/20 product. More details about the processing, corrections and uncertainties can be found in our publication. We would appreciate if users who think the grounding-line products are useful for your own research would cite our manuscript. | ["POLYGON((-108 -74.5,-107.6 -74.5,-107.2 -74.5,-106.8 -74.5,-106.4 -74.5,-106 -74.5,-105.6 -74.5,-105.2 -74.5,-104.8 -74.5,-104.4 -74.5,-104 -74.5,-104 -74.6,-104 -74.7,-104 -74.8,-104 -74.9,-104 -75,-104 -75.1,-104 -75.2,-104 -75.3,-104 -75.4,-104 -75.5,-104.4 -75.5,-104.8 -75.5,-105.2 -75.5,-105.6 -75.5,-106 -75.5,-106.4 -75.5,-106.8 -75.5,-107.2 -75.5,-107.6 -75.5,-108 -75.5,-108 -75.4,-108 -75.3,-108 -75.2,-108 -75.1,-108 -75,-108 -74.9,-108 -74.8,-108 -74.7,-108 -74.6,-108 -74.5))"] | ["POINT(-106 -75)"] | false | false |
Mercer Subglacial Lake (SLM) noble gas and isotopic data
|
1543453 |
2021-12-23 | Gardner, Christopher B.; Lyons, W. Berry |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes the following measurements from Niskin casts at Mercer Subglacial Lake as part of the SALSA project: noble gases and their isotopes, d13C-DIC, Ge, 87Sr/86Sr, and 234U/238U | ["POINT(-149.50134 -84.640287)"] | ["POINT(-149.50134 -84.640287)"] | false | false |
Detecting climate signals in populations: case of emperor penguin
|
2037561 1744794 |
2021-12-08 | Jenouvrier, Stephanie |
Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins |
Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. In Jenouvrier et al. (Global Change Biology, accepted), we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. This data set is the code of a theoretical assessment of the time of emergence of climate-driven signals in population dynamics. We identify the dependence of time of emergence in populations on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on the time of emergence in population. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and the relationships between climate and demographic rates, yield population dynamics that filter climate trends and variability differently. In Jenouvrier et al. (accepted), we also illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. This data set also includes a detailed Table and code to analyze those results. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
LMG13-11 JKC-1 Paleoceanographic data
|
0732625 1433140 |
2021-11-15 | Shevenell, Amelia |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This data set contains an age vs depth model and measurements of magnetic susceptibility, benthic foraminifera Bulimina aculeata d18O and d13C, bulk sediment GDGT data, and diatom assemblage data from USAP LMG13-11 JKC-1 sediment core (0-100 cm) archived at the Oregon State University ACC repository. All stable isotope and GDGT measurements were made at the University of South Florida College of Marine Science. Diatom assemblages were counted at Colgate University. The data set includes all replicate measurements. Details of the entire data set and all relevant methods are provided in Browne et al (submitted, 2021) | ["POLYGON((-69 -58,-67.7 -58,-66.4 -58,-65.1 -58,-63.8 -58,-62.5 -58,-61.2 -58,-59.9 -58,-58.6 -58,-57.3 -58,-56 -58,-56 -59,-56 -60,-56 -61,-56 -62,-56 -63,-56 -64,-56 -65,-56 -66,-56 -67,-56 -68,-57.3 -68,-58.6 -68,-59.9 -68,-61.2 -68,-62.5 -68,-63.8 -68,-65.1 -68,-66.4 -68,-67.7 -68,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60,-69 -59,-69 -58))"] | ["POINT(-62.5 -63)"] | false | false |
Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020
|
1738992 |
2021-10-11 | Alley, Karen; Wild, Christian; Scambos, Ted; Muto, Atsu; Pettit, Erin; Truffer, Martin; Wallin, Bruce; Klinger, Marin |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This dataset includes GeoTiffs of two-year averages of ice flow velocity (including x- and y-components and flow speed) and longitudinal, transverse, and shear strain rates for the Thwaites Eastern Ice Shelf (TEIS) from 2001-2020. The grids were derived from feature tracking on MODIS, Landsat-7, and Landsat-8 imagery. Each pixel in a grid represents the median value of a stack of all available pixels for each time period. Data are gridded at a 500 m spatial resolution in a polar stereographic (EPSG:3031) projection. Speed units are m/day and strain rates are in units of /day. In addition, we provide videos of each variable (excluding x- and y-velocity components) placed alongside a MODIS image of the same extent and from around the same time to provide context. In addition to the variables noted above, we include videos for flow direction (in degrees from grid north in an EPSG:3031 projection) and a zoomed-in version of flow direction, which were calculated from the provided grids. | ["POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))"] | ["POINT(-109 -75)"] | false | false |
Pennell Trough, Ross Sea bathymetry and glacial landforms
|
1745043 1246353 1745055 |
2021-10-04 | Greenwood, Sarah; Munevar Garcia, Santiago; Eareckson, Elizabeth; Anderson, John; Prothro, Lindsay; Simkins, Lauren |
Collaborative Research: Topographic controls on Antarctic Ice Sheet grounding line retreat - integrating models and observations Evidence for Paleo Ice Stream Collapse in the Western Ross Sea since the Last Glacial Maximum. |
Bathymetry from multibeam echo sounding data in Pennell Trough, Ross Sea, Antarctica was collected onboard the RVIB Nathaniel B. Palmer (NBP) 15-02 cruise using a Kongsberg EM122 operating in dual swath mode at 12 kHz frequency with a 1°×1° beam width, swath angular coverage set to 62°×62°, and 30-60% overlap between survey lines. All raw, ping-edited geophysical data collected on NBP15-02 can be accessed using the Marine Geoscience Data System (Cruise DOI: 10.7284/901477). The bathymetry dataset here is gridded at 20-m resolution with a water depth-dependent vertical resolution on the order of decimeters. Two shapefiles are provided for ice-marginal landforms and meltwater landforms observable in the bathymetry data. The purpose of collecting the bathymetry data on cruise NBP15-02 was to better understand the glacial history of the Ross Sea, and the dataset, inclusive of bathymetry data and shapefiles of glacial landforms, from Pennell Trough are used to understand impacts on subglacial channel morphology and organization during the deglaciation of the region following the Last Glacial Maximum. The published dataset was used and analyzed in the article "Topographic controls on channelized meltwater in the subglacial environment" by Simkins, L.M., Greenwood, S.L., Munevar Garcia, S., Eareckson, E.A., Anderson, J.B., and Prothro, L.O, which was published in Geophysical Research Letters in 2021 (DOI: 10.1029/2021GL094678). | ["POLYGON((174 -75,174.4 -75,174.8 -75,175.2 -75,175.6 -75,176 -75,176.4 -75,176.8 -75,177.2 -75,177.6 -75,178 -75,178 -75.2,178 -75.4,178 -75.6,178 -75.8,178 -76,178 -76.2,178 -76.4,178 -76.6,178 -76.8,178 -77,177.6 -77,177.2 -77,176.8 -77,176.4 -77,176 -77,175.6 -77,175.2 -77,174.8 -77,174.4 -77,174 -77,174 -76.8,174 -76.6,174 -76.4,174 -76.2,174 -76,174 -75.8,174 -75.6,174 -75.4,174 -75.2,174 -75))"] | ["POINT(176 -76)"] | false | false |
Bistatic Radar Sounding of Whillans Ice Stream, Antarctica and Store Glacier, Greenland
|
1656518 1543441 |
2021-09-14 | Bienert, Nicole; Schroeder, Dustin; Siegfried, Matthew; Peters, Sean; MacKie, Emma; Dawson, Eliza; Christoffersen, Poul |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset includes raw, uncalibrated voltage vs time measurements from a bistatic radar receiver. We also include some processed data including upsampled matched filtered data, GPS receiver position, antenna separation | [] | [] | false | false |
Analysis of striae groups and interstrial increments from Adamussium colbecki valves from Explorers Cove and Bay of Sails
|
1745057 |
2021-08-12 | Cronin, Kelly; Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past |
This data set includes measurements of shell growth between striae (small, comarginal ridges on valve surfaces) and visual analysis of striae groups. The script analyses the variation among striae groups, and time series analysis of interstrial increments. | ["POLYGON((163.4 -77.3,163.46 -77.3,163.52 -77.3,163.58 -77.3,163.64 -77.3,163.7 -77.3,163.76 -77.3,163.82 -77.3,163.88 -77.3,163.94 -77.3,164 -77.3,164 -77.33,164 -77.36,164 -77.39,164 -77.42,164 -77.45,164 -77.48,164 -77.51,164 -77.54,164 -77.57,164 -77.6,163.94 -77.6,163.88 -77.6,163.82 -77.6,163.76 -77.6,163.7 -77.6,163.64 -77.6,163.58 -77.6,163.52 -77.6,163.46 -77.6,163.4 -77.6,163.4 -77.57,163.4 -77.54,163.4 -77.51,163.4 -77.48,163.4 -77.45,163.4 -77.42,163.4 -77.39,163.4 -77.36,163.4 -77.33,163.4 -77.3))"] | ["POINT(163.7 -77.45)"] | false | false |
Annual growth of Adamussium colbecki from Explorers Cove and Bay of Sails
|
1745057 |
2021-08-11 | Cronin, Kelly; Walker, Sally |
Collaborative research: The Antarctic Scallop as Key to Paleoenvironments and Sea Ice Conditions: Understanding the Modern to Predict the Past |
This dataset contains yearly growth increments (mm) of live-collected Adamussium colbecki from Explorers Cove and Bay of Sails in Western McMurdo Sound. Annual growth is delineated by annuli (external growth bands; see Cronin et al., 2020). Straight length measurements were taken with digital calipers from umbo to ventral margin along the central axis. The purpose of data collection was to compare growth and lifespan of A. colbecki under annual and multiannual sea ice. | ["POLYGON((163.4 -77.3,163.46 -77.3,163.52 -77.3,163.58 -77.3,163.64 -77.3,163.7 -77.3,163.76 -77.3,163.82 -77.3,163.88 -77.3,163.94 -77.3,164 -77.3,164 -77.33,164 -77.36,164 -77.39,164 -77.42,164 -77.45,164 -77.48,164 -77.51,164 -77.54,164 -77.57,164 -77.6,163.94 -77.6,163.88 -77.6,163.82 -77.6,163.76 -77.6,163.7 -77.6,163.64 -77.6,163.58 -77.6,163.52 -77.6,163.46 -77.6,163.4 -77.6,163.4 -77.57,163.4 -77.54,163.4 -77.51,163.4 -77.48,163.4 -77.45,163.4 -77.42,163.4 -77.39,163.4 -77.36,163.4 -77.33,163.4 -77.3))"] | ["POINT(163.7 -77.45)"] | false | false |
Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound
|
0342484 |
2021-06-14 | Passchier, Sandra; Candice, Falk |
Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change |
This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(167 -78)"] | ["POINT(167 -78)"] | false | false |
TDR and weather data
|
1543539 |
2021-02-26 | Pearson, Linnea; Weitzner, Emma; Liwanag, Heather |
RUI: Growing Up on Ice: Physiological Adaptations and Developmental Plasticity in Weddell Seal Pups Across Two Extreme Physical Environments |
This dataset contains dive records from 18 Weddell seal pups collected during 2017 and 2019. Additionally, there are weather data taken during the same time period from a temporary weather station at Turtle Rock. | ["POINT(166 -77)"] | ["POINT(166 -77)"] | false | false |
Nutrients from NBP18-01 CICLOPS
|
1643684 |
2021-01-20 | Saito, Mak |
Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay |
Nutrient from Amundsen Sea Ross Sea and Terra Nova Bay. Parameters include phosphate, N+N (nitrate + nitrite), silicic acid, nitrite and ammonia. Measured by Joe Jennings (OSU) using protocols described by Noble et al., 2012 (Limnol. Oceanogr.). Trace metal rosette CTD sensor data also included for bottle depths. | ["POLYGON((-180 -70,-173.5 -70,-167 -70,-160.5 -70,-154 -70,-147.5 -70,-141 -70,-134.5 -70,-128 -70,-121.5 -70,-115 -70,-115 -70.8,-115 -71.6,-115 -72.4,-115 -73.2,-115 -74,-115 -74.8,-115 -75.6,-115 -76.4,-115 -77.2,-115 -78,-121.5 -78,-128 -78,-134.5 -78,-141 -78,-147.5 -78,-154 -78,-160.5 -78,-167 -78,-173.5 -78,180 -78,179.2 -78,178.4 -78,177.6 -78,176.8 -78,176 -78,175.2 -78,174.4 -78,173.6 -78,172.8 -78,172 -78,172 -77.2,172 -76.4,172 -75.6,172 -74.8,172 -74,172 -73.2,172 -72.4,172 -71.6,172 -70.8,172 -70,172.8 -70,173.6 -70,174.4 -70,175.2 -70,176 -70,176.8 -70,177.6 -70,178.4 -70,179.2 -70,-180 -70))"] | ["POINT(-151.5 -74)"] | false | false |
Measurements of splenic contraction in Antarctic fishes
|
1341663 1341602 |
2020-12-18 | O'Brien, Kristin; Joyce, William; Axelsson, Michael |
Collaborative Research: The Physiological and Biochemical Underpinnings of Thermal Tolerance in Antarctic Notothenioid Fishes |
In fishes, the spleen can function as an important reservoir for red blood cells (RBCs), which, following splenic contraction, may be released into the circulation to increase haematocrit during energy‐demanding activities. This trait is particularly pronounced in red‐blooded Antarctic fishes in which the spleen can sequester a large proportion of RBCs during rest, thereby reducing blood viscosity, which may serve as an adaptation to life in cold environments. In one species, Pagothenia borchgrevinki, it has previously been shown that splenic contraction primarily depends on cholinergic stimulation. The aim of the present study was to investigate the regulation of splenic contraction in five other Antarctic fish species, three red‐blooded notothenioids (Dissostichus mawsoni Norman, 1937, Gobionotothen gibberifrons Lönnberg, 1905, Notothenia coriiceps Richardson 1844) and two white‐blooded “icefish” (Chaenocephalus aceratus Lönnberg, 1906 and Champsocephalus gunnari Lönnberg, 1905), which lack haemoglobin and RBCs, but nevertheless possess a large spleen. In all species, splenic strips constricted in response to both cholinergic (carbachol) and adrenergic (adrenaline) agonists. Surprisingly, in the two species of icefish, the spleen responded with similar sensitivity to red‐blooded species, despite contraction being of little obvious benefit for releasing RBCs into the circulation. Although the icefish lineage lost functional haemoglobin before diversifying over the past 7.8–4.8 millions of years, they retain the capacity to contract the spleen, likely as a vestige inherited from their red‐blooded ancestors. | [] | [] | false | false |
Granulometry of Joinville and Livingston Island beaches
|
0724929 |
2020-11-06 | Theilen, Brittany; Simms, Alexander |
Collaborative Research: New Constraints on Post-Glacial Rebound and Holocene Environmental History along the Northern Antarctic Peninsula from Raised Beaches |
["POLYGON((-61.8 -61.3,-61.07 -61.3,-60.34 -61.3,-59.61 -61.3,-58.88 -61.3,-58.15 -61.3,-57.42 -61.3,-56.69 -61.3,-55.96 -61.3,-55.23 -61.3,-54.5 -61.3,-54.5 -61.55,-54.5 -61.8,-54.5 -62.05,-54.5 -62.3,-54.5 -62.55,-54.5 -62.8,-54.5 -63.05,-54.5 -63.3,-54.5 -63.55,-54.5 -63.8,-55.23 -63.8,-55.96 -63.8,-56.69 -63.8,-57.42 -63.8,-58.15 -63.8,-58.88 -63.8,-59.61 -63.8,-60.34 -63.8,-61.07 -63.8,-61.8 -63.8,-61.8 -63.55,-61.8 -63.3,-61.8 -63.05,-61.8 -62.8,-61.8 -62.55,-61.8 -62.3,-61.8 -62.05,-61.8 -61.8,-61.8 -61.55,-61.8 -61.3))"] | ["POINT(-58.15 -62.55)"] | false | false | |
ANTAEM project airborne EM resistivity data from McMurdo Region
|
1644187 |
2020-09-12 | Tulaczyk, Slawek |
Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica |
The ANTAEM survey was carried out in the period November 12th to 28th, 2018, with the SkyTEM 312 system. Twenty-one missions (flights) were conducted over 11 production days of helicopter service, resulting in a total of approximately ~3400 line km of data. The SkyTEM system records data from take-off until landing resulting in multiple lines converging to the landing pads in McMurdo and at Marble Point. The production without overlapping lines adds up to approximately 2900 line km. The flight speed was approximately 120 km/h at a target flight altitude of ~50 m (sensor height), but the actual sensor height varies depending on the terrain. The surveys were carried out with a Bell 212 helicopter, which carried the SkyTEM sensor as a sling load. The SkyTEM system was configured in a standard two-moment setup (low moment, LM and high moment, HM). Areas with extremely resistive dry and/or frozen sediment/bedrock, and glacier ice often produce EM-signals with amplitudes below the detection level of the system. Data from these low signal environments cannot be inverted into resistivity models. Data with strong induced polarization effects cannot be inverted for resistivity either. These data were discharged in this standard data delivery. The EM-data and inversion result (resistivity models) are delivered in the SkyTEM2018_dat.xyz and SkyTEM2018_inv.xyz files respectably. The RECORD number in the two files links data and model together. EM-data and data uncertainty for data entering inversion. Info stated in file Header: NAN value, Data unit, Coordinate system, Gate times. The SkyTEM system uses at High-Low moment data recording cycle, therefore only a subset of the total 40 time gates are preset for each moment. The standard lateral constraints inversion (LCI), delivered in the SkyTEM2018_inv.xyz file, was carried out with a smooth 30 layered resistivity model discretized to a depth of 500 m. A depth of investigation (DOI) was estimated for each resistivity model. | ["POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9))"] | ["POINT(164.75 -77.6)"] | false | false |
Concentrations and Particle Size Distributions of Aerosol Trace Elements
|
1341494 |
2020-08-24 | Gao, Yuan |
Quantifying Atmospheric Iron Properties over West Antarctic Peninsula |
The dataset includes the concentrations and particle size distributions of aerosol trace elements (TEs) through the sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. The estimated dry deposition fluxes of these elements were derived from these new results. | ["POINT(64 64)"] | ["POINT(64 64)"] | false | false |
Isotopic data from Whillans Ice Stream grounding zone, West Antarctica
|
None | 2020-07-15 | Venturelli, Ryan A |
Collaborative Research: Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated Study of Carbon Cycling in Hydrologically-active Subglacial Environments |
This dataset contains total organic carbon (%TOC) and carbon isotopic data (δ¹³C, Δ¹⁴C) from sediments retrieved from the Whillans Ice Stream grounding zone during the 2015 Antarctic field season. All %TOC and sediment preparations were done at the University of South Florida. Radiocarbon measurements were done at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) laboratory. | ["POINT(-163.61187 -84.33543)"] | ["POINT(-163.61187 -84.33543)"] | false | false |
Processed CTD Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203
|
0732651 1141890 |
2020-06-25 | Huber, Bruce; Gordon, Arnold |
Cape Adare Long Term Moorings (CALM): Analysis Phase Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This data set was acquired with a Sea-Bird SBE 9Plus CTD during Nathaniel B. Palmer expedition NBP1203 conducted in 2012 (Chief Scientist: Dr. Maria Vernet; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Funding was provided by NSF grant(s): ANT11-41890. | ["POLYGON((-63 -60,-62.2 -60,-61.4 -60,-60.6 -60,-59.8 -60,-59 -60,-58.2 -60,-57.4 -60,-56.6 -60,-55.8 -60,-55 -60,-55 -60.5,-55 -61,-55 -61.5,-55 -62,-55 -62.5,-55 -63,-55 -63.5,-55 -64,-55 -64.5,-55 -65,-55.8 -65,-56.6 -65,-57.4 -65,-58.2 -65,-59 -65,-59.8 -65,-60.6 -65,-61.4 -65,-62.2 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"] | ["POINT(-59 -62.5)"] | false | false |
Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901
|
0632282 |
2020-06-25 | Huber, Bruce; Jacobs, Stanley |
Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP |
This data set was derived from data acquired during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Stan Jacobs and Dr. Bruce Huber). These data files are of Matlab Binary format and include Current Measurement, Salinity, and Temperature data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282. | ["POLYGON((-130 -64,-126.5 -64,-123 -64,-119.5 -64,-116 -64,-112.5 -64,-109 -64,-105.5 -64,-102 -64,-98.5 -64,-95 -64,-95 -65.15,-95 -66.3,-95 -67.45,-95 -68.6,-95 -69.75,-95 -70.9,-95 -72.05,-95 -73.2,-95 -74.35,-95 -75.5,-98.5 -75.5,-102 -75.5,-105.5 -75.5,-109 -75.5,-112.5 -75.5,-116 -75.5,-119.5 -75.5,-123 -75.5,-126.5 -75.5,-130 -75.5,-130 -74.35,-130 -73.2,-130 -72.05,-130 -70.9,-130 -69.75,-130 -68.6,-130 -67.45,-130 -66.3,-130 -65.15,-130 -64))"] | ["POINT(-112.5 -69.75)"] | false | false |
Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901
|
0632282 |
2020-06-25 | Thurnherr, Andreas |
Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP |
This data set was acquired with a LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP0901 conducted in 2009 (Chief Scientist: Dr. Stan Jacobs; Investigator(s): Dr. Andreas Thurnherr). These data files are of ASCII format and include Current Measurement data and were processed after data collection. Data were acquired as part of the project(s): Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise, Shedding dynamic light on iron limitation: The interplay of iron limitation and dynamic irradiance conditions in governing the phytoplankton distribution in the Ross Sea, and Collaborative Research: Sampling the ocean - sea ice interaction in the Pacific center of the Antarctic Dipole, and funding was provided by NSF grant(s): OPP06-32282. | ["POLYGON((-130 -66,-127 -66,-124 -66,-121 -66,-118 -66,-115 -66,-112 -66,-109 -66,-106 -66,-103 -66,-100 -66,-100 -66.95,-100 -67.9,-100 -68.85,-100 -69.8,-100 -70.75,-100 -71.7,-100 -72.65,-100 -73.6,-100 -74.55,-100 -75.5,-103 -75.5,-106 -75.5,-109 -75.5,-112 -75.5,-115 -75.5,-118 -75.5,-121 -75.5,-124 -75.5,-127 -75.5,-130 -75.5,-130 -74.55,-130 -73.6,-130 -72.65,-130 -71.7,-130 -70.75,-130 -69.8,-130 -68.85,-130 -67.9,-130 -66.95,-130 -66))"] | ["POINT(-115 -70.75)"] | false | false |
Processed Fluid Chemistry Data from the Ross Sea acquired during the Nathaniel B. Palmer expedition NBP0601
|
0338097 0338157 |
2020-06-25 | DiTullio, Giacomo; Smith, Walker |
Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea |
This data set was acquired with a Niskin Bottle Fluid Sampler during Nathaniel B. Palmer expedition NBP0601 conducted in 2005 (Chief Scientist: Dr. Giacomo DiTullio). The data files are in XLS format and include Fluid Chemistry data that have been processed. The data was acquired as part of the project called Interaction of iron, light and CO2 on phytoplankton community dynamics in the Ross Sea. Funding was provided by NSF grants: ANT03-38097, ANT03-38157, ANT03-38164, and ANT03-38350. | ["POLYGON((-180 -76,-179.7 -76,-179.4 -76,-179.1 -76,-178.8 -76,-178.5 -76,-178.2 -76,-177.9 -76,-177.6 -76,-177.3 -76,-177 -76,-177 -76.2,-177 -76.4,-177 -76.6,-177 -76.8,-177 -77,-177 -77.2,-177 -77.4,-177 -77.6,-177 -77.8,-177 -78,-177.3 -78,-177.6 -78,-177.9 -78,-178.2 -78,-178.5 -78,-178.8 -78,-179.1 -78,-179.4 -78,-179.7 -78,180 -78,178.5 -78,177 -78,175.5 -78,174 -78,172.5 -78,171 -78,169.5 -78,168 -78,166.5 -78,165 -78,165 -77.8,165 -77.6,165 -77.4,165 -77.2,165 -77,165 -76.8,165 -76.6,165 -76.4,165 -76.2,165 -76,166.5 -76,168 -76,169.5 -76,171 -76,172.5 -76,174 -76,175.5 -76,177 -76,178.5 -76,-180 -76))"] | ["POINT(174 -77)"] | false | false |
Processed CurrentMeter Data from the Adare Basin near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1101
|
0839039 0538148 |
2020-06-25 | Huber, Bruce; Gordon, Arnold |
Collaborate Research:Modified Circumpolar Deep Water Intrusions as an Iron Source to the Summer Ross Sea Ecosystem Cape Adare Long-term Mooring (CALM) |
This data set was acquired with a CurrentMeter during Nathaniel B. Palmer expedition NBP1101 conducted in 2011 (Chief Scientist: Dr. Josh Kohut; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Temperature, Current Measurement, and Salinity data and were processed after data collection. Data were acquired as part of the project(s): Ross Sea Expedition, and funding was provided by NSF grant(s): ANT08-39039. | ["POLYGON((172 -71,172.1 -71,172.2 -71,172.3 -71,172.4 -71,172.5 -71,172.6 -71,172.7 -71,172.8 -71,172.9 -71,173 -71,173 -71.1,173 -71.2,173 -71.3,173 -71.4,173 -71.5,173 -71.6,173 -71.7,173 -71.8,173 -71.9,173 -72,172.9 -72,172.8 -72,172.7 -72,172.6 -72,172.5 -72,172.4 -72,172.3 -72,172.2 -72,172.1 -72,172 -72,172 -71.9,172 -71.8,172 -71.7,172 -71.6,172 -71.5,172 -71.4,172 -71.3,172 -71.2,172 -71.1,172 -71))"] | ["POINT(172.5 -71.5)"] | false | false |
Processed CTD Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001
|
0732467 0732651 |
2020-06-25 | Huber, Bruce; Gordon, Arnold |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences |
This data set was acquired with a Sea-Bird SBE 9Plus CTD during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Temperature, Current Measurement, and Salinity data and were processed after data collection. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA), and funding was provided by NSF grant(s): ANT07-32467. | ["POLYGON((-68 -60,-66.7 -60,-65.4 -60,-64.1 -60,-62.8 -60,-61.5 -60,-60.2 -60,-58.9 -60,-57.6 -60,-56.3 -60,-55 -60,-55 -60.6,-55 -61.2,-55 -61.8,-55 -62.4,-55 -63,-55 -63.6,-55 -64.2,-55 -64.8,-55 -65.4,-55 -66,-56.3 -66,-57.6 -66,-58.9 -66,-60.2 -66,-61.5 -66,-62.8 -66,-64.1 -66,-65.4 -66,-66.7 -66,-68 -66,-68 -65.4,-68 -64.8,-68 -64.2,-68 -63.6,-68 -63,-68 -62.4,-68 -61.8,-68 -61.2,-68 -60.6,-68 -60))"] | ["POINT(-61.5 -63)"] | false | false |
Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf in Antarctica acquired during the Nathaniel B. Palmer expedition NBP1001
|
0732651 0732467 |
2020-06-25 | Huber, Bruce; Gordon, Arnold |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine and Quaternary Geosciences Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This data set was acquired with a ship-based LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement data and were processed after data collection. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA), and funding was provided by NSF grant(s): ANT07-32467. | ["POLYGON((-68 -60,-66.7 -60,-65.4 -60,-64.1 -60,-62.8 -60,-61.5 -60,-60.2 -60,-58.9 -60,-57.6 -60,-56.3 -60,-55 -60,-55 -60.6,-55 -61.2,-55 -61.8,-55 -62.4,-55 -63,-55 -63.6,-55 -64.2,-55 -64.8,-55 -65.4,-55 -66,-56.3 -66,-57.6 -66,-58.9 -66,-60.2 -66,-61.5 -66,-62.8 -66,-64.1 -66,-65.4 -66,-66.7 -66,-68 -66,-68 -65.4,-68 -64.8,-68 -64.2,-68 -63.6,-68 -63,-68 -62.4,-68 -61.8,-68 -61.2,-68 -60.6,-68 -60))"] | ["POINT(-61.5 -63)"] | false | false |
Processed ship-based LADCP Sonar Data from the Larsen Ice Shelf near Antarctica acquired during the Nathaniel B. Palmer expedition NBP1203
|
0732651 1141890 |
2020-06-25 | Huber, Bruce; Gordon, Arnold |
Cape Adare Long Term Moorings (CALM): Analysis Phase Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This data set was acquired with a ship-based LDEO LADCP Sonar during Nathaniel B. Palmer expedition NBP1203 conducted in 2012 (Chief Scientist: Dr. Maria Vernet; Investigator(s): Dr. Bruce Huber and Dr. Arnold Gordon). These data files are of Matlab Binary format and include Current Measurement data and were processed after data collection. Funding was provided by NSF grant(s): ANT11-41890. | ["POLYGON((-62 -61,-61.3 -61,-60.6 -61,-59.9 -61,-59.2 -61,-58.5 -61,-57.8 -61,-57.1 -61,-56.4 -61,-55.7 -61,-55 -61,-55 -61.44,-55 -61.88,-55 -62.32,-55 -62.76,-55 -63.2,-55 -63.64,-55 -64.08,-55 -64.52,-55 -64.96,-55 -65.4,-55.7 -65.4,-56.4 -65.4,-57.1 -65.4,-57.8 -65.4,-58.5 -65.4,-59.2 -65.4,-59.9 -65.4,-60.6 -65.4,-61.3 -65.4,-62 -65.4,-62 -64.96,-62 -64.52,-62 -64.08,-62 -63.64,-62 -63.2,-62 -62.76,-62 -62.32,-62 -61.88,-62 -61.44,-62 -61))"] | ["POINT(-58.5 -63.2)"] | false | false |
Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf
|
1341669 0732711 |
2020-06-19 | DeMaster, David; Taylor, Richard |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
This file contains Pb-210 data from bulk sediments beneath the collapsed Larsen A Ice Shelf and C-14 data from the organic fraction of the same samples. | ["POLYGON((-61 -64,-60.5 -64,-60 -64,-59.5 -64,-59 -64,-58.5 -64,-58 -64,-57.5 -64,-57 -64,-56.5 -64,-56 -64,-56 -64.1,-56 -64.2,-56 -64.3,-56 -64.4,-56 -64.5,-56 -64.6,-56 -64.7,-56 -64.8,-56 -64.9,-56 -65,-56.5 -65,-57 -65,-57.5 -65,-58 -65,-58.5 -65,-59 -65,-59.5 -65,-60 -65,-60.5 -65,-61 -65,-61 -64.9,-61 -64.8,-61 -64.7,-61 -64.6,-61 -64.5,-61 -64.4,-61 -64.3,-61 -64.2,-61 -64.1,-61 -64))"] | ["POINT(-58.5 -64.5)"] | false | false |
Near-bottom Videos from the Southern Ocean acquired during R/V Nathaniel B. Palmer expedition NBP1402
|
1143836 |
2020-05-01 | Leventer, Amy; Post, Alexandra; Blankenship, Donald D.; Domack, Eugene Walter; Gulick, Sean; Huber, Bruce; Orsi, Alejandro; Shevenell, Amelia |
Collaborative Research: Totten Glacier System and the Marine Record of Cryosphere - Ocean Dynamics |
This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA). | ["POLYGON((118 -65.5,118.3 -65.5,118.6 -65.5,118.9 -65.5,119.2 -65.5,119.5 -65.5,119.8 -65.5,120.1 -65.5,120.4 -65.5,120.7 -65.5,121 -65.5,121 -65.65,121 -65.8,121 -65.95,121 -66.1,121 -66.25,121 -66.4,121 -66.55,121 -66.7,121 -66.85,121 -67,120.7 -67,120.4 -67,120.1 -67,119.8 -67,119.5 -67,119.2 -67,118.9 -67,118.6 -67,118.3 -67,118 -67,118 -66.85,118 -66.7,118 -66.55,118 -66.4,118 -66.25,118 -66.1,118 -65.95,118 -65.8,118 -65.65,118 -65.5))"] | ["POINT(119.5 -66.25)"] | false | false |
Megafauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001
|
0732711 |
2020-05-01 | Smith, Craig |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA). | ["POLYGON((-69 -61,-67.6 -61,-66.2 -61,-64.8 -61,-63.4 -61,-62 -61,-60.6 -61,-59.2 -61,-57.8 -61,-56.4 -61,-55 -61,-55 -61.68,-55 -62.36,-55 -63.04,-55 -63.72,-55 -64.4,-55 -65.08,-55 -65.76,-55 -66.44,-55 -67.12,-55 -67.8,-56.4 -67.8,-57.8 -67.8,-59.2 -67.8,-60.6 -67.8,-62 -67.8,-63.4 -67.8,-64.8 -67.8,-66.2 -67.8,-67.6 -67.8,-69 -67.8,-69 -67.12,-69 -66.44,-69 -65.76,-69 -65.08,-69 -64.4,-69 -63.72,-69 -63.04,-69 -62.36,-69 -61.68,-69 -61))"] | ["POINT(-62 -64.4)"] | false | false |
Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203
|
1341669 0732711 |
2020-05-01 | Smith, Craig |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change |
Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203. Data were acquired as part of the project(s): Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems (LARISSA); and Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change. | ["POLYGON((-61 -62,-60.4 -62,-59.8 -62,-59.2 -62,-58.6 -62,-58 -62,-57.4 -62,-56.8 -62,-56.2 -62,-55.6 -62,-55 -62,-55 -62.34,-55 -62.68,-55 -63.02,-55 -63.36,-55 -63.7,-55 -64.04,-55 -64.38,-55 -64.72,-55 -65.06,-55 -65.4,-55.6 -65.4,-56.2 -65.4,-56.8 -65.4,-57.4 -65.4,-58 -65.4,-58.6 -65.4,-59.2 -65.4,-59.8 -65.4,-60.4 -65.4,-61 -65.4,-61 -65.06,-61 -64.72,-61 -64.38,-61 -64.04,-61 -63.7,-61 -63.36,-61 -63.02,-61 -62.68,-61 -62.34,-61 -62))"] | ["POINT(-58 -63.7)"] | false | false |
Macrofauna Species Abundance Raw Data from the Larsen Ice Shelf acquired during the Nathaniel B. Palmer expedition NBP1001
|
0732711 |
2020-05-01 | Smith, Craig |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This Biology Species Abundance data set was acquired with a ship-based Camera during Nathaniel B. Palmer expedition NBP1001 conducted in 2010 (Chief Scientist: Dr. Eugene Domack; Investigator: Dr. Craig Smith). The data file is in XLS format and includes Biology Species Abundance Biology data that has not been processed. The data was acquired as part of the project called Collaborative Research in IPY: Abrupt Environmental Change in the LARsen Ice Shelf System, Antarctica (LARISSA). | ["POLYGON((-69 -61,-67.6 -61,-66.2 -61,-64.8 -61,-63.4 -61,-62 -61,-60.6 -61,-59.2 -61,-57.8 -61,-56.4 -61,-55 -61,-55 -61.68,-55 -62.36,-55 -63.04,-55 -63.72,-55 -64.4,-55 -65.08,-55 -65.76,-55 -66.44,-55 -67.12,-55 -67.8,-56.4 -67.8,-57.8 -67.8,-59.2 -67.8,-60.6 -67.8,-62 -67.8,-63.4 -67.8,-64.8 -67.8,-66.2 -67.8,-67.6 -67.8,-69 -67.8,-69 -67.12,-69 -66.44,-69 -65.76,-69 -65.08,-69 -64.4,-69 -63.72,-69 -63.04,-69 -62.36,-69 -61.68,-69 -61))"] | ["POINT(-62 -64.4)"] | false | false |
Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101
|
9909367 |
2020-05-01 | Leventer, Amy |
Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin |
This data set was acquired with a Jumbo Piston Core Sediment Sampler during R/V Nathaniel B. Palmer expedition NBP0101 conducted in 2001. This data file is of Microsoft Excel format and includes Quantitative Diatom Assemblage data; counts completed on randomly settled slides (Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12 (1), 171-178, doi:10.1007/BF00678093). These counts were completed at closely spaced intervals in NBP0101 JPC41, a jumbo piston core from Iceberg Alley, Mac.Robertson Shelf, East Antarctica | ["POINT(62.99 -67.13)"] | ["POINT(62.99 -67.13)"] | false | false |
SOAR-Lake Vostok Survey surface elevation data
|
9978236 9911617 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) |
Surface Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Surface Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
SOAR-Lake Vostok Survey Gravity data
|
9978236 9911617 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work |
Processed Gravimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000). This data set was acquired with a Gravimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Free Air Anomaly Gravity data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work. | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
SOAR-Lake Vostok survey magnetic anomaly data
|
9911617 9978236 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) |
Processed Magnetometer Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was acquired with a Magnetometer during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include IGRF Anomaly Magnetic data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
SOAR-Lake Vostok Survey ice thickness data
|
9978236 9911617 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work |
Processed IcePenetrating Radar Altimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was acquired with a IcePenetrating Radar Altimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Ice LayerThickness data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
SOAR-Lake Vostok Survey bed elevation data
|
9978236 9911617 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) |
Bedrock Elevation Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Michael Studinger). These data files are of ASCII format and include Bedrock Elevation data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
SOAR-Lake Vostok Survey airborne radar data
|
9978236 9911617 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work |
Processed IcePenetrating Radar Altimeter Shot Data (version 2) acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was acquired with a IcePenetrating Radar Altimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of SEGY format and include Reflection Radar shot data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
Particle sizes of aerosol iron
|
1341494 |
2020-02-20 | Gao, Yuan |
Quantifying Atmospheric Iron Properties over West Antarctic Peninsula |
The dataset includes the particle size measurements of aerosol iron (Fe) through sampling of size-segregated aerosol particles made at Palmer Station, Antarctic Peninsula, which took place in the austral summer of 2016-2017. New results include particle-size distributions of total Fe, labile Fe, and fractional Fe solubility in aerosols from these samples. | ["POINT(-64.05 -64.766)"] | ["POINT(-64.05 -64.766)"] | false | false |
Ross Sea ocean model simulation used to support ROSETTA-Ice
|
1443677 |
2020-02-14 | Springer, Scott; Howard, Susan L.; Padman, Laurence |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This dataset contains a regional ocean-ice shelf model used to support and interpret the ROSETTA-Ice field program. A gzipped tar file containing the regional ROMS model code, configuration files, input files, and selected output files. The model simulation covers three years following a ten year spin up. Two sets of output files from the simulation are included. The first is the complete model output (T,S,u,v, etc.) averaged over 30 day intervals. The second is selected variable (T, S, and passive dye tracers) averaged over one day. Included Matlab scripts process these daily passive dye files into water masses and make a simple movie of the time evolution of the water mass distributions. For futher information, see the Supplemental Information of the associated publication (Tinto et al., 2019). | ["POLYGON((-180 -68,-175.85 -68,-171.7 -68,-167.55 -68,-163.4 -68,-159.25 -68,-155.1 -68,-150.95 -68,-146.8 -68,-142.65 -68,-138.5 -68,-138.5 -69.7,-138.5 -71.4,-138.5 -73.1,-138.5 -74.8,-138.5 -76.5,-138.5 -78.2,-138.5 -79.9,-138.5 -81.6,-138.5 -83.3,-138.5 -85,-142.65 -85,-146.8 -85,-150.95 -85,-155.1 -85,-159.25 -85,-163.4 -85,-167.55 -85,-171.7 -85,-175.85 -85,180 -85,177.4 -85,174.8 -85,172.2 -85,169.6 -85,167 -85,164.4 -85,161.8 -85,159.2 -85,156.6 -85,154 -85,154 -83.3,154 -81.6,154 -79.9,154 -78.2,154 -76.5,154 -74.8,154 -73.1,154 -71.4,154 -69.7,154 -68,156.6 -68,159.2 -68,161.8 -68,164.4 -68,167 -68,169.6 -68,172.2 -68,174.8 -68,177.4 -68,-180 -68))"] | ["POINT(-172.25 -76.5)"] | false | false |
Basal Melt, Ice thickness and structure of the Ross Ice Shelf using airborne radar data
|
1443534 |
2020-01-10 | Das, Indrani; Padman, Laurence; Bell, Robin; Fricker, Helen; Hulbe, Christina; Siddoway, Christine; Dhakal, Tejendra; Frearson, Nicholas; Mosbeux, Cyrille; Cordero, Isabel; Siegfried, Matt; Tinto, Kirsty |
Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
This dataset was produced for the manuscript \"Multi-decadal basal melt rates and structure of the Ross Ice Shelf, Antarctica using airborne ice penetrating radar\" by Das et al., 2020 in Journal of Geophysical Research-Earth Surface. It has total ice thickness, thickness of the LMI layer, strain induced thickness change, basal melt rates and the error estimate for basal melt rates. | ["POLYGON((-180 -77,-177 -77,-174 -77,-171 -77,-168 -77,-165 -77,-162 -77,-159 -77,-156 -77,-153 -77,-150 -77,-150 -77.9,-150 -78.8,-150 -79.7,-150 -80.6,-150 -81.5,-150 -82.4,-150 -83.3,-150 -84.2,-150 -85.1,-150 -86,-153 -86,-156 -86,-159 -86,-162 -86,-165 -86,-168 -86,-171 -86,-174 -86,-177 -86,180 -86,178.1 -86,176.2 -86,174.3 -86,172.4 -86,170.5 -86,168.6 -86,166.7 -86,164.8 -86,162.9 -86,161 -86,161 -85.1,161 -84.2,161 -83.3,161 -82.4,161 -81.5,161 -80.6,161 -79.7,161 -78.8,161 -77.9,161 -77,162.9 -77,164.8 -77,166.7 -77,168.6 -77,170.5 -77,172.4 -77,174.3 -77,176.2 -77,178.1 -77,-180 -77))"] | ["POINT(-174.5 -81.5)"] | false | false |
CATS2008: Circum-Antarctic Tidal Simulation version 2008
|
1443677 9896041 |
2019-12-19 | Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana |
Ocean Tides around Antarctica and in the Southern Ocean Collaborative Research: Uncovering the Ross Ocean and Ice Shelf Environment and Tectonic setting Through Aerogeophysical Surveys and Modeling (ROSETTA-ICE) |
CATS2008 is a regional inverse barotropic tide model for the circum-Antarctic ocean on a 4 km grid. The model domain includes ocean cavities under the floating ice shelves. The coastline is based on the MODIS MOA [Scambos et al., 2007; Remote Sensing of Environment] feature identification files, adjusted to match ICESat-derived grounding lines for the Ross and Filchner-Ronne ice shelves and Interferometric Synthetic Aperture Radar (InSAR) grounding lines. The water depth map for open water is based on the 2007 release update to Smith and Sandwell [1997; Science]. Adjustments to this map have been made in various regions, including the open continental shelf in front of the Larsen-C Ice Shelf which has been blended with GEBCO bathymetry. Model type: Tides only; Inverse (data assimilation); barotropic (no vertical variation of currents). Grid: 4-km uniform polar stereographic (centered at 71 degrees S, 70 degrees W) Constituents: M2, S2, N2, K2, K1, O1, P1, Q1, Mf, Mm. Units: z (sea surface height; meters); u,v (currents; cm/s); U,V (transports; m2/s). Coordinates: Currents (u, v) and depth-integrated transports (U, V) are given as East (u, U) and North (v, V) components. Citation: "… an update to the inverse model described by Padman et al. [2002]." See CATS2008_README.pdf for further details. | ["POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))"] | ["POINT(0 -89.999)"] | false | false |
Biogenic silica concentrations from the Ross Sea
|
1644073 |
2019-11-13 | Ditullio, Giacomo; Schanke, Nicole |
Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay |
Biogenic silica concentrations collected from CTD casts during RVIB Nathaniel B. Palmer cruise in the Ross Sea, Southern Ocean from December 2017-February 2018 | ["POLYGON((-180 -72.45,-179.354 -72.45,-178.708 -72.45,-178.062 -72.45,-177.416 -72.45,-176.77 -72.45,-176.124 -72.45,-175.478 -72.45,-174.832 -72.45,-174.186 -72.45,-173.54 -72.45,-173.54 -73.068,-173.54 -73.686,-173.54 -74.304,-173.54 -74.922,-173.54 -75.54,-173.54 -76.158,-173.54 -76.776,-173.54 -77.394,-173.54 -78.012,-173.54 -78.63,-174.186 -78.63,-174.832 -78.63,-175.478 -78.63,-176.124 -78.63,-176.77 -78.63,-177.416 -78.63,-178.062 -78.63,-178.708 -78.63,-179.354 -78.63,180 -78.63,179.818 -78.63,179.636 -78.63,179.454 -78.63,179.272 -78.63,179.09 -78.63,178.908 -78.63,178.726 -78.63,178.544 -78.63,178.362 -78.63,178.18 -78.63,178.18 -78.012,178.18 -77.394,178.18 -76.776,178.18 -76.158,178.18 -75.54,178.18 -74.922,178.18 -74.304,178.18 -73.686,178.18 -73.068,178.18 -72.45,178.362 -72.45,178.544 -72.45,178.726 -72.45,178.908 -72.45,179.09 -72.45,179.272 -72.45,179.454 -72.45,179.636 -72.45,179.818 -72.45,-180 -72.45))"] | ["POINT(-177.68 -75.54)"] | false | false |
Easten Antarctic Peninsula Surface Sediment Diatom Data
|
0732625 9714371 |
2019-09-16 | Leventer, Amy |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Diatom data from eastern side of Antarctic Peninsula: This file includes quantitative diatom data for surface samples collected on numerous cruises to the eastern side of the Antarctic Peninsula, including NBP0003, NBP0107, LMG0502, NBP0603, and NBP1203. Samples were collected using a variety of tools including Smith-McIntyre Grab, Kasten Core and Jumbo Kasten Core. These data were generated by Amy Leventer (aleventer@colgate.edu) and undergraduate students at Colgate University. All questions regarding the specifics of these data should be directed to Amy Leventer. Quantitative diatom slides were prepared according to the settling technique of Scherer (1995). Cover slips were adhered to the slides using Norland Optical Adhesive #61. Slides were observed under Olympus CX31, BX50 and BX60, and Zeiss Primo Star light microscopes, using a 100X oil immersion objective for a total magnification of 1000X. A minimum of 400 valves or 10 transects was counted for each slide, depending on the absolute diatom abundance. Valves were only counted if >50% complete. Diatoms were identified to species level when possible (Crosta et al., 2005; Armand et al., 2005; Cefarelli et al., 2010). Armand, L.K., X. Crosta, O. Romero, J. J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Paleogeography, Paleoclimatology, Paleoecology, 223, 93-126. Cefarelli, A.O., M. E. Ferrario, G. O. Almandoz, A. G. Atencio, R. Akselman, M. Vernet (2010), Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance, Polar Biology, 33(2), 1463-1484. Crosta, X., O. Romero, L. K. Armand, J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 66-92. Scherer, R. P., A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles, J. Paleolimnol., 12, 171–178, 1995. | ["POLYGON((-64 -63,-63.1 -63,-62.2 -63,-61.3 -63,-60.4 -63,-59.5 -63,-58.6 -63,-57.7 -63,-56.8 -63,-55.9 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.9 -67,-56.8 -67,-57.7 -67,-58.6 -67,-59.5 -67,-60.4 -67,-61.3 -67,-62.2 -67,-63.1 -67,-64 -67,-64 -66.6,-64 -66.2,-64 -65.8,-64 -65.4,-64 -65,-64 -64.6,-64 -64.2,-64 -63.8,-64 -63.4,-64 -63))"] | ["POINT(-59.5 -65)"] | false | false |
Dynamic fine-scale sea-icescape shapes adult emperor penguin foraging habitat in East Antarctica
|
1643901 |
2019-09-10 | Labrousse, Sara; Fraser, Alexander; Tamura, Takeshi; Pinaud, David; Wienecke, Barbara; Kirkwood, Roger; Ropert-Coudert, Yan; Resinger, Ryan; Jonsen, Ian; Porter-Smith, Rick; Barbraud, Christophe; Bost, Charles-André; Ji, Rubao; Jenouvrier, Stephanie; Sumner, Michael |
Collaborative Research: Polynyas in Coastal Antarctica (PICA): Linking Physical Dynamics to Biological Variability |
The emperor penguin, an iconic species threatened by projected sea-ice loss in Antarctica, has long been considered to forage at the fast ice edge, presumably relying on large/yearly-persistent polynyas as their main foraging habitat during the breeding season. Using newly developed fine-scale sea-icescape data and historical penguin tracking data, this study for the first time suggests the importance of less-recognized small openings, including cracks, flaw leads and ephemeral short-term polynyas, as foraging habitats for emperor penguins. The tracking data retrieved from 47 emperor penguins in two different colonies in East Antarctica suggest that those penguins spent 23% of their time in ephemeral polynyas and did not use the large/yearly-persistent, well-studied polynyas, even they occur much more regularly with predictable locations. These findings challenge our previous understanding of emperor penguin breeding habitats, highlighting the need for incorporating fine-scale seascape features when assessing the population persistence in a rapidly changing polar environment. | ["POLYGON((55 -62,65 -62,75 -62,85 -62,95 -62,105 -62,115 -62,125 -62,135 -62,145 -62,155 -62,155 -62.8,155 -63.6,155 -64.4,155 -65.2,155 -66,155 -66.8,155 -67.6,155 -68.4,155 -69.2,155 -70,145 -70,135 -70,125 -70,115 -70,105 -70,95 -70,85 -70,75 -70,65 -70,55 -70,55 -69.2,55 -68.4,55 -67.6,55 -66.8,55 -66,55 -65.2,55 -64.4,55 -63.6,55 -62.8,55 -62))"] | ["POINT(105 -66)"] | false | false |
Algal pigment concentrations from the Ross Sea
|
1644073 |
2019-08-27 | Ditullio, Giacomo |
Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay |
Algal pigment concentrations as measured by HPLC from RV/IB Nathaniel B. Palmer cruise in the Ross Sea from 2017-2018 | ["POLYGON((-180 -72.448188333,-179.35369 -72.448188333,-178.70738 -72.448188333,-178.06107 -72.448188333,-177.41476 -72.448188333,-176.76845 -72.448188333,-176.12214 -72.448188333,-175.47583 -72.448188333,-174.82952 -72.448188333,-174.18321 -72.448188333,-173.5369 -72.448188333,-173.5369 -73.0663094997,-173.5369 -73.6844306664,-173.5369 -74.3025518331,-173.5369 -74.9206729998,-173.5369 -75.5387941665,-173.5369 -76.1569153332,-173.5369 -76.7750364999,-173.5369 -77.3931576666,-173.5369 -78.0112788333,-173.5369 -78.6294,-174.18321 -78.6294,-174.82952 -78.6294,-175.47583 -78.6294,-176.12214 -78.6294,-176.76845 -78.6294,-177.41476 -78.6294,-178.06107 -78.6294,-178.70738 -78.6294,-179.35369 -78.6294,180 -78.6294,179.818135 -78.6294,179.63627 -78.6294,179.454405 -78.6294,179.27254 -78.6294,179.090675 -78.6294,178.90881 -78.6294,178.726945 -78.6294,178.54508 -78.6294,178.363215 -78.6294,178.18135 -78.6294,178.18135 -78.0112788333,178.18135 -77.3931576666,178.18135 -76.7750364999,178.18135 -76.1569153332,178.18135 -75.5387941665,178.18135 -74.9206729998,178.18135 -74.3025518331,178.18135 -73.6844306664,178.18135 -73.0663094997,178.18135 -72.448188333,178.363215 -72.448188333,178.54508 -72.448188333,178.726945 -72.448188333,178.90881 -72.448188333,179.090675 -72.448188333,179.27254 -72.448188333,179.454405 -72.448188333,179.63627 -72.448188333,179.818135 -72.448188333,-180 -72.448188333))"] | ["POINT(-177.677775 -75.5387941665)"] | false | false |
Geochemical and sedimentologic data from NBP01-01 JPC-34
|
1246378 |
2019-05-10 | Shevenell, Amelia |
Late Quaternary Evolution of the Lambert Glacier/Amery Ice Shelf System, Prydz Bay, Antarctica |
This dataset contains 14C data, magnetic susceptibility, relative grain size percentages, 10Be | ["POLYGON((70 -68,70.5 -68,71 -68,71.5 -68,72 -68,72.5 -68,73 -68,73.5 -68,74 -68,74.5 -68,75 -68,75 -68.2,75 -68.4,75 -68.6,75 -68.8,75 -69,75 -69.2,75 -69.4,75 -69.6,75 -69.8,75 -70,74.5 -70,74 -70,73.5 -70,73 -70,72.5 -70,72 -70,71.5 -70,71 -70,70.5 -70,70 -70,70 -69.8,70 -69.6,70 -69.4,70 -69.2,70 -69,70 -68.8,70 -68.6,70 -68.4,70 -68.2,70 -68))"] | ["POINT(72.5 -69)"] | false | false |
The Geochemistry of englacial brine from Taylor Glacier, Antarctica.
|
1144176 |
2019-05-07 | Lyons, W. Berry; Gardner, Christopher B. |
Collaborative Research: MIDGE: Minimally Invasive Direct Glacial Exploration of Biogeochemistry, Hydrology and Glaciology of Blood Falls, McMurdo Dry Valleys |
Blood Falls is a hypersaline, iron‐rich discharge at the terminus of the Taylor Glacier in the McMurdo Dry Valleys, Antarctica. In November 2014, brine in a conduit within the glacier was penetrated and sampled using clean‐entry techniques and a thermoelectric melting probe called the IceMole. We analyzed the englacial brine sample for filterable iron (fFe), total Fe, major cations and anions, nutrients, organic carbon, and perchlorate. In addition, aliquots were analyzed for minor and trace elements and isotopes including δD and δ18O of water, δ34S and δ18O of sulfate, 234U, 238U, δ11B, 87Sr/86Sr, and δ81Br. These measurements were made in order to (1) determine the source and geochemical evolution of the brine and (2) compare the chemistry of the brine to that of nearby hypersaline lake waters and previous supraglacially sampled collections of Blood Falls outflow that were interpreted as end‐member brines. | ["POLYGON((162.250099 -77.719928,162.2519358 -77.719928,162.2537726 -77.719928,162.2556094 -77.719928,162.2574462 -77.719928,162.259283 -77.719928,162.2611198 -77.719928,162.2629566 -77.719928,162.2647934 -77.719928,162.2666302 -77.719928,162.268467 -77.719928,162.268467 -77.7201251,162.268467 -77.7203222,162.268467 -77.7205193,162.268467 -77.7207164,162.268467 -77.7209135,162.268467 -77.7211106,162.268467 -77.7213077,162.268467 -77.7215048,162.268467 -77.7217019,162.268467 -77.721899,162.2666302 -77.721899,162.2647934 -77.721899,162.2629566 -77.721899,162.2611198 -77.721899,162.259283 -77.721899,162.2574462 -77.721899,162.2556094 -77.721899,162.2537726 -77.721899,162.2519358 -77.721899,162.250099 -77.721899,162.250099 -77.7217019,162.250099 -77.7215048,162.250099 -77.7213077,162.250099 -77.7211106,162.250099 -77.7209135,162.250099 -77.7207164,162.250099 -77.7205193,162.250099 -77.7203222,162.250099 -77.7201251,162.250099 -77.719928))"] | ["POINT(162.259283 -77.7209135)"] | false | false |
CTD stations and logs for Araon 2018 ANA08D expedition to Larson C
|
1822289 |
2019-04-29 | Pan, B. Jack; Vernet, Maria |
RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: "Time zero" |
Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. | ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"] | ["POINT(-57.2113475 -63.396513)"] | false | false |
Diatom assemblages from Edward VIII Gulf, Kemp Coast, East Antarctica
|
9909367 |
2019-04-25 | Leventer, Amy |
Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin |
This data set describes diatom assemblages and abundances from two sediment cores retrieved from Edward VIII Gulf. The assemblages are used to reconstruct paleoceanographic conditions throughout the Holocene. | ["POLYGON((57 -66,57.3 -66,57.6 -66,57.9 -66,58.2 -66,58.5 -66,58.8 -66,59.1 -66,59.4 -66,59.7 -66,60 -66,60 -66.1,60 -66.2,60 -66.3,60 -66.4,60 -66.5,60 -66.6,60 -66.7,60 -66.8,60 -66.9,60 -67,59.7 -67,59.4 -67,59.1 -67,58.8 -67,58.5 -67,58.2 -67,57.9 -67,57.6 -67,57.3 -67,57 -67,57 -66.9,57 -66.8,57 -66.7,57 -66.6,57 -66.5,57 -66.4,57 -66.3,57 -66.2,57 -66.1,57 -66))"] | ["POINT(58.5 -66.5)"] | false | false |
Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird
|
1246407 |
2018-12-03 | Jenouvrier, Stephanie |
Linking Foraging Behaviors to Demography to understand Albatrosses Population Responses to Climate Change |
1. Studies of the mechanisms underlying climate-induced population changes are critically needed to better understand and accurately predict population responses to climate change. Long-lived migratory species might be particularly vulnerable to climate change as they are constrained by different climate conditions and energetic requirements during the breeding and non-breeding seasons. Yet, most studies primarily focus on the breeding season of these species life cycle. Environmental conditions experienced in the non-breeding season may have downstream effects on the other stages of the annual life cycle. Not investigating such effects may potentially lead to erroneous inferences about population dynamics. 2. Combining demographic and tracking data collected between 2006 and 2013 at Kerguelen Island on a long-lived migratory seabird, the Black-Browed Albatross (Thalassarche melanophris), we investigated the links between sea surface temperature during the non-breeding season and behavioural and phenological traits (at-sea behaviour and migratory schedules) while accounting for different responses between birds of different sex and reproductive status (previously failed or successful breeders). We then explored whether variation in the foraging behaviour and timing of spring migration influenced subsequent reproductive performance. 3. Our results showed that foraging activity and migratory schedules varied by both sex and reproductive status suggesting different energetic requirements and constraints among individuals. Higher sea surface temperatures during late winter, assumed to reflect poor winter conditions, were associated with an earlier departure from the wintering grounds and an extended pre-breeding period. However, an earlier spring migration and an earlier return to Kerguelen grounds were associated with a lower breeding success. 4. Our results highlighted that behaviour during some periods of the non-breeding season, particularly towards the end of the wintering period and the pre-breeding period, had a significant effect on the subsequent reproductive success. Therefore caution needs to be given to all stages of the annual cycle when predicting the influence of climate on population dynamics. | ["POLYGON((68.5 -48.5,68.725 -48.5,68.95 -48.5,69.175 -48.5,69.4 -48.5,69.625 -48.5,69.85 -48.5,70.075 -48.5,70.3 -48.5,70.525 -48.5,70.75 -48.5,70.75 -48.65,70.75 -48.8,70.75 -48.95,70.75 -49.1,70.75 -49.25,70.75 -49.4,70.75 -49.55,70.75 -49.7,70.75 -49.85,70.75 -50,70.525 -50,70.3 -50,70.075 -50,69.85 -50,69.625 -50,69.4 -50,69.175 -50,68.95 -50,68.725 -50,68.5 -50,68.5 -49.85,68.5 -49.7,68.5 -49.55,68.5 -49.4,68.5 -49.25,68.5 -49.1,68.5 -48.95,68.5 -48.8,68.5 -48.65,68.5 -48.5))"] | ["POINT(69.625 -49.25)"] | false | false |
Weddell Seal Molt Phenology Dataset
|
1246463 |
2018-10-22 | Burns, Jennifer |
The Cost of A New Fur Coat: Interactions between Molt and Reproduction in Weddell Seals |
Animals can respond to dynamic environments through phenological plasticity of life history events; however, changes in one part of the annual cycle can diminish the success of subsequent life history events. Our aims were to determine the associations between reproduction and moult phenology across years and to quantify phenological plasticity across varying environmental conditions. We conducted demographic surveys of 4,252 flipper-tagged Weddell seals (Leptonychotes weddellii) in the Ross Sea, Antarctica during four austral summers. At each sighting, seals were assigned a moult code based on the visible presence of new fur, and the start date of each animal’s moult was back-calculated. This dataset contains data on pupping and moult timing for each animal used to address this question. | [] | [] | false | false |
Demographic data for Weddell Seal colonies in Erebus Bay through the 2017 Antarctic field season
|
1640481 1141326 |
2018-10-02 | Rotella, Jay |
The Demographic Consequences of Environmental Variability and Individual Heterogeneity in Life-history Tactics of a Long-lived Antarctic Marine Predator |
The Access database contains information for 3 types of data on Weddell seals for the period 1969-2017. (1) Mark-recapture Data with 278,723 resighting records for 25,589 different individuals tagged in and around the McMurdo Sound area, as well as 740 records from 162 seals tagged at White Island; (2) Mass Dynamics Data contains 5,737 physical masses and 1,271 photographic records and measurements that include the date, ID number, sex, age class, weight (if successfully collected), and perspectives from which photographs were collected for each sampling occurrence; and (3) Research Procedures Data contains 1,005 records of handling and research procedures conducted on Erebus Bay Weddell seals by various research teams in recent years. | ["POLYGON((162 -75,162.8 -75,163.6 -75,164.4 -75,165.2 -75,166 -75,166.8 -75,167.6 -75,168.4 -75,169.2 -75,170 -75,170 -75.38,170 -75.76,170 -76.14,170 -76.52,170 -76.9,170 -77.28,170 -77.66,170 -78.03999999999999,170 -78.42,170 -78.8,169.2 -78.8,168.4 -78.8,167.6 -78.8,166.8 -78.8,166 -78.8,165.2 -78.8,164.4 -78.8,163.6 -78.8,162.8 -78.8,162 -78.8,162 -78.42,162 -78.03999999999999,162 -77.66,162 -77.28,162 -76.9,162 -76.52,162 -76.14,162 -75.76,162 -75.38,162 -75))"] | ["POINT(166 -76.9)"] | false | false |
2008-2016 AMNH accessioned vertebrate fossils from Seymour Island
|
1142052 |
2018-08-13 | MacPhee, Ross |
Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana |
Fossils collected on Antarctic expeditions between 2008 and 2016 that have been accessioned into the collection of the Paleontology Division, AMNH | ["POINT(-56.62 -64.23)"] | ["POINT(-56.62 -64.23)"] | false | false |
Region Climate Model Output Plio-Pleistocene
|
1245899 |
2018-01-16 | Kowalewski, Douglas |
Collaborative Research: West Antarctic Ice Sheet stability, Alpine Glaciation, and Climate Variability: a Terrestrial Perspective from Cosmogenic-nuclide Dating in McMurdo Sound |
Data here is output from regional climate modeling to shed light on the range of possible environmental conditions in the McMurdo region during periods of grounded ice expansion and recession during the Plio-Pleistocene. | ["POLYGON((160 -70,168 -70,176 -70,184 -70,192 -70,200 -70,208 -70,216 -70,224 -70,232 -70,240 -70,240 -71.5,240 -73,240 -74.5,240 -76,240 -77.5,240 -79,240 -80.5,240 -82,240 -83.5,240 -85,232 -85,224 -85,216 -85,208 -85,200 -85,192 -85,184 -85,176 -85,168 -85,160 -85,160 -83.5,160 -82,160 -80.5,160 -79,160 -77.5,160 -76,160 -74.5,160 -73,160 -71.5,160 -70))"] | ["POINT(-160 -77.5)"] | false | false |
LARISSA: Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula
|
0732917 |
2017-12-17 | McCormick, Michael |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. |
Ice-shelf loss along the east coast of the Antarctic Peninsula over recent decades has brought new sources of carbon and energy to the marine benthos likely affecting sediment geochemistry and microbial community composition. To better understand the long-term effects of ice-shelf loss on benthic microbial communities, we conducted a five-station survey along a 160 km transect following the historic path of retreat of the Larsen A ice shelf. All microbial community sequence data is publicly available through the Metagenomics Analysis Server at Argonne National Laboratory (MG-RAST). The project title is "Impact of ice-shelf loss on geochemical profiles and microbial community composition in marine sediments of the Larsen A embayment, Antarctic Peninsula". A key word search using terms from this title at the MG-RAST portal (http://metagenomics.anl.gov/) will return the complete sample list. This submitted dataset summarizes the measured environmental parameters for these same samples (lat., long., water depth, sediment depth, pH, alkalinity, dissolved oxygen, silicate, phosphate, nitrate, nitrite, and ammonium). | ["POLYGON((299.4 -63.1,299.92 -63.1,300.44 -63.1,300.96 -63.1,301.48 -63.1,302 -63.1,302.52 -63.1,303.04 -63.1,303.56 -63.1,304.08 -63.1,304.6 -63.1,304.6 -63.29,304.6 -63.48,304.6 -63.67,304.6 -63.86,304.6 -64.05,304.6 -64.24,304.6 -64.43,304.6 -64.62,304.6 -64.81,304.6 -65,304.08 -65,303.56 -65,303.04 -65,302.52 -65,302 -65,301.48 -65,300.96 -65,300.44 -65,299.92 -65,299.4 -65,299.4 -64.81,299.4 -64.62,299.4 -64.43,299.4 -64.24,299.4 -64.05,299.4 -63.86,299.4 -63.67,299.4 -63.48,299.4 -63.29,299.4 -63.1))"] | ["POINT(-58 -64.05)"] | false | false |
Prokaryotic cell concentration record from the WAIS Divide ice core
|
0839075 |
2017-12-12 | Santibanez, Pamela; Priscu, John |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
This data set includes raw concentration of prokaryotic cells for the WAIS Divide deep core, WDC06A, from 1,764 m to 2,709 m. Data were collected by a method that combines acquisition of discrete samples using a continuous ice-core melting system (McConnell et al., 2002) coupled with flow cytometry of DNA-stained samples. The method is described in detail in Santibanez et al., 2016. We present the first long-term, highly resolved prokaryotic cell concentration record obtained from a polar ice core. This record, obtained from the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core, spanned from the Last Glacial Maximum (LGM) to the early Holocene (EH) and showed distinct fluctuations in prokaryotic cell concentration coincident with major climatic states. This record provided strong evidence that airborne prokaryotic cell deposition differed during the LGM, LDG and EH, and that these changes in cell densities could be explained by different environmental conditions during each of these climatic periods. Our observations provide the first ice core time-series evidence for a prokaryotic response to long-term climatic and environmental processes. | ["POINT(-112 -79)"] | ["POINT(-112 -79)"] | false | false |
3D digital reconstructions of vocal organs of Antarctic Cretaceous bird Vegavis and Paleogene bird Presbyornis
|
1141820 1142129 |
2017-06-30 | Lamanna, Matthew; Salisbury, Steven; Clarke, Julia |
Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana |
We provide three-dimensional digital reconstructions, generated from computed tomographic (CT) data, of the vocal organs of the Antarctic Cretaceous bird Vegavis iaai (MACN-PV 19.748) and the North American Paleogene bird Presbyornis sp. (USNM PAL 617185). These were published as online Supplementary Information for the following paper: Clarke, J.A., Chatterjee, S., Li, Z., Riede, T., Agnolin, F., Goller, F., Isasi, M.P., Martinioni, D.R., Mussel, F.J. and Novas, F.E., 2016. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538: 502-505. | ["POLYGON((-60 -63.5,-59.6 -63.5,-59.2 -63.5,-58.8 -63.5,-58.4 -63.5,-58 -63.5,-57.6 -63.5,-57.2 -63.5,-56.8 -63.5,-56.4 -63.5,-56 -63.5,-56 -63.7,-56 -63.9,-56 -64.1,-56 -64.3,-56 -64.5,-56 -64.7,-56 -64.9,-56 -65.1,-56 -65.3,-56 -65.5,-56.4 -65.5,-56.8 -65.5,-57.2 -65.5,-57.6 -65.5,-58 -65.5,-58.4 -65.5,-58.8 -65.5,-59.2 -65.5,-59.6 -65.5,-60 -65.5,-60 -65.3,-60 -65.1,-60 -64.9,-60 -64.7,-60 -64.5,-60 -64.3,-60 -64.1,-60 -63.9,-60 -63.7,-60 -63.5))"] | ["POINT(-58 -64.5)"] | false | false |
Seasonal Succession of Bacterial Communities in Coastal Waters of the Western Antarctic Peninsula
|
1141993 |
2017-06-12 | Rich, Jeremy |
Collaborative Research: Microbial Community Assembly in Coastal Waters of the Western Antarctic Peninsula |
From winter to late summer during the 2013-2014 season at Palmer Station, Antarctica, we collected weekly to bi-weekly samples of the seawater intake to measure changes in bacterial community composition, based on sequencing 16S rRNA genes. Along with the sequences, we collected data on environmental parameters in the samples (chlorophyll a, bacterial production, salinity, nutrients, bacterial cell numbers, and particulate organic carbon and nitrogen). | ["POINT(-64.05 -64.77)"] | ["POINT(-64.05 -64.77)"] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2017-01-10 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | [] | [] | false | false |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO)
|
1142083 |
2016-12-03 | Oppenheimer, Clive; Kyle, Philip |
Mount Erebus Volcano Observatory: Operations, Science and Outreach (MEVO-OSO) |
Mt. Erebus is one of only a handful of volcanoes worldwide that have lava lakes with readily observable and nearly continuous Strombolian explosive activity. Erebus is also unique in having a permanent convecting lava lake of anorthoclase phonolite magma. Over the years significant infrastructure has been established at the summit of Mt. Erebus as part of the Mount Erebus Volcano Observatory (MEVO), which serves as a natural laboratory to study a wide range of volcanic processes, especially magma degassing associated with an open convecting magma conduit. The PI proposes to continue operating MEVO for a further five years. The fundamental fundamental research objectives are: to understand diffuse flank degassing by using distributed temperature sensing and gas measurements in ice caves, to understand conduit processes, and to examine the environmental impact of volcanic emissions from Erebus on atmospheric and cryospheric environments. To examine conduit processes the PI will make simultaneous observations with video records, thermal imaging, measurements of gas emission rates and gas compositions, seismic, and infrasound data. An important aspect of Erebus research is the education and training of students. Both graduate and undergraduate students will have the opportunity to work on MEVO data and deploy to the field site. In addition, this proposal will support a middle or high school science teacher for two field seasons. The PI will also continue working with various media organizations and filmmakers. This dataset contains video taken from a series of cameras that were installed at Shackleton's Cairn (-77.525337, 167.157509) looking into the lava lake. This dataset contains all such video taken between 2005 and 2011. Camera downlink depended on power at a relay station at the Cones site. The camera was operational during G-081 field seasons and often for a period of weeks or months thereafter. | ["POINT(167.15334 -77.529724)"] | ["POINT(167.15334 -77.529724)"] | false | false |
Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins
|
1043554 |
2016-11-09 | Willenbring, Jane |
Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins |
The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete. | ["POINT(161.5 -77.5)"] | ["POINT(161.5 -77.5)"] | false | false |
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance
|
0838817 |
2016-01-01 | Kyle, Philip |
Mount Erebus Volcano Observatory III (MEVO III): Conduit Processes and Surveillance |
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Mount Erebus is Antarctica's most active volcano that has been in a persistent state of activity for at least the last 35 years. It has a unique geochemistry among the Earth's active volcanoes and is also unique in hosting a persistent convecting lake(s) of anorthclase phonolite magma in its summit crater. The relative simplicity of the magmatic system, consistency of activity, and accessibility of close-range observation make Erebus attractive as a target for extensive studies. Although the Erebus' seismicity and eruptive activity and processes are becoming increasingly well understood over years of research, there is a near total lack of understanding its deeper magmatic system. The primary goal of this proposal is to continue supporting the Mt. Erebus Volcano Observatory (MEVO III) improving our current understanding of the Erebus eruptive and non-eruptive magmatic system using an integrated approach from geophysical, geochemical and remote sensing observations. This goal can be grouped into the following fundamental research objectives: (a) to sustain year-round surveillance of on-going volcanic activity primarily using geophysical observatories; (b) to understand processes within the convecting conduit which feeds the persistent lava lakes; and (c) to understand the impact of Erebus eruptive activity upon the Antarctic environment. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | [] | [] | false | false |
Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2016-01-01 | Aronson, Richard |
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos |
Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | ["POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))"] | ["POINT(-82.425 -64.21)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats in W Antarctica - Lake and Ice Stream Subglacial Access Research Drilling (LISSARD)
|
0839059 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The LISSARD project (Lake and Ice Stream Subglacial Access Research Drilling) is one of three research components of the WISSARD integrative initiative (Whillans Ice Stream Subglacial Access Research Drilling) that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The LISSARD component of WISSARD focuses on the role of active subglacial lakes in determining how fast the West Antarctic ice sheet loses mass to the global ocean and influences global sea level changes. The importance of Antarctic subglacial lakes has only been recently recognized, and the lakes have been identified as high priority targets for scientific investigations because of their unknown contributions to ice sheet stability under future global warming scenarios. LISSARD has several primary science goals: A) To provide an observational basis for improving treatments of subglacial hydrological and mechanical processes in models of ice sheet mass balance and stability; B) To reconstruct the past history of ice stream stability by analyzing archives of past basal water and ice flow variability contained in subglacial sediments, porewater, lake water, and basal accreted ice; C) To provide background understanding of subglacial lake environments to benefit RAGES and GBASE (the other two components of the WISSARD project); and D) To synthesize data and concepts developed as part of this project to determine whether subglacial lakes play an important role in (de)stabilizing Antarctic ice sheets. We propose an unprecedented synthesis of approaches to studying ice sheet processes, including: (1) satellite remote sensing, (2) surface geophysics, (3) borehole observations and measurements and, (4) basal and subglacial sampling. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-168.7 -82.3,-168.69 -82.3,-168.68 -82.3,-168.67 -82.3,-168.66 -82.3,-168.65 -82.3,-168.64 -82.3,-168.63 -82.3,-168.62 -82.3,-168.61 -82.3,-168.6 -82.3,-168.6 -82.31,-168.6 -82.32,-168.6 -82.33,-168.6 -82.34,-168.6 -82.35,-168.6 -82.36,-168.6 -82.37,-168.6 -82.38,-168.6 -82.39,-168.6 -82.4,-168.61 -82.4,-168.62 -82.4,-168.63 -82.4,-168.64 -82.4,-168.65 -82.4,-168.66 -82.4,-168.67 -82.4,-168.68 -82.4,-168.69 -82.4,-168.7 -82.4,-168.7 -82.39,-168.7 -82.38,-168.7 -82.37,-168.7 -82.36,-168.7 -82.35,-168.7 -82.34,-168.7 -82.33,-168.7 -82.32,-168.7 -82.31,-168.7 -82.3))"] | ["POINT(-168.65 -82.35)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica
|
0944282 |
2016-01-01 | Hasiotis, Stephen |
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica |
This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? This study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal. | ["POINT(175 -86)"] | ["POINT(175 -86)"] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)
|
0839107 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"] | ["POINT(-163.6 -84.25)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944659 |
2015-01-01 | Kiene, Ronald |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. Antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis? ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Preparation of Vertebrate Fossils from the Triassic of Antarctica
|
1146399 |
2015-01-01 | Sidor, Christian |
Preparation of Vertebrate Fossils from the Triassic of Antarctica |
The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student's experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM 'Explore Your World' website with images and findings from their field season. | ["POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))"] | ["POINT(167.405 -84.685)"] | false | false |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-01-01 | Levy, Joseph |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica |
The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"] | ["POINT(163.5385 -77.82215)"] | false | false |
Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food Web
|
1332492 |
2015-01-01 | Lohmann, Rainer |
RAPID: Origin of Persistent Organic Pollutants in the Antarctic Atmosphere, Snow and Marine Food WEB |
Many persistent organic pollutants (POPs), though banned in the U.S. since the 1970s, remain in the environment and continue to reach hitherto pristine regions such as the Arctic and Antarctic. The overall goals of this RAPID project are to better understand the remobilization of POPs from melting glaciers in the Antarctic, and their transfer into the food-web. Legacy POPs have characteristic chemical signatures that will be used ascertain the origin of POPs in the Antarctic atmosphere and marine food-web. Samples that were collected in 2010 will be analyzed for a wide range of legacy POPs, and their behavior will be contrasted with results for emerging contaminants. The intellectual merit of the proposed research combines (a) the use of chemical signatures to assess whether melting glaciers are releasing legacy POPs back into the Antarctic marine ecosystem, and (b) a better understanding of the food-web dynamics of legacy POPs versus emerging organic pollutants. The broader impacts of the proposed research project will include the training of the next generation of scientists through support for a graduate student and a postdoctoral scholar. As well, this work will result in a better understanding of the relationship between pollutants, trophic food web ecology and global climate change in the pristine Antarctic ecosystem. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
|
1043485 |
2015-01-01 | Kurz, Mark D.; Curtice, Josh |
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea |
This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. | ["POLYGON((163.4 -77.47989,163.9848 -77.47989,164.5696 -77.47989,165.1544 -77.47989,165.7392 -77.47989,166.324 -77.47989,166.9088 -77.47989,167.4936 -77.47989,168.0784 -77.47989,168.6632 -77.47989,169.248 -77.47989,169.248 -77.565701,169.248 -77.651512,169.248 -77.737323,169.248 -77.823134,169.248 -77.908945,169.248 -77.994756,169.248 -78.080567,169.248 -78.166378,169.248 -78.252189,169.248 -78.338,168.6632 -78.338,168.0784 -78.338,167.4936 -78.338,166.9088 -78.338,166.324 -78.338,165.7392 -78.338,165.1544 -78.338,164.5696 -78.338,163.9848 -78.338,163.4 -78.338,163.4 -78.252189,163.4 -78.166378,163.4 -78.080567,163.4 -77.994756,163.4 -77.908945,163.4 -77.823134,163.4 -77.737323,163.4 -77.651512,163.4 -77.565701,163.4 -77.47989))"] | ["POINT(166.324 -77.908945)"] | false | false |
Measurements of Trapped Air from Mullins Valley, Dry Valleys, Antarctica
|
0636731 |
2014-11-26 | Bender, Michael; Yau, Audrey M. |
Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica |
These data describe the analyses of the elemental and isotopic composition of O2, N2, and Ar and total air content made on the trapped air from three shallow ice cores (<34m depth) collected during the 2009 field campaign to Mullins Valley of the Dry Valleys, Antarctica. | ["POINT(160.35 -77.87)"] | ["POINT(160.35 -77.87)"] | false | false |
Standing Water Depth on Larsen B Ice Shelf
|
0944248 |
2014-04-29 | MacAyeal, Douglas |
Model Studies of Surface Water Behavior on Ice Shelves |
This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability. | ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"] | ["POINT(-59 -65)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838937 |
2014-01-01 | Costa, Daniel |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL)
|
1043740 |
2014-01-01 | Lenczewski, Melissa |
Fate of Drilling Fluids during the South McMurdo Sound Project (SMS) of the Antarctic Geological Drilling Program (ANDRILL) |
The PI proposes to utilize computer models used by hydrogeologists to establish the fate and transport of contamination and determine the extent of drilling fluid contamination in the ANDRILL SMS core. For these models, previously collected logs of lithology, porosity, fracture density, fracture type, fracture orientation, drilling fluid loss, drilling fluid characteristics and temperature will be used as input parameters. In addition, biodegradation and sorption constants for the drilling fluid will be determined and incorporated into the models. Samples of drilling fluids used during coring as well as the return fluids were collected at the drill site using standard microbiological sampling techniques. Fluids will be tested at in situ temperatures under aerobic and anaerobic conditions to determine biodegradation constants. Sorption will be determined between the drilling fluids and core samples using standard isotherm methods. Geochemical and microbial fingerprints of the fluids and the changes during biodegradation will determine the potential impact of the drilling fluids on the isolated microbial communities and the geochemistry within various subsurface lithologic units beneath the southern McMurdo Sound in Antarctica. The results of this study could potentially provide guidelines on developing less detrimental methods for future exploration, if deemed necessary through this research. This proposed project will train a graduate student. The methods developed for analyses of samples in this project will serve as a guide for future studies of similar interest and will improve the understanding of ecological impacts of geologic drilling in Antarctica. The results of this study will be used as a reference for comparison with future studies examining newly developed, and improved, sample collection methods in future exploratory drilling projects in pristine environments. The PI is new to Antarctic research. | ["POLYGON((165 -77.5,165.3 -77.5,165.6 -77.5,165.9 -77.5,166.2 -77.5,166.5 -77.5,166.8 -77.5,167.1 -77.5,167.4 -77.5,167.7 -77.5,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,168 -78.1,168 -78.2,168 -78.3,168 -78.4,168 -78.5,167.7 -78.5,167.4 -78.5,167.1 -78.5,166.8 -78.5,166.5 -78.5,166.2 -78.5,165.9 -78.5,165.6 -78.5,165.3 -78.5,165 -78.5,165 -78.4,165 -78.3,165 -78.2,165 -78.1,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5))"] | ["POINT(166.5 -78)"] | false | false |
A New Approach to Investigate the Seismic Velocity Structure beneath Antarctica
|
1139739 |
2014-01-01 | Hansen, Samantha |
New Approach to Investigate the Seismic Velocity Structure beneath Antarctica |
Intellectual Merit: Numerous candidate models for the geologic processes that have shaped the Antarctic continent have been proposed. To discriminate between them, detailed images of the upper mantle structure are required; however, the only existing continental-scale images of seismic structure beneath Antarctica lack sufficient resolution to delineate important, diagnostic features. Using newly available data from various Antarctic seismic networks, the PI will employ the adaptively parameterized tomography method to develop a high-resolution, continental-scale seismic velocity model for all of Antarctica. The proposed tomography method combines regional seismic travel-time datasets in the context of a global model to create a composite continental-scale model of upper mantle structure. The proposed method allows for imaging of finer structure in areas with better seismic ray coverage while simultaneously limiting the resolution of features in regions with less coverage. This research will help advance understanding of important global processes, such as craton formation, mountain building, continental rifting and associated magmatism. Additionally, the proposed research will have important impacts on other fields of Antarctic science. Constraints provided by tomographic results can be used to develop thermal models of the lithosphere needed to characterize the history and dynamics of ice sheets. Also, further constraints on lithospheric structure are required by climate-ice models, which are focused on understanding the cooling history of the Antarctic continent. Broader impacts: The PI is a new faculty member at the University of Alabama after having been funded as a National Science Foundation Postdoctoral Fellow in Polar Regions Research. The graduate student supported by this project is new to polar research. Through the UA-Tuscaloosa Magnet School partnership program, the PI will educate K-12 students about the Antarctic environment and associated career opportunities through various online and hands-on activities. University of Alabama dedicates a significant percentage of its enrollment space to underrepresented groups. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains
|
1354231 |
2014-01-01 | Kowalewski, Douglas |
Validating contrasting terrestrial climate-sensitive Pliocene deposits through high resolution modeling of paleo-environments in the Transantarctic Mountains |
Intellectual Merit: Neogene sediment records recovered by ANDRILL suggest multiple events of open water conditions and elevated sea surface temperatures at times when terrestrial data from the McMurdo Dry Valleys indicate hyper arid, cold, desert conditions. Interpretation of the ANDRILL data suggests the West Antarctic Ice Sheet is highly sensitive to changes in Pliocene sea surface temperatures and this conclusion has been supported by recent Global Circulation Model results for the early to mid Pliocene. The PIs propose to model paleo-ice configurations and warm orbits associated with a WAIS collapse to assess potential climate change in East Antarctica. During such episodes of polar warmth they propose to answer: What is the limit of ablation along the East Antarctic Ice Sheet?; Are relict landforms in the Dry Valleys susceptible to modification from increase in maximum summertime temperatures?; and Is there sufficient increase in minimum wintertime temperatures to sustain a tundra environment in the Dry Valleys? Integration of depositional records and model outputs have the potential to test the performance of numerical models currently under development as part of ANDRILL; reconcile inconsistencies between marine and terrestrial paleoclimate records in high Southern Latitudes; and improve understanding of Antarctic climate and ice volume sensitivity to forcing for both the East Antarctic and West Antarctic Ice Sheets. Broader impacts: Results from this study have the potential to be used widely by the research community. Outreach to local elementary schools from other funded efforts will continue and be extended to homeschooled students. A Post Doc will be supported as part of this award. | ["POLYGON((-160 -70,-156 -70,-152 -70,-148 -70,-144 -70,-140 -70,-136 -70,-132 -70,-128 -70,-124 -70,-120 -70,-120 -71.5,-120 -73,-120 -74.5,-120 -76,-120 -77.5,-120 -79,-120 -80.5,-120 -82,-120 -83.5,-120 -85,-124 -85,-128 -85,-132 -85,-136 -85,-140 -85,-144 -85,-148 -85,-152 -85,-156 -85,-160 -85,-160 -83.5,-160 -82,-160 -80.5,-160 -79,-160 -77.5,-160 -76,-160 -74.5,-160 -73,-160 -71.5,-160 -70))"] | ["POINT(-140 -77.5)"] | false | false |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula
|
0838996 |
2014-01-01 | Hollibaugh, James T. |
Ammonia Oxidation Versus Heterotrophy in Crenarchaeota Populations from Marine Environments West of the Antarctic Peninsula |
Ammonia oxidation is the first step in the conversion of regenerated nitrogen to dinitrogen gas, a 3-step pathway mediated by 3 distinct guilds of bacteria and archaea. Ammonia oxidation and the overall process of nitrification-denitrification have received relatively little attention in polar oceans where the effects of climate change on biogeochemical rates are likely to be pronounced. Previous work on Ammonia Oxidizing Archaea (AOA) in the Palmer LTER study area West of the Antarctic Peninsula (WAP), has suggested strong vertical segregation of crenarchaeote metabolism, with the 'winter water' (WW, ~50-100 m depth range) dominated by non-AOA crenarchaeotes, while Crenarchaeota populations in the 'circumpolar deep water' (CDW), which lies immediately below the winter water (150-3500 m), are dominated by AOA. Analysis of a limited number of samples from the Arctic Ocean did not reveal a comparable vertical segregation of AOA, and suggested that AOA and Crenarchaeota abundance is much lower there than in the Antarctic. These findings led to 3 hypotheses that will be tested in this project: 1) the apparent low abundance of Crenarchaeota and AOA in Arctic Ocean samples may be due to spatial or temporal variability in populations; 2) the WW population of Crenarchaeota in the WAP is dominated by a heterotroph; 3) the WW population of Crenarchaeota in the WAP 'grows in' during spring and summer after this water mass forms. The study will contribute substantially to understanding an important aspect of the nitrogen cycle in the Palmer LTER (Long Term Ecological Research) study area by providing insights into the ecology and physiology of AOA. The natural segregation of crenarchaeote phenotypes in waters of the WAP, coupled with metagenomic studies in progress in the same area by others (A. Murray, H. Ducklow), offers the possibility of major breakthroughs in understanding of the metabolic capabilities of these organisms. This knowledge is needed to model how water column nitrification will respond to changes in polar ecosystems accompanying global climate change. The Principal Investigator will participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of our findings available for posting to their project web site and participating in outreach (for example, Schoolyard LTER). The research also will involve undergraduates (including the field work if possible) and will support high school interns in the P.I.'s laboratory over the summer. | ["POLYGON((-79 -63,-77.5 -63,-76 -63,-74.5 -63,-73 -63,-71.5 -63,-70 -63,-68.5 -63,-67 -63,-65.5 -63,-64 -63,-64 -63.8,-64 -64.6,-64 -65.4,-64 -66.2,-64 -67,-64 -67.8,-64 -68.6,-64 -69.4,-64 -70.2,-64 -71,-65.5 -71,-67 -71,-68.5 -71,-70 -71,-71.5 -71,-73 -71,-74.5 -71,-76 -71,-77.5 -71,-79 -71,-79 -70.2,-79 -69.4,-79 -68.6,-79 -67.8,-79 -67,-79 -66.2,-79 -65.4,-79 -64.6,-79 -63.8,-79 -63))"] | ["POINT(-71.5 -67)"] | false | false |
Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Marine Ecosystems
|
0732983 |
2014-01-01 | Vernet, Maria |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach - Marine Ecosystems. A profound transformation in ecosystem structure and function is occurring in coastal waters of the western Weddell Sea, with the collapse of the Larsen B ice shelf. This transformation appears to be yielding a redistribution of energy flow between chemoautotrophic and photosynthetic production, and to be causing the rapid demise of the extraordinary seep ecosystem discovered beneath the ice shelf. This event provides an ideal opportunity to examine fundamental aspects of ecosystem transition associated with climate change. We propose to test the following hypotheses to elucidate the transformations occurring in marine ecosystems as a consequence of the Larsen B collapse: (1) The biogeographic isolation and sub-ice shelf setting of the Larsen B seep has led to novel habitat characteristics, chemoautotrophically dependent taxa and functional adaptations. (2) Benthic communities beneath the former Larsen B ice shelf are fundamentally different from assemblages at similar depths in the Weddell sea-ice zone, and resemble oligotrophic deep-sea communities. Larsen B assemblages are undergoing rapid change. (3) The previously dark, oligotrophic waters of the Larsen B embayment now support a thriving phototrophic community, with production rates and phytoplankton composition similar to other productive areas of the Weddell Sea. To document rapid changes occurring in the Larsen B ecosystem, we will use a remotely operated vehicle, shipboard samplers, and moored sediment traps. We will characterize microbial, macrofaunal and megafaunal components of the seep community; evaluate patterns of surface productivity, export flux, and benthic faunal composition in areas previously covered by the ice shelf, and compare these areas to the open sea-ice zone. These changes will be placed within the geological, glaciological and climatological context that led to ice-shelf retreat, through companion research projects funded in concert with this effort. Together these projects will help predict the likely consequences of ice-shelf collapse to marine ecosystems in other regions of Antarctica vulnerable to climate change. The research features international collaborators from Argentina, Belgium, Canada, Germany, Spain and the United Kingdom. The broader impacts include participation of a science writer; broadcast of science segments by members of the Jim Lehrer News Hour (Public Broadcasting System); material for summer courses in environmental change; mentoring of graduate students and postdoctoral fellows; and showcasing scientific activities and findings to students and public through podcasts. | ["POLYGON((-66 -62,-65.3 -62,-64.6 -62,-63.9 -62,-63.2 -62,-62.5 -62,-61.8 -62,-61.1 -62,-60.4 -62,-59.7 -62,-59 -62,-59 -62.8,-59 -63.6,-59 -64.4,-59 -65.2,-59 -66,-59 -66.8,-59 -67.6,-59 -68.4,-59 -69.2,-59 -70,-59.7 -70,-60.4 -70,-61.1 -70,-61.8 -70,-62.5 -70,-63.2 -70,-63.9 -70,-64.6 -70,-65.3 -70,-66 -70,-66 -69.2,-66 -68.4,-66 -67.6,-66 -66.8,-66 -66,-66 -65.2,-66 -64.4,-66 -63.6,-66 -62.8,-66 -62))"] | ["POINT(-62.5 -66)"] | false | false |
Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica
|
0732804 |
2014-01-01 | McPhee, Miles G. |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the 'Multidisciplinary Study of the Amundsen Sea Embayment' proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded 'Polar Palooza' education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | ["POINT(166.25 -77.42)"] | ["POINT(166.25 -77.42)"] | false | false |
Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica
|
0636731 |
2014-01-01 | Bender, Michael |
Collaborative Research: Dating and Paleoenvironmental Studies on Ancient Ice in the Dry Valleys, Antarctica |
This project studies ancient ice buried in the Dry Valleys of Antarctica. The ice, which may approach ten million years in age, will be dated using argon and uranium radioisotope techniques. High-risk work, if successful it will offer the first and perhaps only samples of the Earth's atmosphere from millions of years in the past. These samples could offer critically important tests of paleoclimate records and proxies, as well as a glimpse into the characteristics of a past world much like the predicted future, warmer Earth. The broader impacts are graduate student education, and potentially contributing to society's understanding of global climate change and sea level rise. | ["POLYGON((-180 -72.6,-176.887 -72.6,-173.774 -72.6,-170.661 -72.6,-167.548 -72.6,-164.435 -72.6,-161.322 -72.6,-158.209 -72.6,-155.096 -72.6,-151.983 -72.6,-148.87 -72.6,-148.87 -73.533,-148.87 -74.466,-148.87 -75.399,-148.87 -76.332,-148.87 -77.265,-148.87 -78.198,-148.87 -79.131,-148.87 -80.064,-148.87 -80.997,-148.87 -81.93,-151.983 -81.93,-155.096 -81.93,-158.209 -81.93,-161.322 -81.93,-164.435 -81.93,-167.548 -81.93,-170.661 -81.93,-173.774 -81.93,-176.887 -81.93,180 -81.93,174.335 -81.93,168.67 -81.93,163.005 -81.93,157.34 -81.93,151.675 -81.93,146.01 -81.93,140.345 -81.93,134.68 -81.93,129.015 -81.93,123.35 -81.93,123.35 -80.997,123.35 -80.064,123.35 -79.131,123.35 -78.198,123.35 -77.265,123.35 -76.332,123.35 -75.399,123.35 -74.466,123.35 -73.533,123.35 -72.6,129.015 -72.6,134.68 -72.6,140.345 -72.6,146.01 -72.6,151.675 -72.6,157.34 -72.6,163.005 -72.6,168.67 -72.6,174.335 -72.6,-180 -72.6))"] | ["POINT(167.24 -77.265)"] | false | false |
The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica
|
0838970 |
2014-01-01 | Foreman, Christine |
Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica |
Dissolved organic matter (DOM) comprises a significant pool of Earth's organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls' schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer. | ["POINT(161.667 -77.117)"] | ["POINT(161.667 -77.117)"] | false | false |
Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica
|
0944686 |
2014-01-01 | Kieber, David John |
Collaborative Research: Ecophysiology of DMSP and related compounds and their contributions to carbon and sulfur dynamics in Phaeocystis antarctica |
Spectacular blooms of Phaeocystis antarctica in the Ross Sea, Antarctica are the source of some of the world's highest concentrations of dimethylsulfoniopropionate (DMSP) and its volatile degradation product, dimethylsulfide (DMS). The flux of DMS from the oceans to the atmosphere in this region and its subsequent gas phase oxidation generates aerosols that have a strong influence on cloud properties and possibly climate. In the oceans, DMS and DMSP are quantitatively significant components of the carbon, sulfur, and energy flows in marine food webs, especially in the Ross Sea. Despite its central role in carbon and sulfur biogeochemistry in the Ross Sea, surprisingly little is known about the physiological functions of DMSP in P. antarctica. The research will isolate and characterize DMSP lyases from P. antarctica, with the goal of obtaining amino acid and gene sequence information on these important enzymes. The physiological studies will focus on the effects of varying intensities of photosynthetically active radiation, with and without ultraviolet radiation as these are factors that we have found to be important controls on DMSP and DMS dynamics. The research also will examine the effects of prolonged darkness on the dynamics of DMSP and related compounds in P. antarctica, as survival of this species during the dark Antarctic winter and at sub-euphotic depths appears to be an important part of the Phaeocystis' ecology. A unique aspect of this work is the focus on measurements of intracellular MSA, which if detected, would provide strong evidence for in vivo radical scavenging functions for methyl sulfur compounds. The study will advance understanding of what controls DMSP cycling and ultimately DMS emissions from the Ross Sea and also provide information on what makes P. antarctica so successful in this extreme environment. The research will directly benefit and build on several interrelated ocean-atmosphere programs including the International Surface Ocean Lower Atmosphere Study (SOLAS) program. The PIs will participate in several activities involving K-12 education, High School teacher training, public education and podcasting through the auspices of the Dauphin Island Sea Lab Discovery Hall program and SUNY ESF. Two graduate students will be employed full time, and six undergraduates (2 each summer) will be trained as part of this project. | ["POLYGON((-160 -68,-159 -68,-158 -68,-157 -68,-156 -68,-155 -68,-154 -68,-153 -68,-152 -68,-151 -68,-150 -68,-150 -69,-150 -70,-150 -71,-150 -72,-150 -73,-150 -74,-150 -75,-150 -76,-150 -77,-150 -78,-151 -78,-152 -78,-153 -78,-154 -78,-155 -78,-156 -78,-157 -78,-158 -78,-159 -78,-160 -78,-160 -77,-160 -76,-160 -75,-160 -74,-160 -73,-160 -72,-160 -71,-160 -70,-160 -69,-160 -68))"] | ["POINT(-155 -73)"] | false | false |
Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica
|
9615420 |
2013-02-14 | Engelhardt, Hermann |
Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics |
This data set is a collection of video data of basal ice taken in a borehole on the Kamb Ice Stream in West Antarctica. Ice streams are an expression of the inherent instability of the West Antarctic Ice Sheet, and their behavior is a key control on the overall ice-sheet mass balance. Understanding the response of the ice sheet in a warming climate requires a thorough understanding of the internal dynamics of ice streams, in addition to the relevant ice-atmosphere and ice-ocean interactions in the region. The basal environment of the ice streams and of many glaciers is a key scientific interest, including conditions, mainly basal sliding, that lead to fast flow of the ice. The purpose of this data set is to present a review of the full range of original video recordings from the basal ice of the Kamb Ice Stream. Direct observations at the ice-stream bed are a crucial complement to modeling efforts predicting future scenarios in a warming climate. | ["POINT(-136.404633 -82.39955)"] | ["POINT(-136.404633 -82.39955)"] | false | false |
Alternative Nutritional Strategies in Antarctic Protists
|
0838955 |
2013-01-01 | Gast, Rebecca |
Collaborative Research: Alternative Nutritional Strategies in Antarctic Protists |
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Most organisms meet their carbon and energy needs using photosynthesis (phototrophy) or ingestion/assimilation of organic substances (heterotrophy). However, a nutritional strategy that combines phototrophy and heterotrophy - mixotrophy - is geographically and taxonomically widespread in aquatic systems. While the presence of mixotrophs in the Southern Ocean is known only recently, preliminary evidence indicates a significant role in Southern Ocean food webs. Recent work on Southern Ocean dinoflagellate, Kleptodinium, suggests that it sequesters functional chloroplasts of the bloom-forming haptophyte, Phaeocystis antarctica. This dinoflagellate is abundant in the Ross Sea, has been reported elsewhere in the Southern Ocean, and may have a circumpolar distribution. By combining nutritional modes. mixotrophy may offer competitive advantages over pure autotrophs and heterotrophs. The goals of this project are to understand the importance of alternative nutritional strategies for Antarctic species that combine phototrophic and phagotrophic processes in the same organism. The research will combine field investigations of plankton and ice communities in the Southern Ocean with laboratory experiments on Kleptodinium and recently identified mixotrophs from our Antarctic culture collections. The research will address: 1) the relative contributions of phototrophy and phagotrophy in Antarctic mixotrophs; 2) the nature of the relationship between Kleptodinium and its kleptoplastids; 3) the distributions and abundances of mixotrophs and Kleptodinium in the Southern Ocean during austral spring/summer; and 4) the impacts of mixotrophs and Kleptodinium on prey populations, the factors influencing these behaviors and the physiological conditions of these groups in their natural environment. The project will contribute to the maintenance of a culture collection of heterotrophic, phototrophic and mixotrophic Antarctic protists that are available to the scientific community, and it will train graduate and undergraduate students at Temple University. Research findings and activities will be summarized for non-scientific audiences through the PIs' websites and through other public forums, and will involve middle school teachers via collaboration with COSEE-New England. | ["POLYGON((71.504166 -76.159164,71.5142214 -76.159164,71.5242768 -76.159164,71.5343322 -76.159164,71.5443876 -76.159164,71.554443 -76.159164,71.5644984 -76.159164,71.5745538 -76.159164,71.5846092 -76.159164,71.5946646 -76.159164,71.60472 -76.159164,71.60472 -76.2018032,71.60472 -76.2444424,71.60472 -76.2870816,71.60472 -76.3297208,71.60472 -76.37236,71.60472 -76.4149992,71.60472 -76.4576384,71.60472 -76.5002776,71.60472 -76.5429168,71.60472 -76.585556,71.5946646 -76.585556,71.5846092 -76.585556,71.5745538 -76.585556,71.5644984 -76.585556,71.554443 -76.585556,71.5443876 -76.585556,71.5343322 -76.585556,71.5242768 -76.585556,71.5142214 -76.585556,71.504166 -76.585556,71.504166 -76.5429168,71.504166 -76.5002776,71.504166 -76.4576384,71.504166 -76.4149992,71.504166 -76.37236,71.504166 -76.3297208,71.504166 -76.2870816,71.504166 -76.2444424,71.504166 -76.2018032,71.504166 -76.159164))"] | ["POINT(71.554443 -76.37236)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838892 |
2013-01-01 | Burns, Jennifer |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys
|
0838850 |
2013-01-01 | Gooseff, Michael N. |
Collaborative Research: The Role of Snow Patches on the Spatial Distribution of Soil Microbial Communities and Biogeochemical Cycling in the Antarctic Dry Valleys |
Two models have been proposed to describe controls over microbial biogeography. One model proposes that microbes are ubiquitously distributed across the global environment, and that environmental conditions select for taxa physiologically adapted to local physical conditions. An alternative model predicts that dispersal is the important limitation to the distribution of microorganisms and that spatial heterogeneity of microbial communities is a result of both dispersal and local environmental limitations. According to both models, spatial heterogeneity of microbial communities may be especially pronounced in extreme ecosystems where the environmental selection for organisms with suitable physiology is most strongly manifest. We propose that Antarctic terrestrial environments are ideal places to examine microbial biogeography for 3 reasons: 1) the pristine nature and remoteness of Antarctica minimizes the prevalence of exotic species dispersed through human vectors; 2) the extreme conditions of Antarctic environments provide a strong environmental filter which limits the establishment of non-indigenous taxa; and 3) extreme heterogeneity in the terrestrial environment provides natural gradients of soil conditions (temperature, water and nutrient availability). In the proposed research we will investigate the influence of snow on the composition and spatial distribution of soil microbial communities and linked biogeochemical cycling in the McMurdo Dry Valleys. We will conduct fieldwork at the landscape scale (repeated remote sensing to characterize snow distribution), at the valley and patch scales (quantify snow patch ablation, microbial communities and biogeochemical cycling in subnivian soils). We hypothesize that snow patches play an important role in structuring the spatial distribution of soil microbial communities and their associated ecosystem functioning because of the physical and hydrological influences that snow patches have on the soil environment. The research will contribute to greater public awareness of the importance of polar research to fundamental questions of biology, ecology and hydrology through direct linkages with International Antarctic Institute public outreach activities, including dissemination of web-based learning units on environmental science and microbiology, targeted as resources for secondary and post-secondary educators. Three graduate students, one postdoctoral scholar and multiple undergraduates will participate in the research activities. | ["POLYGON((-163.3 -77.62,-163.202 -77.62,-163.104 -77.62,-163.006 -77.62,-162.908 -77.62,-162.81 -77.62,-162.712 -77.62,-162.614 -77.62,-162.516 -77.62,-162.418 -77.62,-162.32 -77.62,-162.32 -77.631,-162.32 -77.642,-162.32 -77.653,-162.32 -77.664,-162.32 -77.675,-162.32 -77.686,-162.32 -77.697,-162.32 -77.708,-162.32 -77.719,-162.32 -77.73,-162.418 -77.73,-162.516 -77.73,-162.614 -77.73,-162.712 -77.73,-162.81 -77.73,-162.908 -77.73,-163.006 -77.73,-163.104 -77.73,-163.202 -77.73,-163.3 -77.73,-163.3 -77.719,-163.3 -77.708,-163.3 -77.697,-163.3 -77.686,-163.3 -77.675,-163.3 -77.664,-163.3 -77.653,-163.3 -77.642,-163.3 -77.631,-163.3 -77.62))"] | ["POINT(-162.81 -77.675)"] | false | false |
Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica
|
0739681 0739698 |
2013-01-01 | Murray, Alison |
Collaborative Research: Geochemistry and Microbiology of the Extreme Aquatic Environment in Lake Vida, East Antarctica |
Lake Vida is the largest lake of the McMurdo Dry Valleys, with an approximately 20 m ice cover overlaying a brine of unknown depth with at least 7 times seawater salinity and temperatures below -10 degrees C year-round. Samples of brine collected from ice above the main water body contain 1) the highest nitrous oxide levels of any natural water body on Earth, 2) unusual geochemistry including anomalously high ammonia and iron concentrations, 3) high microbial counts with an unusual proportion (99%) of ultramicrobacteria. The microbial community is unique even compared to other Dry Valley Lakes. The research proposes to enter, for the first time the main brine body below the thick ice of Lake Vida and perform in situ measurements, collect samples of the brine column, and collect sediment cores from the lake bottom for detailed geochemical and microbiological analyses. The results will allow the characterization of present and past life in the lake, assessment of modern and past sedimentary processes, and determination of the lake's history. The research will be conducted by a multidisciplinary team that will uncover the biogeochemical processes associated with a non-photosynthetic microbial community isolated for a significant period of time. This research will address diversity, adaptive mechanisms and evolutionary processes in the context of the physical evolution of the environment of Lake Vida. Results will be widely disseminated through publications, presentations at national and international meetings, through the Subglacial Antarctic Lake Exploration (SALE) web site and the McMurdo LTER web site. The research will support three graduate students and three undergraduate research assistants. The results will be incorporated into a new undergraduate biogeosciences course at the University of Illinois at Chicago which has an extremely diverse student body, dominated by minorities. | ["POINT(161.931 -77.3885)"] | ["POINT(161.931 -77.3885)"] | false | false |
Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams
|
0739648 |
2013-01-01 | Cary, S. Craig |
Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams |
The glacial streams of the McMurdo Dry Valleys have extensive cyanobacterial mats that are a probable source of fixed C and N to the Valleys. The research will examine the interplay between the microbial mats in the ephemeral glacial streams and the microbiota of the hyporheic soils (wetted soil zone) underlying and adjacent to those mats. It is hypothesized that the mats are important sources of organic carbon and fixed nitrogen for the soil communities of the hyporheic zone, and release dissolved organic carbon (DOC) and nitrogen (DON) that serves the entire Dry Valley ecosystem. Field efforts will entail both observational and experimental components. Direct comparisons will be made between the mats and microbial populations underlying naturally rehydrated and desiccated mat areas, and between mat areas in the melt streams of the Adams and Miers Glaciers in Miers Valley. Both physiological and phylogenetic indices of the soil microbiota will be examined. Observations will include estimates of rates of mat carbon and nitrogen fixation, soil respiration and leucine and thymidine uptake (as measures of protein & DNA synthesis, respectively) by soil bacteria, bacterial densities and their molecular ecology. Experimental manipulations will include experimental re-wetting of soils and observations of the time course of response of the microbial community. The research will integrate modern molecular genetic approaches (ARISA-DNA fingerprinting and ultra deep 16S rDNA microbial phylogenetic analysis) with geochemistry to study the diversity, ecology, and function of microbial communities that thrive in these extreme environments. The broader impacts of the project include research and educational opportunities for graduate students and a postdoctoral associate. The P.I.s will involve undergraduates as work-study students and in REU programs, and will participate in educational and outreach programs. | ["POINT(163 -77.5)"] | ["POINT(163 -77.5)"] | false | false |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes.
|
0944743 |
2013-01-01 | Buckley, Bradley |
The Cellular Stress Response in Cold-adapted Organisms: Building Novel Mechanistic Links between Heat Stress, Cell Cycle Arrest and Apoptosis in Antarctic Fishes. |
The research will investigate a novel mechanism by which cold-adapted fishes of the Southern Ocean sense and respond to elevated temperatures. It is hypothesized that sub-lethal heat stress may induce cell cycle arrest and/or programmed cell death through apoptosis. The study will use genome-enabled technologies to examine the environmental control over gene expression in Antarctic species and will build direct mechanistic links between the expression of a specific signaling pathway gene and heat-induced changes in cells. Prior results support the hypothesis that heat stress results in cell cycle arrest and, in some cases, programmed cell death in Antarctic fishes. If so, this represents a novel, modified version of the well-conserved cellular stress response found in essentially all other species and suggests that warming ocean temperatures may have profound cellular and physiological impacts on these extremely stenothermal species. The P.I. conducts outreach activities with the Oregon Museum of Science and Industry, will be involved in developing a science curriculum for the Native American Youth and Family Center (NAYA) Early College Academy in Portland, and supports the educational and professional development of both undergraduate and graduate students at Portland State University. | ["POINT(166.66667 -77.83333)"] | ["POINT(166.66667 -77.83333)"] | false | false |
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle
|
1019838 |
2013-01-01 | Wendt, Dean; Moline, Mark |
Real-Time Characterization of Adelie Penguin Foraging Environment Using an Autonomous Underwater Vehicle |
The Antarctic Peninsula is among the most rapidly warming regions on earth. Increased heat from the Antarctic Circumpolar Current has elevated the temperature of the 300 m of shelf water below the permanent pycnocline by 0.7 degrees C. This trend has displaced the once dominant cold, dry continental Antarctic climate, and is causing multi-level responses in the marine ecosystem. One striking example of the ecosystem response to warming has been the local declines in ice-dependent Adélie penguins. The changes in these apex predators are thought to be driven by alterations in phytoplankton and zooplankton community composition, and the foraging limitations and diet differences between these species. One of the most elusive questions facing researchers interested in the foraging ecology of the Adélie penguin, namely, what are the biophysical properties that characterize the three dimensional foraging space of this top predator? The research will combine the real-time site and diving information from the Adélie penguin satellite tags with the full characterization of the oceanography and the penguins prey field using an autonomous underwater vehicle (AUV). While some of these changes have been documented over large spatial scales of the WAP, it is now thought that the causal mechanisms that favor of one life history strategy over another may actually operate over much smaller scales than previously thought, specifically on the scale of local breeding sites and over-wintering areas. Characterization of prey fields on these local scales has yet to be done and one that the AUV is ideally suited. The results will have a direct tie to the climate induced changes that are occurring in the West Antarctic Peninsula. This study will also highlight a new approach to linking an autonomous platform to bird behavior that could be expanded to include the other two species of penguins and examine the seasonal differences in their foraging behavior and prey selection. From a vehicle perspective, this effort will inform the AUV user community of new sensor suites and/or data processing approaches that are required to better evaluate foraging habitat. The project also will help transition AUV platforms into routine investigative tools for this region, which is chronically under sampled and will remain difficult to access | [] | [] | false | false |
Thermoregulation in Free-Living Antarctic Seals: The Missing Link in Effective Ecological Modeling
|
1043779 |
2013-01-01 | Mellish, Jo-Ann |
Collaborative Research: THERMOREGULATION IN FREE-LIVING ANTARCTIC SEALS: THE MISSING LINK IN EFFECTIVE ECOLOGICAL MODELING |
Despite being an essential physiological component of homeotherm life in polar regions, little is known about the energetic requirements for thermoregulation in either air or water for high- latitude seals. In a joint field and modeling study, the principal investigators will quantify these costs for the Weddell seal under both ambient air and water conditions. The field research will include innovative heat flux, digestive and locomotor cost telemetry on 40 free-ranging seals combined with assessments of animal health (morphometrics, hematology and clinical chemistry panels), quantity (ultrasound) and quality (tissue biopsy) of blubber insulation, and determination of surface skin temperature patterns (infrared thermography). Field-collected data will be combined with an established individual based computational energetics model to define cost-added thresholds in body condition for different body masses. This study will fill a major knowledge gap by providing data essential to modeling all aspects of pinniped life history, in particular for ice seals. Such parameterization of energetic cost components will be essential for the accurate modeling of responses by pinnipeds to environmental variance, including direct and indirect effects driven by climate change. The study also will provide extensive opportunities in polar field work, animal telemetry, biochemical analyses and computational modeling for up to three undergraduate students and one post-doctoral researcher. Integrated education and outreach efforts will educate the public (K-12 through adult) on the importance of quantifying energetic costs of thermoregulation for marine mammals and the need to understand responses of species to environmental variance. This effort will include a custom-built, interactive hands-on mobile exhibit, and development of content for an Ocean Today kiosk. | ["POLYGON((165.83333 -77.51528,165.923331 -77.51528,166.013332 -77.51528,166.103333 -77.51528,166.193334 -77.51528,166.283335 -77.51528,166.373336 -77.51528,166.463337 -77.51528,166.553338 -77.51528,166.643339 -77.51528,166.73334 -77.51528,166.73334 -77.55153,166.73334 -77.58778,166.73334 -77.62403,166.73334 -77.66028,166.73334 -77.69653,166.73334 -77.73278,166.73334 -77.76903,166.73334 -77.80528,166.73334 -77.84153,166.73334 -77.87778,166.643339 -77.87778,166.553338 -77.87778,166.463337 -77.87778,166.373336 -77.87778,166.283335 -77.87778,166.193334 -77.87778,166.103333 -77.87778,166.013332 -77.87778,165.923331 -77.87778,165.83333 -77.87778,165.83333 -77.84153,165.83333 -77.80528,165.83333 -77.76903,165.83333 -77.73278,165.83333 -77.69653,165.83333 -77.66028,165.83333 -77.62403,165.83333 -77.58778,165.83333 -77.55153,165.83333 -77.51528))"] | ["POINT(166.283335 -77.69653)"] | false | false |
Abrupt Environmental Change in the Larsen Ice Shelf System (LARISSA) - Cryosphere and Oceans
|
0732655 |
2013-01-01 | Thompson, Lonnie G.; Mosley-Thompson, Ellen |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
Like no other region on Earth, the northern Antarctic Peninsula represents a spectacular natural laboratory of climate change and provides the opportunity to study the record of past climate and ecological shifts alongside the present-day changes in one of the most rapidly warming regions on Earth. This award supported the cryospheric and oceanographic components of an integrated multi-disciplinary program to address these rapid and fundamental changes now taking place in Antarctic Peninsula (AP). By making use of a marine research platform (the RV NB Palmer and on-board helicopters) and additional logistical support from the Argentine Antarctic program, the project brought together glaciologists, oceanographers, marine geologists and biologists who have worked collaboratively to address fundamental interdisciplinary questions regarding climate change. | ["POLYGON((-63 -60,-62.6 -60,-62.2 -60,-61.8 -60,-61.4 -60,-61 -60,-60.6 -60,-60.2 -60,-59.8 -60,-59.4 -60,-59 -60,-59 -60.5,-59 -61,-59 -61.5,-59 -62,-59 -62.5,-59 -63,-59 -63.5,-59 -64,-59 -64.5,-59 -65,-59.4 -65,-59.8 -65,-60.2 -65,-60.6 -65,-61 -65,-61.4 -65,-61.8 -65,-62.2 -65,-62.6 -65,-63 -65,-63 -64.5,-63 -64,-63 -63.5,-63 -63,-63 -62.5,-63 -62,-63 -61.5,-63 -61,-63 -60.5,-63 -60))"] | ["POINT(-61 -62.5)"] | false | false |
Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements
|
0838914 |
2012-01-01 | Wannamaker, Philip |
Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements |
The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth's natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base. | ["POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))"] | ["POINT(160.482115 -83.239175)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838773 |
2011-01-01 | McClintock, James; Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"] | ["POINT(-66 -65)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838776 |
2011-01-01 | Baker, Bill |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning
|
0739780 |
2011-01-01 | Taylor, Kendrick C. |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning |
This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. | ["POINT(-112.117 -79.666)"] | ["POINT(-112.117 -79.666)"] | false | false |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter
|
0632389 |
2011-01-01 | Grzymski, Joseph; Murray, Alison |
IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter |
The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey's ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases. | ["POLYGON((-65.3827 -64.4213,-65.13333 -64.4213,-64.88396 -64.4213,-64.63459 -64.4213,-64.38522 -64.4213,-64.13585 -64.4213,-63.88648 -64.4213,-63.63711 -64.4213,-63.38774 -64.4213,-63.13837 -64.4213,-62.889 -64.4213,-62.889 -64.47176,-62.889 -64.52222,-62.889 -64.57268,-62.889 -64.62314,-62.889 -64.6736,-62.889 -64.72406,-62.889 -64.77452,-62.889 -64.82498,-62.889 -64.87544,-62.889 -64.9259,-63.13837 -64.9259,-63.38774 -64.9259,-63.63711 -64.9259,-63.88648 -64.9259,-64.13585 -64.9259,-64.38522 -64.9259,-64.63459 -64.9259,-64.88396 -64.9259,-65.13333 -64.9259,-65.3827 -64.9259,-65.3827 -64.87544,-65.3827 -64.82498,-65.3827 -64.77452,-65.3827 -64.72406,-65.3827 -64.6736,-65.3827 -64.62314,-65.3827 -64.57268,-65.3827 -64.52222,-65.3827 -64.47176,-65.3827 -64.4213))"] | ["POINT(-64.13585 -64.6736)"] | false | false |
Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636319 |
2011-01-01 | Shaw, Tim; Twining, Benjamin |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"] | ["POINT(-47.29195 -60.14805)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836061 |
2011-01-01 | Dennett, Mark |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage
|
0944474 |
2011-01-01 | Robinson, Laura |
Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage |
Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award "Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF's Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean's influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media. | ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"] | ["POINT(-52.75 -58)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636543 |
2010-01-01 | Murray, Alison |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"] | ["POINT(-47.277705 -60.21953)"] | false | false |
Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea
|
0538479 |
2010-01-01 | Seibel, Brad |
Collaborative Research: Impacts of Elevated pCO2 on a Dominant Aragonitic Pteropod (Thecosomata) and its Specialist Predator (Gymnosomata) in the Ross Sea |
Rising atmospheric carbon dioxide concentrations have resulted in greater oceanic uptake of anthropogenic carbon dioxide. Elevated partial pressure of carbon dioxide can impact marine organisms both via decreased carbonate saturation that affects calcification rates and via disturbance to acid-base (metabolic) physiology. Pteropod molluscs (Thecosomata) form shells made of aragonite, a type of calcium carbonate that is highly soluble, suggesting that these organisms may be particularly sensitive to increasing carbon dioxide and reduced carbonate ion concentration. Thecosome pteropods, which dominate the calcium carbonate export south of the Antarctic Polar Front, will be the first major group of marine calcifying organisms to experience carbonate undersaturation within parts of their present-day geographical ranges as a result of anthropogenic carbon dioxide. An unusual, co-evolved relationship between thecosomes and their specialized gymnosome predators provides a unique backdrop against which to assess the physiological and ecological importance of elevated partial pressure of carbon dioxide. Pteropods are functionally important components of the Antarctic ecosystem with potential to influence phytoplankton stocks, carbon export, and dimethyl sulfide levels that, in turn, influence global climate through ocean-atmosphere feedback loops. The research will quantify the impact of elevated carbon dioxide on a dominant aragonitic pteropod, Limacina helicina, and its specialist predator, the gymnosome Clione antarctica, in the Ross Sea through laboratory experimentation. Results will be disseminated broadly to enhance scientific understanding in this field. The project involves collaboration between researchers at a predominantly undergraduate institution with a significant enrollment of students that are typically underrepresented in the research environment (California State University San Marcos - CSUSM) and at a Ph.D.-granting institution (University of Rhode Island - URI). The program will promote education and learning through the joint education of undergraduate students and graduate students at CSUSM and URI as part of a research team, as well as through the teaching activities of the principal investigators. Dr. Keating, CSUSM professor of science education, will participate in the McMurdo fieldwork and lead the outreach opportunities for the project. | ["POLYGON((166 -77,166.1 -77,166.2 -77,166.3 -77,166.4 -77,166.5 -77,166.6 -77,166.7 -77,166.8 -77,166.9 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.9 -78,166.8 -78,166.7 -78,166.6 -78,166.5 -78,166.4 -78,166.3 -78,166.2 -78,166.1 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))"] | ["POINT(166.5 -77.5)"] | false | false |
PENGUIn - A High-Latitude Window to Geospace Dynamics
|
0840398 |
2010-01-01 | Frey, Harald; Mende, Stephen |
Collaborative Research: PENGUIn - A High-Latitude Window to Geospace Dynamics |
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The PENGUIn team will continue investigating in depth a multi-scale electrodynamic system that comprises space environment of Planet Earth (geospace). Several science topics important to the space physics and aeronomy are outlines in this proposal that can be broadly categorized as the following objectives: (a) to study reconnection and waves in the southern cusp region; (b) to investigate unraveling global geomagnetic substorm signatures; (c) to understand the dayside wave-particle interactions; and (d) to observe and investigate various polar cap phenomena and neutral atmosphere dynamics. Cutting-edge science on these critical topics will be accomplished by acquiring multi-instrument data from a distributed network of autonomous observatories in Antarctica, built and deployed with the matured technological achievements. In the last several years, advances in power supply systems and Iridium data transmission for the Automatic Geophysical Observatories (AGOs) have proven effective for providing real-time geophysical data reliably. Five AGOs that span from the auroral zone to deep in the polar cap will be maintained providing a wealth of data for science analyses. Additional instrumentation as GPS-based receivers measuring total electron content in the ionosphere will be deployed at AGOs. These scientific investigations will be enriched by complementary measurements from manned stations in the Antarctic, from magnetically conjugate regions in the Arctic, and from a fleet of magnetospheric and ionospheric spacecraft. Continued reliance on students provides a broader impact to this proposed research and firmly grounds this effort in its educational mission. | ["POLYGON((-180 -75,-144 -75,-108 -75,-72 -75,-36 -75,0 -75,36 -75,72 -75,108 -75,144 -75,180 -75,180 -76.5,180 -78,180 -79.5,180 -81,180 -82.5,180 -84,180 -85.5,180 -87,180 -88.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88.5,-180 -87,-180 -85.5,-180 -84,-180 -82.5,-180 -81,-180 -79.5,-180 -78,-180 -76.5,-180 -75))"] | ["POINT(0 -89.999)"] | false | false |
Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change
|
0439906 |
2010-01-01 | Koch, Paul |
Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change |
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses. Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/ Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research | ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"] | ["POINT(165 -75)"] | false | false |
Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea
|
0338097 |
2010-01-01 | DiTullio, Giacomo |
Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea |
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"] | ["POINT(-167.485 -65.435)"] | false | false |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection
|
0440687 |
2010-01-01 | Klinck, John M.; Crocker, Daniel; Goebel, Michael; Hofmann, Eileen; Costa, Daniel |
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection |
As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute. | ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"] | ["POINT(-59 -62)"] | false | false |
SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf
|
0840375 |
2010-01-01 | Goebel, Michael; Costa, Daniel |
SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf |
Long-lived animals such as elephant seals may endure variation in food resources over large spatial and temporal scales. Understanding how they respond to these fluctuations requires knowledge of how their foraging behavior and habitat utilization varies over time. Advances in satellite-linked data logging have made it possible to correlate the foraging behavior of marine mammals with their physical and chemical environment and provide insight into the mechanisms controlling at-sea movements, foraging behavior and, ultimately, reproductive success of these pelagic predators. In addition, these technological advances enable marine mammals to be used as highly cost-effective platforms from which detailed oceanographic data can be collected on a scale not possible with conventional methods. The project will extend the four-year-time-series collected on the foraging behavior and habitat utilization of southern elephant seal (Mirounga leonina) foraging in the Western Antarctic Peninsula. It also will extend the oceanographic time-series of CTD profiles collected by the elephant seals foraging from the Livingston Island rookery. Seals have been collecting CTD profiles in the vicinity of the Wilkins Ice Shelf (WIS) since 2005. We thus have a 4 year data set that preceding and during the breakup of the WIS that occurred during March 2008. Deployment of additional tags on seals will provide a unique opportunity to collect oceanographic data after the ice shelf has collapsed. | ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"] | ["POINT(-59 -62)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836112 |
2010-01-01 | Smith, Walker |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment
|
0649609 |
2010-01-01 | Horning, Markus |
Collaborative Research: Aging in Weddell Seals: Proximate Mechanisms of Age-Related Changes in Adaptations to Breath-Hold Hunting in an Extreme Environment |
The primary objectives of this research are to investigate the proximate effects of aging on diving capability in the Weddell Seal and to describe mechanisms by which aging may influence foraging ecology, through physiology and behavior. This model pinniped species has been the focus of three decades of research in McMurdo Sound, Antarctica. Compared to the knowledge of pinniped diving physiology and ecology during early development and young adulthood, little is known about individuals nearing the upper limit of their normal reproductive age range. Evolutionary aging theories predict that elderly diving seals should exhibit senescence. This should be exacerbated by surges in the generation of oxygen free radicals via hypoxia-reoxygenation during breath-hold diving and hunting, which are implicated in age-related damage to cellular mitochondria. Surprisingly, limited observations of non-threatened pinniped populations indicate that senescence does not occur to a level where reproductive output is affected. The ability of pinnipeds to avoid apparent senescence raises two major questions: what specific physiological and morphological changes occur with advancing age in pinnipeds; and what subtle adjustments are made by these animals to cope with such changes? This investigation will focus on specific, functional physiological and behavioral changes relating to dive capability with advancing age. Data will be compared between Weddell seals in the peak, and near the end, of their reproductive age range. The investigators will quantify age-related changes in general health and body condition, combined with fine scale assessments of external and internal ability to do work in the form of diving. Specifically, patterns of muscle morphology, oxidant status and oxygen storage with age will be examined. The effects of age on skeletal muscular function and exercise performance will also be examined. The investigators hypothesize that senescence does occur in Weddell seals at the level of small-scale, proximate physiological effects and performance, but that behavioral plasticity allows for a given degree of compensation. Broader impacts include the training of students and outreach activities including interviews and articles written for the popular media. This study should also establish diving seals as a novel model for the study of cardiovascular and muscular physiology of aging and develop a foundation for similar research on other species. Advancement of the understanding of aging by medical science has been impressive in recent years but basic mammalian aging is an area of study the still requires considerable effort. The development of new models for the study of aging has tremendous potential benefits to society at large. | ["POLYGON((165.975 -77.54,166.0631 -77.54,166.1512 -77.54,166.2393 -77.54,166.3274 -77.54,166.4155 -77.54,166.5036 -77.54,166.5917 -77.54,166.6798 -77.54,166.7679 -77.54,166.856 -77.54,166.856 -77.5709,166.856 -77.6018,166.856 -77.6327,166.856 -77.6636,166.856 -77.6945,166.856 -77.7254,166.856 -77.7563,166.856 -77.7872,166.856 -77.8181,166.856 -77.849,166.7679 -77.849,166.6798 -77.849,166.5917 -77.849,166.5036 -77.849,166.4155 -77.849,166.3274 -77.849,166.2393 -77.849,166.1512 -77.849,166.0631 -77.849,165.975 -77.849,165.975 -77.8181,165.975 -77.7872,165.975 -77.7563,165.975 -77.7254,165.975 -77.6945,165.975 -77.6636,165.975 -77.6327,165.975 -77.6018,165.975 -77.5709,165.975 -77.54))"] | ["POINT(166.4155 -77.6945)"] | false | false |
Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|