[{"awards": "2142914 Baker, Bill; 2142912 Murray, Alison; 2142913 Tresguerres, Martin", "bounds_geometry": "POLYGON((-180 -60,-168 -60,-156 -60,-144 -60,-132 -60,-120 -60,-108 -60,-96 -60,-84 -60,-72 -60,-60 -60,-60 -62,-60 -64,-60 -66,-60 -68,-60 -70,-60 -72,-60 -74,-60 -76,-60 -78,-60 -80,-72 -80,-84 -80,-96 -80,-108 -80,-120 -80,-132 -80,-144 -80,-156 -80,-168 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 17 Oct 2024 00:00:00 GMT", "description": "Non-technical description\u003cbr/\u003eMarine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these \u201cnatural products\u201d often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (\u201csea squirt\u201d) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health.\u003cbr/\u003e\u003cbr/\u003eTechnical description\u003cbr/\u003eMarine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, \u003e600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF\u2019s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 160.0, "geometry": "POINT(-130 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; BACTERIA/ARCHAEA; BENTHIC; R/V NBP; Antarctic Peninsula; ANIMALS/INVERTEBRATES", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Baker, Bill; Murray, Alison; Tresguerres, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: ANT LIA: Diving into the Ecology of an Antarctic Ascidian-Microbiome-Palmerolide Association using a Multi-omic and Functional Approach", "uid": "p0010485", "west": -60.0}, {"awards": "1841228 Lyons, W. Berry", "bounds_geometry": "POLYGON((163.37428 -77.558627,163.3922735 -77.558627,163.410267 -77.558627,163.4282605 -77.558627,163.446254 -77.558627,163.4642475 -77.558627,163.482241 -77.558627,163.5002345 -77.558627,163.518228 -77.558627,163.5362215 -77.558627,163.554215 -77.558627,163.554215 -77.56397510000001,163.554215 -77.5693232,163.554215 -77.5746713,163.554215 -77.5800194,163.554215 -77.5853675,163.554215 -77.59071560000001,163.554215 -77.5960637,163.554215 -77.60141180000001,163.554215 -77.6067599,163.554215 -77.612108,163.5362215 -77.612108,163.518228 -77.612108,163.5002345 -77.612108,163.482241 -77.612108,163.4642475 -77.612108,163.446254 -77.612108,163.4282605 -77.612108,163.410267 -77.612108,163.3922735 -77.612108,163.37428 -77.612108,163.37428 -77.6067599,163.37428 -77.60141180000001,163.37428 -77.5960637,163.37428 -77.59071560000001,163.37428 -77.5853675,163.37428 -77.5800194,163.37428 -77.5746713,163.37428 -77.5693232,163.37428 -77.56397510000001,163.37428 -77.558627))", "dataset_titles": "Commonwealth Stream Diel Water Chemistry; Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica; isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "datasets": [{"dataset_uid": "601847", "doi": null, "keywords": "Antarctica; Cryosphere; Nutrients; Stable Isotopes; Taylor Valley; Trace Elements", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Hyporheic zone geochemistry of Wales Stream, Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601847"}, {"dataset_uid": "601844", "doi": null, "keywords": "Antarctica; Commonwealth Stream; Cryosphere; Diel; Inlandwaters; McMurdo Dry Valleys; Stream Chemistry; Water Chemisty", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "Commonwealth Stream Diel Water Chemistry", "url": "https://www.usap-dc.org/view/dataset/601844"}, {"dataset_uid": "601848", "doi": null, "keywords": "Antarctica; Buried Ice; Cryosphere; Stable Isotopes; Stable Water Isotopes; Taylor Valley", "people": "Gardner, Christopher B.", "repository": "USAP-DC", "science_program": null, "title": "isotopic signature of massive buried ice, eastern Taylor Valley, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601848"}], "date_created": "Wed, 16 Oct 2024 00:00:00 GMT", "description": "Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center.\u003cbr/\u003e\u003cbr/\u003eIn the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.554215, "geometry": "POINT(163.4642475 -77.5853675)", "instruments": null, "is_usap_dc": true, "keywords": "SURFACE WATER CHEMISTRY; Iron Fertilization; McMurdo Dry Valleys; Weathering", "locations": "McMurdo Dry Valleys", "north": -77.558627, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lyons, W. Berry; Gardner, Christopher B.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.612108, "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "uid": "p0010483", "west": 163.37428}, {"awards": "1443522 Wannamaker, Philip", "bounds_geometry": "POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.22500000000001,169.4 -77.30000000000001,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.60000000000001,169.4 -77.67500000000001,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.67500000000001,166 -77.60000000000001,166 -77.525,166 -77.45,166 -77.375,166 -77.30000000000001,166 -77.22500000000001,166 -77.15))", "dataset_titles": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "datasets": [{"dataset_uid": "601493", "doi": "10.15784/601493", "keywords": "Antarctica; Mantle Melting; Mount Erebus", "people": "Hill, Graham; Wannamaker, Philip", "repository": "USAP-DC", "science_program": null, "title": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "url": "https://www.usap-dc.org/view/dataset/601493"}], "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "General Description:\u003cbr/\u003eThis project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth\u0027s interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.\u003cbr/\u003e\u003cbr/\u003eTechnical Description:\u003cbr/\u003eThe investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.", "east": 169.4, "geometry": "POINT(167.7 -77.525)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS", "is_usap_dc": true, "keywords": "MAGNETIC FIELD; FIELD SURVEYS; Ross Island; Magnetotelluric; Mount Erebus", "locations": "Ross Island; Mount Erebus", "north": -77.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wannamaker, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure", "uid": "p0010444", "west": 166.0}, {"awards": "2203176 Cimino, Megan; 2203177 Steinberg, Deborah", "bounds_geometry": "POLYGON((-80 -60,-77 -60,-74 -60,-71 -60,-68 -60,-65 -60,-62 -60,-59 -60,-56 -60,-53 -60,-50 -60,-50 -61,-50 -62,-50 -63,-50 -64,-50 -65,-50 -66,-50 -67,-50 -68,-50 -69,-50 -70,-53 -70,-56 -70,-59 -70,-62 -70,-65 -70,-68 -70,-71 -70,-74 -70,-77 -70,-80 -70,-80 -69,-80 -68,-80 -67,-80 -66,-80 -65,-80 -64,-80 -63,-80 -62,-80 -61,-80 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 10 Aug 2023 00:00:00 GMT", "description": "Macrozooplankton are key contributors to marine ecosystem function, and combining empirical sampling and modeling will enable prediction of changing distribution patterns. Challenges in understanding alterations in distributions of these organisms are magnified in the Antarctic Peninsula (AP) ecosystem where ocean warming and sea-ice decline are assumed to drive range shifts in dominant taxa (e.g., krill, pteropods and salps), but functional relationships between zooplankton species distributions and environmental conditions remain uncertain. Therefore, we propose to leverage three decades of zooplankton abundance data and predator (seabird, whale and seal) sighting data from two main longterm survey programs to develop and evaluate predictive Zooplankton Distribution Models (ZDMs) along the AP (at least 60\u00b0 S to 70\u00b0 S, ~400,000 km2). To do this, we will adapt a successful machine learning modeling approach from the California Current ecosystem that utilizes bathymetric and oceanographic data to predict zooplankton species distributions. Our main outputs will be 1) a description of species spatiotemporal trends and abundance patterns, 2) a summary of overlap in zooplankton species and predator species distributions, and 3) the creation of a zooplankton mapping tool allowing for public viewing of past and future ZDM predictions.", "east": -50.0, "geometry": "POINT(-65 -65)", "instruments": null, "is_usap_dc": true, "keywords": "ANIMAL ECOLOGY AND BEHAVIOR; PELAGIC; BIRDS; SPECIES/POPULATION INTERACTIONS; ANIMALS/INVERTEBRATES; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cimino, Megan; Steinberg, Deborah", "platforms": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "Collaborative Research: Harvesting Long-term Survey Data to Develop Zooplankton Distribution Models for the Antarctic Peninsula", "uid": "p0010429", "west": -80.0}, {"awards": "2142491 Young, Jodi", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 26 Jul 2023 00:00:00 GMT", "description": "The aims of this CAREER proposal are to gain a greater understanding of the role of sympagic algae in Antarctic marine ecosystems with the goal to better parameterize their role in biogeochemical and ecosystem processes across dynamic environments. Specifically, this proposal will apply a laboratory-scale, ice-tank system that recreates the seasonal cycle of sea ice in the laboratory for the purpose of studying sympagic microbes to study the following questions:\r\n1.1 \tStarting with a late autumn, mixed phytoplankton community, how do different algal species specialize to sea ice, seawater and flooded snow/ice habitats over winter?\r\n1.2 \tWhat are the relationships between different methods of measuring primary production (fluorescence, O2 production, CO2 drawdown) in sea ice? Does this differ from seawater?\r\n1.3 \tDoes the presence of sea-ice algae influence the physical structure of sea ice?\r\n1.4\tHow does the release of compatible solutes from algae during ice melt influence the dissolved organic pool?\r\nIn addition, I propose to integrate educational activities with my research goals. This includes development of an educational program at the university and K-12 level on Antarctic Sciences that develops critical thinking and quantitative skills, encourages STEM participation from underrepresented groups and establishes an interactive network of Antarctic researchers to broaden research opportunities.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MARINE ECOSYSTEMS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Young, Jodi", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "CAREER: Experimentally Testing the Role of Sympagic Algae in Sea-ice Environments using a Laboratory Scale Ice-tank.", "uid": "p0010425", "west": -180.0}, {"awards": "1543445 Zhang, Jing", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf; Antarctic passive microwave Kmeans derived surface melt days, 1979-2020", "datasets": [{"dataset_uid": "601685", "doi": "10.15784/601685", "keywords": "Antarctica; Glaciology; Larsen C Ice Shelf; Model Data; Surface Energy Budget; Surface Mass Balance; WRF Model", "people": "Luo, Liping; Zhang, Jing", "repository": "USAP-DC", "science_program": null, "title": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601685"}, {"dataset_uid": "601457", "doi": "10.15784/601457", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Melt Days; Passive Microwave; Snow/ice; Snow/Ice; Surface Melt", "people": "Johnson, Andrew; Hock, Regine; Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "Antarctic passive microwave Kmeans derived surface melt days, 1979-2020", "url": "https://www.usap-dc.org/view/dataset/601457"}], "date_created": "Fri, 24 Feb 2023 00:00:00 GMT", "description": "Over the last half century the Antarctic Peninsula has been among the most rapidly warming regions in the world. This has led to increased glacier melt, widespread glacier retreat, ice-shelf collapses, and glacier speed-ups. Many of these changes are driven by changing precipitation and increased melt due to warmer air temperatures. This project will use a combination of two models - a regional atmospheric model and a model of processes at the glacier surface - to simulate future changes in temperature and snowfall, and the resulting changes in glacier mass. The combination of models will be tested against the observational record (since 1979 when satellite observations became available), to verify that it can reproduce observed change, and then run to the year 2100. Results will provide better estimates of the impacts of future climate changes over the Antarctic Pensinsula and the expected glacier mass changes driven by the evolving climate. \u003cbr/\u003e\u003cbr/\u003eThe project will use the large changes observed on the Peninsula to validate a model framework suitable for understanding the impact of these changes on the glaciers and ice shelves there, with the goal of developing optimally constrained future climate and surface mass change scenarios for the region. The framework will provide both a coherent picture of the impacts of past changes on the region\u0027s ice cover, and also the best available constraints on forcings that will determine ice mass loss from this region going forward under a standard scenario. The Weather Forecasting and Research (WRF) Model will be used over the domain of the Antarctic Peninsula and neighboring islands to quantify trends in spatio-temporal patterns of mass change with a focus on surface melt. The WRF model will be enhanced to account for the specific conditions of glacier surfaces, and the modified model will be used to simulate climate conditions and resulting surface mass budgets and melt over the period 1979-2100. Tying modeled past climate changes to the surface and satellite-based observational record will provide a foundation for interpreting projected future change. Results will be validated using available weather station observations, surface mass-balance data, and satellite-derived records of melt. The activity will foster partnerships through collaboration with colleagues in Spain, Germany and The Netherlands and will support an early-career postdoctoral researcher and two graduate students, introduce undergraduate and high-school students to original research and provide training of students through inclusion of data and results in course curriculums.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIERS/ICE SHEETS; MODELS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Zhang, Jing; Hock, Regine; Fahnestock, Mark", "platforms": "OTHER \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model", "uid": "p0010408", "west": -180.0}, {"awards": "1645087 Catchen, Julian", "bounds_geometry": null, "dataset_titles": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids; Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki; Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "datasets": [{"dataset_uid": "200380", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA857989"}, {"dataset_uid": "200330", "doi": "", "keywords": null, "people": null, "repository": "NCBI ", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA861284"}, {"dataset_uid": "200331", "doi": "10.5061/dryad.ghx3ffbs3", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Evaluating Illumina-, Nanopore-, and PacBio-based genome assembly strategies with the bald notothen, Trematomus borchgrevinki", "url": "https://datadryad.org/stash/dataset/doi:10.5061/dryad.ghx3ffbs3"}, {"dataset_uid": "200381", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus\u2014The Closest Ancestral Proxy of Antarctic Cryonotothenioids", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA917608"}], "date_created": "Mon, 10 Oct 2022 00:00:00 GMT", "description": "As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today\u0027s SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region.\u003cbr/\u003eDespite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group - the notothenioid fishes - dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today\u0027s warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. \u003cbr/\u003eThis proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids\u0027 evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Genome Assembly; FISH; McMurdo Sound; Icefish; SHIPS; Notothenioid; Puerto Natales, Chile", "locations": "McMurdo Sound; Puerto Natales, Chile", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Catchen, Julian; Cheng, Chi-Hing", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "NCBI", "repositories": "Dryad; NCBI; NCBI ", "science_programs": null, "south": null, "title": "Evolutionary Genomic Responses in Antarctic Notothenioid Fishes", "uid": "p0010384", "west": null}, {"awards": "2232737 Glickson, Deborah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 07 Oct 2022 00:00:00 GMT", "description": "The National Academies of Sciences, Engineering, and Medicine will convene an ad hoc consensus committee that will provide guidance to the National Science Foundation\u0027s Office of Polar Programs on future directions for Southern Ocean and Antarctic nearshore and coastal research. The study will:\r\n\u003c/br\u003e\r\n\u2022 Identify the highest-priority science drivers for Southern Ocean and Antarctic nearshore and coastal research, based on prior studies and reports. Consider both near- and long-term science priorities.\r\n\u003c/br\u003e\r\n\u2022 Determine the capabilities that are essential to support these science drivers. In a resource-constrained environment, what are the potential tradeoffs among highly specialized and general capabilities? Or among costly vs less expensive capabilities?\r\n\u003c/br\u003e\r\n\u2022 Consider the capabilities needed for a proposed Antarctic Research Vessel, but also other U.S. fleet capabilities and potential partnerships with other countries and their fleets.\r\n\u003c/br\u003e\r\n\u2022 Assess current and emerging tools, technologies, and approaches (e.g., under ice ROVs and AUVs, drones, ship-capable drilling platforms, partnerships with other groups) that can be used to support the science drivers and/or extend ship capabilities in support of the science drivers.\u003c/br\u003e\r\n\u2022 Note any gaps between the science drivers and the portfolio of capabilities, and discuss how NSF might address them.\u003c/br\u003e\r\nA community workshop focused on gathering input on the tasks above will be held toward the beginning of this study and will assist the committee in its information-gathering. It will also provide the Office of Polar Programs with community perspectives that can be used to inform the design of the proposed Antarctic Research Vessel and the portfolio of technologies that expand capability beyond ship-based assets.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; SEA ICE", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Bell, Caroline", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Future Directions for Southern Ocean and Antarctic Nearshore and Coastal Research", "uid": "p0010383", "west": -180.0}, {"awards": "2011454 Veit, Richard; 2011285 Santora, Jarrod", "bounds_geometry": "POLYGON((-39 -53,-38.6 -53,-38.2 -53,-37.8 -53,-37.4 -53,-37 -53,-36.6 -53,-36.2 -53,-35.8 -53,-35.4 -53,-35 -53,-35 -53.2,-35 -53.4,-35 -53.6,-35 -53.8,-35 -54,-35 -54.2,-35 -54.4,-35 -54.6,-35 -54.8,-35 -55,-35.4 -55,-35.8 -55,-36.2 -55,-36.6 -55,-37 -55,-37.4 -55,-37.8 -55,-38.2 -55,-38.6 -55,-39 -55,-39 -54.8,-39 -54.6,-39 -54.4,-39 -54.2,-39 -54,-39 -53.8,-39 -53.6,-39 -53.4,-39 -53.2,-39 -53))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 06 Oct 2022 00:00:00 GMT", "description": "Part I: Non-technical description: \r\nOcean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. This project will quantify the impact of the climate warming on seabirds. The study area is in South Georgia in the South Atlantic with the largest and most diverse seabird colonies in the world. Detecting and understanding how physics and biology interact to bring positive or negative population changes to seabirds has long challenged scientists. The team in this project hypothesizes that 1) Cold water seabird species decline while warm water species increase due to ocean warming observed in the last 30 years; 2) All species decrease with ocean warming, affecting how they interact with each other and in doing so, decreasing their chances of survival; and 3) Species profiles can be predicted using multiple environmental variables and models. To collect present-day data to compare with observations done in 1985, 1991 and 1993, 2 cruises are planned in the austral winter; the personnel will include the three Principal Investigators, all experienced with sampling of seabirds, plankton and oceanography, with 2 graduate and 5 undergraduate students. Models will be developed based on the cruise data and the environmental change experienced in the last 30 years. The research will improve our understanding of seabird and marine mammal winter ecology, and how they interact with the environment. This project benefits NSF\u0027s goals to expand the fundamental knowledge of Antarctic systems, biota, and processes. The project will provide an exceptional opportunity to teach polar field skills to undergraduates by bringing 5 students to engage in the research cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change. \r\n\r\nPart II: Technical description: \r\nOcean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. Based on previous work, the Principal Investigators in this project want to test the hypothesis that warming would have decreased seabird abundance and species associations in the South Georgia region of the South Atlantic. A main premise of this proposal is that because of marine environmental change, the structure of the seabird communities has also changed, and potentially in a manner that has diminished the mutually beneficial dynamics of positive interactions, with subsequent consequences to fitness and population trends. The study is structured by 3 main objectives: 1) identify changes in krill, bird and mammal abundance that have occurred from previous sampling off both ends of South Georgia during winter in 1985, 1991 and 1993, 2) identify pairings of species that benefit each other in searching for prey, and quantify how such relationships have changed since 1985, and 3) make predictions about how these changes in species pairing might continue given predicted future changes in climate. The novelty of the approach is the conceptual model that inter-species associations inform birds of food availability and that the associations decrease if bird abundance decreases, thus warming could decrease overall population fitness. These studies will be essential to establish if behavioral patterns in seabird modulate their response to climate change. The project will provide exceptional educational opportunity to undergraduates by bringing 5 students to participate on the cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -35.0, "geometry": "POINT(-37 -54)", "instruments": null, "is_usap_dc": true, "keywords": "Local Enhancement; South Georgia Island; Mutualism; Climate Change; Positive Interactions; Seabirds; COMMUNITY DYNAMICS; SPECIES/POPULATION INTERACTIONS; R/V NBP", "locations": "South Georgia Island", "north": -53.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Veit, Richard; Manne, Lisa; Santora, Jarrod", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repositories": null, "science_programs": null, "south": -55.0, "title": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter", "uid": "p0010382", "west": -39.0}, {"awards": "2138994 Kocot, Kevin; 2138993 Gerken, Sarah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 20 Sep 2022 00:00:00 GMT", "description": "The overarching goal of this research is to use cumaceans as a model system to explore invertebrate adaptations to the changing Antarctic. This project will leverage integrative taxonomy, functional, comparative and evolutionary genomics, and phylogenetic comparative methods to understand the true diversity of Cumacea in the Antarctic, identify genes and gene families experiencing expansions, selection, or significant differential expression, generate a broadly sampled and robust phylogenetic framework for Cumacea based on transcriptomes and genomes, and explore rates and timing of diversification in Antarctic cumaceans. The project will contribute to understanding of gene gain/loss, positive selection, and differential gene expression as a function of adaptation of organisms to Antarctic habitats. Phylogenomic analyses will provide a robust phylogenetic framework for Southern Ocean Cumacea. Currently, the only -omics level data that exists for the Cumacea is one transcriptome. This project will generate 8 genomes from 8 species, about 250 transcriptomes from about 70 species, and approximately 470 COI and 16S barcodes from about 100 species. Beyond the immediate scope of the current project, the genomic resources will be leveraged by members of the polar biology and invertebrate zoology communities for diverse other uses ranging from PCR primer development to inference of ancestral population sizes. In addition, curated morphological reference collections will be deposited at the Smithsonian, Los Angeles County Natural History Museum, and in the New Zealand National Water and Atmospheric Research collection at Greta Point, to assist future researchers in identification of Antarctic cumaceans.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic; SHIPS; Antarctic Peninsula; Antarctica; Biodiversity; Peracarida; ARTHROPODS; East Antarctica; Chile; BENTHIC; Cumacea; Ross Sea; Crustacea", "locations": "Antarctica; East Antarctica; Chile; Ross Sea; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Polar Special Initiatives; Antarctic Organisms and Ecosystems", "paleo_time": "NOT APPLICABLE", "persons": "Gerken, Sarah; Kocot, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: ANT LIA: Cumacean -Omics to Measure Mode of Adaptation to Antarctica (COMMAA)", "uid": "p0010379", "west": -180.0}, {"awards": "2132641 Bik, Holly", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 30 Aug 2022 00:00:00 GMT", "description": "Nematode worms are abundant and ubiquitous in marine sediment habitats worldwide, performing key functions such as nutrient cycling and sediment stability. However, study of this phylum suffers from a perpetual and severe taxonomic deficit, with less than 5,000 formally described marine species. Fauna from the Southern Ocean are especially poorly studied due to limited sampling and the general inaccessibility of the Antarctic benthos. This study is providing the first large-scale molecular-based investigation from marine nematodes in the Eastern Antarctic continental shelf, providing an important comparative dataset for the existing body of historical (morphological) taxonomic studies. This project uses a combination of classical taxonomy (microscopy) and modern -omics tools to achieve three overarching aims: 1) determine if molecular data supports high biodiversity and endemism of benthic meiofauna in Antarctic benthic ecosystems; 2) determine the proportion of marine nematode species that have a deep-sea versus shallow-water evolutionary origin on the Antarctic shelf, and assess patterns of cryptic speciation in the Southern Ocean; and 3) determine the most important drivers of the host-associated microbiome in Antarctic marine nematodes. This project is designed to rapidly advance knowledge of the evolutionary origins of Antarctic meiofauna, provide insight on population-level patterns within key indicator genera, and elucidate the potential ecological and environmental factors which may influence microbiome patterns. Broader Impacts activities include an intensive cruise- and land-based outreach program focusing on social media engagement and digital outreach products, raising awareness of Antarctic marine ecosystems and understudied microbial-animal relationships. The diverse research team includes female scientists, first-generation college students, and Latinx trainees.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "East Antarctica; BENTHIC", "locations": "East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bik, Holly", "platforms": null, "repositories": null, "science_programs": null, "south": -80.0, "title": "ANT LIA: Do Molecular Data Support High Endemism and Divergent Evolution of Antarctic Marine Nematodes and their Host-associated Microbiomes?", "uid": "p0010372", "west": -180.0}, {"awards": "2114502 Tinto, Kirsteen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 19 Jul 2022 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).\r\n\r\nAn important part of understanding future climate change is predicting changes in how fast the ice in Antarctica is moving. If ice flows more quickly towards the ocean, it will have a direct impact on sea level rise. One of the things that can influence the ice flow is the type of rock below the ice coverage in Antarctica. Sedimentary basins are large regions where sedimentary rocks accumulated in the past, often under ancient seas. It has been observed that where there are sediments below the ice, the ice can flow faster. This project seeks to understand what is below the ice and how the underlying rock influences the ice flow. Is it hard, crystalline rock? Is it a sedimentary basin? What is the relationship between sediments and ice flow? The answers to these questions will be addressed by using a combination of available data and geophysical methods. Information from well-known rock-types will be used to train the computer to recognize these features by using an application of artificial intelligence known as machine learning, which will help the characterization and identification of unknown sedimentary basins beneath the ice. The results of this project will be disseminated to a broad audience by holding workshops for teacher and students to explain our findings under the ice and to introduce the machine learning technique. Open-source codes used during this project will be made available for use in higher-level classrooms as well as in further studies.\r\n\r\nTo date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. A combination of large-scale datasets will be used to characterize known basins and identify new sedimentary basins to produce the first continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. Available geophysical compilations of data and the location of well-known sedimentary basins will be used to apply an ensemble machine learning algorithm. The machine learning algorithm will learn complex relationships by voting among a collection of randomized decision trees. The gravity signal related to sedimentary basins known from other (e.g. seismic) techniques will be evaluated and unknown basins from aerogravity data regression analyses will be proposed by calculating a gravity residual that reflects density inhomogeneities. The gravimetric sedimentary basins identified from the regression analyses will be compared with an independent method of identifying sedimentary distribution, the Werner deconvolution method of estimating depth to magnetic sources. The hypothesis, which is sedimentary basins are correlated to fast ice flow behavior, will be tested by comparing the location of the sedimentary basins with locations of high ice flow by using available ice velocity observations. A relationship between sedimentary basins and ice streams will be defined qualitatively and quantitatively, aiming to evaluate if there are ice streams where no sedimentary basins are reported, or sedimentary basins with no ice streams related. The findings of these project can confirm if the presence of abundant sediments is a pre-requisite for ice streaming. Analyzing previously known sedimentary basins and identifying new ones in Antarctica is central to evaluating the influence of subglacial sediments on the ice sheet flow.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "GRAVITY ANOMALIES; ICE SHEETS; Antarctica", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Constantino, Renata", "platforms": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Pan-Antarctic Assessment of Sedimentary Basins and the Onset of Streaming Ice Flow from Machine Learning and Aerogravity Regression Analyses", "uid": "p0010351", "west": -180.0}, {"awards": "1543367 Shubin, Neil", "bounds_geometry": "POLYGON((158.3 -77.5,158.54000000000002 -77.5,158.78 -77.5,159.02 -77.5,159.26 -77.5,159.5 -77.5,159.74 -77.5,159.98 -77.5,160.22 -77.5,160.45999999999998 -77.5,160.7 -77.5,160.7 -77.605,160.7 -77.71,160.7 -77.815,160.7 -77.92,160.7 -78.025,160.7 -78.13,160.7 -78.235,160.7 -78.34,160.7 -78.445,160.7 -78.55,160.45999999999998 -78.55,160.22 -78.55,159.98 -78.55,159.74 -78.55,159.5 -78.55,159.26 -78.55,159.02 -78.55,158.78 -78.55,158.54000000000002 -78.55,158.3 -78.55,158.3 -78.445,158.3 -78.34,158.3 -78.235,158.3 -78.13,158.3 -78.025,158.3 -77.92,158.3 -77.815,158.3 -77.71,158.3 -77.605,158.3 -77.5))", "dataset_titles": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian); Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "datasets": [{"dataset_uid": "601584", "doi": "10.15784/601584", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian) 2 (2018-2019)", "url": "https://www.usap-dc.org/view/dataset/601584"}, {"dataset_uid": "601580", "doi": "10.15784/601580", "keywords": "Acanthodii; Antarctica; Chondrichthyes; Early Vertebrates; Osteolepiformes; Paleontology; Placodermi; Transantarctic Mountains; Vertebrate Evolution", "people": "Daeschler, Ted", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate Fossils from the Aztec Siltstone (Mid-Late Devonian)", "url": "https://www.usap-dc.org/view/dataset/601580"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base.\u003cbr/\u003e\u003cbr/\u003eThe discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).", "east": 160.7, "geometry": "POINT(159.5 -78.025)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Transantarctic Mountains; USA/NSF; MACROFOSSILS; Fossils; USAP-DC", "locations": "Transantarctic Mountains", "north": -77.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e DEVONIAN", "persons": "Shubin, Neil; Daeschler, Edward B", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.55, "title": "Middle-Late Devonian Vertebrates of Antarctica", "uid": "p0010340", "west": 158.3}, {"awards": "2032029 Gerken, Sarah", "bounds_geometry": "POLYGON((-70 -62,-68.5 -62,-67 -62,-65.5 -62,-64 -62,-62.5 -62,-61 -62,-59.5 -62,-58 -62,-56.5 -62,-55 -62,-55 -62.8,-55 -63.6,-55 -64.4,-55 -65.2,-55 -66,-55 -66.8,-55 -67.6,-55 -68.4,-55 -69.2,-55 -70,-56.5 -70,-58 -70,-59.5 -70,-61 -70,-62.5 -70,-64 -70,-65.5 -70,-67 -70,-68.5 -70,-70 -70,-70 -69.2,-70 -68.4,-70 -67.6,-70 -66.8,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62))", "dataset_titles": "Expedition Data of NBP2303; Invertebrate Zoology", "datasets": [{"dataset_uid": "200386", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2303", "url": "https://www.rvdata.us/search/cruise/NBP2303"}, {"dataset_uid": "200385", "doi": "", "keywords": null, "people": null, "repository": "Alabama Museum of Natural History, University of Alabama, Tuscaloosa", "science_program": null, "title": "Invertebrate Zoology", "url": "https://arctos.database.museum/"}], "date_created": "Mon, 13 Jun 2022 00:00:00 GMT", "description": "Ocean communities play an important role in determining the natural and human impacts of global change. The most conspicuous members of those communities are generally large vertebrates such as marine mammals and sea birds. But smaller animals often determine how the changes impact those charismatic animals. In the Antarctic, where some of the most dramatic physical changes are taking place, we do not know much about what small animals exist. This project will sample the sub-Antarctic and three different Antarctic seas with a hope of identifying, quantifying and discovering the variation in species of a group of small invertebrates. Comma shrimp, also called cumaceans, are rarely seen elsewhere but may be common and important in the communities of these locations. Antarctic sampling traditionally used gear that was not very effective at catching cumaceans so we do not know what species exist there and how common they are. This study will utilize modern sampling methods that will allow comma shrimp to be sampled. This will lead to discoveries about the diversity and abundance of comma shrimp, as well as their relationship to other invertebrate species. Major impacts of this work will be an enhancement of museum collections, the development of description of all the comma shrimp of Antarctica including new and unnamed species. Those contributions may be especially important as we strive to understand what drives the dynamics of charismatic vertebrates and fisheries that are tied to Antarctic food webs. \u003cbr/\u003e\u003cbr/\u003eThis project will collect cumaceans from benthic samples from the Antarctic peninsula, Bransfield Strait, and the Weddell Sea using benthic sleds, boxcores and megacores. Specimens will be fixed in 95% ethanol, preserved in 95% ethanol and 5% glycerin to preserve both morphology and DNA, and some specimens will be partially or wholly preserved in RNALater to preserve RNA and DNA. The specimens will form the basis for a monograph synthesizing current knowledge on the Subantarctic and Antarctic Cumacea, including diagnoses of all species, descriptions of new species, additional description for currently unknown life stages of known species, and vouchered gene sequences for all species collected. The monograph will include keys to all families, genera and species known from the region. Monographic revisions that include identification resources are typically useful for decades to a broad spectrum of other scientists.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -55.0, "geometry": "POINT(-62.5 -66)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; NSF/USA; ANIMALS/INVERTEBRATES; SHIPS; USAP-DC; NBP2303; Weddell Sea; Amd/Us; Antarctic Peninsula", "locations": "Antarctic Peninsula; Weddell Sea", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Gerken, Sarah", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "R2R", "repositories": "Alabama Museum of Natural History, University of Alabama, Tuscaloosa; R2R", "science_programs": null, "south": -70.0, "title": "RAPID: Monographing the Antarctic and Subantarctic Cumacea", "uid": "p0010338", "west": -70.0}, {"awards": "1951090 Stukel, Michael", "bounds_geometry": "POLYGON((-80 -63,-78.2 -63,-76.4 -63,-74.6 -63,-72.8 -63,-71 -63,-69.2 -63,-67.4 -63,-65.6 -63,-63.8 -63,-62 -63,-62 -63.7,-62 -64.4,-62 -65.1,-62 -65.8,-62 -66.5,-62 -67.2,-62 -67.9,-62 -68.6,-62 -69.3,-62 -70,-63.8 -70,-65.6 -70,-67.4 -70,-69.2 -70,-71 -70,-72.8 -70,-74.6 -70,-76.4 -70,-78.2 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "BCO-DMO Project Page", "datasets": [{"dataset_uid": "200294", "doi": null, "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "BCO-DMO Project Page", "url": "https://www.bco-dmo.org/project/838048"}], "date_created": "Fri, 03 Jun 2022 00:00:00 GMT", "description": "Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children?s book, ?Plankton do the Strangest Things?, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms.\u003cbr/\u003e\u003cbr/\u003e This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years? worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -62.0, "geometry": "POINT(-71 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; FIELD INVESTIGATION; Palmer Station; USAP-DC; BIOGEOCHEMICAL CYCLES; USA/NSF", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Stukel, Michael", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -70.0, "title": "Quantifying Processes Driving Interannual Variability in the Biological Carbon Pump in the Western Antarctic Peninsula", "uid": "p0010332", "west": -80.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "2019-2020 Allan Hills Field Report; 2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report; 2023-2024 Allan Hills End-of-Season Science Report; Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data; Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data; Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format; Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data; Allan Hills 2022-23 Shallow Ice Core Field Report; Allan Hills I-188 Field Season Report 2022-2023; COLDEX Raw MARFA Ice Penetrating Radar data; Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland; Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "datasets": [{"dataset_uid": "601824", "doi": "10.15784/601824", "keywords": "Allan Hills; Antarctica; Coldex; Cryosphere", "people": "Goverman, Ashley; Epifanio, Jenna; Mayo, Emalia; Jayred, Michael; Morton, Elizabeth; Banerjee, Asmita; Hudak, Abigail; Manos, John-Morgan; Carter, Austin; Shackleton, Sarah; Brook, Edward J.; Higgins, John; Marks Peterson, Julia", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2023-2024 Allan Hills End-of-Season Science Report", "url": "https://www.usap-dc.org/view/dataset/601824"}, {"dataset_uid": "200423", "doi": "10.18738/T8/FV6VNT", "keywords": null, "people": null, "repository": "TDR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/FV6VNT"}, {"dataset_uid": "200422", "doi": "10.18738/T8/XPMLCC", "keywords": null, "people": null, "repository": "TDR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) transect based (science organized) unfocused data", "url": "https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/XPMLCC"}, {"dataset_uid": "200421", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2023-24 (CXA2) flight based data HDF5/matlab format", "url": "https://data.cresis.ku.edu/data/rds/2023_Antarctica_BaslerMKB/"}, {"dataset_uid": "200420", "doi": "10.18738/T8/J38CO5", "keywords": null, "people": null, "repository": "OPR", "science_program": null, "title": "Airborne Radar Data: 2022-23 (CXA1) flight based HDF5/matlab format data", "url": "https://data.cresis.ku.edu/data/rds/2022_Antarctica_BaslerMKB/"}, {"dataset_uid": "200419", "doi": "", "keywords": null, "people": null, "repository": "University Digital Conservancy", "science_program": null, "title": "Rising Seas: Representations of Antarctica, Climate Change, and Sea Level Rise in U.S. Newspaper Coverage", "url": "https://hdl.handle.net/11299/265195"}, {"dataset_uid": "601819", "doi": "10.15784/601819", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Higgins, John; Shackleton, Sarah; Carter, Austin; Nesbitt, Ian; Zajicek, Anna; Morton, Elizabeth; Kuhl, Tanner; Epifanio, Jenna; Morgan, Jacob", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2019-2020 Allan Hills Field Report", "url": "https://www.usap-dc.org/view/dataset/601819"}, {"dataset_uid": "601826", "doi": "10.15784/601826", "keywords": "Allan Hills; Antarctica; Cryosphere", "people": "Epifanio, Jenna; Manos, John-Morgan; Conway, Howard; Shaya, Margot; Horlings, Annika", "repository": "USAP-DC", "science_program": "COLDEX", "title": "Allan Hills I-188 Field Season Report 2022-2023", "url": "https://www.usap-dc.org/view/dataset/601826"}, {"dataset_uid": "601696", "doi": "10.15784/601696", "keywords": "Allan Hills; Antarctica; Ice Core", "people": "Brook, Edward J.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Allan Hills 2022-23 Shallow Ice Core Field Report", "url": "https://www.usap-dc.org/view/dataset/601696"}, {"dataset_uid": "601659", "doi": "10.15784/601659", "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "people": "Davidge, Lindsey", "repository": "USAP-DC", "science_program": "Hercules Dome Ice Core", "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "url": "https://www.usap-dc.org/view/dataset/601659"}, {"dataset_uid": "601768", "doi": null, "keywords": "Antarctica; East Antarctic Plateau", "people": "Blankenship, Donald D.; Young, Duncan A.; Chan, Kristian; Kempf, Scott D.; Ng, Gregory; Buhl, Dillon; Kerr, Megan; Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "COLDEX Raw MARFA Ice Penetrating Radar data", "url": "https://www.usap-dc.org/view/dataset/601768"}, {"dataset_uid": "601697", "doi": "10.15784/601697", "keywords": "Allan Hills; Antarctica; Apres; Ice Core; Ice Penetrating Radar; Temperature Profiles", "people": "Conway, Howard; Brook, Edward J.", "repository": "USAP-DC", "science_program": "COLDEX", "title": "2022-23 Allan Hills Intermediate Ice Core Site Selection Field Report", "url": "https://www.usap-dc.org/view/dataset/601697"}], "date_created": "Sat, 21 May 2022 00:00:00 GMT", "description": "Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth\u2019s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth\u2019s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community.\r\n\r\nKnowledge of Earth\u2019s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth\u2019s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; AMD; Antarctica; Amd/Us; Coldex; USAP-DC; FIELD SURVEYS; ICE DEPTH/THICKNESS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Polar Special Initiatives; Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.; Neff, Peter", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "OPR; TDR; University Digital Conservancy; USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Center for Oldest Ice Exploration", "uid": "p0010321", "west": -180.0}, {"awards": "1932876 Ball, Becky", "bounds_geometry": "POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical summary\u003cbr/\u003eThe Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the \u201cgreening\u201d of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as \u201cplant-soil\u201d interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.\u003cbr/\u003e\u003cbr/\u003ePart II: Technical summary\u003cbr/\u003eIn this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -58.133333, "geometry": "POINT(-58.8997245 -62.265751)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD SURVEYS; ECOLOGICAL DYNAMICS; USA/NSF; SOIL CHEMISTRY; 25 De Mayo/King George Island; Antarctic Peninsula; PLANTS; Amd/Us; FUNGI; ANIMALS/INVERTEBRATES; USAP-DC; TERRESTRIAL ECOSYSTEMS; BACTERIA/ARCHAEA", "locations": "25 De Mayo/King George Island; Antarctic Peninsula", "north": -62.15, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -62.381502, "title": "Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession", "uid": "p0010315", "west": -59.666116}, {"awards": "2149500 Chambers, Don", "bounds_geometry": "POLYGON((-180 -30,-144 -30,-108 -30,-72 -30,-36 -30,0 -30,36 -30,72 -30,108 -30,144 -30,180 -30,180 -36,180 -42,180 -48,180 -54,180 -60,180 -66,180 -72,180 -78,180 -84,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84,-180 -78,-180 -72,-180 -66,-180 -60,-180 -54,-180 -48,-180 -42,-180 -36,-180 -30))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Mar 2022 00:00:00 GMT", "description": "The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean\u2019s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida\u2019s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography. \r\n\r\nThis project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Southern Ocean; PH; BIOGEOCHEMICAL CYCLES; AMD; OCEAN CHEMISTRY; OCEAN MIXED LAYER; USA/NSF; NITROGEN; OCEAN CURRENTS; SALINITY/DENSITY; USAP-DC; OCEAN TEMPERATURE; MODELS; CHLOROPHYLL; DISSOLVED GASES; NUTRIENTS", "locations": "Southern Ocean", "north": -30.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Williams, Nancy; Chambers, Don; Tamsitt, Veronica", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the Role of Ocean Eddies in Carbon Cycling from a High-resolution Data Assimilating Ocean Biogeochemical Model", "uid": "p0010309", "west": -180.0}, {"awards": "2149501 Mazloff, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 04 Mar 2022 00:00:00 GMT", "description": "This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a \u201cModel STEM Program for Women and Girls\u201d focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; USA/NSF; USAP-DC; MODELS; BIOGEOCHEMICAL CYCLES; Amd/Us", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Mazloff, Matthew", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: Diagnosing the role of ocean eddies in carbon cycling from a high- resolution data assimilating ocean biogeochemical model", "uid": "p0010304", "west": -180.0}, {"awards": "1744998 Fogt, Ryan; 1745089 Raphael, Marilyn", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Sea Ice Reconstructions", "datasets": [{"dataset_uid": "200261", "doi": "https://doi.org/10.6084/m9.figshare.c.5709767.v1", "keywords": null, "people": null, "repository": "Figshare", "science_program": null, "title": "Antarctic Sea Ice Reconstructions", "url": "https://figshare.com/collections/Antarctic_Sea_Ice_Reconstructions/5709767"}], "date_created": "Fri, 10 Dec 2021 00:00:00 GMT", "description": "In contrast to the Arctic, sea ice cover in most Antarctic regions has increased since 1979. The area-integrated total sea ice extent grew to record maximum values in four of the last six years, yet the 2015-16 summer was marked by record low ice cover. While impressive, it is difficult to assess the significance of these very recent records in the context of longer term variability, since the continuous satellite record only dates back to 1978. The limited length of the continuous sea ice record, is a significant confounding factor in ascertaining whether the observed current changes are due to natural variability alone, or represent a forced anthropogenic response. As a result, the scientific understanding of the Antarctic sea ice trends remains poor, as does confidence in projections of future Antarctic sea ice trends. \r\n\r\nTo address this challenge, this project seeks to reconstruct sea ice extent and sea ice concentration, using the relationships between satellite-observed sea ice, sea level pressure, tropical sea surface temperature, ENSO indices, some proxy data (ice cores, etc.), and in situ Southern Ocean temperature data. The aim of the study is to collect and combine these ancillary records as accurately as possible while retaining the variability associated with the intrinsic uncertainty in the available field data. \r\nA range of statistical methods for modelling the relationship between satellite era sea-ice data using flexible regression, Bayesian and multivariate dynamic spatial temporal (MDST) methods will be used.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; Antarctica; NOT APPLICABLE; Amd/Us; SEA ICE; USAP-DC; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Fogt, Ryan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Figshare", "repositories": "Figshare", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Understanding Contemporary Variability in Antarctic Sea Ice: Ensemble Reconstruction of Sea Ice Extent and Concentration for the 20th Century", "uid": "p0010284", "west": -180.0}, {"awards": "2037561 Jenouvrier, Stephanie", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Code for \u015een et al. 2023; Detecting climate signals in populations: case of emperor penguin", "datasets": [{"dataset_uid": "200373", "doi": "https://doi.org/10.5281/zenodo.7803266", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Code for \u015een et al. 2023", "url": "https://zenodo.org/record/7803266"}, {"dataset_uid": "601491", "doi": "10.15784/601491", "keywords": "Antarctica", "people": "Jenouvrier, Stephanie", "repository": "USAP-DC", "science_program": null, "title": "Detecting climate signals in populations: case of emperor penguin", "url": "https://www.usap-dc.org/view/dataset/601491"}], "date_created": "Wed, 08 Dec 2021 00:00:00 GMT", "description": "Overview: We aim to provide the most detailed investigation to date of the factors that influence predictability of Antarctic climate, the coupling of climate to penguins populations, and the integration of the two to optimize ecological forecasts. This integrated understanding is critical for guiding future ecological and climate research, prioritizing bio-physical monitoring efforts, and informing conservation decision-making. Our study will reveal the influence of climate system dynamics on ecological predictability across a range of scales and will examine how this role differs among ecological processes, species and regions of Antarctica. \r\n\r\nIntellectual Merit: Many biophysical processes will change in the coming century. Yet, the mechanisms controlling the predictability of many climate processes are still poorly understood, limiting progress in climate forecasting. In parallel, ecological forecasting remains a nascent discipline. In particular, comparative assessments of predictability, both within and among species, are critically needed to understand the factors that allow (or prevent) useful ecological forecasts. While important for ecological science generally, this need is particularly pressing in Antarctica where the environment is highly dynamic, strongly coupled to biological processes, and likely to change in the future. Improved ecological forecasting therefore requires interdisciplinary efforts to understand the causes of predictability in climate, and in tandem, how climate influences the predictability of natural populations.\r\nThis proposed research will examine the predictability of Antarctic climate and its influence on penguin demographic response predictability at various temporal and spatial scales using the longest datasets available for two penguin species. Specifically, the PI will 1) identify the physical mechanisms giving rise to climate predictability in Antarctica, 2) identify the relationships between climate and ecological processes at a range of scales, and 3) reveal the factors controlling ecological predictability across a range of scales (e.g., those relevant for short-term adaptive management versus those relevant at end-of-century timescales). These objectives will be achieved using the analysis of existing climate data and Atmosphere-Ocean Global Circulation Models (AGOCMs), with coupled analysis of existing long-term demographic data for multiple seabird species that span a range of ecological niches, life histories, and study sites across the continent.\r\n", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ECOLOGICAL DYNAMICS; PENGUINS; Amd/Us; Antarctica; USA/NSF; SEA ICE; NOT APPLICABLE; USAP-DC; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jenouvrier, Stephanie; Holland, Marika", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Zenodo", "repositories": "USAP-DC; Zenodo", "science_programs": null, "south": -90.0, "title": "Integrating Antarctic Environmental and Biological Predictability to Obtain Optimal Forecasts", "uid": "p0010282", "west": -180.0}, {"awards": "1656126 Koppers, Anthony", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "OSU Marine and Geology Repository", "datasets": [{"dataset_uid": "200245", "doi": null, "keywords": null, "people": null, "repository": "OSU-MGR", "science_program": null, "title": "OSU Marine and Geology Repository", "url": "https://osu-mgr.org/"}], "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "Nontechnical Description\r\n\r\nThe Antarctic core collection, curated at Florida State University since 1963, is one of the world\u0027s premier marine geology collections. Consisting of irreplaceable sediment cores, this archive has greatly advanced the understanding of the Earth system, past and present, and will remain critical to future studies of the Earth. Given Oregon State University\u0027s (OSU) leadership in marine research and long track record providing state-of-the-art curatorial services through the OSU Marine and Geology Repository, this facility will provide world-class curatorial stewardship of the Antarctic core collection for decades to come. The Antarctic core collection will be co-located and co-managed with the current OSU collection in a single modern repository and analytical facility. The combined collection will contain more than 30 km of refrigerated sediment core from the world\u0027s oceans and will be housed in a new 33,000 SFT facility purchased in 2009 by OSU and upgraded in 2016-17. The total refrigerated space can hold both collections comfortably and has at least five decades of expansion space.\r\n\r\nThe co-location and co-management of these two collections, paired with a modern suite of analytical facilities, will lead to greater collaboration, cross-pollination of ideas, and availability of enhanced technical services and capabilities for a growing user group that increasingly relies on marine sediments. The facility will employ a comprehensive community interaction plan that takes advantage of the new OSU Marine and Geology Repository building with a 32-person seminar room, its large 1,044 square foot core lab, and ten adjoining analytical laboratories, which will provide scientific and experiential learning opportunities for students, the general public, and the Earth Sciences research community. The facility will organize small group meetings, sampling parties and summer schools that will complement ongoing support for teaching, training and learning through the use of the repository in graduate, undergraduate, and K-12 classes and Research Experience for Undergraduate programs. The repository is open to the general public for tours and presentations, and the data products derived from the facility will be disseminated via the repository website at http://osu-mgr.org/ and other national databases.\r\n\r\nTechnical Description\r\n\r\nThe Antarctic and the Southern Ocean National Collection of Rock and Sediment Cores currently housed at Florida State University will be relocated to Oregon State University (OSU) and housed along with the OSU Marine and Geology Repository. Oregon State University investigators will co-manage the Antarctic core collection and the Marine and Geology Repository as a single modern repository and analytical facility. The combined collection will be housed a new 33,000 square foot building with refrigerated space that can hold both collections with approximately five decades of expansion space. The co-location and co-management of these two collections offers unique curatorial synergies, cost savings, and improved capabilities to support both the research and educational needs of a wider marine and Antarctic communities. The facility will house a 32-person seminar room, a large 1,044 square foot core lab that allows layout, inspection and examination of cores, and adjoining analytical laboratories that will provide quantitative analysis as well as experiential learning opportunities for students.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS", "is_usap_dc": true, "keywords": "Dredge Samples; MARINE SEDIMENTS; Amd/Us; AMD; SHIPS; USAP-DC; Antarctica; USA/NSF; Sediment Core", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": null, "persons": "Koppers, Anthony; Stoner, Joseph", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "OSU-MGR", "repositories": "OSU-MGR", "science_programs": null, "south": -90.0, "title": "Curatorial Stewardship of the Antarctic and the Southern Ocean National Collection of Rock and Sediment Cores at the OSU Marine and Geology Repository", "uid": "p0010262", "west": -180.0}, {"awards": "2046800 Thurber, Andrew", "bounds_geometry": "POLYGON((162 -77,162.6 -77,163.2 -77,163.8 -77,164.4 -77,165 -77,165.6 -77,166.2 -77,166.8 -77,167.4 -77,168 -77,168 -77.1,168 -77.2,168 -77.3,168 -77.4,168 -77.5,168 -77.6,168 -77.7,168 -77.8,168 -77.9,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.9,162 -77.8,162 -77.7,162 -77.6,162 -77.5,162 -77.4,162 -77.3,162 -77.2,162 -77.1,162 -77))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 21 Aug 2021 00:00:00 GMT", "description": "Due to persistent cold temperatures, geographical isolation, and resulting evolutionary distinctness of Southern Ocean fauna, the study of Antarctic reducing habitats has the potential to fundamentally alter our understanding of the biologic processes that inhibit greenhouse gas emissions from our oceans. Marine methane, a greenhouse gas 25x as potent as carbon dioxide for warming our atmosphere, is currently a minor component of atmospheric forcing due to the microbial oxidation of methane within the oceans. Based on studies of persistent deep-sea seeps at mid- and northern latitudes we have learned that bacteria and archaea create a \u2018sediment filter\u2019 that oxidizes methane prior to its release. As increasing global temperatures have and will continue to alter the rate and variance of methane release, the ability of the microbial filter to respond to fluctuations in methane cycles is a critical yet unexplored avenue of research. Antarctica contains vast reservoirs of methane, equivalent to all of the permafrost in the Arctic, and yet we know almost nothing about the fauna that may mitigate its release, as until recently, we had not discovered an active methane seep.\r\n\r\nIn 2012, a methane seep was discovered in the Ross Sea, Antarctica that formed in 2011 providing the first opportunity to study an active Antarctic methane-fueled habitat and simultaneously the impact of microbial succession on the oxidation of methane, a critical ecosystem service. Previous work has shown that after 5 years of seepage, the community was at an early stage of succession and unable to mitigate the release of methane from the seafloor. In addition, additional areas of seepage had begun nearby. This research aims to quantify the community trajectory of these seeps in relation to their role in the Antarctic Ecosystem, from greenhouse gas mitigation through supporting the food web. Through the application of genomic and transcriptomic approaches, taxa involved in methane cycling and genes activated by the addition of methane will be identified and contrasted with those from other geographical locations. These comparisons will elucidate how taxa have evolved and adapted to the polar environment.\r\n\r\nThis research uses a \u2018genome to ecosystem\u2019 approach to advance our understanding of organismal and systems ecology in Antarctica. By quantifying the trajectory of community succession following the onset of methane emission, the research will decipher temporal shifts in biodiversity/ecosystem function relationships. Phylogenomic approaches focusing on taxa involved in methane cycling will advance the burgeoning field of microbial biogeography on a continent where earth\u2019s history may have had a profound yet unquantified impact on microbial evolution. Further, the research will empirically quantify the role of chemosynthesis as a form of export production from seeps and in non-seep habitats in the nearshore Ross Sea benthos, informing our understanding of Antarctic carbon cycling.\r\n", "east": 168.0, "geometry": "POINT(165 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; USA/NSF; USAP-DC; BACTERIA/ARCHAEA; McMurdo Sound; BENTHIC; FIELD SURVEYS; Amd/Us; ECOSYSTEM FUNCTIONS", "locations": "McMurdo Sound", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Thurber, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -78.0, "title": "CAREER: Ecosystem Impacts of Microbial Succession and Production at Antarctic Methane Seeps", "uid": "p0010250", "west": 162.0}, {"awards": "1941308 Fitzsimmons, Jessica; 1941483 Yager, Patricia; 1941292 St-Laurent, Pierre; 1941327 Stammerjohn, Sharon; 1941304 Sherrell, Robert", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files; Expedition Data of NBP2202; Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica); Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "datasets": [{"dataset_uid": "200400", "doi": "10.17882/99231", "keywords": null, "people": null, "repository": "SEANOE", "science_program": null, "title": "Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica)", "url": "https://doi.org/10.17882/99231"}, {"dataset_uid": "200399", "doi": "10.25773/bt54-sj65", "keywords": null, "people": null, "repository": "William \u0026 Mary ScholarWorks", "science_program": null, "title": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files", "url": "https://doi.org/10.25773/bt54-sj65"}, {"dataset_uid": "601785", "doi": "10.15784/601785", "keywords": "Amundsen Sea; Antarctica; Cryosphere; CTD; NBP2202; Oceanography; R/v Nathaniel B. Palmer", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601785"}, {"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}], "date_created": "Fri, 20 Aug 2021 00:00:00 GMT", "description": " The Amundsen Sea hosts the most productive polynya in all of Antarctica, with its vibrant green waters visible from space, and an atmospheric CO2 uptake density 10x higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape, and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet (WAIS). ARTEMIS aims to characterize the climate-sensitive nature of glacial meltwater-driven micronutrient (iron, Fe) contributions driving ecosystem productivity and CO2 uptake in the coastal Antarctic. We propose to integrate observations and ocean modeling of these processes to enhance predictive capabilities. Currently, basal melt resulting from warm deep waters penetrating ice shelf cavities dominates mass losses of WAIS, contributing to sea level rise. These physical melting processes are being studied by the International Thwaites Glacier Collaboration (ITGC). The impact of melting on the marine ecosystem has also been explored, and we know that productivity is due in part to Fe-rich, glacial meltwater-driven outflow. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied, however. Improved knowledge would provide keys to understanding meltwater\u0027s future impact on the ecosystem. An ongoing field program (TARSAN, part of the ITGC) offers the ideal physical oceanographic framework for our biogeochemical effort. We propose here to collaborate with TARSAN-supported UK scientists, providing value added to both team efforts. ARTEMIS will add shipboard measurements (trace metals, carbonate system, nutrients, organic matter, microorganisms) and biogeochemical sensors on autonomous vehicles to gather critical knowledge needed to understand the impact of the melting WAIS on both the coastal ecosystem and the regional carbon (C) cycle. Driving questions include: 1) what are the fluxes and chemical forms of Fe, C, and microorganisms in the ice shelf outflow? 2) what are the relative contributions to the ouflow from deep water, benthic, and glacial melt sources, and how do these inputs combine to affect the bioavailability of Fe? 3) How are Fe and C compounds modified as the outflow advects along the coastal current and mixes into the bloom region? and 4) what will be the effect of increased glacial melting, changes in the coastal icescape, and declining sea ice on theecosystem of the Amundsen Sea? Such questions fall outside the focus of the ITGC, but are of keen interest to Antarctic Organisms and Ecosystems and Antarctic Integrated System Science programs.", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; USA/NSF; USAP-DC; AMD; Amundsen Sea; Amd/Us; SHIPS", "locations": "Amundsen Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "SEANOE", "repositories": "R2R; SEANOE; USAP-DC; William \u0026 Mary ScholarWorks", "science_programs": "Thwaites (ITGC)", "south": -75.0, "title": "NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)", "uid": "p0010249", "west": -120.0}, {"awards": "1746087 Tarrant, Ann", "bounds_geometry": "POLYGON((-80 -60,-77.5 -60,-75 -60,-72.5 -60,-70 -60,-67.5 -60,-65 -60,-62.5 -60,-60 -60,-57.5 -60,-55 -60,-55 -61,-55 -62,-55 -63,-55 -64,-55 -65,-55 -66,-55 -67,-55 -68,-55 -69,-55 -70,-57.5 -70,-60 -70,-62.5 -70,-65 -70,-67.5 -70,-70 -70,-72.5 -70,-75 -70,-77.5 -70,-80 -70,-80 -69,-80 -68,-80 -67,-80 -66,-80 -65,-80 -64,-80 -63,-80 -62,-80 -61,-80 -60))", "dataset_titles": "Calanoides acutus: Transcriptome and gene expression data; BioProject PRJNA757455; Calanus propinquus: Transcriptome and gene expression data; BioProject PRJNA669816; Expedition data of LMG1901; Rhincalanus gigas: Transcriptome and gene expression data; BioProject PRJNA666170", "datasets": [{"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "200283", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Calanus propinquus: Transcriptome and gene expression data; BioProject PRJNA669816", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA669816"}, {"dataset_uid": "200284", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Calanoides acutus: Transcriptome and gene expression data; BioProject PRJNA757455", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA757455"}, {"dataset_uid": "200239", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Rhincalanus gigas: Transcriptome and gene expression data; BioProject PRJNA666170", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA666170"}], "date_created": "Fri, 06 Aug 2021 00:00:00 GMT", "description": "Polar marine organisms have adapted to dramatic seasonal changes in photoperiod, light intensity, and ice cover, as well as to cold but stable thermal environments. The western Antarctic Peninsula, the focal region for the field studies, has experienced rapid warming and ice melt. While it is difficult to predict exactly how physical conditions in this region will change, effects on species distributions have already been documented. Large Antarctic copepods in the families Calanidae and Rhincalanidae are dominant components of the mesozooplankton that use different metabolic and behavioral strategies to optimize their use of a highly seasonal food supply. The overall goal of this project is to leverage molecular approaches to examine the physiological and metabolic adaptations at the individual and species level. The project focuses on three main objectives: the first objective is to characterize the gene complement and stage-specific gene expression patterns in Antarctic copepods within an evolutionary context. The second objective is to measure and compare the physiological and molecular responses of juvenile copepods to variable feeding conditions. The third objective is to characterize metabolic variation within natural copepod populations. The metabolically diverse Antarctic copepods also provide an excellent opportunity to compare mechanisms regulating energy storage and utilization and to test hypotheses regarding the roles of specific genes. The field studies will aim to utilize information from an ongoing long term research program (the Palmer Long-Term Ecological Research), which complements the ongoing program and provides extensive context for this project. To make the data more useful to the research community, a database will be developed facilitating comparison of transcriptomes between copepod species. This project will provide hands-on training opportunities to graduate and undergraduate students. Efforts will be made to recruit students who are members of underrepresented minorities. Results and scientific concepts will be broadly disseminated through an expedition blog, undergraduate student programs, and public presentations.\r\n", "east": -55.0, "geometry": "POINT(-67.5 -65)", "instruments": null, "is_usap_dc": true, "keywords": "ARTHROPODS; AMD; PELAGIC; USA/NSF; USAP-DC; PLANKTON; West Antarctic Shelf; Amd/Us; SHIPS", "locations": "West Antarctic Shelf", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tarrant, Ann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "R2R", "repositories": "NCBI; R2R", "science_programs": null, "south": -70.0, "title": "Physiological Ecology of \"Herbivorous\" Antarctic Copepods", "uid": "p0010239", "west": -80.0}, {"awards": "2031442 Learman, Deric", "bounds_geometry": "POLYGON((-180 -60,-167.5 -60,-155 -60,-142.5 -60,-130 -60,-117.5 -60,-105 -60,-92.5 -60,-80 -60,-67.5 -60,-55 -60,-55 -62,-55 -64,-55 -66,-55 -68,-55 -70,-55 -72,-55 -74,-55 -76,-55 -78,-55 -80,-67.5 -80,-80 -80,-92.5 -80,-105 -80,-117.5 -80,-130 -80,-142.5 -80,-155 -80,-167.5 -80,180 -80,178 -80,176 -80,174 -80,172 -80,170 -80,168 -80,166 -80,164 -80,162 -80,160 -80,160 -78,160 -76,160 -74,160 -72,160 -70,160 -68,160 -66,160 -64,160 -62,160 -60,162 -60,164 -60,166 -60,168 -60,170 -60,172 -60,174 -60,176 -60,178 -60,-180 -60))", "dataset_titles": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "datasets": [{"dataset_uid": "601607", "doi": "10.15784/601607", "keywords": "Antarctica; Antarctic Peninsula; Grain Size; Grain Size Analysis; Marine Geoscience; Marine Sediments; Organic Matter Geochemistry; Sediment Core Data; Shelf Sediments; Weddell Sea", "people": "Learman, Deric", "repository": "USAP-DC", "science_program": null, "title": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "url": "https://www.usap-dc.org/view/dataset/601607"}], "date_created": "Wed, 28 Jul 2021 00:00:00 GMT", "description": "This proposal will provide genetic and enzymatic insight into how microbial communities in benthic sediments on the coastal shelf of Antarctica degrade complex organic matter. The current understanding of how benthic microbial communities respond and also degrade complex organic matter in Antarctica is fragmented. Recent work suggests benthic microbial communities are shaped by organic matter availability (encompassing both quantity and quality), however, these studies were observational and did not directly examine community function (e.g. enzyme activity and/or gene expression). Preliminary metagenomic data, collected from western Antarctica marine sediments, document gene potential for organic matter degradation throughout the entire sample set (spanning the Amundsen Sea, Bellingshausen Sea, and Ross Sea), but functional data was not collected. To date, studies have examined either enzyme activity or metagenomic potential but few have been able to directly connect the two. To address these gaps in knowledge, this proposal will utilize powerful tools such as metagenomics and metatranscriptomics, coupled with microcosm experiments, enzyme assays, and geochemical data. This hypothesis driven proposal will examine microbial communities from the continental shelf of Antarctica from two different regions (Bransfield Strait and Weddell Sea) to document the communities\u2019 enzymatic activity and genes used to degrade complex organic matter. These data will expand our current knowledge of genetic potential towards a more direct understanding of enzyme function as it relates to degradation of complex organic matter in marine sediments from Antarctica. ", "east": 160.0, "geometry": "POINT(-127.5 -70)", "instruments": null, "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; USAP-DC; Antarctic Peninsula; BENTHIC; SHIPS; SEDIMENT CHEMISTRY; Amd/Us; AMD; USA/NSF; Weddell Sea", "locations": "Antarctic Peninsula; Weddell Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Learman, Deric", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments", "uid": "p0010235", "west": -55.0}, {"awards": "1744878 Lazzara, Matthew; 1745097 Cassano, John", "bounds_geometry": "POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet (WAIS), is planned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower (TT) at the WAIS divide field camp (WAIS TT). An unmanned aerial system (UAS) field campaign will be conducted and will supplement the WAIS TT observations by sampling the entire depth of the boundary layer.\r\nThe proposed work will create a unique dataset of year-round atmospheric boundary layer measurements from a portion of the Antarctic continent that has not previously been observed in this manner. The newly acquired dataset will be used to elucidate the processes that modulate the exchange of energy between the ice sheet surface and the overlying atmosphere, to assess the relationships\r\nbetween near surface stability, winds, and radiative forcing, and to compare these relationships observed at the WAIS TT to those described for other portions of the Antarctic continent. The dataset will also be used to assess the ability of the Antarctic Mesoscale Prediction System (AMPS) operational weather forecasting model and current generation reanalyses to accurately represent surface and boundary layer processes in this region of Antarctica.\r\nIntellectual Merit\r\nThe near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet and this atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and rising sea levels. Recent reports from the National Research Council and the Scientific Committee on Antarctic Research have highlighted the critical nature of these aspects of the West Antarctic climate system.\r\nThe proposed research will advance our understanding of how the atmosphere exchanges heat, moisture, and momentum with the ice sheet surface in West Antarctica and will assess our ability to represent these processes in current generation numerical weather prediction and reanalysis products, by addressing the following scientific questions:\r\n- How does the surface layer and lower portion of the atmospheric boundary layer in West Antarctica compare to that over the low elevation ice shelves and the high elevation East Antarctic plateau?\r\n- What are the dominant factors that lead to warm episodes, and potentially periods of melt, over the West Antarctic ice sheet?\r\n- How well do operational forecast models (AMPS) and reanalyses reproduce the observed near surface stability in West Antarctica?\r\n- What are the sources of errors in the modeled near surface atmospheric stability of West Antarctica?\r\nBroader Impacts:\r\nAtmospheric warming and associated melting of the West Antarctic ice sheet has the potential to raise sea level by many meters. The proposed research will explore the processes that control this warming, and as such has broad societal relevance by providing improved understanding of the processes that could lead to large sea level rise.\r\nEducational outreach activities will include classroom visits to K-12 schools and Skype sessions from Antarctica with students at these schools. Photographs, videos, and instrumentation used during this project will be brought to the classrooms. At the college and university level data from the project will be used in classes being developed as part of a new undergraduate atmospheric and oceanic science major at the University of Colorado and a graduate student will be support on this project.\r\nPublic outreach will be in the form of field blogs, media interviews, and either an article for a general interest scientific magazine, such as Scientific American, or as an electronically published book of Antarctic fieldwork photographs.", "east": -109.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Amd/Us; HUMIDITY; ATMOSPHERIC TEMPERATURE; West Antarctic Ice Sheet; BOUNDARY LAYER TEMPERATURE; USAP-DC; ATMOSPHERIC PRESSURE MEASUREMENTS; FIELD SURVEYS; BOUNDARY LAYER WINDS; USA/NSF", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet", "uid": "p0010225", "west": -115.0}, {"awards": "1643825 Bucklin, Ann", "bounds_geometry": "POLYGON((-74.57 -60.9,-72.487 -60.9,-70.404 -60.9,-68.321 -60.9,-66.238 -60.9,-64.155 -60.9,-62.072 -60.9,-59.989 -60.9,-57.906 -60.9,-55.823 -60.9,-53.74 -60.9,-53.74 -61.537,-53.74 -62.174,-53.74 -62.811,-53.74 -63.448,-53.74 -64.085,-53.74 -64.722,-53.74 -65.359,-53.74 -65.996,-53.74 -66.633,-53.74 -67.27,-55.823 -67.27,-57.906 -67.27,-59.989 -67.27,-62.072 -67.27,-64.155 -67.27,-66.238 -67.27,-68.321 -67.27,-70.404 -67.27,-72.487 -67.27,-74.57 -67.27,-74.57 -66.633,-74.57 -65.996,-74.57 -65.359,-74.57 -64.722,-74.57 -64.085,-74.57 -63.448,-74.57 -62.811,-74.57 -62.174,-74.57 -61.537,-74.57 -60.9))", "dataset_titles": "Alongtrack data collected continuously by the ship\u0027s underway acquisition system from ARSV Laurence M. Gould cruise LMG1110 in the Southern Ocean in 2011 ; Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Antarctic salp genome and RNAseq transcriptome from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2 in the Southern Ocean. Biological and Chemical Oceanography Data Management Office (BCO-DMO). ; Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Salp specimen log for genomic and transcriptomic study collected from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2. Biological and Chemical Oceanography Data Management Office (BCO-DMO).; CTD data from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ; CTD data from MOCNESS tows taken in the Antarctic in 2011 from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ; Scientific sampling event log from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from Nov. 2011 (Salp_Antarctic project) ", "datasets": [{"dataset_uid": "200228", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Antarctic salp genome and RNAseq transcriptome from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2 in the Southern Ocean. Biological and Chemical Oceanography Data Management Office (BCO-DMO). ", "url": "https://www.bco-dmo.org/dataset/675040/data"}, {"dataset_uid": "200232", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD data from MOCNESS tows taken in the Antarctic in 2011 from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ", "url": "https://www.bco-dmo.org/dataset/488871/data"}, {"dataset_uid": "200231", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Alongtrack data collected continuously by the ship\u0027s underway acquisition system from ARSV Laurence M. Gould cruise LMG1110 in the Southern Ocean in 2011 ", "url": "https://www.bco-dmo.org/dataset/3636/data"}, {"dataset_uid": "200230", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Scientific sampling event log from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from Nov. 2011 (Salp_Antarctic project) ", "url": "https://www.bco-dmo.org/dataset/3565/data"}, {"dataset_uid": "200229", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "CTD data from ARSV Laurence M. Gould LMG1110 in the Southern Ocean from November to December 2011 (Salp_Antarctic project) ", "url": "https://www.bco-dmo.org/dataset/559174/data"}, {"dataset_uid": "200227", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Bucklin, A., R.J. O\u0027Neill, D. Payne (2018) Salp specimen log for genomic and transcriptomic study collected from ARSV Laurence M. Gould, Umitaka-Maru, R/V Polarstern LMG1110, UM-08-09, ANT-XXVII-2. Biological and Chemical Oceanography Data Management Office (BCO-DMO).", "url": "https://www.bco-dmo.org/dataset/672600"}], "date_created": "Sat, 03 Jul 2021 00:00:00 GMT", "description": "The Antarctic salp, Salpa thompsoni, is an increasingly important player in the vulnerable Southern Ocean pelagic ecosystem. Field studies have documented rapid population growth under favorable environmental conditions, resulting in dense blooms of salps that can out-compete and displace other species, and significantly perturb the pelagic ecosystem. A comprehensive reference genome for the Antarctic salp will enable the identification of genes and gene networks underlying physiological responses and allow detection of natural selection driving the species\u2019 adaptation to climate change. The primary hypothesis driving this research is that predicted S. thompsoni orthologs (i.e., genes of the same function that share a common ancestor) that show evidence of rapid evolution are indicative of positive selection, and further that these genes and associated gene networks provide the basis for rapid adaptation of the Antarctic salp to environmental variation associated with climate change. Our genome assembly strategy builds upon methods developed during our previous award (PLR-1044982), including both paired-end short read and linked-read sequencing approaches. This project used state-of-the-art approaches: Oxford Nanopore long read sequencing, de novo assembly, and comprehensive transcriptomics. The results include a new reference genome for S. thompsoni, consisting of 8,815 sequences (contigs), with less fragmentation (N50 = 188 kb), and genome coverage of 78%. We have discovered strong secondary structures that dramatically affect sequencing efficiency. Our analyses of these secondary structures led to the discovery of abundant G-quadruplex sequences distributed throughout the genome at a significantly higher frequency compared to other tunicate species, suggesting the structures are a defining feature of this salp genome. These results provide novel insights into the function of unique genomic features in the regulation of genome stability, despite the complex life history, including sexual and asexual reproduction of the Southern Ocean salp. The completed salp reference genome will provide a valuable foundational resource for other scientists (including ecologists, oceanographers, and climate change experts), working on this species. ", "east": -53.74, "geometry": "POINT(-64.155 -64.085)", "instruments": null, "is_usap_dc": true, "keywords": "SHIPS; PELAGIC; Southern Ocean", "locations": "Southern Ocean", "north": -60.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Bucklin, Ann; O\u0027Neill, Rachel J", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO", "science_programs": null, "south": -67.27, "title": "Genome Assembly and Analysis of the Bloom Forming Southern Ocean Salp, Salpa thompsoni", "uid": "p0010224", "west": -74.57}, {"awards": "1341645 Makovicky, Peter; 1341304 Sidor, Christian; 1341475 Smith, Nathan; 1341376 Tabor, Neil; 2001033 Makovicky, Peter", "bounds_geometry": "POLYGON((-180 -84,-178 -84,-176 -84,-174 -84,-172 -84,-170 -84,-168 -84,-166 -84,-164 -84,-162 -84,-160 -84,-160 -84.3,-160 -84.6,-160 -84.9,-160 -85.2,-160 -85.5,-160 -85.8,-160 -86.1,-160 -86.4,-160 -86.7,-160 -87,-162 -87,-164 -87,-166 -87,-168 -87,-170 -87,-172 -87,-174 -87,-176 -87,-178 -87,180 -87,178.5 -87,177 -87,175.5 -87,174 -87,172.5 -87,171 -87,169.5 -87,168 -87,166.5 -87,165 -87,165 -86.7,165 -86.4,165 -86.1,165 -85.8,165 -85.5,165 -85.2,165 -84.9,165 -84.6,165 -84.3,165 -84,166.5 -84,168 -84,169.5 -84,171 -84,172.5 -84,174 -84,175.5 -84,177 -84,178.5 -84,-180 -84))", "dataset_titles": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "datasets": [{"dataset_uid": "601511", "doi": "10.15784/601511", "keywords": "Allan Hills; Antarctica; Fremouw Formation; Lystrosaurus; Permo-Triassic Extinction; Prolacerta; Sample Location; Thrinaxofon; Triassic", "people": "Makovicky, Peter", "repository": "USAP-DC", "science_program": null, "title": "Lower Triassic Antarctic vertebrate fossils at Field Museum, Chicago, IL", "url": "https://www.usap-dc.org/view/dataset/601511"}], "date_created": "Tue, 29 Jun 2021 00:00:00 GMT", "description": "This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70\u00b0 S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann\u2019s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes.", "east": -160.0, "geometry": "POINT(-177.5 -85.5)", "instruments": null, "is_usap_dc": true, "keywords": "REPTILES; FIELD SURVEYS; USA/NSF; PALEOCLIMATE RECONSTRUCTIONS; Triassic; USAP-DC; TERRESTRIAL ECOSYSTEMS; MACROFOSSILS; Amd/Us; Fossils; Shackleton Glacier; LAND RECORDS; ANIMALS/VERTEBRATES; AMD", "locations": "Shackleton Glacier", "north": -84.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian; Smith, Nathan; Makovicky, Peter; Tabor, Neil", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Understanding the evolution of high-latitude Permo-Triassic paleoenvironments and their vertebrate communities", "uid": "p0010213", "west": 165.0}, {"awards": "1644159 Jacobs, Stanley", "bounds_geometry": "POLYGON((-180 -72.5,-177 -72.5,-174 -72.5,-171 -72.5,-168 -72.5,-165 -72.5,-162 -72.5,-159 -72.5,-156 -72.5,-153 -72.5,-150 -72.5,-150 -73.15,-150 -73.8,-150 -74.45,-150 -75.1,-150 -75.75,-150 -76.4,-150 -77.05,-150 -77.7,-150 -78.35,-150 -79,-153 -79,-156 -79,-159 -79,-162 -79,-165 -79,-168 -79,-171 -79,-174 -79,-177 -79,180 -79,178.2 -79,176.4 -79,174.6 -79,172.8 -79,171 -79,169.2 -79,167.4 -79,165.6 -79,163.8 -79,162 -79,162 -78.35,162 -77.7,162 -77.05,162 -76.4,162 -75.75,162 -75.1,162 -74.45,162 -73.8,162 -73.15,162 -72.5,163.8 -72.5,165.6 -72.5,167.4 -72.5,169.2 -72.5,171 -72.5,172.8 -72.5,174.6 -72.5,176.4 -72.5,178.2 -72.5,-180 -72.5))", "dataset_titles": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020; Ross Island area salinity and temperature records 1956 to 2020", "datasets": [{"dataset_uid": "601611", "doi": "10.15784/601611", "keywords": "Amundsen Sea; Antarctica; Chemistry:Water; CTD; D18O; NBP0001; NBP0702; NBP0901; NBP1901; NBP2002; Oceans; Oxygen Isotope; R/v Nathaniel B. Palmer; Seawater Isotope; Southern Ocean", "people": "Hennig, Andrew", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Seawater d18O isotope data from SE Amundsen Sea: 2000, 2007, 2009, 2019, 2020", "url": "https://www.usap-dc.org/view/dataset/601611"}, {"dataset_uid": "601458", "doi": "10.15784/601458", "keywords": "Antarctica; CTD; Oceans; Physical Oceanography; Ross Island; Ross Sea; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Ross Island area salinity and temperature records 1956 to 2020", "url": "https://www.usap-dc.org/view/dataset/601458"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "This project extended and combined historical and recent ocean data sets to investigate ice-ocean-interactions along the Pacific continental margin of the West Antarctic Ice Sheet. The synthesis focused on the strikingly different environments on and near the cold Ross Sea and warm Amundsen Sea continental shelves, where available measurements reach back to 1911 and 1994, respectively. On the more extensively covered Ross Sea continental shelf, multiple reoccupations of ocean stations and transects since the 1950s were used to extend our knowledge of ocean thermohaline change and variability. The more rugged Amundsen Sea continental shelf contains the earth\u0027s fastest melting ice shelves, which Holland et al (2019) show can be linked to decadal-scale variability in the tropical Pacific, and Jacobs et al. (2021) document as being the primary influence on freshening downstream in the Ross Sea. Recent and potential future rates of sea level rise are the primary broad-scale impacts revealed by the observations of ice and ocean changes in these study areas. More regionally, freshening also influences the properties of slope front and coastal currents, and abyssal water mass formation. The overriding question in such work is whether their contributions to global and regional sea levels will continue to increase ~linearly, perhaps allowing greenhouse gas reductions to head off the worst consequences, or accelerate and contribute to major social and economic upheavals. The compiled ocean station profile data has been derived from measurements made from 16 ships operated by 6 countries, from 5 projects using holes through fast and glacier ice, and from 3 studies using drifting floats. We are grateful to the many individuals who have acquired, processed and provided the data, along with their supporting agencies, and welcome corrections and updates to this archive.\n\n", "east": -150.0, "geometry": "POINT(-174 -75.75)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; AMD; USA/NSF; COMPUTERS; Ross Sea; SHIPS; USAP-DC; SALINITY/DENSITY; OCEAN TEMPERATURE", "locations": "Ross Sea", "north": -72.5, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "West Antarctic Ice Shelf- Ocean Interactions ", "uid": "p0010208", "west": 162.0}, {"awards": "2048840 Chambers, Don", "bounds_geometry": "POLYGON((0 -30,15 -30,30 -30,45 -30,60 -30,75 -30,90 -30,105 -30,120 -30,135 -30,150 -30,150 -33.5,150 -37,150 -40.5,150 -44,150 -47.5,150 -51,150 -54.5,150 -58,150 -61.5,150 -65,135 -65,120 -65,105 -65,90 -65,75 -65,60 -65,45 -65,30 -65,15 -65,0 -65,0 -61.5,0 -58,0 -54.5,0 -51,0 -47.5,0 -44,0 -40.5,0 -37,0 -33.5,0 -30))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 16 Jun 2021 00:00:00 GMT", "description": "We propose to better characterize the role of eddies in wintertime air-sea carbon dioxide (CO2) fluxes in the Indian sector of the Southern Ocean using two autonomous sailing vehicles called Saildrones during austral winter 2021. The Saildrones will carry sensors to directly measure atmospheric and oceanic concentrations of CO2 (pCO2), atmospheric pressure, and wind speed to allow calculation of air-sea CO2 flux at 5-km resolution and similar accuracy to an underway ship-based measurement. The Saildrone data from this mission, a 2019 mission, and BGC Argo float data from 2014\u20132020 will be co-located with eddies derived from satellite altimetry to quantify the relationships between eddies and ocean carbon content. The overall objectives of this project are to determine the relationship between wintertime pCO2 variability and the presence and structure of eddies and to use these relationships to create a better representation of mesoscale variability in Southern Ocean CO2 flux.\r\n", "east": 150.0, "geometry": "POINT(75 -47.5)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; OCEAN MIXED LAYER; Southern Ocean; SHIPS; PH; OCEAN CHEMISTRY; CO2; Argo Float; DISSOLVED GASES; USAP-DC; Saildrone; AMD; Amd/Us", "locations": "Southern Ocean", "north": -30.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Williams, Nancy; Chambers, Don; Lindstrom, Eric; Carter, Brendan", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repositories": null, "science_programs": null, "south": -65.0, "title": "The Role of Cyclonic Upwelling Eddies in Southern Ocean CO2 Flux", "uid": "p0010191", "west": 0.0}, {"awards": "1834986 Ballard, Grant", "bounds_geometry": "POLYGON((165 -77,165.5 -77,166 -77,166.5 -77,167 -77,167.5 -77,168 -77,168.5 -77,169 -77,169.5 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.5 -78,169 -78,168.5 -78,168 -78,167.5 -78,167 -78,166.5 -78,166 -78,165.5 -78,165 -78,165 -77.9,165 -77.8,165 -77.7,165 -77.6,165 -77.5,165 -77.4,165 -77.3,165 -77.2,165 -77.1,165 -77))", "dataset_titles": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "datasets": [{"dataset_uid": "601612", "doi": "10.15784/601612", "keywords": "Aerial Imagery; Aerial Survey; Antarctica; Biota; Geotiff; Penguin; Photo/video; Photo/Video; Population Count; Ross Island; UAV", "people": "Ballard, Grant; Shah, Kunal; Schmidt, Annie", "repository": "USAP-DC", "science_program": null, "title": "Orthomosaics of Ross Island Penguin Colonies 2019 - 2021", "url": "https://www.usap-dc.org/view/dataset/601612"}], "date_created": "Wed, 12 May 2021 00:00:00 GMT", "description": "New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species\u0027 range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential of climate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan.\r\n\r\nAdelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species\u0027 response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges.", "east": 170.0, "geometry": "POINT(167.5 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "UAS; Ross Island; USA/NSF; FIELD INVESTIGATION; AMD; UAV; MARINE ECOSYSTEMS; USAP-DC; Amd/Us; Penguin", "locations": "Ross Island", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ballard, Grant; Schmidt, Annie; Schwager, Mac; McKown, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Does Nest Density Matter? Using Novel Technology to Collect Whole-colony Data on Adelie Penguins.", "uid": "p0010178", "west": 165.0}, {"awards": "1643466 Hollibaugh, James; 1643345 Popp, Brian", "bounds_geometry": "POLYGON((-78.20206667 -64.03195833,-76.785055836 -64.03195833,-75.368045002 -64.03195833,-73.951034168 -64.03195833,-72.534023334 -64.03195833,-71.1170125 -64.03195833,-69.700001666 -64.03195833,-68.282990832 -64.03195833,-66.865979998 -64.03195833,-65.448969164 -64.03195833,-64.03195833 -64.03195833,-64.03195833 -64.554377497,-64.03195833 -65.076796664,-64.03195833 -65.599215831,-64.03195833 -66.121634998,-64.03195833 -66.644054165,-64.03195833 -67.166473332,-64.03195833 -67.688892499,-64.03195833 -68.211311666,-64.03195833 -68.733730833,-64.03195833 -69.25615,-65.448969164 -69.25615,-66.865979998 -69.25615,-68.282990832 -69.25615,-69.700001666 -69.25615,-71.1170125 -69.25615,-72.534023334 -69.25615,-73.951034168 -69.25615,-75.368045002 -69.25615,-76.785055836 -69.25615,-78.20206667 -69.25615,-78.20206667 -68.733730833,-78.20206667 -68.211311666,-78.20206667 -67.688892499,-78.20206667 -67.166473332,-78.20206667 -66.644054165,-78.20206667 -66.121634998,-78.20206667 -65.599215831,-78.20206667 -65.076796664,-78.20206667 -64.554377497,-78.20206667 -64.03195833))", "dataset_titles": "\"Collaborative research: Chemoautotrophy in Antarctic bacterioplankton communities supported by the oxidation of urea-derived nitrogen\"; Expedition data of LMG1801", "datasets": [{"dataset_uid": "200193", "doi": "Not yet assigned", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "\"Collaborative research: Chemoautotrophy in Antarctic bacterioplankton communities supported by the oxidation of urea-derived nitrogen\"", "url": "https://www.bco-dmo.org/project/775717"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}], "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The project addressed fundamental questions regarding the role of nitrification (the conversion of ammonium to nitrate by a two-step process involving two different guilds of microorganisms: ammonia- and nitrite-oxidizers) in the Antarctic marine ecosystem. Specifically, the project evaluated the contribution of carbon fixation supported by energy derived from the oxidation of nitrogen compounds (chemoautotrophy) to the overall supply of organic carbon to the food web of the Southern Ocean. Additionally, the project aimed to determine the significance of the contribution of other sources of reduced nitrogen, specifically organic nitrogen and urea, to nitrification because these contributions may not be assessed by standard protocols. \n\n\u003cbr\u003e\u003cbr\u003eWe quantified the oxidation rates of 15N supplied as ammonium, urea and nitrite, which allowed us to estimate the contribution of urea-derived N and complete nitrification (ammonia to nitrate, N-3 to N+5) to chemoautotrophy in Antarctic coastal waters. We compared these estimates to direct measurements of the incorporation of dissolved inorganic 14C into organic matter in the dark for an independent estimate of chemoautotrophy. We made measurements on samples taken from the major water masses: surface water (~10 m), winter water (35-174 m), circumpolar deep water (175-1000 m) and slope water (\u003e1000 m); on a cruise surveying the continental shelf and slope west of the Antarctic Peninsula in the austral summer of 2018 (LMG18-01). Samples were also taken to measure the concentrations of nitrite, ammonia, urea and polyamines; for qPCR analysis of the abundance of relevant marker genes; and for studies of processes related to the core questions of the study. The project relied on collaboration with the Palmer LTER for ancillary data (bacterioplankton abundance and production, chlorophyll, physical and additional chemical variables). The synergistic activities of this project along with the LTER activities provides a unique opportunity to assess chemoautotrophy in context of the overall ecosystem\u0027s dynamics, including both primary and secondary production processes.\n\u003cbr\u003e\u003cbr\u003eThis project resulted in the training of a postdoctoral researcher and provide undergraduate students opportunities to gain hand-on experience with research on microbial geochemistry. This project contributed substantially to understanding an important aspect of nitrogen cycling and bacterioplankton production in the study area. Both PIs participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of the findings available for posting to the LTER project web site, posting material to web sites at their respective departments, and incorporating material from the study in lectures and seminars presented at their respective institutions. \n", "east": -64.03195833, "geometry": "POINT(-71.1170125 -66.644054165)", "instruments": null, "is_usap_dc": true, "keywords": "Pal-Lter; NITROGEN; SHIPS; USAP-DC; MARINE ECOSYSTEMS; BACTERIA/ARCHAEA; BIOGEOCHEMICAL CYCLES; Amd/Us; West Antarctic Shelf; USA/NSF; AMD", "locations": "West Antarctic Shelf; Pal-Lter", "north": -64.03195833, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Hollibaugh, James T.; Popp, Brian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; R2R", "science_programs": null, "south": -69.25615, "title": "Collaborative Research: Chemoautotrophy in Antarctic Bacterioplankton Communities Supported by the Oxidation of Urea-derived Nitrogen", "uid": "p0010150", "west": -78.20206667}, {"awards": "1341736 Adams, Byron", "bounds_geometry": "POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663000000001 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67045999999999,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38571999999999,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663000000001 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38571999999999,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67045999999999,-177.4099 -84.56828,-177.4099 -84.4661))", "dataset_titles": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains; GenBank accession numbers MN619477 to MN619610; Meteoric 10Be data of soils from the Shackleton Glacier region; Shackleton Glacier region soil water-soluble geochemical data; Shackleton Glacier region water-soluble salt isotopes; Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "datasets": [{"dataset_uid": "601421", "doi": "10.15784/601421", "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "people": "Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "url": "https://www.usap-dc.org/view/dataset/601421"}, {"dataset_uid": "200174", "doi": "10.5883/DS-TAMS", "keywords": null, "people": null, "repository": "Barcode of Life Datasystems (BOLD)", "science_program": null, "title": "Dataset DS-TAMS: Genetic diversity of Collembola from the Transantarctic Mountains", "url": "http://dx.doi.org/10.5883/DS-TAMS"}, {"dataset_uid": "200175", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "GenBank accession numbers MN619477 to MN619610", "url": "https://www.ncbi.nlm.nih.gov/nuccore/MN619477"}, {"dataset_uid": "200258", "doi": "doi:10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Soil invertebrate surveys from the Shackleton Glacier region of Antarctica during the 2017-2018 austral summer", "url": "https://doi.org/10.6073/pasta/7959821e5f6f8d56d94bb6a26873b3ae"}, {"dataset_uid": "601418", "doi": "10.15784/601418", "keywords": "Antarctica; Geochemistry; Shackleton Glacier", "people": "Lyons, W. Berry; Gardner, Christopher B.; Diaz, Melisa A.", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region soil water-soluble geochemical data", "url": "https://www.usap-dc.org/view/dataset/601418"}, {"dataset_uid": "601419", "doi": "10.15784/601419", "keywords": "Antarctica; Geochemistry; Nitrate; Shackleton Glacier; Stable Isotopes; Sulfate; Transantarctic Mountains", "people": "Gardner, Christopher B.; Diaz, Melisa A.; Lyons, W. Berry", "repository": "USAP-DC", "science_program": null, "title": "Shackleton Glacier region water-soluble salt isotopes", "url": "https://www.usap-dc.org/view/dataset/601419"}], "date_created": "Mon, 02 Nov 2020 00:00:00 GMT", "description": "The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.\u003cbr/\u003e\u003cbr/\u003eThe project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI\u0027s institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.", "east": -174.1338, "geometry": "POINT(-175.77185 -84.977)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; LABORATORY; AMD; Amd/Us; USA/NSF; TERRESTRIAL ECOSYSTEMS; Transantarctic Mountains; USAP-DC", "locations": "Transantarctic Mountains", "north": -84.4661, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Adams, Byron; Fierer, Noah; Wall, Diana; Diaz, Melisa A.; Gardner, Christopher B.; Lyons, W. Berry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "Barcode of Life Datasystems (BOLD); EDI; NCBI GenBank; USAP-DC", "science_programs": null, "south": -85.4879, "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "uid": "p0010140", "west": -177.4099}, {"awards": "1542962 Anderson, Robert", "bounds_geometry": "POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57))", "dataset_titles": "Expedition Data of NBP1702; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "datasets": [{"dataset_uid": "200165", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "url": "https://www.bco-dmo.org/dataset/813379/data"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "200166", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ", "url": "https://www.ncdc.noaa.gov/paleo/study/31312"}], "date_created": "Fri, 25 Sep 2020 00:00:00 GMT", "description": "General:\r\nScientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth\u2019s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean that regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. This project was designed test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and the slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement was to be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work was expected to contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. \r\n\r\nTechnical:\r\nThe project added a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that collected sediment cores at locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170\u00b0W. The goal was to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. We proposed to compare the radiocarbon age of foraminifera that inhabited the surface ocean with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms would have been used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it was expected that surface and deep-dwelling foraminifera would exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters outcrop at the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work was to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean\u2019s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarctica. \r\n\r\nUnfortunately, the cores were shipped to the core repository in a horizontal orientation and there was sufficient distortion of the sediment that the radiocarbon ages of benthic foraminifera were uninterpretable. Therefore, we report only the radiocarbon dates for planktonic foraminifera as well as the total counts of elemental relative abundance from X-ray Fluorescence analysis of the cores. In addition, we used the expedition as an opportunity to collect water samples from which dissolved concentrations of long-lived isotope of thorium and protactinium were determined. Results from those analyses showed that lateral transport by isopycnal mixing dominates the supply of Pa to the Southern Ocean. We have also developed a new algorithm to correct for supply of Th by isopycnal mixing and thereby derive estimates of dust flux to the Southern Ocean. \r\n", "east": -169.0, "geometry": "POINT(-170 -60.6)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; SEDIMENT CHEMISTRY; South Pacific Ocean; SHIPS", "locations": "South Pacific Ocean", "north": -57.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Fleisher, Martin; Pavia, Frank", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; NCEI; R2R", "science_programs": null, "south": -64.2, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean", "uid": "p0010130", "west": -171.0}, {"awards": "0125602 Padman, Laurence; 0125252 Padman, Laurence", "bounds_geometry": "POLYGON((-180 -40.231,-144 -40.231,-108 -40.231,-72 -40.231,-36 -40.231,0 -40.231,36 -40.231,72 -40.231,108 -40.231,144 -40.231,180 -40.231,180 -45.2079,180 -50.1848,180 -55.1617,180 -60.1386,180 -65.1155,180 -70.0924,180 -75.0693,180 -80.0462,180 -85.0231,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.0231,-180 -80.0462,-180 -75.0693,-180 -70.0924,-180 -65.1155,-180 -60.1386,-180 -55.1617,-180 -50.1848,-180 -45.2079,-180 -40.231))", "dataset_titles": "Antarctic Tide Gauge Database, version 1; AntTG_Database_Tools; CATS2008: Circum-Antarctic Tidal Simulation version 2008; CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023; pyTMD; TMD_Matlab_Toolbox_v2.5", "datasets": [{"dataset_uid": "601772", "doi": "10.15784/601772", "keywords": "Antarctica; Cryosphere; Inverse Modeling; Model Data; Ocean Currents; Oceans; Sea Surface; Southern Ocean; Tide Model; Tides", "people": "Sutterley, Tyler; Padman, Laurence; Greene, Chad A.; Howard, Susan L.; Erofeeva, Svetlana", "repository": "USAP-DC", "science_program": null, "title": "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023", "url": "https://www.usap-dc.org/view/dataset/601772"}, {"dataset_uid": "200157", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "TMD_Matlab_Toolbox_v2.5", "url": "https://github.com/EarthAndSpaceResearch/TMD_Matlab_Toolbox_v2.5"}, {"dataset_uid": "200158", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "pyTMD", "url": "https://github.com/tsutterley/pyTMD"}, {"dataset_uid": "601235", "doi": "10.15784/601235", "keywords": "Antarctica; Inverse Modeling; Model Data; Ocean Currents; Sea Surface; Tidal Models; Tides", "people": "Padman, Laurence; Erofeeva, Svetlana; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "CATS2008: Circum-Antarctic Tidal Simulation version 2008", "url": "https://www.usap-dc.org/view/dataset/601235"}, {"dataset_uid": "601358", "doi": "10.15784/601358", "keywords": "Antarctica; Oceans; Sea Surface Height; Tide Gauges; Tides", "people": "King, Matt; Padman, Laurence; Howard, Susan L.", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Tide Gauge Database, version 1", "url": "https://www.usap-dc.org/view/dataset/601358"}, {"dataset_uid": "200156", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "AntTG_Database_Tools", "url": "https://github.com/EarthAndSpaceResearch/AntTG_Database_Tools"}], "date_created": "Tue, 07 Jul 2020 00:00:00 GMT", "description": "The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream\u2019s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.\r\n\nThis project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e TIDE GAUGES", "is_usap_dc": true, "keywords": "Tide Gauges; OCEAN CURRENTS; Sea Surface Height; USAP-DC; GLACIER MOTION/ICE SHEET MOTION; Tides; Antarctica; MODELS; FIELD INVESTIGATION", "locations": "Antarctica", "north": -40.231, "nsf_funding_programs": "Arctic System Science; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Howard, Susan L.; Padman, Laurence; Erofeeva, Svetlana; King, Matt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "GitHub; USAP-DC", "science_programs": null, "south": -90.0, "title": "Ocean Tides around Antarctica and in the Southern Ocean", "uid": "p0010116", "west": -180.0}, {"awards": "1745341 Sumner, Dawn", "bounds_geometry": "POLYGON((161.595 -77.527,161.5953 -77.527,161.5956 -77.527,161.5959 -77.527,161.5962 -77.527,161.5965 -77.527,161.5968 -77.527,161.5971 -77.527,161.5974 -77.527,161.5977 -77.527,161.598 -77.527,161.598 -77.5271,161.598 -77.5272,161.598 -77.5273,161.598 -77.5274,161.598 -77.5275,161.598 -77.5276,161.598 -77.5277,161.598 -77.5278,161.598 -77.5279,161.598 -77.528,161.5977 -77.528,161.5974 -77.528,161.5971 -77.528,161.5968 -77.528,161.5965 -77.528,161.5962 -77.528,161.5959 -77.528,161.5956 -77.528,161.5953 -77.528,161.595 -77.528,161.595 -77.5279,161.595 -77.5278,161.595 -77.5277,161.595 -77.5276,161.595 -77.5275,161.595 -77.5274,161.595 -77.5273,161.595 -77.5272,161.595 -77.5271,161.595 -77.527))", "dataset_titles": "GP0191362, Gp0191371; JAAXLU000000000, JAAXLT000000000", "datasets": [{"dataset_uid": "200152", "doi": "", "keywords": null, "people": null, "repository": "IMG Gold", "science_program": null, "title": "GP0191362, Gp0191371", "url": "https://gold.jgi.doe.gov/study?id=Gs0127369"}, {"dataset_uid": "200151", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "JAAXLU000000000, JAAXLT000000000", "url": "https://www.ncbi.nlm.nih.gov/nuccore/JAAXLU000000000"}], "date_created": "Mon, 22 Jun 2020 00:00:00 GMT", "description": "Atmospheric oxygen rose suddenly approximately 2.4 billion years ago after Cyanobacteria evolved the ability to produce oxygen through photosynthesis (oxygenic photosynthesis). This change permanently altered the future of life on Earth, yet little is known about the evolutionary processes leading to it. The Melainabacteria were first discovered in 2013 and are closely related non-photosynthetic relatives of the first group of organisms capable of oxygenic photosynthesis. This project will utilize existing data on metagenomes from microbial mats in Lake Vanda, an ice-covered lake in Antarctica where many sequences of Melainabacteria have been previously identified. \r\n\r\nFrom this genetic information, we identified a new cyanobacterium, named Aurora vandensis, that is sister to all other Cyanobacteria, providing evolutionary insights. In addition, we assessed the metabolic capabilities of the Melainabacteria with good genomic coverage to identify their potential ecological roles. None contain photosynthetic genes, and we are evaluating the evolutionary relationships among the Cyanobacteria and Melainabacteria, particularly with respect to metabolic genes that will allow an advancement in understanding of the evolutionary path that lead to oxygenic photosynthesis on Earth.\r\n\r\nThe project will focus on extracting evolutionary information from the genomic data of Melainabacteria and Sericytochromatia, recently-described groups closely related to but basal to the Cyanobacteria. The characterization of novel members of these groups in samples from Lake Vanda, Antarctica, provide insights into the path and processes involved in the evolution of oxygenic photosynthesis. The research identified a novel cyanobacterial genus that is sister to all other Cyanobacteria, is most closely related to Gloeobacter, and shares evolutionary differences with that genus. Results also show that characterized Melainabacteria lack photosynthesis genes, but their respiration genes provide insight into evolutionary relationships among Melainabacteria and Cyanobacteria. Results provide unexpected constraints. The project focuses on 12 metagenomes, from which Melainabacteria and novel Cyanobacteria bins are annotated and preliminary metabolic pathways will be constructed. The project utilizes full-length sequences of marker genes from across the bacterial domain with a particular focus on taxa that are oxygenic or anoxygenic phototrophs and use the marker genes, to build a rooted \"backbone\" tree. Incomplete or short sequences from the metagenomes are added to the tree using the Evolutionary Placement Algorithm. The researchers built a corresponding phylogenetic tree using a Bayesian framework and compare their topologies. By doing so, the project aims to improve the understanding of the evolution of oxygenic photosynthesis, which caused the most significant change in Earth\u0027s surface chemistry. Specifically, we document a novel and basal cyanobacterium, significantly broader metabolic diversity within the Melainabacteria than has been previously identified, gain significant insights into their metabolic evolution, their evolutionary relationships with the Cyanobacteria, and the evolutionary steps leading to the origin of oxygenic photosynthesis. This research is constraining key evolutionary processes in the origin of oxygenic photosynthesis. It provides the foundation for future studies by indicating where a genomic record of the evolution of oxygenic photosynthesis may be preserved. Results will are being shared with middle school children through the development of scientific lesson plans in collaboration with teachers.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 161.598, "geometry": "POINT(161.5965 -77.5275)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD INVESTIGATION; CYANOBACTERIA (BLUE-GREEN ALGAE); Lake Vanda; LABORATORY; LAKE/POND; Genetic Analysis", "locations": "Lake Vanda", "north": -77.527, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Sumner, Dawn; Eisen, Jonathan; Tazi, Loubna", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "IMG Gold", "repositories": "IMG Gold; NCBI GenBank", "science_programs": null, "south": -77.528, "title": "Evolution of Oxygenic Photosynthesis as Preserved in Melainabacterial Genomes from Lake Vanda, Antarctica", "uid": "p0010112", "west": 161.595}, {"awards": "9615281 Luyendyk, Bruce; 9615282 Siddoway, Christine", "bounds_geometry": "POLYGON((-170 -76,-166.5 -76,-163 -76,-159.5 -76,-156 -76,-152.5 -76,-149 -76,-145.5 -76,-142 -76,-138.5 -76,-135 -76,-135 -76.8,-135 -77.6,-135 -78.4,-135 -79.2,-135 -80,-135 -80.8,-135 -81.6,-135 -82.4,-135 -83.2,-135 -84,-138.5 -84,-142 -84,-145.5 -84,-149 -84,-152.5 -84,-156 -84,-159.5 -84,-163 -84,-166.5 -84,-170 -84,-170 -83.2,-170 -82.4,-170 -81.6,-170 -80.8,-170 -80,-170 -79.2,-170 -78.4,-170 -77.6,-170 -76.8,-170 -76))", "dataset_titles": "Bedrock sample data, Ford Ranges region (Marie Byrd Land); SOAR-WMB Airborne gravity data", "datasets": [{"dataset_uid": "601829", "doi": "10.15784/601829", "keywords": "Antarctica; Cryosphere; Gondwana; Marie Byrd Land; Migmatite", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "url": "https://www.usap-dc.org/view/dataset/601829"}, {"dataset_uid": "601294", "doi": "10.15784/601294", "keywords": "Aerogeophysics; Airborne Gravity; Airplane; Antarctica; Free Air Gravity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Gravimeter; Gravity; Gravity Data; Marie Byrd Land; Potential Field; Ross Sea; Solid Earth", "people": "Bell, Robin", "repository": "USAP-DC", "science_program": null, "title": "SOAR-WMB Airborne gravity data", "url": "https://www.usap-dc.org/view/dataset/601294"}], "date_created": "Fri, 24 Apr 2020 00:00:00 GMT", "description": "This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.", "east": -135.0, "geometry": "POINT(-152.5 -80)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e LGS", "is_usap_dc": true, "keywords": "GRAVITY; USAP-DC; Ross Sea; TECTONICS; Marie Byrd Land", "locations": "Ross Sea; Marie Byrd Land", "north": -76.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Luyendyk, Bruce P.; Siddoway, Christine", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.0, "title": "Air-Ground Study of Tectonics at the Boundary Between the Eastern Ross Embayment and Western Marie Byrd Land, Antarctica: Basement Geology and Structure", "uid": "p0010096", "west": -170.0}, {"awards": "1341661 Near, Thomas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Phylogenomics of Antarctic notothenioid fishes", "datasets": [{"dataset_uid": "601262", "doi": "10.15784/601262", "keywords": "Adaptive Radiation; Antarctica; Fish; Notothenioidei; Phylogeny; Southern Ocean; Speciation", "people": "Near, Thomas; Dornburg, Alex", "repository": "USAP-DC", "science_program": null, "title": "Phylogenomics of Antarctic notothenioid fishes", "url": "https://www.usap-dc.org/view/dataset/601262"}, {"dataset_uid": "601264", "doi": null, "keywords": "Adaptive Radiation; Antarctica; Fish; Notothenioidei; Phylogeny; Southern Ocean; Speciation", "people": "Near, Thomas; Dornburg, Alex", "repository": "USAP-DC", "science_program": null, "title": "Phylogenomics of Antarctic notothenioid fishes", "url": "https://www.usap-dc.org/view/dataset/601264"}], "date_created": "Sat, 29 Feb 2020 00:00:00 GMT", "description": "Understanding how groups of organisms respond to climate change is fundamentally important to assessing the impacts of human activities as well as understanding how past climatic shifts have shaped biological diversity over deep stretches of time. The fishes occupying the near-shore marine habitats around Antarctica are dominated by one group of closely related species called notothenioids. It appears dramatic changes in Antarctic climate were important in the origin and evolutionary diversification of this economically important lineage of fishes. Deposits of fossil fishes in Antarctica that were formed when the continent was experiencing milder temperatures show that the area was home to a much more diverse array of fish lineages. Today the waters of the Southern Ocean are very cold, and often below freezing, but notothenioids fishes exhibit a number of adaptions to live in this harsh set of marine habitats, including the presence of anti-freeze proteins. This research project will collect DNA sequences from hundreds of genes to infer the genealogical relationships of nearly all 124 notothenioid species, and use mathematical techniques to estimate the ages of species and lineages. Knowledge on the timing of evolutionary divergence in notothenioids will allow investigators to assess if timing of previous major climatic shifts in Antarctica are correlated with key events in the formation of the modern Southern Ocean fish fauna. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The project will support educational outreach activities to teenager groups and to the general public through a natural history museum exhibit and other public lectures. It will provide professional training opportunities for graduate students and a postdoctoral research scholar. \u003cbr/\u003e\u003cbr/\u003eAdaptive radiation, where lineages experience high rates of evolutionary diversification coincident with ecological divergence, is mostly studied in island ecosystems. Notothenioids dominate the fish fauna of the Southern Ocean and exhibit antifreeze glycoproteins that allow occupation of the subzero waters. Notothenioids are noted as one of the only examples of adaptive radiation among marine fishes, but the evolutionary history of diversification and radiation into different ecological habitats is poorly understood. This research will generate a species phylogeny (evolutionary history) for nearly all of the 124 recognized notothenioid species to investigate the mechanisms of adaptive radiation in this lineage. The phylogeny is inferred from approximately 350 genes sampled using next generation DNA sequencing and related techniques. Morphometric data are taken for museum specimens to investigate the tempo of morphological diversification and to determine if there are correlations between rates of lineage diversification and the origin of morphological disparity. The patterns of lineage, morphological, and ecological diversification in the notothenioid radiation will be compared to the paleoclimatic record to determine if past instances of global climate change have shaped the evolutionary diversification of this lineage of polar-adapted fishes.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "FISH; Fish; AMD; USA/NSF; Southern Ocean; Amd/Us; NOT APPLICABLE; USAP-DC; MARINE ECOSYSTEMS; Notothenioidei; Phylogeny", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Near, Thomas", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Phylogenomic Study of Adaptive Radiation in Antarctic Fishes", "uid": "p0010087", "west": -180.0}, {"awards": "1743035 Saba, Grace", "bounds_geometry": "POLYGON((164 -72.2,165 -72.2,166 -72.2,167 -72.2,168 -72.2,169 -72.2,170 -72.2,171 -72.2,172 -72.2,173 -72.2,174 -72.2,174 -72.74,174 -73.28,174 -73.82,174 -74.36,174 -74.9,174 -75.44,174 -75.98,174 -76.52,174 -77.06,174 -77.6,173 -77.6,172 -77.6,171 -77.6,170 -77.6,169 -77.6,168 -77.6,167 -77.6,166 -77.6,165 -77.6,164 -77.6,164 -77.06,164 -76.52,164 -75.98,164 -75.44,164 -74.9,164 -74.36,164 -73.82,164 -73.28,164 -72.74,164 -72.2))", "dataset_titles": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; NBP1801 Expedition data; ru32-20180109T0531; Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018; Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "datasets": [{"dataset_uid": "200140", "doi": "", "keywords": null, "people": null, "repository": "ERDDAP", "science_program": null, "title": "ru32-20180109T0531", "url": "http://slocum-data.marine.rutgers.edu/erddap/tabledap/ru32-20180109T0531-profile-sci-delayed.html"}, {"dataset_uid": "200138", "doi": "10.1575/1912/bco-dmo.792385.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from Isaacs-Kid Midwater Trawl (IKMT) hauls from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792385"}, {"dataset_uid": "200139", "doi": "10.1575/1912/bco-dmo.792478.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Grazing rates of Euphausia crystallorophias from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, Jan.-Feb. 2018", "url": "https://www.bco-dmo.org/dataset/792478"}, {"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "200137", "doi": "10.1575/1912/bco-dmo.789299.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Zooplankton abundance from ring net tows from RVIB Nathaniel B. Palmer NBP1801 in the Ross Sea, January 2018", "url": "https://www.bco-dmo.org/dataset/789299"}], "date_created": "Thu, 27 Feb 2020 00:00:00 GMT", "description": "Terra Nova Bay (western Ross Sea, Antarctica) supports dense populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), Antarctic silverfish (Pleuragramma antarcticum), and colonies of Ad\u00e9lie and Emperor penguins that feed primarily on crystal krill and silverfish. Absent from our understanding of the Ross Sea food web is zooplankton and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers and each other. The quantitative linkages between primary producers and the higher trophic levels, specifically, the processes responsible for the regulation of abundance and rates of middle trophic levels dominated by copepods and crystal krill (Euphausia crystallorophias), is virtually unknown. Given that the next century will see extensive changes in the Ross Sea\u2019s ice distributions and oceanography as a result of climate change, understanding the basic controls of zooplankton and silverfish abundance and distribution is essential. \r\nDuring a January \u2013 March 2018 cruise in the western Ross Sea, we deployed a glider equipped with an echo sounder (Acoustic Zooplankton Fish Profiler) that simultaneously measured depth, temperature, conductivity, chlorophyll fluorescence, and dissolved oxygen. Additionally, net tows, mid-water trawls, and crystal krill grazing experiments were conducted. Our study provided the first glider-based acoustic assessment of simultaneous distributions of multiple trophic levels in the Ross Sea, from which predator-prey interactions and the relationships between organisms and physics drivers (sea ice, circulation features) were investigated. We illustrated high variability in ocean physics, phytoplankton biomass, and crystal krill biomass and aggregation over time and between locations within Terra Nova Bay. Biomass of krill was highest in locations characterized by deeper mixed layers and highest integrated chlorophyll concentrations. Krill aggregations were consistently located at depth well below the mixed layer and chlorophyll maximum. Experiments investigating krill grazing, in combination with krill depth distributions relative to chlorophyll biomass, illuminate high krill grazing rates could be attributed to the occupation of a unique niche whereby they are opportunistically feeding on sinking high concentrations of detritus derived from surface blooms. The information on the abundance, distribution, and interactions of key species in multiple trophic levels resulting from this project provide a conceptual background to understand how this ecosystem might respond to future conditions under climate change.\r\nOur project tested the capability of a multi-frequency echo sounder on a glider for the first time. The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will pave the way for cost-effective, automated examination of entire food webs and ecosystems in regions all over the global ocean. A wide range of users including academic and government scientists, ecosystem-based fisheries managers, and monitoring programs including those conducted by OOI, IOOS, and NOAA will benefit from this project. This project also provided the opportunity to focus on broadening participation in research and articulating the societal benefits through education and innovative outreach programs. A data set from this project is being included in the new NSF-funded Polar CAP initiative, that will be used by a diverse and young audience to increase understanding of the polar system and the ability to reason with data. Finally, this project provided a unique field opportunity and excellent hand-on training for a post-doctoral researcher, a graduate student, and two undergraduate students.", "east": 174.0, "geometry": "POINT(169 -74.9)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; FISH; Terra Nova Bay; AQUATIC SCIENCES; PELAGIC; PLANKTON; USAP-DC; ANIMALS/VERTEBRATES", "locations": "Terra Nova Bay", "north": -72.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Saba, Grace", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ERDDAP", "repositories": "BCO-DMO; ERDDAP; R2R", "science_programs": null, "south": -77.6, "title": "Using Bio-acoustics on an Autonomous Surveying Platform for the Examination of Phytoplankton-zooplankton and Fish Interactions in the Western Ross Sea", "uid": "p0010086", "west": 164.0}, {"awards": "1341432 Brzezinski, Mark; 1341464 Robinson, Rebecca", "bounds_geometry": "POLYGON((-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-169 -54,-168 -54,-167 -54,-166 -54,-165 -54,-165 -55.3,-165 -56.6,-165 -57.9,-165 -59.2,-165 -60.5,-165 -61.8,-165 -63.1,-165 -64.4,-165 -65.7,-165 -67,-166 -67,-167 -67,-168 -67,-169 -67,-170 -67,-171 -67,-172 -67,-173 -67,-174 -67,-175 -67,-175 -65.7,-175 -64.4,-175 -63.1,-175 -61.8,-175 -60.5,-175 -59.2,-175 -57.9,-175 -56.6,-175 -55.3,-175 -54))", "dataset_titles": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments; Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S; Expedition Data of NBP1702; Particle composition measurements from along 170\u00b0W between 67-54\u00b0S; Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean; Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "datasets": [{"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}, {"dataset_uid": "601576", "doi": "10.15784/601576", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Diatom; Diatom Bound; Lithogenic Silica; Marine Geoscience; NBP1702; Nitrogen Isotopes; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Brzezinski, Mark; Jones, Janice L.; Closset, Ivia; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": " Particulate silicon and nitrogen concentrations and isotopic composition measurements in McLane pump profiles from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601576"}, {"dataset_uid": "601562", "doi": "10.15784/601562", "keywords": "Antarctica; Biogenic Silica; Chemistry:sediment; Chemistry:Sediment; Lithogenic Silica; Marine Geoscience; NBP1702; Pore Water Biogeochemistry; Sediment; Silicon Cycle; Silicon Stable Isotope; Southern Ocean", "people": "Brzezinski, Mark; Closset, Ivia; Jones, Janice L.", "repository": "USAP-DC", "science_program": null, "title": "Silicon concentration and isotopic composition measurements in pore waters and sediments from 67\u00b0S to 55\u00b0S latitude in the Pacific Sector of the Southern Ocean", "url": "https://www.usap-dc.org/view/dataset/601562"}, {"dataset_uid": "601523", "doi": "10.15784/601523", "keywords": "Antarctica; Biota; Carboy Growouts; Diatom; Diatom Assemblage Data; NBP1702; Oceans; R/v Nathaniel B. Palmer; Southern Ocean; Southern Ocean Summer", "people": "Jones, Colin; Robinson, Rebecca; Riesselman, Christina; Robinson, Rebecca ", "repository": "USAP-DC", "science_program": null, "title": "Diatom assemblage counts from NBP17-02 shipboard carboy experiments", "url": "https://www.usap-dc.org/view/dataset/601523"}, {"dataset_uid": "601522", "doi": "10.15784/601522", "keywords": "Antarctica; Nitrogen Isotopes; Oceans; Paleoproxies; Southern Ocean", "people": "Robinson, Rebecca; Closset, Ivia; Jones, Colin; Kelly, Roger; Brzezinski, Mark; Robinson, Rebecca ; Riesselman, Christina", "repository": "USAP-DC", "science_program": null, "title": "Surface Southern Ocean community growouts to evaluate the diatom bound N isotope proxy", "url": "https://www.usap-dc.org/view/dataset/601522"}, {"dataset_uid": "601269", "doi": "10.15784/601269", "keywords": "Antarctica; Chlorophyll; Southern Ocean", "people": "Brzezinski, Mark; Robinson, Rebecca", "repository": "USAP-DC", "science_program": null, "title": "Dissolved nutrient profiles from along 170\u00b0W between 67 and 54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601269"}, {"dataset_uid": "601276", "doi": "10.15784/601276", "keywords": "Antarctica; Biogenic Silica; Nitrogen Isotopes; Southern Ocean", "people": "Robinson, Rebecca; Brzezinski, Mark", "repository": "USAP-DC", "science_program": null, "title": "Particle composition measurements from along 170\u00b0W between 67-54\u00b0S", "url": "https://www.usap-dc.org/view/dataset/601276"}], "date_created": "Wed, 26 Feb 2020 00:00:00 GMT", "description": "The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience.\r\n\r\nThis project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175\u00b0W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.", "east": -165.0, "geometry": "POINT(-170 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "Southern Ocean; AMD; NITROGEN ISOTOPES; R/V NBP; NSF/USA; NUTRIENTS; USAP-DC; Amd/Us", "locations": "Southern Ocean", "north": -54.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Robinson, Rebecca; Brzezinski, Mark", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Proposal: A Field and Laboratory Examination of the Diatom N and Si Isotope Proxies: Implications for Assessing the Southern Ocean Biological Pump", "uid": "p0010083", "west": -175.0}, {"awards": "1644027 Wallace, Paul; 1644020 Sims, Kenneth W.; 1644013 Gaetani, Glenn", "bounds_geometry": "POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))", "dataset_titles": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines; G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles; G170 Sample Locations Ross Island \u0026 Discovery Province; G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles; G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes; Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "datasets": [{"dataset_uid": "601507", "doi": "10.15784/601507", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "url": "https://www.usap-dc.org/view/dataset/601507"}, {"dataset_uid": "601508", "doi": "10.15784/601508", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "url": "https://www.usap-dc.org/view/dataset/601508"}, {"dataset_uid": "601250", "doi": "10.15784/601250", "keywords": "Antarctica; Hut Point Peninsula; Mt. Bird; Mt. Morning; Mt. Terror; Ross Island; Turks Head; Turtle Rock", "people": "Pamukcu, Ayla; Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "url": "https://www.usap-dc.org/view/dataset/601250"}, {"dataset_uid": "601505", "doi": "10.15784/601505", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Electron Microprobe Analyses; Olivine; Petrography; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines", "url": "https://www.usap-dc.org/view/dataset/601505"}, {"dataset_uid": "601506", "doi": "10.15784/601506", "keywords": "Antarctica; Ion Mass Spectrometry; Ross Island; Volatiles", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles", "url": "https://www.usap-dc.org/view/dataset/601506"}, {"dataset_uid": "601504", "doi": "10.15784/601504", "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "url": "https://www.usap-dc.org/view/dataset/601504"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth\u0027s surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers\u0027 involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.\r\n\r\n", "east": 169.6, "geometry": "POINT(166.85 -77.775)", "instruments": null, "is_usap_dc": true, "keywords": "Tephra; Turtle Rock; USA/NSF; Amd/Us; LABORATORY; AMD; Ross Island; Turks Head; Hut Point Peninsula; LAVA SPEED/FLOW; USAP-DC; Mt. Morning; Mt. Terror; ROCKS/MINERALS/CRYSTALS; Mt. Bird; FIELD INVESTIGATION", "locations": "Ross Island; Mt. Morning; Mt. Bird; Mt. Terror; Hut Point Peninsula; Turtle Rock; Turks Head", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "uid": "p0010081", "west": 164.1}, {"awards": "1443578 Schmidt, Steven", "bounds_geometry": "POLYGON((161.5 -77.5,161.7 -77.5,161.9 -77.5,162.1 -77.5,162.3 -77.5,162.5 -77.5,162.7 -77.5,162.9 -77.5,163.1 -77.5,163.3 -77.5,163.5 -77.5,163.5 -77.53,163.5 -77.56,163.5 -77.59,163.5 -77.62,163.5 -77.65,163.5 -77.68,163.5 -77.71,163.5 -77.74,163.5 -77.77,163.5 -77.8,163.3 -77.8,163.1 -77.8,162.9 -77.8,162.7 -77.8,162.5 -77.8,162.3 -77.8,162.1 -77.8,161.9 -77.8,161.7 -77.8,161.5 -77.8,161.5 -77.77,161.5 -77.74,161.5 -77.71,161.5 -77.68,161.5 -77.65,161.5 -77.62,161.5 -77.59,161.5 -77.56,161.5 -77.53,161.5 -77.5))", "dataset_titles": "16S and 18S amplicon sequencing of Antarctic cryoconite holes; Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291); Metadata from samples (in the process of submitting to EDI; will update with DOI once completed); Microbial species-area relationships in Antarctic cryoconite holes; Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "datasets": [{"dataset_uid": "200280", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Soil microbial communities of a mountain landscape, McMurdo Dry Valleys, Antarctica", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA721735/"}, {"dataset_uid": "200281", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial species-area relationships in Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA668398/"}, {"dataset_uid": "200279", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Metadata from samples (in the process of submitting to EDI; will update with DOI once completed)", "url": "https://github.com/pacificasommers/Cryoconite-metadata"}, {"dataset_uid": "200084", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genomes of Antarctic ssDNA viruses (GenBank accession numbers MN311489-MN311492 and MN328267-MN328291)", "url": ""}, {"dataset_uid": "200081", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "16S and 18S amplicon sequencing of Antarctic cryoconite holes", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA480849/"}], "date_created": "Fri, 01 Nov 2019 00:00:00 GMT", "description": "Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change.\u003cbr/\u003e\u003cbr/\u003eIt is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.", "east": 163.5, "geometry": "POINT(162.5 -77.65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "GLACIERS; Antarctica; USAP-DC; FIELD INVESTIGATION", "locations": "Antarctica", "north": -77.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Schmidt, Steven; Cawley, Kaelin; Fountain, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "NCBI GenBank", "repositories": "GitHub; NCBI GenBank", "science_programs": null, "south": -77.8, "title": "Collaborative Research: Stochasticity and Cryoconite Community Assembly and Function", "uid": "p0010063", "west": 161.5}, {"awards": "1443566 Bay, Ryan", "bounds_geometry": "POINT(90 -90)", "dataset_titles": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "datasets": [{"dataset_uid": "601222", "doi": "10.15784/601222", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Data; Ice Core Records; Paleoclimate; Snow/ice; Snow/Ice; SPICEcore", "people": "Bay, Ryan", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Laser Dust Logging of the South Pole Ice Core (SPICE)", "url": "https://www.usap-dc.org/view/dataset/601222"}], "date_created": "Thu, 31 Oct 2019 00:00:00 GMT", "description": "This award supports the deployment and analysis of data from an oriented laser dust logger in the South Pole ice core borehole to complement study of the ice core record. Before the core is even processed, data from the borehole probe will immediately determine the depth-age relationship, augment 3D mapping of South Pole stratigraphy, aid in searches for the oldest ice in Antarctica, and reveal layers of volcanic or extraterrestrial fallout. Regarding the intellectual merit, the oriented borehole log will be essential for investigating features in the ice sheet that may have implications for ice core chronology, ice flow, ice sheet physical properties and stability in response to climate change. The tools and techniques developed in this program have applications in glaciology, biogeoscience and exploration of other planetary bodies. The program aims for a deeper understanding of the consequences and causes of abrupt climate change. The broader impacts of the project are that it will include outreach and education, providing a broad training ground for students and post-docs. Data and metadata will be made available through data centers and repositories such as the National Snow and Ice Data Center web portal. \u003cbr/\u003e\u003cbr/\u003eThe laser dust logger detects reproducible paleoclimate features at sub-centimeter depth scale. Dust logger data are being used for synchronizing records and dating any site on the continent, revealing accumulation anomalies and episodes of rapid ice sheet thinning, and discovering particulate horizons of special interest. In this project we will deploy a laser dust logger equipped with a magnetic compass to find direct evidence of preferentially oriented dust. Using optical scattering measurements from IceCube calibration studies at South Pole and borehole logs at WAIS Divide, we have detected a persistent anisotropy correlated with flow and crystal fabric which suggests that the majority of insoluble particulates must be located within ice grains. With typical concentrations of parts-per-billion, little is known about the location of impurities within the polycrystalline structure of polar ice. While soluble impurities are generally thought to concentrate at inter-grain boundaries and determine electrical conductivity, the fate of insoluble particulates is much less clear, and microscopic examinations are extremely challenging. These in situ borehole measurements will help to unravel intimate relationships between impurities, flow, and crystal fabric. Data from this project will further develop a unique record of South Pole surface roughness as a proxy for paleowind and provide new insights for understanding glacial radar propagation. This project has field work in Antarctica.", "east": 90.0, "geometry": "POINT(90 -90)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; ICE CORE RECORDS; USAP-DC", "locations": "Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bay, Ryan", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Laser Dust Logging of a South Pole Ice Core", "uid": "p0010061", "west": 90.0}, {"awards": "1644073 DiTullio, Giacomo; 1643684 Saito, Mak", "bounds_geometry": "POLYGON((-180 -72,-173.6 -72,-167.2 -72,-160.8 -72,-154.4 -72,-148 -72,-141.6 -72,-135.2 -72,-128.8 -72,-122.4 -72,-116 -72,-116 -72.7,-116 -73.4,-116 -74.1,-116 -74.8,-116 -75.5,-116 -76.2,-116 -76.9,-116 -77.6,-116 -78.3,-116 -79,-122.4 -79,-128.8 -79,-135.2 -79,-141.6 -79,-148 -79,-154.4 -79,-160.8 -79,-167.2 -79,-173.6 -79,180 -79,178 -79,176 -79,174 -79,172 -79,170 -79,168 -79,166 -79,164 -79,162 -79,160 -79,160 -78.3,160 -77.6,160 -76.9,160 -76.2,160 -75.5,160 -74.8,160 -74.1,160 -73.4,160 -72.7,160 -72,162 -72,164 -72,166 -72,168 -72,170 -72,172 -72,174 -72,176 -72,178 -72,-180 -72))", "dataset_titles": "Algal pigment concentrations from the Ross Sea; Biogenic silica concentrations from the Ross Sea; NBP1801 Expedition data; Nutrients from NBP18-01 CICLOPS", "datasets": [{"dataset_uid": "200056", "doi": "10.7284/907753", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP1801 Expedition data", "url": "https://www.rvdata.us/search/cruise/NBP1801"}, {"dataset_uid": "601205", "doi": "10.15784/601205", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Chlorophyll; Chromatography; Liquid Chromatograph; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Seawater Measurements; Southern Ocean; Water Measurements; Water Samples", "people": "Ditullio, Giacomo", "repository": "USAP-DC", "science_program": null, "title": "Algal pigment concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601205"}, {"dataset_uid": "601428", "doi": "10.15784/601428", "keywords": "Amundsen Sea; Antarctica; NBP1801; Nitrate; Nitrite; Nutrients; Phosphate; Ross Sea; R/v Nathaniel B. Palmer; Silicic Acid; Terra Nova Bay", "people": "Saito, Mak", "repository": "USAP-DC", "science_program": null, "title": "Nutrients from NBP18-01 CICLOPS", "url": "https://www.usap-dc.org/view/dataset/601428"}, {"dataset_uid": "601225", "doi": "10.15784/601225", "keywords": "Antarctica; Biogenic Silica; Biogenic Silica Concentrations; Chemistry:Water; Geochemistry; NBP1801; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Southern Ocean; Spectroscopy; Water Measurements; Water Samples", "people": "Ditullio, Giacomo; Schanke, Nicole", "repository": "USAP-DC", "science_program": null, "title": "Biogenic silica concentrations from the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/601225"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. \u003cbr/\u003e\u003cbr/\u003eThe study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.", "east": 160.0, "geometry": "POINT(-158 -75.5)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; NBP1801; Amd/Us; USA/NSF; USAP-DC; NUTRIENTS; PIGMENTS; CHLOROPHYLL; R/V NBP; Ross Sea; AMD", "locations": "Ross Sea", "north": -72.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DiTullio, Giacomo; Lee, Peter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -79.0, "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "uid": "p0010045", "west": -116.0}, {"awards": "1401489 Sigman, Daniel", "bounds_geometry": "POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45))", "dataset_titles": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age; Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.; Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.; GOSHIP section IO8S and P18S", "datasets": [{"dataset_uid": "200051", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age", "url": "https://www.pnas.org/content/suppl/2017/03/14/1615718114.DCSupplemental"}, {"dataset_uid": "200048", "doi": "doi.pangaea.de/10.1594/PANGAEA.891436.", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.", "url": "https://doi.pangaea.de/10.1594/PANGAEA.891436"}, {"dataset_uid": "200049", "doi": "doi.org/10.1594/PANGAEA.848271", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.", "url": "https://doi.org/10.1594/PANGAEA.848271"}, {"dataset_uid": "200050", "doi": "", "keywords": null, "people": null, "repository": "CLIVAR", "science_program": null, "title": "GOSHIP section IO8S and P18S", "url": "https://cchdo.ucsd.edu/"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "ABSTRACT\u003cbr/\u003eIntellectual Merit:\u003cbr/\u003eThe high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (\u0026#948;15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; South Pacific Ocean; USAP-DC; NOT APPLICABLE", "locations": "South Pacific Ocean", "north": -45.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sigman, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "Publication", "repositories": "CLIVAR; PANGAEA; Publication", "science_programs": null, "south": -70.0, "title": "High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean", "uid": "p0010046", "west": -180.0}, {"awards": "1744645 Young, Jodi", "bounds_geometry": "POLYGON((-64.4 -64.2,-64.38 -64.2,-64.36 -64.2,-64.34 -64.2,-64.32 -64.2,-64.3 -64.2,-64.28 -64.2,-64.26 -64.2,-64.24 -64.2,-64.22 -64.2,-64.2 -64.2,-64.2 -64.26,-64.2 -64.32,-64.2 -64.38,-64.2 -64.44,-64.2 -64.5,-64.2 -64.56,-64.2 -64.62,-64.2 -64.68,-64.2 -64.74,-64.2 -64.8,-64.22 -64.8,-64.24 -64.8,-64.26 -64.8,-64.28 -64.8,-64.3 -64.8,-64.32 -64.8,-64.34 -64.8,-64.36 -64.8,-64.38 -64.8,-64.4 -64.8,-64.4 -64.74,-64.4 -64.68,-64.4 -64.62,-64.4 -64.56,-64.4 -64.5,-64.4 -64.44,-64.4 -64.38,-64.4 -64.32,-64.4 -64.26,-64.4 -64.2))", "dataset_titles": "Dataset: Particulate Organic Carbon and Particulate Nitrogen; Dataset: Photosynthetic Pigments; Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume; Sea-ice diatom compatible solute shifts", "datasets": [{"dataset_uid": "200377", "doi": "10.26008/1912/bco-dmo.913222.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Photosynthetic Pigments", "url": "https://www.bco-dmo.org/dataset/913222"}, {"dataset_uid": "200376", "doi": "10.26008/1912/bco-dmo.913566.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Particulate Organic Carbon and Particulate Nitrogen", "url": "https://www.bco-dmo.org/dataset/913566"}, {"dataset_uid": "200322", "doi": "10.21228/M84386", "keywords": null, "people": null, "repository": "Metabolomics workbench", "science_program": null, "title": "Sea-ice diatom compatible solute shifts", "url": "https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study\u0026StudyID=ST001393"}, {"dataset_uid": "200378", "doi": "10.26008/1912/bco-dmo.913655.1", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Dataset: Physical Profiles of Temperature, Salinity, and Brine Volume", "url": "https://www.bco-dmo.org/dataset/913655"}], "date_created": "Tue, 23 Jul 2019 00:00:00 GMT", "description": "Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThere is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -64.2, "geometry": "POINT(-64.3 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; SHIPS; DIATOMS; Antarctic Peninsula", "locations": "Antarctic Peninsula", "north": -64.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Young, Jodi; Deming, Jody", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; Metabolomics workbench", "science_programs": null, "south": -64.8, "title": "Spring Blooms of Sea Ice Algae Along the Western Antarctic Peninsula: Effects of Warming and Freshening on Cell Physiology and Biogeochemical Cycles.", "uid": "p0010039", "west": -64.4}, {"awards": "1543267 Brook, Edward J.; 1543229 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Multi-site ice core Krypton stable isotope ratios; Noble Gas Data from recent ice in Antarctica for 86Kr problem", "datasets": [{"dataset_uid": "601195", "doi": "10.15784/601195", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "people": "Shackleton, Sarah; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "url": "https://www.usap-dc.org/view/dataset/601195"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Shackleton, Sarah; Brook, Edward J.; Etheridge, David; Buizert, Christo; Bereiter, Bernhard; Baggenstos, Daniel; Severinghaus, Jeffrey P.; Bertler, Nancy; Pyne, Rebecca L.; Mulvaney, Robert; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Bereiter, Bernhard; Mosley-Thompson, Ellen; Mulvaney, Robert; Pyne, Rebecca L.; Bertler, Nancy; Etheridge, David; Baggenstos, Daniel; Brook, Edward J.; Severinghaus, Jeffrey P.; Shackleton, Sarah; Buizert, Christo", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICEcore; WAIS Divide; WAIS Divide Ice Core", "people": "Baggenstos, Daniel; Etheridge, David; Severinghaus, Jeffrey P.; Bereiter, Bernhard; Buizert, Christo; Pyne, Rebecca L.; Bertler, Nancy; Mulvaney, Robert; Brook, Edward J.; Mosley-Thompson, Ellen; Shackleton, Sarah", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}], "date_created": "Wed, 10 Jul 2019 00:00:00 GMT", "description": "Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess.\r\nIntellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. \r\n\r\nBroader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USA/NSF; FIRN; ICE CORE RECORDS; USAP-DC; Greenland; Xenon; Noble Gas; Ice Core; Amd/Us; Antarctica; AMD; LABORATORY; Krypton; ATMOSPHERIC PRESSURE", "locations": "Greenland; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "uid": "p0010037", "west": -180.0}, {"awards": "1745053 Salvatore, Mark; 1744785 Barrett, John; 1744849 Sokol, Eric", "bounds_geometry": "POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "datasets": [{"dataset_uid": "200344", "doi": "10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "url": "https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.263.1"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys.\r\n\r\nThe goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal will be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.43, "geometry": "POINT(163.175 -77.615)", "instruments": null, "is_usap_dc": true, "keywords": "RIVERS/STREAM; CYANOBACTERIA (BLUE-GREEN ALGAE); USAP-DC; Taylor Valley; INFRARED IMAGERY; WORLDVIEW-2; WORLDVIEW-3; Antarctica; FIELD INVESTIGATION; Amd/Us; ACTIVE LAYER", "locations": "Antarctica; Taylor Valley", "north": -77.56, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Barrett, John; Sokol, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-2; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-3", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.67, "title": "COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation", "uid": "p0010036", "west": 162.92}, {"awards": "1341476 Moran, Amy", "bounds_geometry": "POINT(166.666 -77.84999)", "dataset_titles": "Cuticle morphology and oxygen gradients of Antarctic sea spiders; Physiological and biochemical measurements on Pycnogonida from McMurdo Sound; Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts; Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "datasets": [{"dataset_uid": "601149", "doi": "10.15784/601149", "keywords": "Antarctica; Barnacles; Biota; Cuticle; Epibionts; Fouling; Grooming; Locomotion; Oxygen; Respiration", "people": "Lane, Steven J.; Woods, H. Arthur; Shishido, Caitlin; Moran, Amy; Tobalske, Bret", "repository": "USAP-DC", "science_program": null, "title": "Physiological, biomechanical, and locomotory data on Antarctic sea spiders fouled and unfouled with epibionts", "url": "https://www.usap-dc.org/view/dataset/601149"}, {"dataset_uid": "601142", "doi": "10.15784/601142", "keywords": "Antarctica; Biomechanics; Biota; Cold Adaptation; McMurdo Sound; Metabolism; Oceans; Oxygen; Pycnogonida; Southern Ocean", "people": "Tobalske, Bret; Woods, H. Arthur; Moran, Amy", "repository": "USAP-DC", "science_program": null, "title": "Physiological and biochemical measurements on Pycnogonida from McMurdo Sound", "url": "https://www.usap-dc.org/view/dataset/601142"}, {"dataset_uid": "601145", "doi": "10.15784/601145", "keywords": "Antarctica; Benthos; Biota; Body Size; Cuticle; McMurdo Sound; Microelectrodes; Microscope; Microscopy; Oxygen; Pore; Respiration; Sea Spider; Southern Ocean", "people": "Arthur Woods, H.; Woods, H. Arthur", "repository": "USAP-DC", "science_program": null, "title": "Cuticle morphology and oxygen gradients of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601145"}, {"dataset_uid": "601150", "doi": "10.15784/601150", "keywords": "Antarctica; Biota; Body Size; Cuticle; Metabolic Rate; Oxygen; Polar Gigantism; Respiration; Size Limits; Southern Ocean; Temperature", "people": "Moran, Amy; Lane, Steven J.; Woods, H. Arthur; Shishido, Caitlin", "repository": "USAP-DC", "science_program": null, "title": "Size scaling of oxygen physiology and metabolic rate of Antarctic sea spiders", "url": "https://www.usap-dc.org/view/dataset/601150"}], "date_created": "Mon, 10 Dec 2018 00:00:00 GMT", "description": "Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as \u0027polar gigantism.\u0027 Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.\u003cbr/\u003e\u003cbr/\u003eThe prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.", "east": 166.666, "geometry": "POINT(166.666 -77.84999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE", "locations": null, "north": -77.84999, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Moran, Amy; Woods, H. Arthur", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.84999, "title": "Collaborative Research: Body Size, Oxygen, and Vulnerability to Climate Change in Antarctic Pycnogonida", "uid": "p0000007", "west": 166.666}, {"awards": "1245915 Ray, Laura", "bounds_geometry": null, "dataset_titles": "Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone", "datasets": [{"dataset_uid": "601102", "doi": "10.15784/601102", "keywords": "Antarctica; Firn; Folds; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Snow/ice; Snow/Ice", "people": "Kaluzienski, Lynn; Arcone, Steven; Ray, Laura; Walker, Ben; Lever, Jim; Koons, Peter", "repository": "USAP-DC", "science_program": null, "title": "Ground Penetrating Radar Grid Survey of the McMurdo Shear Zone", "url": "https://www.usap-dc.org/view/dataset/601102"}], "date_created": "Thu, 27 Sep 2018 00:00:00 GMT", "description": "This award supports an integrated field observation, remote sensing and numerical modeling study of the McMurdo Shear Zone (SZ). The SZ is a 5-10 km wide strip of heavily crevassed ice that separates the McMurdo and Ross ice shelves, and is an important region of lateral support for the Ross Ice Shelf. Previous radar and remote sensing studies reveal an enigmatic picture of the SZ in which crevasses detected at depth have no apparent surface expression, and have orientations which are possibly inconsistent with the observed flow field. In the proposed work, we seek to test the hypothesis that the SZ is a zone of chaotic Lagrangian mixing with (intersecting) buried crevasses which leads to rheological instability, potentially allowing large scale velocity discontinuities. The work will involve detailed field-based observations of crevasse distributions and structure using ground-penetrating radar, and GPS and remote sensing observations of the flow and stress field in the SZ. Because of the hazardous nature of the SZ, the radar surveys will be conducted largely with the aid of a lightweight robotic vehicle. Observations will be used to develop a finite element model of ice shelf shear margin behavior. The intellectual merit of this project is an increased understanding of ice shelf shear margin dynamics. Shear margins play a key role in ice shelf stability, and ice shelves in turn modulate the flux of ice from the ice sheet across the grounding line to the ocean. Insights from this project will improve large-scale models being developed to predict ice sheet evolution and future rates of sea level rise, which are topics of enormous societal concern. The broader impacts of the project include an improved basis for US Antarctic Program logistics planning as well as numerous opportunities to engage K-12 students in scientific discovery. Intensified crevassing in the shear zone between the Ross and McMurdo ice shelves would preclude surface crossing by heavy traverse vehicles which would lead to increased costs of delivering fuel to South Pole and a concomitant loss of flight time provided by heavy-lift aircraft for science missions on the continent. Our multidisciplinary research combining glaciology, numerical modeling, and robotics engineering is an engaging way to show how robotics can assist scientists in collecting hazardous field measurements. Our outreach activities will leverage Dartmouth\u0027s current NSF GK-12 program, build on faculty-educator relationships established during University of Maine\u0027s recent GK-12 program, and incorporate project results into University of Maine\u0027s IDEAS initiative, which integrates computational modeling with the existing science curriculum at the middle school level. This award has field work in Antarctica.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Ray, Laura", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Flow and Fracture Dynamics in an Ice Shelf Lateral Margin: Observations and Modeling of the McMurdo Shear Zone", "uid": "p0000701", "west": null}, {"awards": "1341585 Sorlien, Christopher", "bounds_geometry": "POLYGON((-180 -73.33,-179.1 -73.33,-178.2 -73.33,-177.3 -73.33,-176.4 -73.33,-175.5 -73.33,-174.6 -73.33,-173.7 -73.33,-172.8 -73.33,-171.9 -73.33,-171 -73.33,-171 -73.864,-171 -74.398,-171 -74.932,-171 -75.466,-171 -76,-171 -76.534,-171 -77.068,-171 -77.602,-171 -78.136,-171 -78.67,-171.9 -78.67,-172.8 -78.67,-173.7 -78.67,-174.6 -78.67,-175.5 -78.67,-176.4 -78.67,-177.3 -78.67,-178.2 -78.67,-179.1 -78.67,180 -78.67,178.5 -78.67,177 -78.67,175.5 -78.67,174 -78.67,172.5 -78.67,171 -78.67,169.5 -78.67,168 -78.67,166.5 -78.67,165 -78.67,165 -78.136,165 -77.602,165 -77.068,165 -76.534,165 -76,165 -75.466,165 -74.932,165 -74.398,165 -73.864,165 -73.33,166.5 -73.33,168 -73.33,169.5 -73.33,171 -73.33,172.5 -73.33,174 -73.33,175.5 -73.33,177 -73.33,178.5 -73.33,-180 -73.33))", "dataset_titles": "Ross Sea unconformities digital grids in depth and two-way time", "datasets": [{"dataset_uid": "601098", "doi": "10.15784/601098", "keywords": "Antarctica; Continental Margin; Geology/Geophysics - Other; Marine Geoscience; Miocene; Oligocene; Seismic Reflection", "people": "Wilson, Douglas S.; Sorlien, Christopher", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea unconformities digital grids in depth and two-way time", "url": "https://www.usap-dc.org/view/dataset/601098"}], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "Intellectual Merit:\u003cbr/\u003eThis project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.", "east": -171.0, "geometry": "POINT(177 -76)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -73.33, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sorlien, Christopher; Luyendyk, Bruce P.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.67, "title": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea", "uid": "p0000271", "west": 165.0}, {"awards": "2023425 Schofield, Oscar; 1440435 Ducklow, Hugh", "bounds_geometry": "POLYGON((-80 -63,-78.3 -63,-76.6 -63,-74.9 -63,-73.2 -63,-71.5 -63,-69.8 -63,-68.1 -63,-66.4 -63,-64.7 -63,-63 -63,-63 -63.8,-63 -64.6,-63 -65.4,-63 -66.2,-63 -67,-63 -67.8,-63 -68.6,-63 -69.4,-63 -70.2,-63 -71,-64.7 -71,-66.4 -71,-68.1 -71,-69.8 -71,-71.5 -71,-73.2 -71,-74.9 -71,-76.6 -71,-78.3 -71,-80 -71,-80 -70.2,-80 -69.4,-80 -68.6,-80 -67.8,-80 -67,-80 -66.2,-80 -65.4,-80 -64.6,-80 -63.8,-80 -63))", "dataset_titles": "Environmental Data Initiative Repository, Supporting LTER; Expedition Data; Expedition data of LMG1501; Expedition data of LMG1601; Expedition data of LMG1701; Expedition data of LMG1801; Expedition data of LMG1901; Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae); UAV images and video of whales in the Antarctic Penisula during LMG1802", "datasets": [{"dataset_uid": "000246", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "Environmental Data Initiative Repository, Supporting LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=PAL"}, {"dataset_uid": "200124", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1801", "url": "https://www.rvdata.us/search/cruise/LMG1801"}, {"dataset_uid": "601811", "doi": null, "keywords": "Antarctica; Bellingshausen Sea; Cryosphere; Southern Ocean", "people": "Steinberg, Deborah; McDowell, Jan; Biesack, Ellen; Cheng, Chi-Hing; Hilton, Eric; Corso, Andrew; Desvignes, Thomas", "repository": "USAP-DC", "science_program": "LTER", "title": "Metadata associated with the description of Akarotaxis gouldae n. sp. (Bathydraconidae)", "url": "https://www.usap-dc.org/view/dataset/601811"}, {"dataset_uid": "200125", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1901", "url": "https://www.rvdata.us/search/cruise/LMG1901"}, {"dataset_uid": "200123", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1601", "url": "https://www.rvdata.us/search/cruise/LMG1601"}, {"dataset_uid": "200122", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1501", "url": "https://www.rvdata.us/search/cruise/LMG1501"}, {"dataset_uid": "001367", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1701"}, {"dataset_uid": "601318", "doi": "10.15784/601318", "keywords": "Aerial Imagery; Antarctica; Antarctic Peninsula; Biota; Camera; Humpback Whales; LMG1802; LTER; Minke Whales; Oceans; Palmer Station; Photo; Photo/video; Photo/Video; R/v Laurence M. Gould; Species Size; UAV; Video Data; Whales", "people": "Nowacek, Douglas; Bierlich, KC; Boyer, Keyvi; Friedlaender, Ari; Dale, Julian", "repository": "USAP-DC", "science_program": "LTER", "title": "UAV images and video of whales in the Antarctic Penisula during LMG1802", "url": "https://www.usap-dc.org/view/dataset/601318"}, {"dataset_uid": "002729", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1701", "url": "https://www.rvdata.us/search/cruise/LMG1701"}], "date_created": "Fri, 11 May 2018 00:00:00 GMT", "description": "The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Ad\u00c3\u00a8lie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).\u003cbr/\u003e\u003cbr/\u003eThe current award\u0027s overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia\u0027s Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.", "east": -63.0, "geometry": "POINT(-71.5 -67)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "PELAGIC; USAP-DC; R/V LMG; NOT APPLICABLE; Palmer Station; LMG1701", "locations": "Palmer Station", "north": -63.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Integrated System Science; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh; Martinson, Doug; Schofield, Oscar", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "EDI", "repositories": "EDI; R2R; USAP-DC", "science_programs": "LTER", "south": -71.0, "title": "LTER Palmer, Antarctica (PAL): Land-Shelf-Ocean Connectivity, Ecosystem Resilience and Transformation in a Sea-Ice Influenced Pelagic Ecosystem", "uid": "p0000133", "west": -80.0}, {"awards": "1246045 Waddington, Edwin", "bounds_geometry": "POLYGON((-180 -70,-144 -70,-108 -70,-72 -70,-36 -70,0 -70,36 -70,72 -70,108 -70,144 -70,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,180 -82,180 -84,180 -86,180 -88,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -88,-180 -86,-180 -84,-180 -82,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70))", "dataset_titles": "Code for inference of fabric from sonic velocity and thin-section measurements.; Code for models involving stochastic treatment of ice fabric", "datasets": [{"dataset_uid": "000243", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for inference of fabric from sonic velocity and thin-section measurements.", "url": "https://github.com/mjhay/neem_sonic_model"}, {"dataset_uid": "000244", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Code for models involving stochastic treatment of ice fabric", "url": "https://github.com/mjhay/stochastic_fabric"}], "date_created": "Mon, 02 Apr 2018 00:00:00 GMT", "description": "Waddington/1246045 \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to investigate the onset and growth of folds and other disturbances seen in the stratigraphic layers of polar ice sheets. The intellectual merit of the work is that it will lead to a better understanding of the grain-scale processes that control the development of these stratigraphic features in the ice and will help answer questions such as what processes can initiate such disturbances. Snow is deposited on polar ice sheets in layers that are generally flat, with thicknesses that vary slowly along the layers. However, ice cores and ice-penetrating radar show that in some cases, after conversion to ice, and following lengthy burial, the layers can become folded, develop pinch-and-swell structures (boudinage), and be sheared by ice flow, at scales ranging from centimeters to hundreds of meters. The processes causing these disturbances are still poorly understood. Disturbances appear to develop first at the ice-crystal scale, then cascade up to larger scales with continuing ice flow and strain. Crystal-scale processes causing distortions of cm-scale layers will be modeled using Elle, a microstructure-modeling package, and constrained by fabric thin-sections and grain-elongation measurements from the West Antarctic Ice Sheet divide ice-core. A full-stress continuum anisotropic ice-flow model coupled to an ice-fabric evolution model will be used to study bulk flow of anisotropic ice, to understand evolution and growth of flow disturbances on the meter and larger scale. Results from this study will assist in future ice-core site selection, and interpretation of stratigraphy in ice cores and radar, and will provide improved descriptions of rheology and stratigraphy for ice-sheet flow models.The broader impacts are that it will bring greater understanding to ice dynamics responsible for stratigraphic disturbance. This information is valuable to constrain depth-age relationships in ice cores for paleoclimate study. This will allow researchers to put current climate change in a more accurate context. This project will provide three years of support for a graduate student as well as support and research experience for an undergraduate research assistant; this will contribute to development of talent needed to address important future questions in glaciology and climate change. The research will be communicated to the public through outreach events and results from the study will be disseminated through public and professional meetings as well as journal publications. The project does not require field work in Antarctica.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Waddington, Edwin D.", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "GitHub", "repositories": "GitHub", "science_programs": null, "south": -90.0, "title": "Anisotropic Ice and Stratigraphic Disturbances", "uid": "p0000073", "west": -180.0}, {"awards": "0943466 Hawley, Robert; 0944021 Brook, Edward J.; 0944307 Conway, Howard", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Lee, James; Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}, {"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Hawley, Robert L.; Clemens-Sewall, David; Giese, Alexandra", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Clemens-Sewall, David; Hawley, Robert L.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "0838735 Nitsche, Frank O.", "bounds_geometry": "POLYGON((-140 -68,-136 -68,-132 -68,-128 -68,-124 -68,-120 -68,-116 -68,-112 -68,-108 -68,-104 -68,-100 -68,-100 -68.75,-100 -69.5,-100 -70.25,-100 -71,-100 -71.75,-100 -72.5,-100 -73.25,-100 -74,-100 -74.75,-100 -75.5,-104 -75.5,-108 -75.5,-112 -75.5,-116 -75.5,-120 -75.5,-124 -75.5,-128 -75.5,-132 -75.5,-136 -75.5,-140 -75.5,-140 -74.75,-140 -74,-140 -73.25,-140 -72.5,-140 -71.75,-140 -71,-140 -70.25,-140 -69.5,-140 -68.75,-140 -68))", "dataset_titles": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica; OSO0910 Expedition Data", "datasets": [{"dataset_uid": "000225", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Bathymetry compilation of Pine Island Bay, Amundsen Sea, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/320080"}, {"dataset_uid": "000525", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "OSO0910 Expedition Data", "url": "https://www.marine-geo.org/tools/search/entry.php?id=OSO0910"}], "date_created": "Fri, 26 Jan 2018 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.\u003cbr/\u003e\u003cbr/\u003eBroader impacts:\u003cbr/\u003eThis activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI.", "east": -100.0, "geometry": "POINT(-120 -71.75)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": true, "keywords": "BATHYMETRY; SHIPS; Southern Ocean; Antarctica; Polar; GLACIERS/ICE SHEETS; R/V NBP", "locations": "Polar; Southern Ocean; Antarctica", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Nitsche, Frank O.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "MGDS", "repositories": "MGDS", "science_programs": null, "south": -75.5, "title": "Ice sheet Dynamics and Processes along the West Antarctic Continental Shelf", "uid": "p0010001", "west": -140.0}, {"awards": "1543245 Rynearson, Tatiana", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP1701; NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1; Specific growth rate measurements for 43 Southern Ocean diatoms", "datasets": [{"dataset_uid": "601586", "doi": "10.15784/601586", "keywords": "Antarctica; Biota; NBP1701; Phytoplankton; R/v Nathaniel B. Palmer; Specific Growth Rate; Thermal Optimum Temperature", "people": "Bishop, Ian", "repository": "USAP-DC", "science_program": null, "title": "Specific growth rate measurements for 43 Southern Ocean diatoms", "url": "https://www.usap-dc.org/view/dataset/601586"}, {"dataset_uid": "200328", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "NCBI Popset of 43 Southern Ocean diatom isolates, including accessions ON678208.1 - ON678250.1", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=2248543458"}, {"dataset_uid": "002661", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1701", "url": "https://www.rvdata.us/search/cruise/NBP1701"}, {"dataset_uid": "001369", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1701"}], "date_created": "Fri, 29 Dec 2017 00:00:00 GMT", "description": "The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). \u003cbr/\u003e\u003cbr/\u003eBoth physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "USAP-DC; NBP1701; R/V NBP; AMD; USA/NSF; Amd/Us; DIATOMS", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Rynearson, Tatiana; Bishop, Ian", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "NCBI; R2R; USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Evolutionary Response of Southern Ocean Diatoms to Environmental Change", "uid": "p0000850", "west": null}, {"awards": "1043471 Kaplan, Michael", "bounds_geometry": "POLYGON((-112.5 -79.468,-112.4586 -79.468,-112.4172 -79.468,-112.3758 -79.468,-112.3344 -79.468,-112.293 -79.468,-112.2516 -79.468,-112.2102 -79.468,-112.1688 -79.468,-112.1274 -79.468,-112.086 -79.468,-112.086 -79.4712,-112.086 -79.4744,-112.086 -79.4776,-112.086 -79.4808,-112.086 -79.484,-112.086 -79.4872,-112.086 -79.4904,-112.086 -79.4936,-112.086 -79.4968,-112.086 -79.5,-112.1274 -79.5,-112.1688 -79.5,-112.2102 -79.5,-112.2516 -79.5,-112.293 -79.5,-112.3344 -79.5,-112.3758 -79.5,-112.4172 -79.5,-112.4586 -79.5,-112.5 -79.5,-112.5 -79.4968,-112.5 -79.4936,-112.5 -79.4904,-112.5 -79.4872,-112.5 -79.484,-112.5 -79.4808,-112.5 -79.4776,-112.5 -79.4744,-112.5 -79.4712,-112.5 -79.468))", "dataset_titles": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "datasets": [{"dataset_uid": "601065", "doi": "10.15784/601065", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Sample/collection Description; Sample/Collection Description; WAIS Divide; WAIS Divide Ice Core", "people": "Kaplan, Michael", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "List of samples of WAIS Divide and Byrd (deep) ice that were analyzed for radiogenic isotopes at LDEO", "url": "https://www.usap-dc.org/view/dataset/601065"}], "date_created": "Sun, 29 Oct 2017 00:00:00 GMT", "description": "This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia\u0027s Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City\u0027s arts and science communities to bridge the gap between scientific knowledge and public perception.", "east": -112.086, "geometry": "POINT(-112.293 -79.484)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kaplan, Michael; Winckler, Gisela; Goldstein, Steven L.", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.5, "title": "A Study of Atmospheric Dust in the WAIS Divide Ice Core Based on Sr-Nd-Pb-He Isotopes", "uid": "p0000081", "west": -112.5}, {"awards": "1341390 Frank, Tracy", "bounds_geometry": null, "dataset_titles": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000195", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Stable carbon and oxygen isotope data from drill cores from McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.1594/IEDA/100718"}], "date_created": "Fri, 06 Oct 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eResults from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": null, "persons": "Frank, Tracy; Fielding, Christopher", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": null, "title": "Insights into the Burial, Tectonic, and Hydrologic History of the Cenozoic Succession in McMurdo Sound, Antarctica through Analysis of Diagenetic Phases", "uid": "p0000256", "west": null}, {"awards": "1246387 Guo, Weifu", "bounds_geometry": "POLYGON((-79.9183333 35.441666667,-55.16316667 35.441666667,-30.40800004 35.441666667,-5.65283341 35.441666667,19.10233322 35.441666667,43.85749985 35.441666667,68.61266648 35.441666667,93.36783311 35.441666667,118.12299974 35.441666667,142.87816637 35.441666667,167.633333 35.441666667,167.633333 25.9255333333,167.633333 16.4093999996,167.633333 6.8932666659,167.633333 -2.6228666678,167.633333 -12.1390000015,167.633333 -21.6551333352,167.633333 -31.1712666689,167.633333 -40.6874000026,167.633333 -50.2035333363,167.633333 -59.71966667,142.87816637 -59.71966667,118.12299974 -59.71966667,93.36783311 -59.71966667,68.61266648 -59.71966667,43.85749985 -59.71966667,19.10233322 -59.71966667,-5.65283341 -59.71966667,-30.40800004 -59.71966667,-55.16316667 -59.71966667,-79.9183333 -59.71966667,-79.9183333 -50.2035333363,-79.9183333 -40.6874000026,-79.9183333 -31.1712666689,-79.9183333 -21.6551333352,-79.9183333 -12.1390000015,-79.9183333 -2.6228666678,-79.9183333 6.8932666659,-79.9183333 16.4093999996,-79.9183333 25.9255333333,-79.9183333 35.441666667))", "dataset_titles": "Clumped isotope composition of modern cold water corals", "datasets": [{"dataset_uid": "000205", "doi": "", "keywords": null, "people": null, "repository": "EarthChem", "science_program": null, "title": "Clumped isotope composition of modern cold water corals", "url": "http://www.earthchem.org/"}], "date_created": "Fri, 07 Jul 2017 00:00:00 GMT", "description": "This proposed research aims to produce high resolution, precise and accurate records of deep water temperatures in the Drake Passage over the past ~40,000 years, by applying the newly developed carbonate clumped isotope thermometer to a unique collection of modern and fossil deep-sea corals, and thus advance the understanding of the role of the Southern Ocean in modulating global climate. In addition, this study will provide further evaluation on the potential of this new thermometer to derive accurate estimates of past ocean temperatures from deep-sea coral skeletons. Funding will support an early-career junior scientist and a graduate student. \u003cbr/\u003e\u003cbr/\u003eDespite its crucial role in modulating global climate, rates and amplitudes of environmental changes in the Southern Ocean are often difficult to constrain. In particular, the knowledge about the deep water temperatures in the Southern Ocean during the last glacial cycle is extremely limited. This results both from the lack of well-dated climate archives for the deep Southern Ocean and from the fact that most existing temperature proxies (e.g. del18O and Mg/Ca of foraminifera and corals) suffer from the biological \u0027vital effects\u0027. The latter is especially problematic; it causes substantial challenges in interpreting these geochemical proxies and can lead to biases equivalent to tens of degrees in temperature estimates. Recent development of carbonate clumped isotope thermometer, holds new promises for reconstructing deep water temperatures in the Southern Ocean, since calibration studies of this thermometer in deep-sea corals suggest it is largely free of vital effects. This proposed research seeks to refine the calibration of carbonate clumped isotope thermometer in deep-sea corals at low temperatures, improve the experimental methods to obtain high precision in temperature estimates, and then apply this thermometer to a unique collection of modern and fossil deep-sea corals collected from the Drake Passage during two recent Office of Polar Programs (OPP)-funded cruises, that have already been dated by radiocarbon and U-series methods. By combining the reconstructed temperatures with the radiocarbon and U-Th ages for these deep-sea corals, this study will explore the relationships between these temperature changes and global climate changes.", "east": 167.633333, "geometry": "POINT(43.85749985 -12.1390000015)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": 35.441666667, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Guo, Weifu", "platforms": "Not provided", "repo": "EarthChem", "repositories": "EarthChem", "science_programs": null, "south": -59.71966667, "title": "Reconstruction of Deep-Water Temperatures in the Drake Passage Over the Last Glacial Cycle: Application of Carbonate Clumped Isotope Thermometer to Absolutely-Dated Deep-Sea Corals", "uid": "p0000389", "west": -79.9183333}, {"awards": "1246379 Smith, Nathan; 1244253 Hammer, William", "bounds_geometry": "POLYGON((160 -85,160.6 -85,161.2 -85,161.8 -85,162.4 -85,163 -85,163.6 -85,164.2 -85,164.8 -85,165.4 -85,166 -85,166 -85.2,166 -85.4,166 -85.6,166 -85.8,166 -86,166 -86.2,166 -86.4,166 -86.6,166 -86.8,166 -87,165.4 -87,164.8 -87,164.2 -87,163.6 -87,163 -87,162.4 -87,161.8 -87,161.2 -87,160.6 -87,160 -87,160 -86.8,160 -86.6,160 -86.4,160 -86.2,160 -86,160 -85.8,160 -85.6,160 -85.4,160 -85.2,160 -85))", "dataset_titles": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica; Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica", "datasets": [{"dataset_uid": "601016", "doi": "10.15784/601016", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Smith, Nathan", "repository": "USAP-DC", "science_program": null, "title": "Vertebrate fossils from the Hanson Formation at Mt. Kirkpatrick, in the Beardmore Glacier region of Antarctica", "url": "https://www.usap-dc.org/view/dataset/601016"}, {"dataset_uid": "600173", "doi": "10.15784/600173", "keywords": "Antarctica; Beardmore Glacier; Biota; Dinosaurs; Fossil; Transantarctic Mountains", "people": "Hammer, William R.", "repository": "USAP-DC", "science_program": null, "title": "Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "url": "https://www.usap-dc.org/view/dataset/600173"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis proposal requests support for research on Early Jurassic vertebrate fauna of the Beardmore Glacier region of Antarctica. The project will support preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs will generate CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets will be generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. The PIs will develop a traveling exhibit on Antarctic Mesozoic paleontology that they estimate will be seen by 2.5 million people over the five-year tour.", "east": 166.0, "geometry": "POINT(163 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Smith, Nathan; Makovicky, Peter", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.0, "title": "Collaborative Research: Continued Research on the Jurassic Vertebrate Fauna from the Beardmore Glacier Region of Antarctica", "uid": "p0000083", "west": 160.0}, {"awards": "1245283 Passchier, Sandra", "bounds_geometry": "POLYGON((66 -68,67.3 -68,68.6 -68,69.9 -68,71.2 -68,72.5 -68,73.8 -68,75.1 -68,76.4 -68,77.7 -68,79 -68,79 -68.2,79 -68.4,79 -68.6,79 -68.8,79 -69,79 -69.2,79 -69.4,79 -69.6,79 -69.8,79 -70,77.7 -70,76.4 -70,75.1 -70,73.8 -70,72.5 -70,71.2 -70,69.9 -70,68.6 -70,67.3 -70,66 -70,66 -69.8,66 -69.6,66 -69.4,66 -69.2,66 -69,66 -68.8,66 -68.6,66 -68.4,66 -68.2,66 -68))", "dataset_titles": "Antarctic Geochemistry Data and Mean Annual Temperature Reconstruction through the Eocene-Oligocene Transition; GSA Data Repository Item 2016298 - Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K., and Bohaty, S.M., 2016, An Antarctic stratigraphic record of step-wise ice growth through the Eocene-Oligocene transition: GSA Bulletin, doi:10.1130/B31482.1.; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay; Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay; Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay", "datasets": [{"dataset_uid": "601455", "doi": "10.15784/601455", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP1166; Particle Size; Prydz Bay; Sediment Core Data", "people": "Passchier, Sandra; Ciarletta, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601455"}, {"dataset_uid": "000192", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctic Geochemistry Data and Mean Annual Temperature Reconstruction through the Eocene-Oligocene Transition", "url": "https://www.ncdc.noaa.gov/paleo-search/study/21770"}, {"dataset_uid": "601453", "doi": "10.15784/601453", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP739; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "people": "Ciarletta, Daniel; Passchier, Sandra", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601453"}, {"dataset_uid": "601454", "doi": "10.15784/601454", "keywords": "Antarctica; Eocene; Marine Geoscience; ODP742; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "people": "Passchier, Sandra; Ciarletta, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay", "url": "https://www.usap-dc.org/view/dataset/601454"}, {"dataset_uid": "200200", "doi": "10.1130/2016298", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": " GSA Data Repository Item 2016298 - Passchier, S., Ciarletta, D.J., Miriagos, T.E., Bijl, P.K., and Bohaty, S.M., 2016, An Antarctic stratigraphic record of step-wise ice growth through the Eocene-Oligocene transition: GSA Bulletin, doi:10.1130/B31482.1.", "url": "https://gsapubs.figshare.com/articles/journal_contribution/Supplemental_material_An_Antarctic_stratigraphic_record_of_step-wise_ice_growth_through_the_Eocene-Oligocene_transition/12534185"}], "date_created": "Tue, 25 Apr 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis project will investigate glacial advance and retreat of the East Antarctic Ice Sheet through the Eocene-Oligocene transition, a major episode of ice growth. In Prydz Bay, East Antarctica, a 130-170 m thick Eocene-Oligocene transition interval of glaciomarine sediments was cored in drillholes of the Ocean Drilling Program at Sites 739, 742 and 1166. Correlations between the Prydz Bay drillholes have recently been made through well-log and multichannel seismic interpretations. Recent drilling on the Wilkes Land margin of East Antarctica recovered earliest Oligocene sediments overlying a major regional unconformity in two drillholes. The PI will study the lithostratigraphy and weathering history of cores in the five drillholes, to establish a unique Eocene-Oligocene transition record within Antarctic continental margin sediments of glacial advance and retreat cycles, the onset of physical weathering, and glacio-isostasy and self-gravitation processes with implications for the margin architecture, sediment routing, and off-shore sediment dispersal. Cores from the five drillholes will be re-examined through detailed core description using an updated classification scheme, so that lithofacies can be compared between drillholes. Samples will be collected for detailed laser particle size and bulk major element geochemistry via ICP-AES to determine the degree of chemical alteration of the sediments. Phases of major ice growth will be recognized as marker beds of physically eroded sediment and will be correlated to isotopic records documenting Antarctic ice growth offshore in the Southern Ocean. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis project will benefit a large minority undergraduate student population through the availability of up to two paid laboratory internships, a classroom exercise, and the availability of research equipment supported by this award. The project also allows support and training of a graduate student.", "east": 79.0, "geometry": "POINT(72.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "ICE SHEETS; Not provided; Prydz Bay; SEDIMENTS", "locations": "Prydz Bay", "north": -68.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Passchier, Sandra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "NCEI; Publication; USAP-DC", "science_programs": null, "south": -70.0, "title": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin", "uid": "p0000309", "west": 66.0}, {"awards": "0947821 Ashworth, Allan", "bounds_geometry": "POLYGON((-180 -85.095235,-145.3719418 -85.095235,-110.7438836 -85.095235,-76.1158254 -85.095235,-41.4877672 -85.095235,-6.859709 -85.095235,27.7683492 -85.095235,62.3964074 -85.095235,97.0244656 -85.095235,131.6525238 -85.095235,166.280582 -85.095235,166.280582 -85.0996451,166.280582 -85.1040552,166.280582 -85.1084653,166.280582 -85.1128754,166.280582 -85.1172855,166.280582 -85.1216956,166.280582 -85.1261057,166.280582 -85.1305158,166.280582 -85.1349259,166.280582 -85.139336,131.6525238 -85.139336,97.0244656 -85.139336,62.3964074 -85.139336,27.7683492 -85.139336,-6.859709 -85.139336,-41.4877672 -85.139336,-76.1158254 -85.139336,-110.7438836 -85.139336,-145.3719418 -85.139336,180 -85.139336,178.6280582 -85.139336,177.2561164 -85.139336,175.8841746 -85.139336,174.5122328 -85.139336,173.140291 -85.139336,171.7683492 -85.139336,170.3964074 -85.139336,169.0244656 -85.139336,167.6525238 -85.139336,166.280582 -85.139336,166.280582 -85.1349259,166.280582 -85.1305158,166.280582 -85.1261057,166.280582 -85.1216956,166.280582 -85.1172855,166.280582 -85.1128754,166.280582 -85.1084653,166.280582 -85.1040552,166.280582 -85.0996451,166.280582 -85.095235,167.6525238 -85.095235,169.0244656 -85.095235,170.3964074 -85.095235,171.7683492 -85.095235,173.140291 -85.095235,174.5122328 -85.095235,175.8841746 -85.095235,177.2561164 -85.095235,178.6280582 -85.095235,-180 -85.095235))", "dataset_titles": "Neogene Paleoecology of the Beardmore Glacier Region", "datasets": [{"dataset_uid": "600387", "doi": "10.15784/600387", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; GPS; Oliver Bluffs; Paleoclimate; Sample/collection Description; Sample/Collection Description; Seeds; Solid Earth; Transantarctic Mountains", "people": "Ashworth, Allan", "repository": "USAP-DC", "science_program": null, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "url": "https://www.usap-dc.org/view/dataset/600387"}], "date_created": "Thu, 12 Jan 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.", "east": 166.280582, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -85.095235, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ashworth, Allan", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.139336, "title": "Neogene Paleoecology of the Beardmore Glacier Region", "uid": "p0000424", "west": 166.280582}, {"awards": "1043649 Hock, Regine", "bounds_geometry": null, "dataset_titles": "King George and Livingston Islands: Velocities and Digital Elevation Model", "datasets": [{"dataset_uid": "609667", "doi": "10.7265/N5R49NR1", "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "people": "Hock, Regine; Osmanoglu, Batuhan", "repository": "USAP-DC", "science_program": null, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "url": "https://www.usap-dc.org/view/dataset/609667"}], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "1043649/Braun\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e PALSAR", "is_usap_dc": true, "keywords": "ALOS; Digital Elevation Model", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Hock, Regine; Osmanoglu, Batuhan", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ADVANCED LAND OBSERVING SATELLITE (ALOS) \u003e ALOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "uid": "p0000054", "west": null}, {"awards": "1146399 Sidor, Christian", "bounds_geometry": "POLYGON((162.41 -84.27,163.409 -84.27,164.408 -84.27,165.407 -84.27,166.406 -84.27,167.405 -84.27,168.404 -84.27,169.403 -84.27,170.402 -84.27,171.401 -84.27,172.4 -84.27,172.4 -84.353,172.4 -84.436,172.4 -84.519,172.4 -84.602,172.4 -84.685,172.4 -84.768,172.4 -84.851,172.4 -84.934,172.4 -85.017,172.4 -85.1,171.401 -85.1,170.402 -85.1,169.403 -85.1,168.404 -85.1,167.405 -85.1,166.406 -85.1,165.407 -85.1,164.408 -85.1,163.409 -85.1,162.41 -85.1,162.41 -85.017,162.41 -84.934,162.41 -84.851,162.41 -84.768,162.41 -84.685,162.41 -84.602,162.41 -84.519,162.41 -84.436,162.41 -84.353,162.41 -84.27))", "dataset_titles": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "datasets": [{"dataset_uid": "600144", "doi": "10.15784/600144", "keywords": "Antarctica; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains; Triassic", "people": "Sidor, Christian", "repository": "USAP-DC", "science_program": null, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "url": "https://www.usap-dc.org/view/dataset/600144"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM \"Explore Your World\" website with images and findings from their field season.", "east": 172.4, "geometry": "POINT(167.405 -84.685)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -84.27, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sidor, Christian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.1, "title": "Preparation of Vertebrate Fossils from the Triassic of Antarctica", "uid": "p0000418", "west": 162.41}, {"awards": "0632282 Jacobs, Stanley", "bounds_geometry": "POLYGON((-129.6 -54.2,-124.44 -54.2,-119.28 -54.2,-114.12 -54.2,-108.96 -54.2,-103.8 -54.2,-98.64 -54.2,-93.48 -54.2,-88.32 -54.2,-83.16 -54.2,-78 -54.2,-78 -56.29,-78 -58.38,-78 -60.47,-78 -62.56,-78 -64.65,-78 -66.74,-78 -68.83,-78 -70.92,-78 -73.01,-78 -75.1,-83.16 -75.1,-88.32 -75.1,-93.48 -75.1,-98.64 -75.1,-103.8 -75.1,-108.96 -75.1,-114.12 -75.1,-119.28 -75.1,-124.44 -75.1,-129.6 -75.1,-129.6 -73.01,-129.6 -70.92,-129.6 -68.83,-129.6 -66.74,-129.6 -64.65,-129.6 -62.56,-129.6 -60.47,-129.6 -58.38,-129.6 -56.29,-129.6 -54.2))", "dataset_titles": "Amundsen Sea Continental Shelf Mooring Data (2006-2007); Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901; NBP07-09 cruise data; NBP07-09 processed CTD data; NBP09-01 cruise data; NBP09-01 processed CTD data; Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "datasets": [{"dataset_uid": "000127", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP07-09 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0709"}, {"dataset_uid": "601349", "doi": null, "keywords": "Amundsen Sea; Antarctica; Current Measurements; LADCP; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; R/v Nathaniel B. Palmer; Southern Ocean", "people": "Thurnherr, Andreas", "repository": "USAP-DC", "science_program": null, "title": "Calibrated Hydrographic Data acquired with a LADCP from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601349"}, {"dataset_uid": "601809", "doi": "10.15784/601809", "keywords": "Amundsen Sea; Antarctica; Cryosphere; Mooring; Ocean Currents; Pressure; Salinity; Temperature", "people": "Giulivi, Claudia F.; Jacobs, Stanley", "repository": "USAP-DC", "science_program": null, "title": "Amundsen Sea Continental Shelf Mooring Data (2006-2007)", "url": "https://www.usap-dc.org/view/dataset/601809"}, {"dataset_uid": "000130", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP09-01 processed CTD data", "url": "http://accession.nodc.noaa.gov/0071179"}, {"dataset_uid": "000129", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP09-01 cruise data", "url": "https://www.rvdata.us/search/cruise/NBP0901"}, {"dataset_uid": "000128", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NBP07-09 processed CTD data", "url": "http://accession.nodc.noaa.gov/0120761"}, {"dataset_uid": "601350", "doi": null, "keywords": "Amundsen Sea; Antarctic; Antarctica; CTD; CTD Data; Current Measurements; NBP0901; Oceans; Physical Oceanography; Pine Island Bay; Pine Island Glacier; R/v Nathaniel B. Palmer; Salinity; Southern Ocean; Temperature", "people": "Jacobs, Stanley; Huber, Bruce", "repository": "USAP-DC", "science_program": null, "title": "Processed Temperature, Salinity, and Current Measurement Data from the Amundsen Sea acquired during the Nathaniel B. Palmer expedition NBP0901", "url": "https://www.usap-dc.org/view/dataset/601350"}], "date_created": "Fri, 25 Sep 2015 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Science Division, Ocean \u0026 Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. \u003cbr/\u003eThe region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. \u003cbr/\u003eBroader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.", "east": -78.0, "geometry": "POINT(-103.8 -64.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "Not provided; R/V NBP", "locations": null, "north": -54.2, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jacobs, Stanley; Hellmer, Hartmut; Jenkins, Adrian", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "NCEI; R2R; USAP-DC", "science_programs": null, "south": -75.1, "title": "Collaborative International Research: Amundsen Sea Influence on West Antarctic Ice Sheet Stability and Sea Level Rise - IPY/ASEP", "uid": "p0000332", "west": -129.6}, {"awards": "0732730 Truffer, Martin; 0732869 Holland, David; 0732804 McPhee, Miles; 0732906 Nowicki, Sophie", "bounds_geometry": "POINT(-100.728 -75.0427)", "dataset_titles": "Automatic Weather Station Pine Island Glacier; Borehole Temperatures at Pine Island Glacier, Antarctica; Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "datasets": [{"dataset_uid": "609627", "doi": "10.7265/N5T151MV", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "people": "Stanton, Timothy; Truffer, Martin", "repository": "USAP-DC", "science_program": null, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609627"}, {"dataset_uid": "600072", "doi": "10.15784/600072", "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "people": "McPhee, Miles G.", "repository": "USAP-DC", "science_program": null, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "url": "https://www.usap-dc.org/view/dataset/600072"}, {"dataset_uid": "601216", "doi": "10.15784/601216", "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "people": "Mojica Moncada, Jhon F.; Holland, David", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Automatic Weather Station Pine Island Glacier", "url": "https://www.usap-dc.org/view/dataset/601216"}], "date_created": "Tue, 30 Dec 2014 00:00:00 GMT", "description": "Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 \u003cbr/\u003eTitle: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica\u003cbr/\u003e\u003cbr/\u003eThe Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \"Multidisciplinary Study of the Amundsen Sea Embayment\" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \"Polar Palooza\" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.", "east": -100.728, "geometry": "POINT(-100.728 -75.0427)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e SEISMIC REFLECTION PROFILERS", "is_usap_dc": true, "keywords": "West Antarctica; Seismic; LABORATORY; Amundsen Sea; Ocean-Ice Interaction; Remote Sensing; COMPUTERS; FIELD SURVEYS; LANDSAT-8; FIELD INVESTIGATION; Ocean Profiling; AUVS; Sea Level Rise; Stability; Not provided; Deformation; SATELLITES; Ice Movement; GROUND-BASED OBSERVATIONS; Ice Temperature; International Polar Year; Borehole", "locations": "West Antarctica; Amundsen Sea", "north": -75.0427, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Truffer, Martin; Stanton, Timothy; Bindschadler, Robert; Behar, Alberto; Nowicki, Sophie; Anandakrishnan, Sridhar; Holland, David; McPhee, Miles G.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-8; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e UNCREWED VEHICLES \u003e SUBSURFACE \u003e AUVS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.0427, "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "uid": "p0000043", "west": -100.728}, {"awards": "0944220 Ponganis, Paul", "bounds_geometry": "POLYGON((-180 -68,-147 -68,-114 -68,-81 -68,-48 -68,-15 -68,18 -68,51 -68,84 -68,117 -68,150 -68,150 -69,150 -70,150 -71,150 -72,150 -73,150 -74,150 -75,150 -76,150 -77,150 -78,117 -78,84 -78,51 -78,18 -78,-15 -78,-48 -78,-81 -78,-114 -78,-147 -78,180 -78,178 -78,176 -78,174 -78,172 -78,170 -78,168 -78,166 -78,164 -78,162 -78,160 -78,160 -77,160 -76,160 -75,160 -74,160 -73,160 -72,160 -71,160 -70,160 -69,160 -68,162 -68,164 -68,166 -68,168 -68,170 -68,172 -68,174 -68,176 -68,178 -68,-180 -68))", "dataset_titles": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "datasets": [{"dataset_uid": "600113", "doi": "10.15784/600113", "keywords": "Antarctica; Biota; Electrocardiogram; Penguin; Southern Ocean", "people": "Ponganis, Paul", "repository": "USAP-DC", "science_program": null, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "url": "https://www.usap-dc.org/view/dataset/600113"}], "date_created": "Mon, 24 Nov 2014 00:00:00 GMT", "description": "Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.", "east": 150.0, "geometry": "POINT(-25 -73)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -68.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ponganis, Paul", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "The Physiological Ecology of Two Antarctic Icons: Emperor Penguins and Leopard Seals", "uid": "p0000349", "west": 160.0}, {"awards": "0838970 Foreman, Christine", "bounds_geometry": "POINT(161.667 -77.117)", "dataset_titles": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "datasets": [{"dataset_uid": "600104", "doi": "10.15784/600104", "keywords": "Antarctica; Biota; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Microbiology", "people": "Foreman, Christine", "repository": "USAP-DC", "science_program": null, "title": "The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600104"}], "date_created": "Fri, 10 Oct 2014 00:00:00 GMT", "description": "Dissolved organic matter (DOM) comprises a significant pool of Earth\u0027s organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls\u0027 schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.", "east": 161.667, "geometry": "POINT(161.667 -77.117)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Foreman, Christine", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "Collaborative Research: The Biogeochemical Evolution of Dissolved Organic Matter in a Fluvial System on the Cotton Glacier, Antarctica", "uid": "p0000458", "west": 161.667}, {"awards": "1043745 Halanych, Kenneth", "bounds_geometry": null, "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001427", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1210"}, {"dataset_uid": "000439", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1312"}], "date_created": "Fri, 07 Feb 2014 00:00:00 GMT", "description": "The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Halanych, Kenneth", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Genetic connectivity and biogeographic patterns of Antarctic benthic invertebrates", "uid": "p0000263", "west": null}, {"awards": "0944662 Elliot, David; 0944532 Isbell, John", "bounds_geometry": "POLYGON((158.9 -83,159.583 -83,160.266 -83,160.949 -83,161.632 -83,162.315 -83,162.998 -83,163.681 -83,164.364 -83,165.047 -83,165.73 -83,165.73 -83.21,165.73 -83.42,165.73 -83.63,165.73 -83.84,165.73 -84.05,165.73 -84.26,165.73 -84.47,165.73 -84.68,165.73 -84.89,165.73 -85.1,165.047 -85.1,164.364 -85.1,163.681 -85.1,162.998 -85.1,162.315 -85.1,161.632 -85.1,160.949 -85.1,160.266 -85.1,159.583 -85.1,158.9 -85.1,158.9 -84.89,158.9 -84.68,158.9 -84.47,158.9 -84.26,158.9 -84.05,158.9 -83.84,158.9 -83.63,158.9 -83.42,158.9 -83.21,158.9 -83))", "dataset_titles": "Rock Samples (full data link not provided)", "datasets": [{"dataset_uid": "000171", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Rock Samples (full data link not provided)", "url": "http://bprc.osu.edu/rr/"}], "date_created": "Thu, 05 Dec 2013 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.", "east": 165.73, "geometry": "POINT(162.315 -84.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e XRF", "is_usap_dc": true, "keywords": "Not provided; LABORATORY", "locations": null, "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Elliot, David; Isbell, John", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "PRR", "repositories": "PRR", "science_programs": null, "south": -85.1, "title": "Collaborative Research:Application of Detrital Zircon Isotope Characteristics and Sandstone Analysis of Beacon Strata to the Tectonic Evolution of the Antarctic Sector of Gondwana", "uid": "p0000312", "west": 158.9}, {"awards": "0839007 Near, Thomas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Genetic Sequence Data", "datasets": [{"dataset_uid": "000151", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic Sequence Data", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}], "date_created": "Fri, 22 Nov 2013 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThe teleost fish fauna in the waters surrounding Antarctica are completely dominated by a single clade of closely related species, the Notothenioidei. This clade offers an unprecedented opportunity to investigate the effects of deep time paleogeographic transformations and periods of global climate change on lineage diversification and facilitation of adaptive radiation. With over 100 species, the Antarctic notothenioid radiation has been the subject of intensive investigation of biochemical, physiological, and morphological adaptations associated with freezing avoidance in the subzero Southern Ocean marine habitats. However, broadly sampled time-calibrated phylogenetic hypotheses of notothenioids have not been used to examine patterns of adaptive radiation in this clade. The goals of this project are to develop an intensive phylogenomic scale dataset for 90 of the 124 recognized notothenioid species, and use this genomic resource to generate time-calibrated molecular phylogenetic trees. The results of pilot phylogenetic studies indicate a very exciting correlation of the initial diversification of notothenioids with the fragmentation of East Gondwana approximately 80 million years ago, and the origin of the Antarctic Clade adaptive radiation at a time of global cooling and formation of polar conditions in the Southern Ocean, approximately 35 million years ago. This project will provide research experiences for undergraduates, training for a graduate student, and support a post doctoral researcher. In addition the project will include three high school students from New Haven Public Schools for summer research internships.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Near, Thomas", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank", "science_programs": null, "south": -90.0, "title": "Genomic Approaches to Resolving Phylogenies of Antarctic Notothenioid Fishes", "uid": "p0000497", "west": -180.0}, {"awards": "0823101 Ducklow, Hugh", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG1301", "datasets": [{"dataset_uid": "002731", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG1301", "url": "https://www.rvdata.us/search/cruise/LMG1301"}, {"dataset_uid": "001425", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG1301"}], "date_created": "Mon, 24 Jun 2013 00:00:00 GMT", "description": "Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. \u003cbr/\u003e\u003cbr/\u003eSince its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public\u0027s fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth\u0027s last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e PROFILERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e XBT", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ducklow, Hugh", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": null, "title": "Palmer, Antarctica Long Term Ecological Research Project", "uid": "p0000874", "west": null}, {"awards": "0636767 Dunbar, Nelia; 0636740 Kreutz, Karl", "bounds_geometry": "POINT(112.11666 -79.46666)", "dataset_titles": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica; Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica; Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica; WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka; WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica; WAIS Divide WDC06A Discrete ICP-MS Chemistry", "datasets": [{"dataset_uid": "601023", "doi": "10.15784/601023", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Isotope; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide WDC06A Discrete ICP-MS Chemistry", "url": "https://www.usap-dc.org/view/dataset/601023"}, {"dataset_uid": "609616", "doi": "10.7265/N5KK98QZ", "keywords": "Antarctica; Dust; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Particle Size; WAIS Divide; WAIS Divide Ice Core", "people": "Koffman, Bess; Kreutz, Karl", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Microparticle Concentration and Size Distribution, 0-2400 ka", "url": "https://www.usap-dc.org/view/dataset/609616"}, {"dataset_uid": "601036", "doi": "10.15784/601036", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Snow Pit; Tephra; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit evidence of the 2011 Puyehue-Cordon Caulle (Chile) eruption in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/601036"}, {"dataset_uid": "609499", "doi": "10.7265/N5K07264", "keywords": "Antarctica; Density; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Microparticle Concentration; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Hamilton, Gordon S.; Breton, Daniel; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Microparticle, Conductivity, and Density Measurements from the WAIS Divide Deep Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609499"}, {"dataset_uid": "609506", "doi": "10.7265/N5SJ1HHN", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope; Microparticle Concentration; Snow/ice; Snow/Ice; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Snowpit Chemical and Isotope Measurements, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609506"}, {"dataset_uid": "609620", "doi": "10.7265/N5Q81B1X", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Trace Elements; WAIS Divide; WAIS Divide Ice Core", "people": "Kreutz, Karl; Koffman, Bess", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Snowpit Chemistry - Methods Comparison, WAIS Divide, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609620"}], "date_created": "Tue, 19 Jun 2012 00:00:00 GMT", "description": "This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a\u003cbr/\u003etephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.", "east": 112.11666, "geometry": "POINT(112.11666 -79.46666)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e LOPC-PMS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e ICE CORE MELTER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PARTICLE DETECTORS", "is_usap_dc": true, "keywords": "Ice Core Dust; Tephra; Radiative Forcing; Greenhouse Gas; West Antarctica; Atmospheric Aerosols; Oxygen Isotope; Not provided; WAIS Divide; Snow Pit; Ice Core Chemistry; Microparticle; Wais Divide-project; Microparticles Size; Paleoclimate; LABORATORY; Ice Core Data; Atmospheric Dynamics; Antarctica; FIELD SURVEYS; Ice Core; Trace Elements; FIELD INVESTIGATION; Holocene; Isotope; Snow Chemistry", "locations": "Antarctica; WAIS Divide; West Antarctica", "north": -79.46666, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Koffman, Bess; Kreutz, Karl; Breton, Daniel; Dunbar, Nelia; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46666, "title": "Collaborative Research: Microparticle/tephra analysis of the WAIS Divide ice core", "uid": "p0000040", "west": 112.11666}, {"awards": "0739766 Brook, Edward J.", "bounds_geometry": "POINT(-112.08 -79.47)", "dataset_titles": "WAIS Divide Ice Core CO2", "datasets": [{"dataset_uid": "609651", "doi": "10.7265/N5DV1GTZ", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; WAIS Divide; WAIS Divide Ice Core", "people": "Brook, Edward J.; Marcott, Shaun", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "WAIS Divide Ice Core CO2", "url": "https://www.usap-dc.org/view/dataset/609651"}], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "Brook 0739766\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of\u003cbr/\u003ethe proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.", "east": -112.08, "geometry": "POINT(-112.08 -79.47)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Carbon Dioxide; FIELD INVESTIGATION; CO2; Wais Divide-project; Ice Core; Antarctica; Climate; Gas Chromatography; Antarctic Ice Core; LABORATORY", "locations": "Antarctica", "north": -79.47, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Marcott, Shaun; Ahn, Jinho; Brook, Edward J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Atmospheric Carbon Dioxide and Climate Change: The WAIS Divide Ice Core Record", "uid": "p0000044", "west": -112.08}, {"awards": "0840705 Wall, Diana; 0840979 Adams, Byron", "bounds_geometry": "POLYGON((165.35155 -83.71592,166.143133 -83.71592,166.934716 -83.71592,167.726299 -83.71592,168.517882 -83.71592,169.309465 -83.71592,170.101048 -83.71592,170.892631 -83.71592,171.684214 -83.71592,172.475797 -83.71592,173.26738 -83.71592,173.26738 -83.894053,173.26738 -84.072186,173.26738 -84.250319,173.26738 -84.428452,173.26738 -84.606585,173.26738 -84.784718,173.26738 -84.962851,173.26738 -85.140984,173.26738 -85.319117,173.26738 -85.49725,172.475797 -85.49725,171.684214 -85.49725,170.892631 -85.49725,170.101048 -85.49725,169.309465 -85.49725,168.517882 -85.49725,167.726299 -85.49725,166.934716 -85.49725,166.143133 -85.49725,165.35155 -85.49725,165.35155 -85.319117,165.35155 -85.140984,165.35155 -84.962851,165.35155 -84.784718,165.35155 -84.606585,165.35155 -84.428452,165.35155 -84.250319,165.35155 -84.072186,165.35155 -83.894053,165.35155 -83.71592))", "dataset_titles": "Genetic Sequences: JN819273 tardsubmission.sqn 354_18S6 JN819274 tardsubmission.sqn 354_ITS JN819275 tardsubmission.sqn 553_18S5_and_18S6 JN819276 tardsubmission.sqn 556_18S6; McMurdo Dry Valleys Long-Term Ecological Research", "datasets": [{"dataset_uid": "000217", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Genetic Sequences: JN819273 tardsubmission.sqn 354_18S6 JN819274 tardsubmission.sqn 354_ITS JN819275 tardsubmission.sqn 553_18S5_and_18S6 JN819276 tardsubmission.sqn 556_18S6", "url": "http://www.ncbi.nlm.nih.gov/genbank/"}, {"dataset_uid": "000157", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "McMurdo Dry Valleys Long-Term Ecological Research", "url": "http://www.mcmlter.org/"}], "date_created": "Mon, 03 Oct 2011 00:00:00 GMT", "description": "Ice sheet models of the Last Glacial Maximum, and previous glaciation events in the Miocene, suggest that current low altitude, ice-free surfaces in Antarctica were completely covered with ice. If so, the terrestrial biota of Antarctica today would result from recolonization events after each glacial maximum. However, there is emerging evidence that much of the terrestrial Antarctic biota are of ancient origin and have somehow survived these glaciation events. The Transantarctic Mountains TRANsition Zone (TAM-TRANZ) plays a pivotal role in understanding the evolution and biogeographic history of today\u0027s Antarctic terrestrial biota, primarily because it contains numerous inland areas that could have served as refugia during glacial maxima. Due to its remote location, the TAM-TRANZ has not been systematically surveyed for animal biodiversity. Although an exhaustive survey of the region requires a multi-discipline, multi-year and multi-region effort, the research herein combines ecological, evolutionary and geophysical expertise to conduct an exploratory investigation of the extreme southern limits of biotic communities. The project will examine the historical geophysical requirements for the colonization and maintenance of functional ecosystems by multicellular organisms, and the feasibility and desirability to implement more systematic biogeographic studies in the future. Broader impacts include graduate and undergraduate student ownership of important subprojects that will provide research, presentation and publication opportunities. The investigators also will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators in the public school districts where the project personnel reside. Finally, the project is leveraged by opportunistic collaboration with scientists associated with Antarctica New Zealand.", "east": 173.26738, "geometry": "POINT(169.309465 -84.606585)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -83.71592, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Adams, Byron; Wall, Diana", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "LTER; NCBI GenBank", "science_programs": "LTER", "south": -85.49725, "title": "Collaborative Research: Limits and Drivers of Metazoan Distributions in the Transantarctic Mountains", "uid": "p0000517", "west": 165.35155}, {"awards": "9726186 Pilskaln, Cynthia", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0101", "datasets": [{"dataset_uid": "002641", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}, {"dataset_uid": "002580", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0101", "url": "https://www.rvdata.us/search/cruise/NBP0101"}], "date_created": "Thu, 03 Mar 2011 00:00:00 GMT", "description": "This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People\u0027s Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Leventer, Amy", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "POC Production and Export in the Indian Ocean Sector of the Southern Ocean: A US-China Collaborative Research Program", "uid": "p0000800", "west": null}, {"awards": "0632278 Ducklow, Hugh; 0632389 Murray, Alison", "bounds_geometry": "POLYGON((-77 -62,-75.5 -62,-74 -62,-72.5 -62,-71 -62,-69.5 -62,-68 -62,-66.5 -62,-65 -62,-63.5 -62,-62 -62,-62 -62.7,-62 -63.4,-62 -64.1,-62 -64.8,-62 -65.5,-62 -66.2,-62 -66.9,-62 -67.6,-62 -68.3,-62 -69,-63.5 -69,-65 -69,-66.5 -69,-68 -69,-69.5 -69,-71 -69,-72.5 -69,-74 -69,-75.5 -69,-77 -69,-77 -68.3,-77 -67.6,-77 -66.9,-77 -66.2,-77 -65.5,-77 -64.8,-77 -64.1,-77 -63.4,-77 -62.7,-77 -62))", "dataset_titles": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "datasets": [{"dataset_uid": "600061", "doi": "10.15784/600061", "keywords": "Antarctica; Antarctic Peninsula; Biota; Chemistry:fluid; Chemistry:Fluid; Oceans; Southern Ocean", "people": "Grzymski, Joseph; Murray, Alison", "repository": "USAP-DC", "science_program": null, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "url": "https://www.usap-dc.org/view/dataset/600061"}], "date_created": "Thu, 08 Jul 2010 00:00:00 GMT", "description": "The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey\u0027s ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. \u003cbr/\u003e\u003cbr/\u003eOur results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.", "east": -62.0, "geometry": "POINT(-69.5 -65.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Murray, Alison; Grzymski, Joseph; Ducklow, Hugh", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "IPY: Bacterioplankton Genomic Adaptations to Antarctic Winter", "uid": "p0000091", "west": -77.0}, {"awards": "9910093 Powell, Thomas", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002584", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.\u003cbr/\u003e\u003cbr/\u003eThe objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice.\u003cbr/\u003e\u003cbr/\u003eThe water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes.\u003cbr/\u003e***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Powell, Thomas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: WinDSSOcK: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000804", "west": null}, {"awards": "9910102 Padman, Laurence", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104; Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002606", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002597", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.\u003cbr/\u003e\u003cbr/\u003eThere are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. \u003cbr/\u003e***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Padman, Laurence", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Mesoscale Circulation, Tides and Mixing on the Western Antarctic Peninsula Shelf: A Component of WINDSSOCK (ESR proposal #99-48)", "uid": "p0000806", "west": null}, {"awards": "9908828 Aronson, Richard", "bounds_geometry": "POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166))", "dataset_titles": "Expedition Data; Expedition data of NBP0107", "datasets": [{"dataset_uid": "001962", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0011"}, {"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908828\u003cbr/\u003eAronson\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.\u003cbr/\u003e\u003cbr/\u003eA series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). \u003cbr/\u003e\u003cbr/\u003eSeymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": -56.34, "geometry": "POINT(-63.623 -58.613498)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Hugo Island; R/V LMG; Palmer Deep", "locations": "Hugo Island", "north": -52.350166, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Aronson, Richard; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87683, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene", "uid": "p0000617", "west": -70.906}, {"awards": "9814041 Austin, Jr., James", "bounds_geometry": "POLYGON((-70.90616 -52.35281,-69.390587 -52.35281,-67.875014 -52.35281,-66.359441 -52.35281,-64.843868 -52.35281,-63.328295 -52.35281,-61.812722 -52.35281,-60.297149 -52.35281,-58.781576 -52.35281,-57.266003 -52.35281,-55.75043 -52.35281,-55.75043 -53.463301,-55.75043 -54.573792,-55.75043 -55.684283,-55.75043 -56.794774,-55.75043 -57.905265,-55.75043 -59.015756,-55.75043 -60.126247,-55.75043 -61.236738,-55.75043 -62.347229,-55.75043 -63.45772,-57.266003 -63.45772,-58.781576 -63.45772,-60.297149 -63.45772,-61.812722 -63.45772,-63.328295 -63.45772,-64.843868 -63.45772,-66.359441 -63.45772,-67.875014 -63.45772,-69.390587 -63.45772,-70.90616 -63.45772,-70.90616 -62.347229,-70.90616 -61.236738,-70.90616 -60.126247,-70.90616 -59.015756,-70.90616 -57.905265,-70.90616 -56.794774,-70.90616 -55.684283,-70.90616 -54.573792,-70.90616 -53.463301,-70.90616 -52.35281))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001810", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007A"}, {"dataset_uid": "001987", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0002"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait\u0027s axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar \"back-arc\" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain.\u003cbr/\u003e\u003cbr/\u003eYears of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin\u0027s continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a \"neovolcanic\" zone centralized along the basin\u0027s axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults.\u003cbr/\u003e\u003cbr/\u003eAlthough Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this \"back-arc\" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin\u0027s asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a \"natural lab\" for studying diverse processes involved in forming continental margins.\u003cbr/\u003e\u003cbr/\u003eUnderstanding Bransfield rift\u0027s deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait\u0027s strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands \"arc\" and Bransfield rift.\u003cbr/\u003e\u003cbr/\u003eThe proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.", "east": -55.75043, "geometry": "POINT(-63.328295 -57.905265)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35281, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Austin, James; Austin, James Jr.", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -63.45772, "title": "The Young Marginal Basin as a Key to Understanding the Rift-Drift Transition and Andean Orogenesis: OBS Refraction Profiling for Crustal Structure in Bransfield Strait", "uid": "p0000615", "west": -70.90616}, {"awards": "9815961 Bengtson, John", "bounds_geometry": "POLYGON((-179.99905 -43.56728,-143.99915 -43.56728,-107.99925 -43.56728,-71.99935 -43.56728,-35.99945 -43.56728,0.000450000000001 -43.56728,36.00035 -43.56728,72.00025 -43.56728,108.00015 -43.56728,144.00005 -43.56728,179.99995 -43.56728,179.99995 -47.058498,179.99995 -50.549716,179.99995 -54.040934,179.99995 -57.532152,179.99995 -61.02337,179.99995 -64.514588,179.99995 -68.005806,179.99995 -71.497024,179.99995 -74.988242,179.99995 -78.47946,144.00005 -78.47946,108.00015 -78.47946,72.00025 -78.47946,36.00035 -78.47946,0.000450000000001 -78.47946,-35.99945 -78.47946,-71.99935 -78.47946,-107.99925 -78.47946,-143.99915 -78.47946,-179.99905 -78.47946,-179.99905 -74.988242,-179.99905 -71.497024,-179.99905 -68.005806,-179.99905 -64.514588,-179.99905 -61.02337,-179.99905 -57.532152,-179.99905 -54.040934,-179.99905 -50.549716,-179.99905 -47.058498,-179.99905 -43.56728))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001997", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9909"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9815961 \u003cbr/\u003eBENGTSON\u003cbr/\u003eThe pack ice region surrounding Antarctica contains at least fifty percent of the world\u0027s population of seals, comprising about eighty percent of the world\u0027s total pinniped biomass. As a group, these seals are among the dominant top predators in Southern Ocean ecosystems, and the fluctuation in their abundance, growth patterns, life histories, and behavior provide a potential source of information about environmental variability integrated over a wide range of spatial and temporal scales. This proposal was developed as part of the international Antarctic Pack Ice Seals (APIS) program, which is aimed to better understand the ecological relationships between the distribution of pack ice seals and their environment. During January-February, 2000, a research cruise through the pack ice zone of the eastern Ross Sea and western Amundsen Sea will be conducted to survey and sample along six transects perpendicular to the continental shelf. Each of these transects will pass through five environmental sampling strata: continental shelf zone, Antarctic slope front, pelagic zone, the ice edge front, and the open water outside the pack ice zone. All zones but open water will be ice-covered to some degree. Surveys along each transect will gather data on bathymetry, hydrography, sea ice dynamics and characteristics, phytoplankton and ice algae stocks, prey species (e.g., fish, cephalopods and euphausiids), and seal distribution, abundance and diet. This physical and trophic approach to investigating ecological interactions among pack ice seals, prey and the physical environment will allow the interdisciplinary research team to test the hypothesis that there are measurable physical and biological features in the Southern Ocean that result in area of high biological activity by upper trophic level predators. Better insight into the interplay among pack ice seals and biological and physical features of Antarctic marine ecosystems will allow for a better prediction of fluctuation in seal population in the context of environmental change.", "east": 179.99995, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56728, "nsf_funding_programs": null, "paleo_time": null, "persons": "Bengtson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.47946, "title": "Antarctic Pack Ice Seals: Ecological Interactions with Prey and the Environment", "uid": "p0000614", "west": -179.99905}, {"awards": "9896290 Smith, Walker; 9530398 Anderson, Robert; 9530382 Smith, Walker", "bounds_geometry": "POLYGON((-179.9999 -43.5646,-143.99993 -43.5646,-107.99996 -43.5646,-71.99999 -43.5646,-36.00002 -43.5646,-0.000050000000016 -43.5646,35.99992 -43.5646,71.99989 -43.5646,107.99986 -43.5646,143.99983 -43.5646,179.9998 -43.5646,179.9998 -47.013473,179.9998 -50.462346,179.9998 -53.911219,179.9998 -57.360092,179.9998 -60.808965,179.9998 -64.257838,179.9998 -67.706711,179.9998 -71.155584,179.9998 -74.604457,179.9998 -78.05333,143.99983 -78.05333,107.99986 -78.05333,71.99989 -78.05333,35.99992 -78.05333,-0.000049999999987 -78.05333,-36.00002 -78.05333,-71.99999 -78.05333,-107.99996 -78.05333,-143.99993 -78.05333,-179.9999 -78.05333,-179.9999 -74.604457,-179.9999 -71.155584,-179.9999 -67.706711,-179.9999 -64.257838,-179.9999 -60.808965,-179.9999 -57.360092,-179.9999 -53.911219,-179.9999 -50.462346,-179.9999 -47.013473,-179.9999 -43.5646))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002162", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9604A"}, {"dataset_uid": "002138", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9708"}, {"dataset_uid": "001874", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9802"}, {"dataset_uid": "002164", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9604"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "95-30398 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. The overall objectives of JGOFS are to determine and understand processes controlling the time-varying fluxes of carbon and associated biogenic elements, and to predict the response of marine biogeochemical processes to climate change. The Southern Ocean is critical in the global carbon cycle, as judged by its size and the physical processes which occur in it (e.g., deep and intermediate water formation), but its present quantitative role is uncertain. JGOFS objectives for the Southern Ocean study are as follows: 1) to constrain the fluxes of carbon (organic and inorganic) and to place these fluxes in the context of the contemporary carbon cycle; 2) to identify the factors and processes which regulate the magnitude and variability of primary productivity and the fate of biogenic matter; 3) to determine the response of the Southern Ocean to natural climate perturbations; and 4) to predict the response of the Southern Ocean to climate change. In order to successfully address these objectives, a large field program has been designed to provide various investigators the opportunity to test specific hypotheses which relate to these broadly-defined objectives. We expect the field test to begin in September 1996, and last through March 1998 using two ships, the R.V. Palmer, and the R.V. Thompson. As most of the investigators will use hydrographic and nutrient data from these cruises, this proposal requests funds for the support of the analysis of nutrient concentrations during these thirteen crui ses. A team of oceanographic experts from a variety of institutions has been assembled to complete these analyses; furthermore, the data will be scrutinized for errors and provided in a timely fashion to all PI\u0027s in the project, as well as to the relevant oceanographic data storage facilities. The hydrography and coring groups have been put together using the successful model for the Arabian Sea JGOFS study, and in conjunction with the nutrient data (supported under a separate proposal), will form a large portion of the Southern Ocean JGOFS database which both field investigators and modelers will use to clarify the role of the Southern Ocean in the global carbon cycle.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.5646, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Anderson, Robert; Smith, Walker; Honjo, Susumu", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.05333, "title": "Management and Scientific Service in Support of the U.S. JGOFS Southern Ocean Process Study: Hydrography, Coring and Site Survey", "uid": "p0000629", "west": -179.9999}, {"awards": "9908856 Blake, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002675", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.\u003cbr/\u003e\u003cbr/\u003eA series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). \u003cbr/\u003e\u003cbr/\u003eSeymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.", "uid": "p0000857", "west": null}, {"awards": "9317538 Nelson, David", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9406", "datasets": [{"dataset_uid": "002252", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9406"}, {"dataset_uid": "002591", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9406", "url": "https://www.rvdata.us/search/cruise/NBP9406"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will test the closely related hypotheses that: (1) phytoplankton growth is controlled primarily by the relationship between solar irradiance and mixed-layer depth throughout the spring (2) diatom growth rates are much higher in spring than at any other time of year, in response to the more favorable irradiance/mixing relationships, and (3) persistence of diatom blooms in summer results from the diatoms\u0027 ability to outcompete other groups under the light-limited conditions that develop in turbid, high-biomass waters. These hypotheses will be tested by (1) obtaining the first reliable estimates of the Sverdrup \"critical depth\" in the Antarctic so that the changing relationship between the critical depth and the mixed- layer depth in spring can be defined, and (2) estimating diatom growth rates and the gross and net production attributable to diatoms throughout the spring. The results will provide information critical to an understanding of phytoplankton bloom dynamics in the Ross Sea.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Smith, Walker", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Bloom Dynamics and Food-Web Structure in the Ross Sea: The Irradiance/Mixing Regime and Diatom Growith in Spring", "uid": "p0000810", "west": null}, {"awards": "0440414 Steig, Eric", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Stable Isotope Studies at East Antarctic US ITASE Sites", "datasets": [{"dataset_uid": "600042", "doi": "10.15784/600042", "keywords": "Antarctica; Atmosphere; Climate; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; ITASE; Meteorology; Paleoclimate; Satellite Remote Sensing; Weather Station Data", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": "ITASE", "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "url": "https://www.usap-dc.org/view/dataset/600042"}], "date_created": "Mon, 14 Sep 2009 00:00:00 GMT", "description": "This award supports a project to obtain stable isotope profiles from shallow (\u003c100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the \"ITASE\" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~ 100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -90.0, "title": "Stable Isotope Studies at East Antarctic US ITASE Sites", "uid": "p0000202", "west": -180.0}, {"awards": "0440478 Tang, Kam", "bounds_geometry": "POINT(166.66267 -77.85067)", "dataset_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "datasets": [{"dataset_uid": "600043", "doi": "10.15784/600043", "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "people": "Tang, Kam; Smith, Walker", "repository": "USAP-DC", "science_program": null, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "url": "https://www.usap-dc.org/view/dataset/600043"}], "date_created": "Mon, 04 May 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:\u003cbr/\u003eo Do P. Antarctica solitary cells and colonies differ in growth, composition and\u003cbr/\u003ephotosynthetic rates?\u003cbr/\u003eo How do nutrients and grazers affect colony development and size distribution of P. \u003cbr/\u003eAntarctica?\u003cbr/\u003eo How do nutrients and grazers act synergistically to affect the long-term population\u003cbr/\u003edynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": "POINT(166.66267 -77.85067)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.85067, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tang, Kam; Smith, Walker", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "uid": "p0000214", "west": 166.66267}, {"awards": "0538683 Lal, Devendra", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "datasets": [{"dataset_uid": "600058", "doi": "10.15784/600058", "keywords": "Antarctica; Carbon-14; Cosmos; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Solar Activity; South Pole", "people": "Lal, Devendra", "repository": "USAP-DC", "science_program": null, "title": "Solar activity during the last millennium, estimated from cosmogenic in-situ C14 in South Pole and GISP2 ice cores", "url": "https://www.usap-dc.org/view/dataset/600058"}], "date_created": "Fri, 20 Feb 2009 00:00:00 GMT", "description": "0538683\u003cbr/\u003eLal\u003cbr/\u003eThis award supports a project to continue development of a new method for estimating solar activity in the past. It is based on measurements of the concentrations of in-situ produced C-14 in polar ice by cosmic rays, which depend only on (i) the cosmic ray flux, and (ii) ice accumulation rate. This is the only direct method available to date polar ice, since it does not involve any uncertain climatic transfer functions as are encountered in the applications of cosmogenic C-14 data in tree rings, or of Be-10 in ice and sediments. An important task is to improve on the temporal resolution during identified periods of high/low solar activity in the past 32 Kyr. The plan is to undertake a study of changes in the cosmic ray flux during the last millennium (1100-1825 A.D.), during which time 4 low and 1 high solar activity epoch has been identified from historical records. Sunspot data during most of these periods are sparse. Adequate ice samples are available from ice cores from the South Pole and from Summit, Greenland and a careful high resolution study of past solar activity levels during this period will be undertaken. The intellectual merit of the work includes providing independent verification of estimated solar activity levels from the two polar ice records of cosmic ray flux and greatly improve our understanding of solar-terrestrial relationships. \u003cbr/\u003eThe broader impacts include collaboration with other scientists who are experts in the application of the atmospheric cosmogenic C-14 and student training. Both undergraduates and a graduate student will be involved in the proposed research. Various forms of outreach will also be used to disseminate the results of this project, including public presentations and interactions with the media.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Lal, Devendra", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Solar Activity during the Last Millennium, Estimated from Cosmogenic in-situ 14C in South Pole and GISP2 Ice Cores", "uid": "p0000555", "west": -180.0}, {"awards": "0230276 Ward, Bess", "bounds_geometry": "POLYGON((162 -77.2,162.16 -77.2,162.32 -77.2,162.48 -77.2,162.64 -77.2,162.8 -77.2,162.96 -77.2,163.12 -77.2,163.28 -77.2,163.44 -77.2,163.6 -77.2,163.6 -77.26,163.6 -77.32,163.6 -77.38,163.6 -77.44,163.6 -77.5,163.6 -77.56,163.6 -77.62,163.6 -77.68,163.6 -77.74,163.6 -77.8,163.44 -77.8,163.28 -77.8,163.12 -77.8,162.96 -77.8,162.8 -77.8,162.64 -77.8,162.48 -77.8,162.32 -77.8,162.16 -77.8,162 -77.8,162 -77.74,162 -77.68,162 -77.62,162 -77.56,162 -77.5,162 -77.44,162 -77.38,162 -77.32,162 -77.26,162 -77.2))", "dataset_titles": "What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "datasets": [{"dataset_uid": "600033", "doi": "10.15784/600033", "keywords": "Antarctica; Biota; CTD Data; Dry Valleys; Lake Bonney; Lake Vanda; Microbiology; Taylor Valley", "people": "Ward, Bess", "repository": "USAP-DC", "science_program": null, "title": "What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "url": "https://www.usap-dc.org/view/dataset/600033"}], "date_created": "Sun, 18 Jan 2009 00:00:00 GMT", "description": "Denitrification is the main process by which fixed nitrogen is lost from ecosystems and the regulation of this process may directly affect primary production and carbon cycling over short and long time scales. Previous investigations of the role of bioactive metals in regulating denitrification in bacteria from permanently ice-covered Lake Bonney in the Taylor Valley of East Antarctica indicated that denitrifying bacteria can be negatively affected by metals such as copper, iron, cadmium, lead, chromium, nickel, silver and zinc; and that there is a distinct difference in denitrifying activity between the east and west lobes of the lake. Low iron concentrations were found to exacerbate the potential toxicity of the other metals, while silver has the potential to specifically inhibit denitrification because of its ability to interfere with copper binding in redox proteins, such as nitrite reductase and nitrous oxide reductase. High silver concentrations might prevent the functioning of nitrous oxide reductase in the same way that simple copper limitation does, thereby causing the buildup of nitrous oxide and resulting in a nonfunctional nitrogen cycle. Other factors, such as oxygen concentration, are likely also to affect bacterial activity in Lake Bonney. This project will investigate silver toxicity, general metal toxicity and oxygen concentration to determine their effect on denitrification in the lake by using a suite of \"sentinel\" strains of denitrifying bacteria (isolated from the lake) incubated in Lake Bonney water and subjected to various treatments. The physiological responses of these strains to changes in metal and oxygen concentration will be quantified by flow cytometric detection of single cell molecular probes whose sensitivity and interpretation have been optimized for the sentinel strains. Understanding the relationships between metals and denitrification is expected to enhance our understanding of not only Lake Bonney\u0027s unusual nitrogen cycle, but more generally, of the potential role of metals in the regulation of microbial nitrogen transformations.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this work include not only a better understanding of regional biogeochemistry and global perspectives on these processes; but also the training of graduate students and a substantial outreach effort for school children.", "east": 163.6, "geometry": "POINT(162.8 -77.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD", "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -77.2, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ward, Bess", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "Collaborative Research: What Limits Denitrification and Bacterial Growth in Lake Bonney, Taylor Valley, Antarctica?", "uid": "p0000223", "west": 162.0}, {"awards": "0443403 Measures, Christopher; 0444040 Zhou, Meng; 0230445 Measures, Christopher", "bounds_geometry": "POLYGON((-63 -60.3,-62 -60.3,-61 -60.3,-60 -60.3,-59 -60.3,-58 -60.3,-57 -60.3,-56 -60.3,-55 -60.3,-54 -60.3,-53 -60.3,-53 -60.77,-53 -61.24,-53 -61.71,-53 -62.18,-53 -62.65,-53 -63.12,-53 -63.59,-53 -64.06,-53 -64.53,-53 -65,-54 -65,-55 -65,-56 -65,-57 -65,-58 -65,-59 -65,-60 -65,-61 -65,-62 -65,-63 -65,-63 -64.53,-63 -64.06,-63 -63.59,-63 -63.12,-63 -62.65,-63 -62.18,-63 -61.71,-63 -61.24,-63 -60.77,-63 -60.3))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001663", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0402"}], "date_created": "Mon, 12 Jan 2009 00:00:00 GMT", "description": "The Shackleton Fracture Zone (SFZ) in the Drake Passage defines a boundary between low and high phytoplankton waters. West of Drake Passage, Southern Ocean waters south of the Polar Front and north of the Antarctic continent shelf have very low satellite-derived surface chlorophyll concentrations. Chlorophyll and mesoscale eddy kinetic energy are higher east of SFZ compared to values west of the ridge. In situ data from a 10-year survey of the region as part of the National Marine Fisheries Service\u0027s Antarctic Marine Living Resources program confirm the existence of a strong hydrographic and chlorophyll gradient in the region. An interdisciplinary team of scientists hypothesizes that bathymetry, including the 2000 m deep SFZ, influences mesoscale circulation and transport of iron leading to the observed phytoplankton patterns. To address this\u003cbr/\u003ehypothesis, the team proposes to examine phytoplankton and bacterial physiological states (including responses to iron enrichment) and structure of the plankton communities from virus to zooplankton, the concentration and distribution of Fe, Mn, and Al, and mesoscale flow patterns near the SFZ. Relationships between iron concentrations and phytoplankton characteristics will be examined in the context of the mesoscale transport of trace nutrients to determine how much of the observed variability in phytoplankton biomass can be attributed to iron supply, and to determine the most important sources of iron to pelagic waters east of the Drake Passage. The goal is to better understand how plankton productivity and community structure in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and limiting nutrient distributions.\u003cbr/\u003e\u003cbr/\u003eThe research program includes rapid surface surveys of chemical, plankton, and hydrographic properties complemented by a mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments. Distributions of manganese and aluminum will be determined to help distinguish aeolian, continental shelf and upwelling sources of iron. The physiological state of the phytoplankton will be monitored by active fluorescence methods sensitive to the effects of iron limitation. Mass concentrations of pigment, carbon and nitrogen will be obtained by analysis of filtered samples, cell size distributions by flow cytometry, and species identification by microscopy. Primary production and photosynthesis parameters (absorption, quantum yields, variable fluorescence) will be measured on depth profiles, during surface surveys and on bulk samples from enrichment experiments. Viruses and bacteria will be examined for abundances, and bacterial production will be assessed in terms of whether it is limited by either iron or organic carbon sources. The proposed work will improve our understanding of processes controlling distributions of iron and the response of plankton communities in the Southern Ocean. This proposal also includes an outreach component comprised of Research Experiences for Undergraduates (REU), Teachers Experiencing the Antarctic and Arctic (TEA), and the creation of an educational website and K-12 curricular modules based on the project.", "east": -53.0, "geometry": "POINT(-58 -62.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "R/V LMG", "locations": null, "north": -60.3, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Measures, Christopher; Selph, Karen; Zhou, Meng", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.0, "title": "Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage", "uid": "p0000585", "west": -63.0}, {"awards": "0741428 Hutchins, David", "bounds_geometry": "POINT(-106 -73)", "dataset_titles": null, "datasets": null, "date_created": "Sun, 23 Nov 2008 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThis Small Grants for Exploratory Research (SGER) proposal describes global change-related experimental research designed to take full advantage of a unique science opportunity on short notice, the leasing of the Oden to conduct ice-breaking operations in McMurdo Sound. \u003cbr/\u003e\u003cbr/\u003eOur emphasis will be on using this opportunistic research platform to ask two questions about present day and future controls on Antarctic margin phytoplankton communities. These are: 1. How will expected alterations in pCO2, pH, and Fe availability in the Southern Ocean, due to future anthropogenic climate change affect phytoplankton species assemblages, carbon and nutrient biogeochemistry, and remineralization processes? 2. What is the current role of organic co-factors (vitamins) in limiting or co-limiting (along with iron ) phytoplankton growth and production in the Antarctic margin? The research approach includes experimental incubations with variation in iron enrichment, carbon dioxide concentration, and temperature. A second suite of experiments will examine co-limitation effects between vitamin B12 and Fe and B12 uptake kinetics. Changes in phytoplankton community structure, and carbon and nutrient cycling will be determined, in collaboration with many of the participating U.S. and Swedish investigators. Together, these two main objectives should allow us to obtain novel insights into the current and future controls on Antarctic margin phytoplankton growth, productivity, and carbon and nutrient biogeochemistry. In particular, the experiments in the Amundsen Sea represent a one-of-a-kind opportunity to understand algal dynamics and potential future responses to climate change in this little-studied ecosystem, and compare these results to those from the better-known Ross Sea. An important result of this study will be to build strong international collaborations with the Swedish marine science community. Additional broader impacts include participatin of an Hispanic Ph.D. student in cruise work and post-cruise analyses, and integration of results into graduate courses at the USC Catalina Lab facility. Public outreach will include presentations on global change impacts on the ocean targeted at audiences ranging from legislators and policymakers to the general public.", "east": -106.0, "geometry": "POINT(-106 -73)", "instruments": null, "is_usap_dc": true, "keywords": "SHIPS", "locations": null, "north": -73.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Hutchins, David", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repositories": null, "science_programs": null, "south": -73.0, "title": "SGER: Science-of-Opportunity Aboard Icebreaker Oden - Phytoplankton Global Change Experiments and Vitamin/Iron Co-Limitation in the Amundsen and Ross Seas", "uid": "p0000224", "west": -106.0}, {"awards": "0338279 Siddoway, Christine", "bounds_geometry": "POLYGON((-157 -75,-155.3 -75,-153.6 -75,-151.9 -75,-150.2 -75,-148.5 -75,-146.8 -75,-145.1 -75,-143.4 -75,-141.7 -75,-140 -75,-140 -75.3,-140 -75.6,-140 -75.9,-140 -76.2,-140 -76.5,-140 -76.8,-140 -77.1,-140 -77.4,-140 -77.7,-140 -78,-141.7 -78,-143.4 -78,-145.1 -78,-146.8 -78,-148.5 -78,-150.2 -78,-151.9 -78,-153.6 -78,-155.3 -78,-157 -78,-157 -77.7,-157 -77.4,-157 -77.1,-157 -76.8,-157 -76.5,-157 -76.2,-157 -75.9,-157 -75.6,-157 -75.3,-157 -75))", "dataset_titles": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "datasets": [{"dataset_uid": "601829", "doi": "10.15784/601829", "keywords": "Antarctica; Cryosphere; Gondwana; Marie Byrd Land; Migmatite", "people": "Siddoway, Christine", "repository": "USAP-DC", "science_program": null, "title": "Bedrock sample data, Ford Ranges region (Marie Byrd Land)", "url": "https://www.usap-dc.org/view/dataset/601829"}], "date_created": "Wed, 09 Jul 2008 00:00:00 GMT", "description": "This project will study migmatite domes found in the Fosdick Mountains of the Ford Ranges, western Marie Byrd Land, Antarctica. This area offers unique, three-dimensional exposures that may offer new insight into dome formation, which is a fundamental process of mountain building. These domes are derived from sedimentary and plutonic protoliths that are complexly interfolded at decimeter to kilometer scales. Preliminary findings from geobarometry and U-Pb monazite dating of anatexite suggest that peak metamorphism was underway at 105 Ma at crustal depths of ~25 km, followed by decompression as the Fosdick dome was emplaced to 16-17 km, or possibly as low as 8.5 km, in the crust by 99 Ma. Near-isothermal conditions were maintained during ascent, favorable for producing substantial volumes of melt through biotite-dehydration melting. This dome has been interpreted as a product of extensional exhumation. This is a viable interpretation from the regional standpoint, because the dome was emplaced in mid-Cretaceous time during the rapid onset of divergent tectonics along the proto- Pacific margin of Gondwana. However, the complex internal structures of the Fosdick Mountains have yet to be considered and may be more consistent with alternative intepretations such as upward extrusion within a contractional setting or lateral flow within a transcurrent attachment zone. This proposal is for detailed structural analysis, paired with geothermobarometry and geochronology, to determine the flow behavior and structural style that produced the internal architecture of the Fosdick dome. The results will improve our general understanding of the role of gneiss domes in transferring material and heat during mountain-building, and will characterize the behavior of the middle crust during a time of rapid transition from divergent to convergent tectonics along the active margin of Gondwana. In terms of broader impacts, this work will train undergraduate and graduate students, and involve them as collaborators in the development of curricular materials. It will also foster mentoring relationships between graduate and undergraduate students.", "east": -140.0, "geometry": "POINT(-148.5 -76.5)", "instruments": null, "is_usap_dc": false, "keywords": "Transcurrent Faults; Geochronology; Tectonic; Detachment Faults; Structural Geology; Not provided; Gneiss Dome; Migmatite", "locations": null, "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Siddoway, Christine; Teyssier, Christian", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Gneiss Dome architecture: Investigation of Form and Process in the Fosdick Mountains, W. Antarctica", "uid": "p0000744", "west": -157.0}, {"awards": "0229490 Conway, Howard", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 30 Apr 2007 00:00:00 GMT", "description": "This award supports a project to improve understanding of post-glacial retreat and thinning of the Siple Coast region. Research has shown how age-depth relationships from ice cores can be extrapolated over wide areas by tracking continuous radar layers. By comparing radar-derived timescales with one from a model of ice- flow, glacial conditions over regional scales were inferred. High-resolution radar profiles have been collected across most of the inter-stream ridges in the Siple Coast region, and an age- depth relationship has been established from the Siple Dome ice core. Application of the techniques used by others is problematic because the ice streams that surround Siple Dome have disrupted the continuity of the internal layers. A specific goal of this project is to search for other less direct ways to match radar layers between unconnected profiles. The correspondence between radar reflections and measurements of electrical conductivity and volcanic sulfates along the Siple Dome core will be investigated. The strategy is to search for distinctive patterns in the echoes that will facilitate layer matching. Preliminary results are encouraging: at least four distinct echoes at Siple Dome can be matched to spikes in the conductivity profile and the signature of one (at 210m depth, which is ~1,800 yrs BP) closely resembles that of a layer at ~200m on Ridge BC. Matching layers (and hence timescales) across the ice streams will allow reconstruction of spatial patterns of past flow, thinning and accumulation rate in the Siple Coast region, which is needed to predict future possible changes of the West Antarctic Ice Sheet. Data necessary for the proposed work are already available; additional fieldwork in Antarctica is not required. The project will take two years to complete and will provide core education for a doctoral student in Earth and Space Sciences, with an emphasis on radioglaciology.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Sylvester, John; Winebrenner, Dale", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Investigation of the Glacial History of the Siple Coast Using Radar-Detected Internal Layers and the Ice Core from Siple Dome", "uid": "p0000723", "west": null}, {"awards": "0230452 Severinghaus, Jeffrey", "bounds_geometry": "POINT(124.5 -80.78)", "dataset_titles": "Antarctic megadunes", "datasets": [{"dataset_uid": "000191", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Antarctic megadunes", "url": "http://nsidc.org/antarctica/megadunes/"}], "date_created": "Wed, 27 Sep 2006 00:00:00 GMT", "description": "This award supports a study of the chemical composition of air in the snow layer (firn) in a region of \"megadunes\" near Vostok station, Antarctica. It will test the hypothesis that a deep \"convective zone\" of vigorous wind-driven mixing can prevent gas fractionation in the upper one-third of the polar firn layer. In the megadunes, ultralow snow accumulation rates lead to structural changes (large grains, pipes, and cracks) that make the permeability of firn to air movement orders of magnitude higher than normal. The unknown thickness of the convective zone has hampered the interpretation of ice core 15N/14N and 40Ar/36Ar ratios as indicators of past firn thickness, which is a key constraint on the climatically important variables of temperature, accumulation rate, and gas age-ice age difference. Studying this \"extreme end-member\" example will better define the role of the convective zone in gas reconstructions. This study will pump air from a profile of ~20 depths in the firn, to definitively test for the presence of a convective zone based on the fit of observed 15 N/14N and 40Ar/36Ar to a molecular- and eddy-diffusion model. Permeability measurements on the core and 2-D air flow modeling (in collaboration with M. Albert) will permit a more physically realistic interpretation of the isotope data and will relate mixing vigor to air velocities. A new proxy indicator of convective zone thickness will be tested on firn and ice core bubble air, based on the principle that isotopes of slow-diffusing heavy noble gases (Kr, Xe) should be more affected by convection than isotopes of fast-diffusing N2 . These tools will be applied to a test of the hypothesis that the megadunes and a deep convective zone existed at the Vostok site during glacial periods, which would explain the anomalously low 15N/14N and 40Ar/36Ar in the Vostok ice core glacial periods. The broader impacts of this work include 1) clarification of phase relationships of greenhouse gases and temperature in ice core records, with implications for understanding of past and future climates, 2) education of one graduate student, and 3) building of collaborative relationships with five investigators.", "east": 124.5, "geometry": "POINT(124.5 -80.78)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS", "is_usap_dc": false, "keywords": "Antarctica; Methane; Carbon-14; Permeability; CO2; Firn Core; FIELD SURVEYS; Deuterium Excess; GROUND-BASED OBSERVATIONS; LABORATORY; Isotope; Ice Core Density; Firn Air; Megadunes; Ice Core; Not provided; FIELD INVESTIGATION", "locations": "Antarctica", "north": -80.78, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Albert, Mary R.; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "NSIDC", "repositories": "NSIDC", "science_programs": null, "south": -80.78, "title": "How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, Antarctica", "uid": "p0000097", "west": 124.5}, {"awards": "0401116 Twickler, Mark", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 13 Jan 2006 00:00:00 GMT", "description": "This award will support a workshop whose aim is to provide a forum for discussion of an international ice core initiative and to examine how such an initiative might work. This workshop will bring together members of the international ice core community to discuss what new large ice core projects are needed to address leading unanswered science questions, technical obstacles to initiating these projects, benefits and difficulties of international collaboration on such projects, and how these collaborations might be facilitated. The very positive response of numerous international ice core scientists consulted about this idea shows that the need for such an initiative is widely recognized. Ice cores have already revolutionized our view of the Earth System, providing, for example, the first evidence that abrupt climate changes have occurred, and showing that greenhouse gases and climate have been tightly linked over the last 400,000 years. Ice cores provide records at high resolution, with particularly good proxies for climate and atmospheric parameters. The challenge that ice core projects present is that they require large concentrations of resources and expertise (both in drilling and in science) that are generally beyond the capacity of any one nation. Maintaining a critical mass of knowledge between projects is also difficult. One way to avoid these problems is to expand international cooperation on ice core drilling projects, so that expertise and resources can be pooled and applied to the most exciting new projects. The broader impacts of this workshop include the societal relevance of ice core science and the fact that the data and interpretations derived from new ice cores will give policymakers the information necessary to make better decisions on the how the earth is responding to climate change. In addition, by improving ice core sciences through international partnerships more students will be able to become involved in an exciting and growing area of climate research.", "east": -9.36, "geometry": "POINT(-42.35 71.69)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": false, "keywords": "Ice Drill; Arctic; Ice Core; Climate Record; Gas; Antarctic; Climate; Chemistry; Not provided; Time Scale", "locations": "Antarctic; Arctic", "north": 86.6, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Twickler, Mark", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": 56.78, "title": "Workshop for International Partnerships in Ice Core Sciences; March 13-16, 2004; Sterling, VA", "uid": "p0000100", "west": -75.34}, {"awards": "0125276 Albert, Mary; 0125570 Scambos, Ted", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Haran, Terry; Scambos, Ted; Bauer, Rob; Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Scambos, Ted; Bauer, Rob", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Cathles, Mac; Albert, Mary R.; Courville, Zoe", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}, {"awards": "0232042 Finn, Carol", "bounds_geometry": "POLYGON((139.27539 -82.35733,142.369695 -82.35733,145.464 -82.35733,148.558305 -82.35733,151.65261 -82.35733,154.746915 -82.35733,157.84122 -82.35733,160.935525 -82.35733,164.02983 -82.35733,167.124135 -82.35733,170.21844 -82.35733,170.21844 -82.516831,170.21844 -82.676332,170.21844 -82.835833,170.21844 -82.995334,170.21844 -83.154835,170.21844 -83.314336,170.21844 -83.473837,170.21844 -83.633338,170.21844 -83.792839,170.21844 -83.95234,167.124135 -83.95234,164.02983 -83.95234,160.935525 -83.95234,157.84122 -83.95234,154.746915 -83.95234,151.65261 -83.95234,148.558305 -83.95234,145.464 -83.95234,142.369695 -83.95234,139.27539 -83.95234,139.27539 -83.792839,139.27539 -83.633338,139.27539 -83.473837,139.27539 -83.314336,139.27539 -83.154835,139.27539 -82.995334,139.27539 -82.835833,139.27539 -82.676332,139.27539 -82.516831,139.27539 -82.35733))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 16 Aug 2005 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate the Transantarctic Mountains and an adjacent region of East Antarctica. The East Antarctic shield is one of Earth\u0027s oldest and largest cratonic assemblies, with a long-lived Archean to early Paleozoic history. Long-standing interest in the geologic evolution of this shield has been rekindled over the past decade by tectonic models linking East Antarctica with other Precambrian crustal elements in the Rodinia and Gondwanaland supercontinents. It is postulated that the Pacific margin of East Antarctica was rifted from Laurentia during late Neoproterozoic breakup of Rodinia, and it then developed as an active plate boundary during subsequent amalgamation of Gondwanaland in the earliest Paleozoic. If true, the East Antarctic shield played a key role in supercontinent transformation at a time of global changes in plate configuration, terrestrial surficial process, sea level, and marine geochemistry and biota. A better understanding of the geological evolution of the East Antarctic shield is therefore critical for studying Precambrian crustal evolution in general, as well as resource distribution, biosphere evolution, and glacial and climate history during later periods of Earth history. Because of nearly complete coverage by the polar ice cap, however, Antarctica remains the single most geologically unexplored continent. Exposures of cratonic basement are largely limited to coastal outcrops in George V Land and Terre Adelie (Australian sector), the Prince Charles Mountains and Enderby Land (Indian sector), and Queen Maud Land (African sector), where the geology is reasonably well-known. By contrast, little is known about the composition and structure of the shield interior. Given the extensive ice cover, collection of airborne geophysical data is the most cost-effective method to characterize broad areas of sub-ice basement and expand our knowledge of the East Antarctic shield interior. \u003cbr/\u003e\u003cbr/\u003eThis project will conduct an airborne magnetic survey (coupled with ground-based gravity measurements) across an important window into the shield where it is exposed in the Nimrod Glacier area of the central Transantarctic Mountains. Specific goals are to:\u003cbr/\u003e1. Characterize the magnetic and gravity signature of East Antarctic crustal basement exposed at the Ross margin (Nimrod Group),\u003cbr/\u003e2. Extend the magnetic data westward along a corridor across the polar ice cap in order to image the crust in ice-covered areas,\u003cbr/\u003e3. Obtain magnetic data over the Ross Orogen in order to image the ice-covered boundary between basement and supracrustal rocks, allowing us to better constrain the geometry of fundamental Ross structures, and\u003cbr/\u003e4. Use the shape, trends, wavelengths, and amplitudes of magnetic anomalies to define magnetic domains in the shield, common building blocks for continent-scale studies of Precambrian geologic structure and evolution.\u003cbr/\u003e\u003cbr/\u003eHigh-resolution airborne magnetic data will be collected along a transect extending from exposed rocks of the Nimrod Group across the adjacent polar ice cap. The Nimrod Group represents the only bona fide Archean-Proterozoic shield basement exposed for over 2500 km of the Pacific margin of Antarctica. This survey will characterize the geologically well-known shield terrain in this sector using geophysical methods for the first time. This baseline over the exposed shield will allow for better interpretation of geophysical patterns in other ice-covered regions and can be used to target future investigations. In collaboration with colleagues from the BGR (Germany), a tightly-spaced, \"draped\" helicopter magnetic survey will be flown during the 2003-04 austral summer, to be complemented by ground measurements of gravity over the exposed basement. Data reduction, interpretation and geological correlation will be completed in the second year. This project will enhance the education of students, the advancement of under-represented groups, the research instrumentation of the U.S. Antarctic Program, partnerships between the federal government and institutions of higher education, and cooperation between national research programs. It will benefit society through the creation of new basic knowledge about the Antarctic continent, which in turn may help with applied research in other fields such as the glacial history of Antarctica.", "east": 170.21844, "geometry": "POINT(154.746915 -83.154835)", "instruments": "SOLAR/SPACE OBSERVING INSTRUMENTS \u003e MAGNETIC FIELD/ELECTRIC FIELD INSTRUMENTS \u003e MAM", "is_usap_dc": false, "keywords": "Central Transantarctic Mountains; Aeromagnetic Data; HELICOPTER; DHC-6; Not provided", "locations": "Central Transantarctic Mountains", "north": -82.35733, "nsf_funding_programs": null, "paleo_time": null, "persons": "Finn, C. A.; FINN, CAROL", "platforms": "AIR-BASED PLATFORMS \u003e PROPELLER \u003e DHC-6; AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER; Not provided", "repositories": null, "science_programs": null, "south": -83.95234, "title": "Collaborative Research: Geophysical Mapping of the East Antarctic Shield Adjacent to the Transantarctic Mountains", "uid": "p0000249", "west": 139.27539}, {"awards": "0125468 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 01 Feb 2005 00:00:00 GMT", "description": "This award supports the continued measurements of gas isotopes in the Vostok ice core, from Antarctica. One objective is to identify the phasing of carbon dioxide variations and temperature variations, which may place constraints on hypothesized cause and effect relationships. Identification of phasing has in the past been hampered by the large and uncertain age difference between the gases trapped in air bubbles and the surrounding ice. This work will circumvent this issue by employing an indicator of temperature in the gas phase. It is argued that 40Ar/39Ar behaves as a qualitative indicator of temperature, via an indirect relationship between temperature, accumulation rate, firn thickness, and gravitational fractionation of the gas isotopes. The proposed research will make nitrogen and argon isotope measurements on ~ 200 samples of ice covering Termination II (130,000 yr B.P.) and Termination IV (340,000 yr BP). The broader impacts may include a better understanding of the role of atmospheric carbon dioxide concentrations in climate change.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Vostok; Isotope; Ice Core; Not provided", "locations": "Vostok", "north": -62.83, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -90.0, "title": "Argon and nitrogen isotope measurements in the Vostok ice core as aconstraint on phasing of CO2 and temperature changes", "uid": "p0000752", "west": -180.0}, {"awards": "8919147 Elliot, David", "bounds_geometry": null, "dataset_titles": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "datasets": [{"dataset_uid": "609099", "doi": "10.7265/N5WW7FKC", "keywords": "Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Embayment; West Antarctica", "people": "Kempf, Scott D.; Studinger, Michael S.; Brozena, J. M.; Bell, Robin; Blankenship, Donald D.; Finn, C. A.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Hodge, S. M.", "repository": "USAP-DC", "science_program": null, "title": "Ice Thickness and Surface Elevation, Southeastern Ross Embayment, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609099"}], "date_created": "Wed, 17 Mar 2004 00:00:00 GMT", "description": "This award will support a combined airborne radar and aeromagnetic survey of two 220 x 330 km regions between the Transantarctica Mountains and Marie Byrd Land during the 1990-91 and 1991-92 field seasons. These efforts will address significant problems identified in the Ross Transect Zone (RTZ) by the National Academy of Sciences (1986) report \"Antarctic Solid Earth Sciences Research,\" and by the report to NSF \"A Plan for a United States Program to Study the Structure and Evolution of the Antarctic Lithosphere (SEAL).\" The surveys will be flown using the NSF/TUD radar and an areomagnetics system mounted in a light aircraft. The grid spacing will be 5 km and navigation will be by radiopositioning. In addition to maps of subglacial topography and magnetic intensity, attempts will be made to reconstruct the position of subglacial diffractors in three dimensions. This reconstruction should give new information about the distribution of escarpments and therefore the tectonic relationships within the region, especially when combined with the magnetic results. These experiments will be conducted by the Byrd Polar Research Center of the Ohio State University and the Water Resources and Geological Divisions of the U.S. Geological Survey.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Subglacial Topography; SOAR; Airborne Laser Altimeters; Ross Embayment; West Antarctica; Ice Stream; Surface Morphology; Airborne Laser Altimetry; Aerogeophysics; Ice Sheet Thickness; Airborne Radar Sounding; Ice Thickness; West Antarctic Ice Sheet; Ice Surface Elevation; Casertz", "locations": "Ross Embayment; West Antarctica; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Elliot, David; Bell, Robin; Blankenship, Donald D.; Brozena, J. M.; Finn, C. A.; Hodge, S. M.; Kempf, Scott D.; Behrendt, J. C.; Morse, David L.; Peters, M. E.; Studinger, Michael S.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Corridor Aerogeophysics of the Southeastern Ross Transect Zone (CASERTZ), Antarctica", "uid": "p0000056", "west": null}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": null, "dataset_titles": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "datasets": [{"dataset_uid": "609202", "doi": "10.7265/N5N877Q9", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Deck, Bruce; Wahlen, Martin; Ahn, Jinho", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609202"}], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "9980691\u003cbr/\u003eWahlen\u003cbr/\u003e\u003cbr/\u003eThis award is for support for three years of funding to reconstruct the atmospheric carbon dioxide (CO2) and carbon-13 isotope (d13C) concentration in ice cores from Antarctica over several climatic periods. Samples from the Holocene, the Last Glacial Maximum (LGM)-Holocene transition and glacial stadial/interstadial episodes will be examined. Samples from the Siple Dome ice core drilled in 1998/99 will be made, in addition to measurements from the Taylor Dome and Vostok ice cores. The major objectives are to investigate the phase relationships between variations in the concentration of atmospheric CO2, its carbon isotope composition, and temperature changes (indicated by 18dO and dD of the ice) during deglaciations as well as across rapid climate change events (e.g. Dansgaard-Oeschger events). This will help to determine systematic changes in the global carbon cycle during and between different climatic periods, and to ascertain if the widely spread northern hemisphere temperature stadial/interstadial events produced a global atmospheric carbon dioxide signal. Proven experimental techniques will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "FIELD SURVEYS; Siple Dome; Ice Core; USAP-DC; Carbon Dioxide", "locations": "Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Wahlen, Martin; Ahn, Jinho; Deck, Bruce", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "uid": "p0000166", "west": null}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": null, "dataset_titles": "Physical and Structural Properties of the Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609128", "doi": "10.7265/N5668B34", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Gow, Tony; Meese, Deb", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609128"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Stratigraphy; Ice Sheet; GROUND-BASED OBSERVATIONS; Density; Siple; Chemical Composition; Volcanic Deposits; Siple Coast; WAISCORES; Not provided; GROUND STATIONS; Pico; Ice Core; Tephra; Fabric; Glaciology; Snow", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gow, Tony; Meese, Deb", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical and Structural Properties of the Siple Dome Core", "uid": "p0000064", "west": null}, {"awards": "0838834 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -62.83,-144 -62.83,-108 -62.83,-72 -62.83,-36 -62.83,0 -62.83,36 -62.83,72 -62.83,108 -62.83,144 -62.83,180 -62.83,180 -65.547,180 -68.264,180 -70.981,180 -73.698,180 -76.415,180 -79.132,180 -81.849,180 -84.566,180 -87.283,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.283,-180 -84.566,-180 -81.849,-180 -79.132,-180 -76.415,-180 -73.698,-180 -70.981,-180 -68.264,-180 -65.547,-180 -62.83))", "dataset_titles": "Access all real-time datasets; Access Antarctic Composite Images.; Access Antarctic Synoptic and METAR Observations.; Access McMurdo Radiosonde Observations; Access South Pole Radiosonde Observations; Archived METAR observational data; We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "datasets": [{"dataset_uid": "001300", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access all real-time datasets", "url": "http://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001386", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Archived METAR observational data", "url": "ftp://amrc.ssec.wisc.edu/archive/"}, {"dataset_uid": "001382", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu"}, {"dataset_uid": "001299", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Synoptic and METAR Observations.", "url": "ftp://amrc.ssec.wisc.edu/"}, {"dataset_uid": "001290", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "We have observations from three ships near Antarctica, the R/V Polar Duke the R/V Nathaniel B. Palmer and the R/V Laurence M. Gould. Data from 23 August 1993 are available via ftp and the files are updated with the most recent observations every 7-10 days as we receive the information. The AMRC has been archiving general ship and buoy observational data for the Antarctic and surrounding regions since 2 December 1998.", "url": "ftp://amrc.ssec.wisc.edu/pub/shipobs/"}, {"dataset_uid": "001289", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access McMurdo Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/mcmurdo/radiosonde/"}, {"dataset_uid": "001288", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access South Pole Radiosonde Observations", "url": "ftp://amrc.ssec.wisc.edu/pub/southpole/radiosonde/"}, {"dataset_uid": "001285", "doi": "", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Access Antarctic Composite Images.", "url": "http://amrc.ssec.wisc.edu/data/view-data.php?action=list\u0026amp;amp;product=satellite/composite"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Abstract\u003cbr/\u003e\u003cbr/\u003eThe Antarctic Meteorological Research Center (AMRC), located at the University of Wisconsin, Madison, serves several communities by maintaining and extending the stewardship of meteorological data pertinent to the Antarctic continent, its surrounding islands, ice sheets and ice margins and the adjacent Southern Ocean. This data will continue to be made freely available to interested researchers and the general public. Activities of particular interest for the current award include the development of an enhanced data portal to provide improved data and analysis tools to the research community, and to continue to add to the evolution of the Antarctic-Internet Data Distribution system, which is meant to overcome the costly and generally low bandwidth internet connectivity to and from the Antarctic continent. Operational forecasting for logistical activities in the Antarctic, as well as active Antarctic meteorological research programs, are clearly in need of a dependable, steady flow of meteorological observations, model output, and related data in what must be a collaborative environment in order to overcome the otherwise distributed nature of Antarctic meteorological and climatological observations.\u003cbr/\u003e\u003cbr/\u003eAMRC interaction with the public through answering e-mail questions, giving informal public lectures and presentations to K-12 education institutions through visits to schools will help to raise science literacy with regards to meteorology and of the Antarctic and polar regions. \u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003e\"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\"", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e GOES I-M IMAGER; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e OLS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e VISSR; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e BAROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e WET BULB THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADIOSONDES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e AMSU-A; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e HIRS/2; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e MSU; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e TOVS", "is_usap_dc": false, "keywords": "Shortwave Composite Satellite Images; Radiosonde Data; Antarctic; Noaa Hrpt Raw Data; Synoptic Data; Water Vapor Composite Satellite Images; SATELLITES; Satellite Imagery; Infrared Imagery; NOAA POES; Visible Composite Satellite Images; BUOYS; Antarctica; Ship/buoy Data; FIXED OBSERVATION STATIONS; Longwave Composite Satellite Images; Not provided; COASTAL STATIONS; Metar Weather Observations", "locations": "Antarctic; Antarctica", "north": -62.83, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Costanza, Carol", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e COASTAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Antarctic Meteorological Research Center (2009-2011)", "uid": "p0000264", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
The Results Map and the Results Table
The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
As the map is panned or zoomed, the highlighted rows in the table will update.
If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page.
The bounds for the project(s)/dataset(s) selected will be displayed in red.
The selected result(s) will be highlighted in red and brought to the top of the table.
The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds
and highlight the centroid on the Results Map.
Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other
search criteria already selected.
After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
Clicking Clear in the map will clear any drawn polygon.
Clicking Search in the map, or Search on the form will have the same effect.
The returned results will be any projects/datasets with bounds that intersect the polygon.
Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Non-technical description<br/>Marine invertebrates often have mutually beneficial partnerships with microorganisms that biosynthesize compounds with nutritive or defensive functions and are integral for survival. Additionally, these “natural products” often have bioactive properties with human health applications fighting infection or different types of cancer. This project focuses on the ascidian (“sea squirt”) Synoicum adareanum, found in the Anvers Island region of the Antarctic Peninsula, and was recently discovered to contain high levels of a natural product, palmerolide A (palA) in its tissues. The microorganism that produces palA is a new bacterial species, Candidatus Synoicihabitans palmerolidicus, found in a persistent partnership with the sea squirt. There is still much to be learned about the fundamental properties of this sea squirt-microbe-palA system including the geographical range of the animal-microbe partnership, its chemical and microbiome complexity and diversity, and the biological effect of palA in the sea squirt. To address these questions, this multidisciplinary research team will investigate the sea squirt-microbiome partnership in the Antarctic Peninsula and McMurdo Sound regions of the Ross Sea using a state-of-the-art strategy that will advance our understanding of the structural and functional features of the sea squirt and microbiome in detail, and reveal the roles that the palA natural product plays in the host ecology in its native Antarctic seafloor habitat. The project will broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry. In addition, advancing the understanding of palA and its biological properties may be of future benefit to biomedicine and human health.<br/><br/>Technical description<br/>Marine invertebrates and their associated microbiomes can produce bioactive natural products; in fact, >600 such compounds have been identified in species from polar waters. Although such compounds are typically hypothesized to serve ecological roles in host survival through deterring predation, fouling, and microbial infection, in most cases neither the producing organism nor the genome-encoded biosynthetic enzymes are known. This project will study an emerging biosynthetic system from a polar ascidian-microbe association that produces palA, a natural product with bioactivity against the proton-pumping enzyme V-type H+-ATPase (VHA). The objectives include: (i) Determining the microbiome composition, metabolome complexity, palA levels, and mitochondrial DNA sequence of S. adareanum morphotypes at sites in the Antarctic Peninsula and in McMurdo Sound, (ii) Characterizing the Synoicum microbiome using a multi-omics strategy, and (iii) Assessing the potential for co-occurrence of Ca. S. palmerolidicus-palA-VHA in host tissues, and (iv) exploring the role of palA in modulating VHA activity in vivo and its effects on ascidian-microbe ecophysiology. Through a coupled study of palA-producing and non-producing S. adareanum specimens, structural and functional features of the ascidian microbiome metagenome will be characterized to better understand the relationship between predicted secondary metabolite pathways and whether they are expressed in situ using a paired metatranscriptome sequencing and secondary metabolite detection strategy. Combined with tissue co-localization results, functional ecophysiological assays aim to determine the roles that the natural product plays in the host ecology in its native Antarctic seafloor habitat. The contributions of the project will inform this intimate host-microbial association in which the ascidian host bioaccumulates VHA-inhibiting palA, yet its geo-spatial distribution, cellular localization, ecological and physiological role(s) are not known. In addition to elucidating the ecophysiological roles of palA in their native ascidian-microbe association, the results will contribute to the success of translational science, which aligns with NSF’s interests in promoting basic research that leads to advances in Biotechnology and Bioeconomy. The project will also broaden diversity and provide new opportunities for early career students and postdoctoral researchers to participate in field and laboratory-based research that builds an integrative understanding of Antarctic marine biology, ecology, physiology and chemistry.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria.
Phytoplankton, or microscopic marine algae, are an important part of the carbon cycle and can lower the rates of atmospheric carbon dioxide by transferring the atmospheric carbon into the oceans. The concentration of phytoplankton in the Southern Ocean is regularly limited by the availability of marine iron. This in turn influences the rate of carbon transfer from the atmosphere to the ocean. The primary source of iron in the Southern Ocean is eroded continental rock. Understanding the current and future sources of iron to the Southern Ocean as a result of increased melting of terrestrial glaciers is necessary for predicting future concentrations of Southern Ocean phytoplankton and the subsequent influence on the carbon cycle. A poorly understood source of iron to the Southern Ocean is stream input from ice-free regions such as the McMurdo Dry Valleys in Antarctica. This source of iron is likely to become larger if glaciers retreat. This study investigates the sources and amount of iron transported by McMurdo Dry Valley streams directly into the Southern Ocean. Because not all forms of iron can be used by phytoplankton, experiments will be performed to determine how available iron is to phytoplankton and how iron mixes with seawater. Immersive 360-degree video, infographics, and educational videos of findings from this project will be shared on social media, at schools and science events, and in an urban science center.<br/><br/>In the Southern Ocean (SO) there is an excess of macronutrients but regional primary production is limited or co-limited due to iron. An addition of iron to the ocean will affect biochemical cycles, increase primary production, and affect the structure and composition of phytoplankton communities in the SO. Iron flux to the SO is globally significant, as increased Fe fertilization leads to increased carbon sequestration which acts as a negative feedback to increased atmospheric pCO2. One source of potentially bioavailable iron to the coastal regions of the SO is from direct sub-aerial stream discharge in ice-free areas of Antarctica, a source that may become more important if terrestrial glaciers retreat. It is imperative to understand the source, nature, potential fate, and flux of iron to the SO if better predictive models for the carbon cycle and atmospheric chemistry are to be developed. This project will investigate in-stream processes and characteristics controlling dissolved iron draining into the Ross Sea including photoreduction, temperature, and complexation with organic matter. The novel study will quantify bioavailability of particulate iron and bioavailability of dissolved iron in Antarctic in streams draining into the SO. On-site speciation measurements will be performed on dissolved iron species, particulate iron speciation will be determined using high-resolution spectroscopy, mixing experiments will be performed with coastal marine water, and the bioavailability of Fe will be determined through marine bioassays. This project will provide two students with valuable Antarctic field experience and reach thousands of individuals through existing partnerships with K-12 schools, public STEM events, an urban science center, and a strong social media presence.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
General Description:<br/>This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth's interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.<br/><br/>Technical Description:<br/>The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth's natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.
Macrozooplankton are key contributors to marine ecosystem function, and combining empirical sampling and modeling will enable prediction of changing distribution patterns. Challenges in understanding alterations in distributions of these organisms are magnified in the Antarctic Peninsula (AP) ecosystem where ocean warming and sea-ice decline are assumed to drive range shifts in dominant taxa (e.g., krill, pteropods and salps), but functional relationships between zooplankton species distributions and environmental conditions remain uncertain. Therefore, we propose to leverage three decades of zooplankton abundance data and predator (seabird, whale and seal) sighting data from two main longterm survey programs to develop and evaluate predictive Zooplankton Distribution Models (ZDMs) along the AP (at least 60° S to 70° S, ~400,000 km2). To do this, we will adapt a successful machine learning modeling approach from the California Current ecosystem that utilizes bathymetric and oceanographic data to predict zooplankton species distributions. Our main outputs will be 1) a description of species spatiotemporal trends and abundance patterns, 2) a summary of overlap in zooplankton species and predator species distributions, and 3) the creation of a zooplankton mapping tool allowing for public viewing of past and future ZDM predictions.
The aims of this CAREER proposal are to gain a greater understanding of the role of sympagic algae in Antarctic marine ecosystems with the goal to better parameterize their role in biogeochemical and ecosystem processes across dynamic environments. Specifically, this proposal will apply a laboratory-scale, ice-tank system that recreates the seasonal cycle of sea ice in the laboratory for the purpose of studying sympagic microbes to study the following questions:
1.1 Starting with a late autumn, mixed phytoplankton community, how do different algal species specialize to sea ice, seawater and flooded snow/ice habitats over winter?
1.2 What are the relationships between different methods of measuring primary production (fluorescence, O2 production, CO2 drawdown) in sea ice? Does this differ from seawater?
1.3 Does the presence of sea-ice algae influence the physical structure of sea ice?
1.4 How does the release of compatible solutes from algae during ice melt influence the dissolved organic pool?
In addition, I propose to integrate educational activities with my research goals. This includes development of an educational program at the university and K-12 level on Antarctic Sciences that develops critical thinking and quantitative skills, encourages STEM participation from underrepresented groups and establishes an interactive network of Antarctic researchers to broaden research opportunities.
Over the last half century the Antarctic Peninsula has been among the most rapidly warming regions in the world. This has led to increased glacier melt, widespread glacier retreat, ice-shelf collapses, and glacier speed-ups. Many of these changes are driven by changing precipitation and increased melt due to warmer air temperatures. This project will use a combination of two models - a regional atmospheric model and a model of processes at the glacier surface - to simulate future changes in temperature and snowfall, and the resulting changes in glacier mass. The combination of models will be tested against the observational record (since 1979 when satellite observations became available), to verify that it can reproduce observed change, and then run to the year 2100. Results will provide better estimates of the impacts of future climate changes over the Antarctic Pensinsula and the expected glacier mass changes driven by the evolving climate. <br/><br/>The project will use the large changes observed on the Peninsula to validate a model framework suitable for understanding the impact of these changes on the glaciers and ice shelves there, with the goal of developing optimally constrained future climate and surface mass change scenarios for the region. The framework will provide both a coherent picture of the impacts of past changes on the region's ice cover, and also the best available constraints on forcings that will determine ice mass loss from this region going forward under a standard scenario. The Weather Forecasting and Research (WRF) Model will be used over the domain of the Antarctic Peninsula and neighboring islands to quantify trends in spatio-temporal patterns of mass change with a focus on surface melt. The WRF model will be enhanced to account for the specific conditions of glacier surfaces, and the modified model will be used to simulate climate conditions and resulting surface mass budgets and melt over the period 1979-2100. Tying modeled past climate changes to the surface and satellite-based observational record will provide a foundation for interpreting projected future change. Results will be validated using available weather station observations, surface mass-balance data, and satellite-derived records of melt. The activity will foster partnerships through collaboration with colleagues in Spain, Germany and The Netherlands and will support an early-career postdoctoral researcher and two graduate students, introduce undergraduate and high-school students to original research and provide training of students through inclusion of data and results in course curriculums.
As plate tectonics pushed Antarctica into a polar position, by ~34 million years ago, the continent and its surrounding Southern Ocean (SO) became geographically and thermally isolated by the Antarctic Circumpolar Current. Terrestrial and marine glaciation followed, resulting in extinctions as well as the survival and radiation of unique flora and fauna. The notothenioid fish survived and arose from a common ancestral stock into tax with 120 species that dominates today's SO fish fauna. The Notothenioids evolved adaptive traits including novel antifreeze proteins for survival in extreme cold, but also suffered seemingly adverse trait loss including red blood cells in the icefish family, and the ability to mount cellular responses to mitigate heat stress ? otherwise ubiquitous across all life. This project aims to understand how the notothenoid genomes have changed and contributed to their evolution in the cold. The project will sequence, analyze and compare the genomes of two strategic pairs of notothenioid fishes representing both red-blooded and white-blooded species. Each pair will consist of one Antarctic species and one that has readapted to the temperate waters of S. America or New Zealand. The project will also compare the Antarctic species genomes to a genome of the closet non-Antarctic relative representing the temperate notothenioid ancestor. The work aims to uncover the mechanisms that enabled the adaptive evolution of this ecologically vital group of fish in the freezing Southern Ocean, and shed light on their adaptability to a warming world. The finished genomes will be made available to promote and advance Antarctic research and the project will host a symposium of Polar researchers to discuss the cutting edge developments regarding of genomic adaptations in the polar region.<br/>Despite subzero, icy conditions that are perilous to teleost fish, the fish fauna of the isolated Southern Ocean (SO) surrounding Antarctica is remarkably bountiful. A single teleost group - the notothenioid fishes - dominate the fauna, comprising over 120 species that arose from a common ancestor. When Antarctica became isolated and SO temperatures began to plunge in early Oligocene, the prior temperate fishes became extinct. The ancestor of Antarctic notothenioids overcame forbidding polar conditions and, absent niche competition, it diversified and filled the SO. How did notothenioids adapt to freezing environmental selection pressures and achieve such extraordinary success? And having specialized to life in chronic cold for 30 myr, can they evolve in pace with today's warming climate to stay viable? Past studies of Antarctic notothenioid evolutionary adaptation have discovered various remarkable traits including the key, life-saving antifreeze proteins. But life specialized to cold also led to paradoxical trait changes such as the loss of the otherwise universal heat shock response, and of the O2-transporting hemoglobin and red blood cells in the icefish family. A few species interestingly regained abilities to live in temperate waters following the escape of their ancestor out of the freezing SO. <br/>This proposed project is the first major effort to advance the field from single trait studies to understanding the full spectrum of genomic and genetic responses to climatic and environmental change during notothenioid evolution, and to evaluate their adaptability to continuing climate change. To this end, the project will sequence the genomes of four key species that embody genomic responses to different thermal selection regimes during notothenioids' evolutionary history, and by comparative analyses of genomic structure, architecture and content, deduce the responding changes. Specifically, the project will (i) obtain whole genome assemblies of the red-blooded T. borchgrevinki and the S. American icefish C. esox; (ii) using the finished genomes from (i) as template, obtain assemblies of the New Zealand notothenioid N. angustata, and the white-blooded icefish C. gunnari, representing a long (11 myr) and recent (1 myr) secondarily temperate evolutionary history respectively. Genes that are under selection in the temperate environment but not in the Antarctic environment can be inferred to be directly necessary for that environment and the reverse is also true for genes under selection in the Antarctic but not in the temperate environment. Further, genes important for survival in temperate waters will show parallel selection between N. angustata and C. esox despite the fact that the two fish left the Antarctic at far separated time points. Finally, gene families that expanded due to strong selection within the cold Antarctic should show a degradation of duplicates in the temperate environment. The project will test these hypotheses using a number of techniques to compare the content and form of genes, the structure of the chromosomes containing those genes, and through the identification of key characters, such as selfish genetic elements, introns, and structural variants.
The National Academies of Sciences, Engineering, and Medicine will convene an ad hoc consensus committee that will provide guidance to the National Science Foundation's Office of Polar Programs on future directions for Southern Ocean and Antarctic nearshore and coastal research. The study will:
</br>
• Identify the highest-priority science drivers for Southern Ocean and Antarctic nearshore and coastal research, based on prior studies and reports. Consider both near- and long-term science priorities.
</br>
• Determine the capabilities that are essential to support these science drivers. In a resource-constrained environment, what are the potential tradeoffs among highly specialized and general capabilities? Or among costly vs less expensive capabilities?
</br>
• Consider the capabilities needed for a proposed Antarctic Research Vessel, but also other U.S. fleet capabilities and potential partnerships with other countries and their fleets.
</br>
• Assess current and emerging tools, technologies, and approaches (e.g., under ice ROVs and AUVs, drones, ship-capable drilling platforms, partnerships with other groups) that can be used to support the science drivers and/or extend ship capabilities in support of the science drivers.</br>
• Note any gaps between the science drivers and the portfolio of capabilities, and discuss how NSF might address them.</br>
A community workshop focused on gathering input on the tasks above will be held toward the beginning of this study and will assist the committee in its information-gathering. It will also provide the Office of Polar Programs with community perspectives that can be used to inform the design of the proposed Antarctic Research Vessel and the portfolio of technologies that expand capability beyond ship-based assets.
Part I: Non-technical description:
Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. This project will quantify the impact of the climate warming on seabirds. The study area is in South Georgia in the South Atlantic with the largest and most diverse seabird colonies in the world. Detecting and understanding how physics and biology interact to bring positive or negative population changes to seabirds has long challenged scientists. The team in this project hypothesizes that 1) Cold water seabird species decline while warm water species increase due to ocean warming observed in the last 30 years; 2) All species decrease with ocean warming, affecting how they interact with each other and in doing so, decreasing their chances of survival; and 3) Species profiles can be predicted using multiple environmental variables and models. To collect present-day data to compare with observations done in 1985, 1991 and 1993, 2 cruises are planned in the austral winter; the personnel will include the three Principal Investigators, all experienced with sampling of seabirds, plankton and oceanography, with 2 graduate and 5 undergraduate students. Models will be developed based on the cruise data and the environmental change experienced in the last 30 years. The research will improve our understanding of seabird and marine mammal winter ecology, and how they interact with the environment. This project benefits NSF's goals to expand the fundamental knowledge of Antarctic systems, biota, and processes. The project will provide an exceptional opportunity to teach polar field skills to undergraduates by bringing 5 students to engage in the research cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change.
Part II: Technical description:
Ocean warming in the western Antarctic Peninsula and Scotia Sea in winter is among the highest worldwide. Based on previous work, the Principal Investigators in this project want to test the hypothesis that warming would have decreased seabird abundance and species associations in the South Georgia region of the South Atlantic. A main premise of this proposal is that because of marine environmental change, the structure of the seabird communities has also changed, and potentially in a manner that has diminished the mutually beneficial dynamics of positive interactions, with subsequent consequences to fitness and population trends. The study is structured by 3 main objectives: 1) identify changes in krill, bird and mammal abundance that have occurred from previous sampling off both ends of South Georgia during winter in 1985, 1991 and 1993, 2) identify pairings of species that benefit each other in searching for prey, and quantify how such relationships have changed since 1985, and 3) make predictions about how these changes in species pairing might continue given predicted future changes in climate. The novelty of the approach is the conceptual model that inter-species associations inform birds of food availability and that the associations decrease if bird abundance decreases, thus warming could decrease overall population fitness. These studies will be essential to establish if behavioral patterns in seabird modulate their response to climate change. The project will provide exceptional educational opportunity to undergraduates by bringing 5 students to participate on the cruises. To further increase polar literacy training and educational impacts, broader impacts include the production of an educational documentary that will be coupled to field surveys to assess public perceptions about climate change.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The overarching goal of this research is to use cumaceans as a model system to explore invertebrate adaptations to the changing Antarctic. This project will leverage integrative taxonomy, functional, comparative and evolutionary genomics, and phylogenetic comparative methods to understand the true diversity of Cumacea in the Antarctic, identify genes and gene families experiencing expansions, selection, or significant differential expression, generate a broadly sampled and robust phylogenetic framework for Cumacea based on transcriptomes and genomes, and explore rates and timing of diversification in Antarctic cumaceans. The project will contribute to understanding of gene gain/loss, positive selection, and differential gene expression as a function of adaptation of organisms to Antarctic habitats. Phylogenomic analyses will provide a robust phylogenetic framework for Southern Ocean Cumacea. Currently, the only -omics level data that exists for the Cumacea is one transcriptome. This project will generate 8 genomes from 8 species, about 250 transcriptomes from about 70 species, and approximately 470 COI and 16S barcodes from about 100 species. Beyond the immediate scope of the current project, the genomic resources will be leveraged by members of the polar biology and invertebrate zoology communities for diverse other uses ranging from PCR primer development to inference of ancestral population sizes. In addition, curated morphological reference collections will be deposited at the Smithsonian, Los Angeles County Natural History Museum, and in the New Zealand National Water and Atmospheric Research collection at Greta Point, to assist future researchers in identification of Antarctic cumaceans.
Nematode worms are abundant and ubiquitous in marine sediment habitats worldwide, performing key functions such as nutrient cycling and sediment stability. However, study of this phylum suffers from a perpetual and severe taxonomic deficit, with less than 5,000 formally described marine species. Fauna from the Southern Ocean are especially poorly studied due to limited sampling and the general inaccessibility of the Antarctic benthos. This study is providing the first large-scale molecular-based investigation from marine nematodes in the Eastern Antarctic continental shelf, providing an important comparative dataset for the existing body of historical (morphological) taxonomic studies. This project uses a combination of classical taxonomy (microscopy) and modern -omics tools to achieve three overarching aims: 1) determine if molecular data supports high biodiversity and endemism of benthic meiofauna in Antarctic benthic ecosystems; 2) determine the proportion of marine nematode species that have a deep-sea versus shallow-water evolutionary origin on the Antarctic shelf, and assess patterns of cryptic speciation in the Southern Ocean; and 3) determine the most important drivers of the host-associated microbiome in Antarctic marine nematodes. This project is designed to rapidly advance knowledge of the evolutionary origins of Antarctic meiofauna, provide insight on population-level patterns within key indicator genera, and elucidate the potential ecological and environmental factors which may influence microbiome patterns. Broader Impacts activities include an intensive cruise- and land-based outreach program focusing on social media engagement and digital outreach products, raising awareness of Antarctic marine ecosystems and understudied microbial-animal relationships. The diverse research team includes female scientists, first-generation college students, and Latinx trainees.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
An important part of understanding future climate change is predicting changes in how fast the ice in Antarctica is moving. If ice flows more quickly towards the ocean, it will have a direct impact on sea level rise. One of the things that can influence the ice flow is the type of rock below the ice coverage in Antarctica. Sedimentary basins are large regions where sedimentary rocks accumulated in the past, often under ancient seas. It has been observed that where there are sediments below the ice, the ice can flow faster. This project seeks to understand what is below the ice and how the underlying rock influences the ice flow. Is it hard, crystalline rock? Is it a sedimentary basin? What is the relationship between sediments and ice flow? The answers to these questions will be addressed by using a combination of available data and geophysical methods. Information from well-known rock-types will be used to train the computer to recognize these features by using an application of artificial intelligence known as machine learning, which will help the characterization and identification of unknown sedimentary basins beneath the ice. The results of this project will be disseminated to a broad audience by holding workshops for teacher and students to explain our findings under the ice and to introduce the machine learning technique. Open-source codes used during this project will be made available for use in higher-level classrooms as well as in further studies.
To date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. A combination of large-scale datasets will be used to characterize known basins and identify new sedimentary basins to produce the first continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. Available geophysical compilations of data and the location of well-known sedimentary basins will be used to apply an ensemble machine learning algorithm. The machine learning algorithm will learn complex relationships by voting among a collection of randomized decision trees. The gravity signal related to sedimentary basins known from other (e.g. seismic) techniques will be evaluated and unknown basins from aerogravity data regression analyses will be proposed by calculating a gravity residual that reflects density inhomogeneities. The gravimetric sedimentary basins identified from the regression analyses will be compared with an independent method of identifying sedimentary distribution, the Werner deconvolution method of estimating depth to magnetic sources. The hypothesis, which is sedimentary basins are correlated to fast ice flow behavior, will be tested by comparing the location of the sedimentary basins with locations of high ice flow by using available ice velocity observations. A relationship between sedimentary basins and ice streams will be defined qualitatively and quantitatively, aiming to evaluate if there are ice streams where no sedimentary basins are reported, or sedimentary basins with no ice streams related. The findings of these project can confirm if the presence of abundant sediments is a pre-requisite for ice streaming. Analyzing previously known sedimentary basins and identifying new ones in Antarctica is central to evaluating the influence of subglacial sediments on the ice sheet flow.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This research will provide new insights into the relationships and history of sharks, fish and limbed animals. Understanding these relationships forms the backbone for both basic and applied science because fish often serve as models of human traits and diseases. Some of the main lines of evidence for these relationships come from fossils in rocks over 380 million years old that were originally deposited as ancient rivers and streams. Because rocks of this type and age are abundantly exposed along a number of the dry valleys and mountains of Antarctica, the investigation of these areas holds exceptional promise for discoveries that can have a broad impact. The fieldwork will involve geological mapping and assessment of the rocks with detailed reconnaissance for the fossils that they may hold. Fossil discoveries form the backbone for public communication of the methods and results of scientific research-- these studies will be used as vehicles for training of students at multiple levels as well as communication of science to the broader non-science citizen base.<br/><br/>The discovery, description, and analysis of Middle to Late Devonian (390-355 Million years ago) vertebrates and depositional environments provide important data on the emergence of novel anatomical structures, faunas, and habitats during a critical interval in the history of life and earth. Biological innovation during this time includes the early evolution of freshwater fish, the origins of major groups of vertebrates (e.g., sharks, lobe and ray-finned fish, tetrapods), and the expansion and elaboration of non-marine ecosystems. Accordingly, expanding our knowledge of vertebrate diversity during the Middle and Late Devonian will provide new evidence on the relationships of the major groups of vertebrates, the assembly of novelties that ultimately enabled tetrapods to invade land, the origin and early evolution of sharks and their relatives, and the assembly and expansion of non-marine ecosystems generally. The Aztec Siltstone of Antarctica Middle-Late Devonian; Givetian-Frasnian Stages) has exceptional potential to produce new paleontological evidence of these events and to illuminate the temporal, ecological, and geographic context in which they occurred. It is essentially fossiliferous throughout its known exposure range, something that is rare for Middle-Late Devonian non-marine rocks anywhere in the world. In addition, fine-grained meandering stream deposits are abundantly exposed in the Aztec Siltstone and are recognized as an important locus for the discovery of well-preserved Devonian fish, including stem tetrapods and their relatives. Given the exceedingly fossiliferous nature of the Aztec Siltstone, the large number of taxa known only from partial material, and the amount of promising exposure yet to be worked, a dedicated reconnaissance, collection, and research effort is designed to recover important new fossil material and embed it in a stratigraphic and sedimentological context. The first major objective of this study is the recovery, preparation, and description of Middle-Late Devonian fossil taxa. Ensuing investigation of the phylogenetic affinities, taphonomic occurrence, and stratigraphic position of fossil assemblages will allow both local and global comparisons of biotic diversity. These analyses will inform: 1) higher level phylogenetic hypotheses of jawed vertebrates, 2) biostratigraphic and biogeographic analysis of the distribution of the Middle-Late Devonian fish, and 3) paleobiological investigation of the elaboration of terrestrial and freshwater habitats. The broader impacts are derived from the utility of paleontology and Antarctic expeditionary science as educational tools with powerful narratives. Specific goals include affiliations with local urban secondary schools (using established relationships for broadening participation) and collegiate and graduate training. Wider dissemination of knowledge to the general public is a direct product of ongoing interactions with national and international media (print, television, internet).
Alabama Museum of Natural History, University of Alabama, Tuscaloosa
Ocean communities play an important role in determining the natural and human impacts of global change. The most conspicuous members of those communities are generally large vertebrates such as marine mammals and sea birds. But smaller animals often determine how the changes impact those charismatic animals. In the Antarctic, where some of the most dramatic physical changes are taking place, we do not know much about what small animals exist. This project will sample the sub-Antarctic and three different Antarctic seas with a hope of identifying, quantifying and discovering the variation in species of a group of small invertebrates. Comma shrimp, also called cumaceans, are rarely seen elsewhere but may be common and important in the communities of these locations. Antarctic sampling traditionally used gear that was not very effective at catching cumaceans so we do not know what species exist there and how common they are. This study will utilize modern sampling methods that will allow comma shrimp to be sampled. This will lead to discoveries about the diversity and abundance of comma shrimp, as well as their relationship to other invertebrate species. Major impacts of this work will be an enhancement of museum collections, the development of description of all the comma shrimp of Antarctica including new and unnamed species. Those contributions may be especially important as we strive to understand what drives the dynamics of charismatic vertebrates and fisheries that are tied to Antarctic food webs. <br/><br/>This project will collect cumaceans from benthic samples from the Antarctic peninsula, Bransfield Strait, and the Weddell Sea using benthic sleds, boxcores and megacores. Specimens will be fixed in 95% ethanol, preserved in 95% ethanol and 5% glycerin to preserve both morphology and DNA, and some specimens will be partially or wholly preserved in RNALater to preserve RNA and DNA. The specimens will form the basis for a monograph synthesizing current knowledge on the Subantarctic and Antarctic Cumacea, including diagnoses of all species, descriptions of new species, additional description for currently unknown life stages of known species, and vouchered gene sequences for all species collected. The monograph will include keys to all families, genera and species known from the region. Monographic revisions that include identification resources are typically useful for decades to a broad spectrum of other scientists.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Algae in the surface ocean convert carbon dioxide into organic carbon through photosynthesis. The biological carbon pump transports this organic carbon from the atmosphere to the deep ocean where it can be stored for tens to hundreds of years. Annually, the amount transported is similar to that humans are currently emitting by burning fossil fuels. However, at present we cannot predict how this important process will change with a warming ocean. These investigators plan to develop a 15+ year time-series of vertical carbon transfer for the Western Antarctic Peninsula; a highly productive Antarctic ecosystem. This region is also rapid transition to warmer temperatures leading to reduced sea ice coverage. This work will help researchers better understand how the carbon cycle in the Western Antarctic Peninsula will respond to climate change. The researchers will develop the first large-scale time-series of carbon flux anywhere in the ocean. This research will also support the education and training of a graduate student and support the integration of concepts in Antarctic research into two undergraduate courses designed for non-science majors and advanced earth science students. The researchers will also develop educational modules for introducing elementary and middle-school age students to important concepts such as gross and net primary productivity, feedbacks in the marine and atmospheric systems, and the differences between correlation and causation. Results from this proposal will also be incorporated into a children?s book, ?Plankton do the Strangest Things?, that is targeted at 5-7 year olds and is designed to introduce them to the incredible diversity and fascinating adaptations of microscopic marine organisms.<br/><br/> This research seeks to leverage 6 years (2015-2020) of 234Th samples collected on Palmer LTER program, 5 years of prior measurements (2009-2010, 2012-2014), and upcoming cruises (2021-2023) to develop a time-series of summertime particle flux in the WAP that stretches for 15 years. The 238U-234Th disequilibrium approach utilizes changes in the activity of the particle-active radio-isotope 234Th relative to its parent nuclide 238U to quantify the flux of sinking carbon out of the surface ocean (over a time-scale of ~one month). This proposal will fund 234Th analyses from nine years? worth of cruises (2015-2023) and extensive analyses designed to investigate the processes driving inter-annual variability in the BCP. These include: 1) physical modeling to quantify the importance of advection and diffusion in the 234Th budget, 2) time-series analyses of particle flux, and 3) statistical modeling of the relationships between particle flux and multiple presumed drivers (biological, chemical, physical, and climate indices) measured by collaborators in the Palmer LTER program. This multi-faceted approach is critical for linking the measurements to models and for predicting responses to climate change. It will also test the hypothesis that export flux is decreasing in the northern WAP, increasing in the southern WAP, and increasing when integrated over the entire region as a result of earlier sea ice retreat and a larger ice-free zone. The project will also investigate relationships between carbon export and multiple potentially controlling factors including: primary productivity, algal biomass and taxonomic composition, biological oxygen saturation, zooplankton biomass and taxonomic composition, bacterial production, temperature, wintertime sea ice extent, date of sea ice retreat, and climate modes.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cores drilled through the Antarctic ice sheet provide a remarkable window on the evolution of Earth’s climate and unique samples of the ancient atmosphere. The clear link between greenhouse gases and climate revealed by ice cores underpins much of the scientific understanding of climate change. Unfortunately, the existing data do not extend far enough back in time to reveal key features of climates warmer than today. COLDEX, the Center for Oldest Ice Exploration, will solve this problem by exploring Antarctica for sites to collect the oldest possible record of past climate recorded in the ice sheet. COLDEX will provide critical information for understanding how Earth’s near-future climate may evolve and why climate varies over geologic time. New technologies will be developed for exploration and analysis that will have a long legacy for future research. An archive of old ice will stimulate new research for the next generations of polar scientists. COLDEX programs will galvanize that next generation of polar researchers, bring new results to other scientific disciplines and the public, and help to create a more inclusive and diverse scientific community.
Knowledge of Earth’s climate history is grounded in the geologic record. This knowledge is gained by measuring chemical, biological and physical properties of geologic materials that reflect elements of climate. Ice cores retrieved from polar ice sheets play a central role in this science and provide the best evidence for a strong link between atmospheric carbon dioxide and climate on geologic timescales. The goal of COLDEX is to extend the ice-core record of past climate to at least 1.5 million years by drilling and analyzing a continuous ice core in East Antarctica, and to much older times using discontinuous ice sections at the base and margin of the ice sheet. COLDEX will develop and deploy novel radar and melt-probe tools to rapidly explore the ice, use ice-sheet models to constrain where old ice is preserved, conduct ice coring, develop new analytical systems, and produce novel paleoclimate records from locations across East Antarctica. The search for Earth’s oldest ice also provides a compelling narrative for disseminating information about past and future climate change and polar science to students, teachers, the media, policy makers and the public. COLDEX will engage and incorporate these groups through targeted professional development workshops, undergraduate research experiences, a comprehensive communication program, annual scientific meetings, scholarships, and broad collaboration nationally and internationally. COLDEX will provide a focal point for efforts to increase diversity in polar science by providing field, laboratory, mentoring and networking experiences for students and early career scientists from groups underrepresented in STEM, and by continuous engagement of the entire COLDEX community in developing a more inclusive scientific culture.
Part I: Non-technical summary<br/>The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the “greening” of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as “plant-soil” interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.<br/><br/>Part II: Technical summary<br/>In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Southern Ocean accounts for ~40% of the total ocean uptake of anthropogenic CO2 despite covering only 20% of the global ocean surface, and is particularly rich in long-lived eddies. These eddies, or large ocean whirlpools which can be observed from space, can alter air-sea fluxes of CO2 in ways that are not yet fully understood. New observations from autonomous platforms measuring ocean carbon content suggest that there is significant heterogeneity in ocean carbon fluxes which can be linked to these dynamic eddy features. Due to computational and time limitations, ocean eddies are not explicitly represented in most climate models, limiting our ability to understand the role eddies play in the ocean carbon cycle. This work will explore the impact of eddies on ocean carbon content and air-sea CO2 fluxes in the Southern Ocean using both model- and observation-based strategies and the findings will improve our understanding of the ocean’s role in the carbon cycle and in global climate. While this work will primarily be focused on the Southern Ocean, the results will be globally applicable. The researchers will also broaden interest in physical and chemical oceanography among middle school-age girls in the University of South Florida’s Oceanography Camp for Girls by augmenting existing lessons with computational methods in oceanography.
This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.
This project aims to quantify the impacts of mesoscale eddy processes on ocean carbon content and air-sea carbon dioxide (CO2) fluxes in the Southern Ocean. For the modeling component, the investigators will explore relationships between eddies, ocean carbon content, and air-sea CO2 fluxes within the 1/6-degree resolution Biogeochemical Southern Ocean State Estimate (B-SOSE). They investigators will produce high-resolution composites of the carbon content and physical structure within both cyclonic and anticyclonic eddies by region, quantify the influence of these eddies on the overall simulated air-sea CO2 flux, and diagnose the physical mechanisms driving this influence. For the observational component, the investigators will match eddies observed via satellite altimetry to ocean carbon observations and characterize observed relationships between eddies and ocean carbon content with a focus on Southern Ocean winter observations where light limits biological processes, allowing isolation of the contribution of physical processes. This work will also provide motivation for higher resolution and better eddy parameterizations in climate models, more mesoscale biogeochemical observations, and integration of satellite SSH data into efforts to map air-sea fluxes of CO2. Each summer, the PI delivers a lab lesson at the University of South Florida Oceanography Camp for Girls (OCG), recognized by NSF as a “Model STEM Program for Women and Girls” focused on broadening participation by placing emphasis on recruiting a diverse group of young women. As part of this project, the existing interactive Jupyter Notebook-based Python coding Lab lesson will be augmented with a B-SOSE-themed modeling component, which will broaden interest in physical and chemical oceanography and data science, and expose campers to computational methods in oceanography.
In contrast to the Arctic, sea ice cover in most Antarctic regions has increased since 1979. The area-integrated total sea ice extent grew to record maximum values in four of the last six years, yet the 2015-16 summer was marked by record low ice cover. While impressive, it is difficult to assess the significance of these very recent records in the context of longer term variability, since the continuous satellite record only dates back to 1978. The limited length of the continuous sea ice record, is a significant confounding factor in ascertaining whether the observed current changes are due to natural variability alone, or represent a forced anthropogenic response. As a result, the scientific understanding of the Antarctic sea ice trends remains poor, as does confidence in projections of future Antarctic sea ice trends.
To address this challenge, this project seeks to reconstruct sea ice extent and sea ice concentration, using the relationships between satellite-observed sea ice, sea level pressure, tropical sea surface temperature, ENSO indices, some proxy data (ice cores, etc.), and in situ Southern Ocean temperature data. The aim of the study is to collect and combine these ancillary records as accurately as possible while retaining the variability associated with the intrinsic uncertainty in the available field data.
A range of statistical methods for modelling the relationship between satellite era sea-ice data using flexible regression, Bayesian and multivariate dynamic spatial temporal (MDST) methods will be used.
Overview: We aim to provide the most detailed investigation to date of the factors that influence predictability of Antarctic climate, the coupling of climate to penguins populations, and the integration of the two to optimize ecological forecasts. This integrated understanding is critical for guiding future ecological and climate research, prioritizing bio-physical monitoring efforts, and informing conservation decision-making. Our study will reveal the influence of climate system dynamics on ecological predictability across a range of scales and will examine how this role differs among ecological processes, species and regions of Antarctica.
Intellectual Merit: Many biophysical processes will change in the coming century. Yet, the mechanisms controlling the predictability of many climate processes are still poorly understood, limiting progress in climate forecasting. In parallel, ecological forecasting remains a nascent discipline. In particular, comparative assessments of predictability, both within and among species, are critically needed to understand the factors that allow (or prevent) useful ecological forecasts. While important for ecological science generally, this need is particularly pressing in Antarctica where the environment is highly dynamic, strongly coupled to biological processes, and likely to change in the future. Improved ecological forecasting therefore requires interdisciplinary efforts to understand the causes of predictability in climate, and in tandem, how climate influences the predictability of natural populations.
This proposed research will examine the predictability of Antarctic climate and its influence on penguin demographic response predictability at various temporal and spatial scales using the longest datasets available for two penguin species. Specifically, the PI will 1) identify the physical mechanisms giving rise to climate predictability in Antarctica, 2) identify the relationships between climate and ecological processes at a range of scales, and 3) reveal the factors controlling ecological predictability across a range of scales (e.g., those relevant for short-term adaptive management versus those relevant at end-of-century timescales). These objectives will be achieved using the analysis of existing climate data and Atmosphere-Ocean Global Circulation Models (AGOCMs), with coupled analysis of existing long-term demographic data for multiple seabird species that span a range of ecological niches, life histories, and study sites across the continent.
Nontechnical Description
The Antarctic core collection, curated at Florida State University since 1963, is one of the world's premier marine geology collections. Consisting of irreplaceable sediment cores, this archive has greatly advanced the understanding of the Earth system, past and present, and will remain critical to future studies of the Earth. Given Oregon State University's (OSU) leadership in marine research and long track record providing state-of-the-art curatorial services through the OSU Marine and Geology Repository, this facility will provide world-class curatorial stewardship of the Antarctic core collection for decades to come. The Antarctic core collection will be co-located and co-managed with the current OSU collection in a single modern repository and analytical facility. The combined collection will contain more than 30 km of refrigerated sediment core from the world's oceans and will be housed in a new 33,000 SFT facility purchased in 2009 by OSU and upgraded in 2016-17. The total refrigerated space can hold both collections comfortably and has at least five decades of expansion space.
The co-location and co-management of these two collections, paired with a modern suite of analytical facilities, will lead to greater collaboration, cross-pollination of ideas, and availability of enhanced technical services and capabilities for a growing user group that increasingly relies on marine sediments. The facility will employ a comprehensive community interaction plan that takes advantage of the new OSU Marine and Geology Repository building with a 32-person seminar room, its large 1,044 square foot core lab, and ten adjoining analytical laboratories, which will provide scientific and experiential learning opportunities for students, the general public, and the Earth Sciences research community. The facility will organize small group meetings, sampling parties and summer schools that will complement ongoing support for teaching, training and learning through the use of the repository in graduate, undergraduate, and K-12 classes and Research Experience for Undergraduate programs. The repository is open to the general public for tours and presentations, and the data products derived from the facility will be disseminated via the repository website at http://osu-mgr.org/ and other national databases.
Technical Description
The Antarctic and the Southern Ocean National Collection of Rock and Sediment Cores currently housed at Florida State University will be relocated to Oregon State University (OSU) and housed along with the OSU Marine and Geology Repository. Oregon State University investigators will co-manage the Antarctic core collection and the Marine and Geology Repository as a single modern repository and analytical facility. The combined collection will be housed a new 33,000 square foot building with refrigerated space that can hold both collections with approximately five decades of expansion space. The co-location and co-management of these two collections offers unique curatorial synergies, cost savings, and improved capabilities to support both the research and educational needs of a wider marine and Antarctic communities. The facility will house a 32-person seminar room, a large 1,044 square foot core lab that allows layout, inspection and examination of cores, and adjoining analytical laboratories that will provide quantitative analysis as well as experiential learning opportunities for students.
Due to persistent cold temperatures, geographical isolation, and resulting evolutionary distinctness of Southern Ocean fauna, the study of Antarctic reducing habitats has the potential to fundamentally alter our understanding of the biologic processes that inhibit greenhouse gas emissions from our oceans. Marine methane, a greenhouse gas 25x as potent as carbon dioxide for warming our atmosphere, is currently a minor component of atmospheric forcing due to the microbial oxidation of methane within the oceans. Based on studies of persistent deep-sea seeps at mid- and northern latitudes we have learned that bacteria and archaea create a ‘sediment filter’ that oxidizes methane prior to its release. As increasing global temperatures have and will continue to alter the rate and variance of methane release, the ability of the microbial filter to respond to fluctuations in methane cycles is a critical yet unexplored avenue of research. Antarctica contains vast reservoirs of methane, equivalent to all of the permafrost in the Arctic, and yet we know almost nothing about the fauna that may mitigate its release, as until recently, we had not discovered an active methane seep.
In 2012, a methane seep was discovered in the Ross Sea, Antarctica that formed in 2011 providing the first opportunity to study an active Antarctic methane-fueled habitat and simultaneously the impact of microbial succession on the oxidation of methane, a critical ecosystem service. Previous work has shown that after 5 years of seepage, the community was at an early stage of succession and unable to mitigate the release of methane from the seafloor. In addition, additional areas of seepage had begun nearby. This research aims to quantify the community trajectory of these seeps in relation to their role in the Antarctic Ecosystem, from greenhouse gas mitigation through supporting the food web. Through the application of genomic and transcriptomic approaches, taxa involved in methane cycling and genes activated by the addition of methane will be identified and contrasted with those from other geographical locations. These comparisons will elucidate how taxa have evolved and adapted to the polar environment.
This research uses a ‘genome to ecosystem’ approach to advance our understanding of organismal and systems ecology in Antarctica. By quantifying the trajectory of community succession following the onset of methane emission, the research will decipher temporal shifts in biodiversity/ecosystem function relationships. Phylogenomic approaches focusing on taxa involved in methane cycling will advance the burgeoning field of microbial biogeography on a continent where earth’s history may have had a profound yet unquantified impact on microbial evolution. Further, the research will empirically quantify the role of chemosynthesis as a form of export production from seeps and in non-seep habitats in the nearshore Ross Sea benthos, informing our understanding of Antarctic carbon cycling.
The Amundsen Sea hosts the most productive polynya in all of Antarctica, with its vibrant green waters visible from space, and an atmospheric CO2 uptake density 10x higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape, and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet (WAIS). ARTEMIS aims to characterize the climate-sensitive nature of glacial meltwater-driven micronutrient (iron, Fe) contributions driving ecosystem productivity and CO2 uptake in the coastal Antarctic. We propose to integrate observations and ocean modeling of these processes to enhance predictive capabilities. Currently, basal melt resulting from warm deep waters penetrating ice shelf cavities dominates mass losses of WAIS, contributing to sea level rise. These physical melting processes are being studied by the International Thwaites Glacier Collaboration (ITGC). The impact of melting on the marine ecosystem has also been explored, and we know that productivity is due in part to Fe-rich, glacial meltwater-driven outflow. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied, however. Improved knowledge would provide keys to understanding meltwater's future impact on the ecosystem. An ongoing field program (TARSAN, part of the ITGC) offers the ideal physical oceanographic framework for our biogeochemical effort. We propose here to collaborate with TARSAN-supported UK scientists, providing value added to both team efforts. ARTEMIS will add shipboard measurements (trace metals, carbonate system, nutrients, organic matter, microorganisms) and biogeochemical sensors on autonomous vehicles to gather critical knowledge needed to understand the impact of the melting WAIS on both the coastal ecosystem and the regional carbon (C) cycle. Driving questions include: 1) what are the fluxes and chemical forms of Fe, C, and microorganisms in the ice shelf outflow? 2) what are the relative contributions to the ouflow from deep water, benthic, and glacial melt sources, and how do these inputs combine to affect the bioavailability of Fe? 3) How are Fe and C compounds modified as the outflow advects along the coastal current and mixes into the bloom region? and 4) what will be the effect of increased glacial melting, changes in the coastal icescape, and declining sea ice on theecosystem of the Amundsen Sea? Such questions fall outside the focus of the ITGC, but are of keen interest to Antarctic Organisms and Ecosystems and Antarctic Integrated System Science programs.
Polar marine organisms have adapted to dramatic seasonal changes in photoperiod, light intensity, and ice cover, as well as to cold but stable thermal environments. The western Antarctic Peninsula, the focal region for the field studies, has experienced rapid warming and ice melt. While it is difficult to predict exactly how physical conditions in this region will change, effects on species distributions have already been documented. Large Antarctic copepods in the families Calanidae and Rhincalanidae are dominant components of the mesozooplankton that use different metabolic and behavioral strategies to optimize their use of a highly seasonal food supply. The overall goal of this project is to leverage molecular approaches to examine the physiological and metabolic adaptations at the individual and species level. The project focuses on three main objectives: the first objective is to characterize the gene complement and stage-specific gene expression patterns in Antarctic copepods within an evolutionary context. The second objective is to measure and compare the physiological and molecular responses of juvenile copepods to variable feeding conditions. The third objective is to characterize metabolic variation within natural copepod populations. The metabolically diverse Antarctic copepods also provide an excellent opportunity to compare mechanisms regulating energy storage and utilization and to test hypotheses regarding the roles of specific genes. The field studies will aim to utilize information from an ongoing long term research program (the Palmer Long-Term Ecological Research), which complements the ongoing program and provides extensive context for this project. To make the data more useful to the research community, a database will be developed facilitating comparison of transcriptomes between copepod species. This project will provide hands-on training opportunities to graduate and undergraduate students. Efforts will be made to recruit students who are members of underrepresented minorities. Results and scientific concepts will be broadly disseminated through an expedition blog, undergraduate student programs, and public presentations.
This proposal will provide genetic and enzymatic insight into how microbial communities in benthic sediments on the coastal shelf of Antarctica degrade complex organic matter. The current understanding of how benthic microbial communities respond and also degrade complex organic matter in Antarctica is fragmented. Recent work suggests benthic microbial communities are shaped by organic matter availability (encompassing both quantity and quality), however, these studies were observational and did not directly examine community function (e.g. enzyme activity and/or gene expression). Preliminary metagenomic data, collected from western Antarctica marine sediments, document gene potential for organic matter degradation throughout the entire sample set (spanning the Amundsen Sea, Bellingshausen Sea, and Ross Sea), but functional data was not collected. To date, studies have examined either enzyme activity or metagenomic potential but few have been able to directly connect the two. To address these gaps in knowledge, this proposal will utilize powerful tools such as metagenomics and metatranscriptomics, coupled with microcosm experiments, enzyme assays, and geochemical data. This hypothesis driven proposal will examine microbial communities from the continental shelf of Antarctica from two different regions (Bransfield Strait and Weddell Sea) to document the communities’ enzymatic activity and genes used to degrade complex organic matter. These data will expand our current knowledge of genetic potential towards a more direct understanding of enzyme function as it relates to degradation of complex organic matter in marine sediments from Antarctica.
An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet (WAIS), is planned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower (TT) at the WAIS divide field camp (WAIS TT). An unmanned aerial system (UAS) field campaign will be conducted and will supplement the WAIS TT observations by sampling the entire depth of the boundary layer.
The proposed work will create a unique dataset of year-round atmospheric boundary layer measurements from a portion of the Antarctic continent that has not previously been observed in this manner. The newly acquired dataset will be used to elucidate the processes that modulate the exchange of energy between the ice sheet surface and the overlying atmosphere, to assess the relationships
between near surface stability, winds, and radiative forcing, and to compare these relationships observed at the WAIS TT to those described for other portions of the Antarctic continent. The dataset will also be used to assess the ability of the Antarctic Mesoscale Prediction System (AMPS) operational weather forecasting model and current generation reanalyses to accurately represent surface and boundary layer processes in this region of Antarctica.
Intellectual Merit
The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet and this atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and rising sea levels. Recent reports from the National Research Council and the Scientific Committee on Antarctic Research have highlighted the critical nature of these aspects of the West Antarctic climate system.
The proposed research will advance our understanding of how the atmosphere exchanges heat, moisture, and momentum with the ice sheet surface in West Antarctica and will assess our ability to represent these processes in current generation numerical weather prediction and reanalysis products, by addressing the following scientific questions:
- How does the surface layer and lower portion of the atmospheric boundary layer in West Antarctica compare to that over the low elevation ice shelves and the high elevation East Antarctic plateau?
- What are the dominant factors that lead to warm episodes, and potentially periods of melt, over the West Antarctic ice sheet?
- How well do operational forecast models (AMPS) and reanalyses reproduce the observed near surface stability in West Antarctica?
- What are the sources of errors in the modeled near surface atmospheric stability of West Antarctica?
Broader Impacts:
Atmospheric warming and associated melting of the West Antarctic ice sheet has the potential to raise sea level by many meters. The proposed research will explore the processes that control this warming, and as such has broad societal relevance by providing improved understanding of the processes that could lead to large sea level rise.
Educational outreach activities will include classroom visits to K-12 schools and Skype sessions from Antarctica with students at these schools. Photographs, videos, and instrumentation used during this project will be brought to the classrooms. At the college and university level data from the project will be used in classes being developed as part of a new undergraduate atmospheric and oceanic science major at the University of Colorado and a graduate student will be support on this project.
Public outreach will be in the form of field blogs, media interviews, and either an article for a general interest scientific magazine, such as Scientific American, or as an electronically published book of Antarctic fieldwork photographs.
The Antarctic salp, Salpa thompsoni, is an increasingly important player in the vulnerable Southern Ocean pelagic ecosystem. Field studies have documented rapid population growth under favorable environmental conditions, resulting in dense blooms of salps that can out-compete and displace other species, and significantly perturb the pelagic ecosystem. A comprehensive reference genome for the Antarctic salp will enable the identification of genes and gene networks underlying physiological responses and allow detection of natural selection driving the species’ adaptation to climate change. The primary hypothesis driving this research is that predicted S. thompsoni orthologs (i.e., genes of the same function that share a common ancestor) that show evidence of rapid evolution are indicative of positive selection, and further that these genes and associated gene networks provide the basis for rapid adaptation of the Antarctic salp to environmental variation associated with climate change. Our genome assembly strategy builds upon methods developed during our previous award (PLR-1044982), including both paired-end short read and linked-read sequencing approaches. This project used state-of-the-art approaches: Oxford Nanopore long read sequencing, de novo assembly, and comprehensive transcriptomics. The results include a new reference genome for S. thompsoni, consisting of 8,815 sequences (contigs), with less fragmentation (N50 = 188 kb), and genome coverage of 78%. We have discovered strong secondary structures that dramatically affect sequencing efficiency. Our analyses of these secondary structures led to the discovery of abundant G-quadruplex sequences distributed throughout the genome at a significantly higher frequency compared to other tunicate species, suggesting the structures are a defining feature of this salp genome. These results provide novel insights into the function of unique genomic features in the regulation of genome stability, despite the complex life history, including sexual and asexual reproduction of the Southern Ocean salp. The completed salp reference genome will provide a valuable foundational resource for other scientists (including ecologists, oceanographers, and climate change experts), working on this species.
This project will advance our understanding of Antarctic life during the Permian and Triassic. We will apply an interdisciplinary approach to address relationships between environmental change, faunal composition, and biogeographic patterns in the context of the high-latitude strata preserved in the Buckley and Fremouw formations in the Shackleton Glacier region. We will use multiple types of data to assess paleoenvironment, including: 1) paleosol morphology; 2) paleosol geochemistry; 3) pedogenic organic matter; and 4) fossil wood chronology and stable isotopes. The Fremouw Formation of Antarctica preserves the highest paleolatitude tetrapod fauna of the entire Triassic (~70° S) and thus has the potential to shed important light on the evolution of polar life during the early Mesozoic. We will collect new fossils from known localities to understand the relationship between Antarctic and southern African tetrapod faunas. Furthermore, we will refine the stratigraphic, sedimentological, and geochronological framework for these Mesozoic faunas, which will include using U/Pb detrital zircon dating to provide the first dates for these vertebrate assemblages. In the lab, we will examine the biology of Triassic vertebrates from Antarctica by comparing their bone and tusk histology to conspecifics from lower paleolatitudes. In addition, we will test Bergmann’s Rule with six species (viz. Lystrosaurus curvatus, L. maccaigi, L. murrayi, Prolacerta broomi, Procolophon trigoniceps, and Thrinaxodon liorhinus). The Early Triassic presents a unique opportunity to perform such investigations as there is no other geologic interval in which species occurring in Antarctica can be compared to conspecifics across a range of paleolatitudes.
This project extended and combined historical and recent ocean data sets to investigate ice-ocean-interactions along the Pacific continental margin of the West Antarctic Ice Sheet. The synthesis focused on the strikingly different environments on and near the cold Ross Sea and warm Amundsen Sea continental shelves, where available measurements reach back to 1911 and 1994, respectively. On the more extensively covered Ross Sea continental shelf, multiple reoccupations of ocean stations and transects since the 1950s were used to extend our knowledge of ocean thermohaline change and variability. The more rugged Amundsen Sea continental shelf contains the earth's fastest melting ice shelves, which Holland et al (2019) show can be linked to decadal-scale variability in the tropical Pacific, and Jacobs et al. (2021) document as being the primary influence on freshening downstream in the Ross Sea. Recent and potential future rates of sea level rise are the primary broad-scale impacts revealed by the observations of ice and ocean changes in these study areas. More regionally, freshening also influences the properties of slope front and coastal currents, and abyssal water mass formation. The overriding question in such work is whether their contributions to global and regional sea levels will continue to increase ~linearly, perhaps allowing greenhouse gas reductions to head off the worst consequences, or accelerate and contribute to major social and economic upheavals. The compiled ocean station profile data has been derived from measurements made from 16 ships operated by 6 countries, from 5 projects using holes through fast and glacier ice, and from 3 studies using drifting floats. We are grateful to the many individuals who have acquired, processed and provided the data, along with their supporting agencies, and welcome corrections and updates to this archive.
We propose to better characterize the role of eddies in wintertime air-sea carbon dioxide (CO2) fluxes in the Indian sector of the Southern Ocean using two autonomous sailing vehicles called Saildrones during austral winter 2021. The Saildrones will carry sensors to directly measure atmospheric and oceanic concentrations of CO2 (pCO2), atmospheric pressure, and wind speed to allow calculation of air-sea CO2 flux at 5-km resolution and similar accuracy to an underway ship-based measurement. The Saildrone data from this mission, a 2019 mission, and BGC Argo float data from 2014–2020 will be co-located with eddies derived from satellite altimetry to quantify the relationships between eddies and ocean carbon content. The overall objectives of this project are to determine the relationship between wintertime pCO2 variability and the presence and structure of eddies and to use these relationships to create a better representation of mesoscale variability in Southern Ocean CO2 flux.
New methodologies for the deployment of coordinated unmanned aerial vehicles will be developed with the aim of attaining whole-colony imagery that can be used to characterize nesting habitats of Adelie penguins at Cape Crozier, on Ross Island, Antarctica. This information will be used to test hypotheses regarding relationships between terrain characteristics, nesting density, and breeding success. This population, potentially the largest in the world and at the southern limit of the species' range, has doubled in size over the past 20 years while most other colonies in the region have remained stable or declined. New information gained from this project will be useful in understanding the potential of climate-driven changes in terrestrial nesting habitats for impacting Adelie penguins in the future. The project will produce, and document, open-source software tools to help automate image processing for automated counting of Adelie penguins. The project will train graduate and undergraduate students and contribute materials to ongoing educational outreach programs based on related penguin science projects. Information gained from this project will contribute towards building robust, cost-effective protocols for monitoring Adelie penguin populations, a key ecosystem indicator identified in the draft Ross Sea Marine Protected Area Research and Monitoring Plan.
Adelie penguins are important indicators of ecosystem function and change in the Southern Ocean. In addition to facing rapid changes in sea ice and other factors in their pelagic environment, their terrestrial nesting habitat is also changing. Understanding the species' response to such changes is critical for assessing its ability to adapt to the changing climate. The objective of this project is to test several hypotheses about the influence of fine-scale nesting habitat, nest density, and breeding success of Adelie penguins in the Ross Sea region. To accomplish this, the project will develop algorithms to improve efficiency and safety of surveys by unmanned aerial systems and develop and disseminate an automated image processing workflow. Images collected during several UAV surveys will be used to estimate the number of nesting adults and chicks produced, as well as estimate nesting density in different parts of two colonies on Ross Island, Antarctica, that differ in size by two orders of magnitude. Imagery will be used to generate high resolution digital surface/elevation models that will allow terrain variables like flood risk and terrain complexity to be derived. Combining the surface model with the nest and chick counts at the two colonies will provide relationships between habitat covariates, nest density, and breeding success. The approaches developed will enable Adelie penguin population sizes and potentially several other indicators in the Ross Sea Marine Protected Area Research and Monitoring Plan to be determined and evaluated. The flight control algorithms developed have the potential to be used for many types of surveys, especially when large areas need to be covered in a short period with extreme weather potential and difficult landing options. Aerial images and video will be used to create useable materials to be included in outreach and educational programs. The automated image processing workflow and classification models will be developed as open source software and will be made freely available for others addressing similar wildlife monitoring challenges.
The project addressed fundamental questions regarding the role of nitrification (the conversion of ammonium to nitrate by a two-step process involving two different guilds of microorganisms: ammonia- and nitrite-oxidizers) in the Antarctic marine ecosystem. Specifically, the project evaluated the contribution of carbon fixation supported by energy derived from the oxidation of nitrogen compounds (chemoautotrophy) to the overall supply of organic carbon to the food web of the Southern Ocean. Additionally, the project aimed to determine the significance of the contribution of other sources of reduced nitrogen, specifically organic nitrogen and urea, to nitrification because these contributions may not be assessed by standard protocols.
<br><br>We quantified the oxidation rates of 15N supplied as ammonium, urea and nitrite, which allowed us to estimate the contribution of urea-derived N and complete nitrification (ammonia to nitrate, N-3 to N+5) to chemoautotrophy in Antarctic coastal waters. We compared these estimates to direct measurements of the incorporation of dissolved inorganic 14C into organic matter in the dark for an independent estimate of chemoautotrophy. We made measurements on samples taken from the major water masses: surface water (~10 m), winter water (35-174 m), circumpolar deep water (175-1000 m) and slope water (>1000 m); on a cruise surveying the continental shelf and slope west of the Antarctic Peninsula in the austral summer of 2018 (LMG18-01). Samples were also taken to measure the concentrations of nitrite, ammonia, urea and polyamines; for qPCR analysis of the abundance of relevant marker genes; and for studies of processes related to the core questions of the study. The project relied on collaboration with the Palmer LTER for ancillary data (bacterioplankton abundance and production, chlorophyll, physical and additional chemical variables). The synergistic activities of this project along with the LTER activities provides a unique opportunity to assess chemoautotrophy in context of the overall ecosystem's dynamics, including both primary and secondary production processes.
<br><br>This project resulted in the training of a postdoctoral researcher and provide undergraduate students opportunities to gain hand-on experience with research on microbial geochemistry. This project contributed substantially to understanding an important aspect of nitrogen cycling and bacterioplankton production in the study area. Both PIs participate fully in the education and outreach efforts of the Palmer LTER, including making highlights of the findings available for posting to the LTER project web site, posting material to web sites at their respective departments, and incorporating material from the study in lectures and seminars presented at their respective institutions.
The project will characterize the functional, taxonomic, biotic and abiotic drivers of soil ecosystems in the Trans Antarctic Mountains (one of the most remote and harsh terrestrial landscapes on the planet). The work will utilize new high-throughput DNA and RNA sequencing technologies to identify members of the microbial communities and determine if the microbial community structures are independent of local environmental heterogeneities. In addition the project will determine if microbial diversity and function are correlated with time since the last glacial maximum (LGM). The expected results will greatly contribute to our knowledge regarding rates of microbial succession and help define the some of the limits to life and life-maintaining processes on Earth.<br/><br/>The project will analyze genomes and RNA derived from these genomes to describe the relationships between biodiversity and ecosystem functioning from soils above and below LGM elevations and to correlate these with the environmental drivers associated with their development during the last ~18,000 years. The team will identify the taxonomic diversity and the functional genetic composition within a broad suite of soil biota and examine their patterns of assembly and distribution within the framework of their geological legacies. The project will mentor participants from undergraduate students to postdoctoral researchers and prepare them to effectively engage in research to meet their career aspirations. The project will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators- to include University-Public School partnerships. Less formal activities include public lecture series and weblogs aimed at providing information on Antarctic polar desert ecosystems to the general public. Targeted classrooms near each PI's institution will participate in online, real-time discussions about current topics in Antarctic ecosystems research.
General:
Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth’s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean that regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. This project was designed test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and the slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement was to be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work was expected to contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean.
Technical:
The project added a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that collected sediment cores at locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170°W. The goal was to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. We proposed to compare the radiocarbon age of foraminifera that inhabited the surface ocean with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms would have been used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it was expected that surface and deep-dwelling foraminifera would exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters outcrop at the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work was to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean’s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarctica.
Unfortunately, the cores were shipped to the core repository in a horizontal orientation and there was sufficient distortion of the sediment that the radiocarbon ages of benthic foraminifera were uninterpretable. Therefore, we report only the radiocarbon dates for planktonic foraminifera as well as the total counts of elemental relative abundance from X-ray Fluorescence analysis of the cores. In addition, we used the expedition as an opportunity to collect water samples from which dissolved concentrations of long-lived isotope of thorium and protactinium were determined. Results from those analyses showed that lateral transport by isopycnal mixing dominates the supply of Pa to the Southern Ocean. We have also developed a new algorithm to correct for supply of Th by isopycnal mixing and thereby derive estimates of dust flux to the Southern Ocean.
The ocean tide is a large component of total variability of ocean surface height and currents in the seas surrounding Antarctica, including under the floating ice shelves. Maximum tidal height range exceeds 7 m (near the grounding line of Rutford Ice Stream) and maximum tidal currents exceed 1 m/s (near the shelf break in the northwest Ross Sea). Tides contribute to several important climate and ecosystems processes including: ocean mixing, production of dense bottom water, flow of warm Circumpolar Deep Water onto the continental shelves, melting at the bases of ice shelves, fracturing of the ice sheet near a glacier or ice stream’s grounding line, production and decay of sea ice, and sediment resuspension. Tide heights and, in particular, currents can change as the ocean background state changes, and as the geometry of the coastal margins of the Antarctic Ice Sheet varies through ice shelf thickness changes and ice-front and grounding-line advances or retreats. For satellite-based studies of ocean surface height and ice shelf thickness changes, tide heights are a source of substantial noise that must be removed. Similarly, tidal currents can also be a substantial noise signal when trying to estimate mean ocean currents from short-term measurements such as from acoustic Doppler current profilers mounted on ships and CTD rosettes. Therefore, tide models play critical roles in understanding current and future ocean and ice states, and as a method for removing tides in various measurements. A paper in Reviews of Geophysics (Padman, Siegfried and Fricker, 2018, see list of project-related publications below) provides a detailed review of tides and tidal processes around Antarctica.
This project provides a gateway to tide models and a database of tide height coefficients at the Antarctic Data Center, and links to toolboxes to work with these models and data.
Atmospheric oxygen rose suddenly approximately 2.4 billion years ago after Cyanobacteria evolved the ability to produce oxygen through photosynthesis (oxygenic photosynthesis). This change permanently altered the future of life on Earth, yet little is known about the evolutionary processes leading to it. The Melainabacteria were first discovered in 2013 and are closely related non-photosynthetic relatives of the first group of organisms capable of oxygenic photosynthesis. This project will utilize existing data on metagenomes from microbial mats in Lake Vanda, an ice-covered lake in Antarctica where many sequences of Melainabacteria have been previously identified.
From this genetic information, we identified a new cyanobacterium, named Aurora vandensis, that is sister to all other Cyanobacteria, providing evolutionary insights. In addition, we assessed the metabolic capabilities of the Melainabacteria with good genomic coverage to identify their potential ecological roles. None contain photosynthetic genes, and we are evaluating the evolutionary relationships among the Cyanobacteria and Melainabacteria, particularly with respect to metabolic genes that will allow an advancement in understanding of the evolutionary path that lead to oxygenic photosynthesis on Earth.
The project will focus on extracting evolutionary information from the genomic data of Melainabacteria and Sericytochromatia, recently-described groups closely related to but basal to the Cyanobacteria. The characterization of novel members of these groups in samples from Lake Vanda, Antarctica, provide insights into the path and processes involved in the evolution of oxygenic photosynthesis. The research identified a novel cyanobacterial genus that is sister to all other Cyanobacteria, is most closely related to Gloeobacter, and shares evolutionary differences with that genus. Results also show that characterized Melainabacteria lack photosynthesis genes, but their respiration genes provide insight into evolutionary relationships among Melainabacteria and Cyanobacteria. Results provide unexpected constraints. The project focuses on 12 metagenomes, from which Melainabacteria and novel Cyanobacteria bins are annotated and preliminary metabolic pathways will be constructed. The project utilizes full-length sequences of marker genes from across the bacterial domain with a particular focus on taxa that are oxygenic or anoxygenic phototrophs and use the marker genes, to build a rooted "backbone" tree. Incomplete or short sequences from the metagenomes are added to the tree using the Evolutionary Placement Algorithm. The researchers built a corresponding phylogenetic tree using a Bayesian framework and compare their topologies. By doing so, the project aims to improve the understanding of the evolution of oxygenic photosynthesis, which caused the most significant change in Earth's surface chemistry. Specifically, we document a novel and basal cyanobacterium, significantly broader metabolic diversity within the Melainabacteria than has been previously identified, gain significant insights into their metabolic evolution, their evolutionary relationships with the Cyanobacteria, and the evolutionary steps leading to the origin of oxygenic photosynthesis. This research is constraining key evolutionary processes in the origin of oxygenic photosynthesis. It provides the foundation for future studies by indicating where a genomic record of the evolution of oxygenic photosynthesis may be preserved. Results will are being shared with middle school children through the development of scientific lesson plans in collaboration with teachers.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award supports a collaborative project that combines air and ground geological-geophysical investigations to understand the tectonic and geological development of the boundary between the Ross Sea Rift and the Marie Byrd Land (MBL) volcanic province. The project will determine the Cenozoic tectonic history of the region and whether Neogene structures that localized outlet glacier flow developed within the context of Cenozoic rifting on the eastern Ross Embayment margin, or within the volcanic province in MBL. The geological structure at the boundary between the Ross Embayment and western MBL may be a result of: 1) Cenozoic extension on the eastern shoulder of the Ross Sea rift; 2) uplift and crustal extension related to Neogene mantle plume activity in western MBL; or a combination of the two. Faulting and volcanism, mountain uplift, and glacier downcutting appear to now be active in western MBL, where generally East-to-West-flowing outlet glaciers incise Paleozoic and Mesozoic bedrock, and deglaciated summits indicate a previous North-South glacial flow direction. This study requires data collection using SOAR (Support Office for Aerogeophysical Research, a facility supported by Office of Polar Programs which utilizes high precision differential GPS to support a laser altimeter, ice-penetrating radar, a towed proton magnetometer, and a Bell BGM-3 gravimeter). This survey requires data for 37,000 square kilometers using 5.3 kilometer line spacing with 15.6 kilometer tie lines, and 86,000 square kilometers using a grid of 10.6 by 10.6 kilometer spacing. Data will be acquired over several key features in the region including, among other, the eastern edge of the Ross Sea rift, over ice stream OEO, the transition from the Edward VII Peninsula plateau to the Ford Ranges, the continuation to the east of a gravity high known from previous reconnaissance mapping over the Fosdick Metamorphic Complex, an d the extent of the high-amplitude magnetic anomalies (volcanic centers?) detected southeast of the northern Ford Ranges by other investigators. SOAR products will include glaciology data useful for studying driving stresses, glacial flow and mass balance in the West Antarctic Ice Sheet (WAIS). The ground program is centered on the southern Ford Ranges. Geologic field mapping will focus on small scale brittle structures for regional kinematic interpretation, on glaciated surfaces and deposits, and on datable volcanic rocks for geochronologic control. The relative significance of fault and joint sets, the timing relationships between them, and the probable context of their formation will also be determined. Exposure ages will be determined for erosion surfaces and moraines. Interpretation of potential field data will be aided by on ground sampling for magnetic properties and density as well as ground based gravity measurements. Oriented samples will be taken for paleomagnetic studies. Combined airborne and ground investigations will obtain basic data for describing the geology and structure at the eastern boundary of the Ross Embayment both in outcrop and ice covered areas, and may be used to distinguish between Ross Sea rift- related structural activity from uplift and faulting on the perimeter of the MBL dome and volcanic province. Outcrop geology and structure will be extrapolated with the aerogeophysical data to infer the geology that resides beneath the WAIS. The new knowledge of Neogene tectonics in western MBL will contribute to a comprehensive model for the Cenozoic Ross rift and to understanding of the extent of plume activity in MBL. Both are important for determining the influence of Neogene tectonics on the ice streams and WAIS.
Understanding how groups of organisms respond to climate change is fundamentally important to assessing the impacts of human activities as well as understanding how past climatic shifts have shaped biological diversity over deep stretches of time. The fishes occupying the near-shore marine habitats around Antarctica are dominated by one group of closely related species called notothenioids. It appears dramatic changes in Antarctic climate were important in the origin and evolutionary diversification of this economically important lineage of fishes. Deposits of fossil fishes in Antarctica that were formed when the continent was experiencing milder temperatures show that the area was home to a much more diverse array of fish lineages. Today the waters of the Southern Ocean are very cold, and often below freezing, but notothenioids fishes exhibit a number of adaptions to live in this harsh set of marine habitats, including the presence of anti-freeze proteins. This research project will collect DNA sequences from hundreds of genes to infer the genealogical relationships of nearly all 124 notothenioid species, and use mathematical techniques to estimate the ages of species and lineages. Knowledge on the timing of evolutionary divergence in notothenioids will allow investigators to assess if timing of previous major climatic shifts in Antarctica are correlated with key events in the formation of the modern Southern Ocean fish fauna. The project will also further the NSF goals of making scientific discoveries available to the general public and of training new generations of scientists. The project will support educational outreach activities to teenager groups and to the general public through a natural history museum exhibit and other public lectures. It will provide professional training opportunities for graduate students and a postdoctoral research scholar. <br/><br/>Adaptive radiation, where lineages experience high rates of evolutionary diversification coincident with ecological divergence, is mostly studied in island ecosystems. Notothenioids dominate the fish fauna of the Southern Ocean and exhibit antifreeze glycoproteins that allow occupation of the subzero waters. Notothenioids are noted as one of the only examples of adaptive radiation among marine fishes, but the evolutionary history of diversification and radiation into different ecological habitats is poorly understood. This research will generate a species phylogeny (evolutionary history) for nearly all of the 124 recognized notothenioid species to investigate the mechanisms of adaptive radiation in this lineage. The phylogeny is inferred from approximately 350 genes sampled using next generation DNA sequencing and related techniques. Morphometric data are taken for museum specimens to investigate the tempo of morphological diversification and to determine if there are correlations between rates of lineage diversification and the origin of morphological disparity. The patterns of lineage, morphological, and ecological diversification in the notothenioid radiation will be compared to the paleoclimatic record to determine if past instances of global climate change have shaped the evolutionary diversification of this lineage of polar-adapted fishes.
Terra Nova Bay (western Ross Sea, Antarctica) supports dense populations of several key species in the Ross Sea food web, including copepods, crystal krill (Euphausia crystallorophias), Antarctic silverfish (Pleuragramma antarcticum), and colonies of Adélie and Emperor penguins that feed primarily on crystal krill and silverfish. Absent from our understanding of the Ross Sea food web is zooplankton and silverfish mesoscale distribution, spatial structure of age/maturity classes, and their interactions with physical drivers and each other. The quantitative linkages between primary producers and the higher trophic levels, specifically, the processes responsible for the regulation of abundance and rates of middle trophic levels dominated by copepods and crystal krill (Euphausia crystallorophias), is virtually unknown. Given that the next century will see extensive changes in the Ross Sea’s ice distributions and oceanography as a result of climate change, understanding the basic controls of zooplankton and silverfish abundance and distribution is essential.
During a January – March 2018 cruise in the western Ross Sea, we deployed a glider equipped with an echo sounder (Acoustic Zooplankton Fish Profiler) that simultaneously measured depth, temperature, conductivity, chlorophyll fluorescence, and dissolved oxygen. Additionally, net tows, mid-water trawls, and crystal krill grazing experiments were conducted. Our study provided the first glider-based acoustic assessment of simultaneous distributions of multiple trophic levels in the Ross Sea, from which predator-prey interactions and the relationships between organisms and physics drivers (sea ice, circulation features) were investigated. We illustrated high variability in ocean physics, phytoplankton biomass, and crystal krill biomass and aggregation over time and between locations within Terra Nova Bay. Biomass of krill was highest in locations characterized by deeper mixed layers and highest integrated chlorophyll concentrations. Krill aggregations were consistently located at depth well below the mixed layer and chlorophyll maximum. Experiments investigating krill grazing, in combination with krill depth distributions relative to chlorophyll biomass, illuminate high krill grazing rates could be attributed to the occupation of a unique niche whereby they are opportunistically feeding on sinking high concentrations of detritus derived from surface blooms. The information on the abundance, distribution, and interactions of key species in multiple trophic levels resulting from this project provide a conceptual background to understand how this ecosystem might respond to future conditions under climate change.
Our project tested the capability of a multi-frequency echo sounder on a glider for the first time. The production of consistent, vertically-resolved, high resolution glider-based acoustic measurements will pave the way for cost-effective, automated examination of entire food webs and ecosystems in regions all over the global ocean. A wide range of users including academic and government scientists, ecosystem-based fisheries managers, and monitoring programs including those conducted by OOI, IOOS, and NOAA will benefit from this project. This project also provided the opportunity to focus on broadening participation in research and articulating the societal benefits through education and innovative outreach programs. A data set from this project is being included in the new NSF-funded Polar CAP initiative, that will be used by a diverse and young audience to increase understanding of the polar system and the ability to reason with data. Finally, this project provided a unique field opportunity and excellent hand-on training for a post-doctoral researcher, a graduate student, and two undergraduate students.
The rise in atmospheric carbon dioxide concentrations and associated climate changes make understanding the role of the ocean in large scale carbon cycle a priority. Geologic samples allow exploration of potential mechanisms for carbon dioxide drawdown during glacial periods through the use of geochemical proxies. Nitrogen and silicon isotope signatures from fossil diatoms (microscopic plants) are used to investigate changes in the physical supply and biological demand for nutrients (like nitrogen and silicon and carbon) in the Southern Ocean. The project will evaluate the use the nitrogen and silicon isotope proxies through a series of laboratory experiments and Southern Ocean field sampling. The results will provide quantification of real relationships between nitrogen and silicon isotopes and nutrient usage in the Southern Ocean and allow exploration of the role of other factors, including biological diversity, ice cover, and mixing, in altering the chemical signatures recorded by diatoms. Seafloor sediment samples will be used to evaluate how well the signal created in the water column is recorded by fossil diatoms buried in the seafloor. Improving the nutrient isotope proxies will allow for a more quantitative understanding of the role of polar biology in regulating natural variation in atmospheric carbon dioxide. The project will also result in the training of a graduate student and development of outreach materials targeting a broad popular audience.
This project seeks to test the fidelity of the diatom nitrogen and silicon isotope proxies, two commonly used paleoceanographic tools for investigating the role of the Southern Ocean biological pump in regulating atmospheric CO2 concentrations on glacial-interglacial timescales. Existing ground-truthing data, including culture experiments, surface sediment data and downcore reconstructions, all suggest that nutrient utilization is the primary driver of isotopic variation in the Southern Ocean. However, strong contribution of interspecific variation is implied by recent culture results. Moreover, field and laboratory studies present some contradictory results in terms of the relative importance of interspecific variation and of inferred post-depositional alteration of the nutrient isotope signals. Here, a first order test of the N and Si diatom nutrient isotope paleo-proxies, involving water column dissolved and particulate sampling and laboratory culturing of field-isolates, is proposed. Southern Ocean water, biomass, live diatoms and fossil diatom sampling will be conducted to investigate species and assemblage related variability in diatom nitrogen and silicon isotopes and their relationship to surface nutrient fields and early diagenesis. Access to fresh materials produced in an analogous environmental context to the sediments of primary interest is critical for making robust paleoceanographic reconstructions. Field sampling will occur along 175°W, transecting the Antarctic Circumpolar Current from the subtropics to the marginal ice edge. Collection of water, sinking/suspended particles and multi-core samples from 13 stations and 3 shipboard incubation experiments will be used to test four proposed hypotheses that together evaluate the significance of existing culture results and seek to allow the best use of diatom nutrient isotope proxies in evaluating the biological pump.
The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth's surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers' involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.
Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change.<br/><br/>It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.
This award supports the deployment and analysis of data from an oriented laser dust logger in the South Pole ice core borehole to complement study of the ice core record. Before the core is even processed, data from the borehole probe will immediately determine the depth-age relationship, augment 3D mapping of South Pole stratigraphy, aid in searches for the oldest ice in Antarctica, and reveal layers of volcanic or extraterrestrial fallout. Regarding the intellectual merit, the oriented borehole log will be essential for investigating features in the ice sheet that may have implications for ice core chronology, ice flow, ice sheet physical properties and stability in response to climate change. The tools and techniques developed in this program have applications in glaciology, biogeoscience and exploration of other planetary bodies. The program aims for a deeper understanding of the consequences and causes of abrupt climate change. The broader impacts of the project are that it will include outreach and education, providing a broad training ground for students and post-docs. Data and metadata will be made available through data centers and repositories such as the National Snow and Ice Data Center web portal. <br/><br/>The laser dust logger detects reproducible paleoclimate features at sub-centimeter depth scale. Dust logger data are being used for synchronizing records and dating any site on the continent, revealing accumulation anomalies and episodes of rapid ice sheet thinning, and discovering particulate horizons of special interest. In this project we will deploy a laser dust logger equipped with a magnetic compass to find direct evidence of preferentially oriented dust. Using optical scattering measurements from IceCube calibration studies at South Pole and borehole logs at WAIS Divide, we have detected a persistent anisotropy correlated with flow and crystal fabric which suggests that the majority of insoluble particulates must be located within ice grains. With typical concentrations of parts-per-billion, little is known about the location of impurities within the polycrystalline structure of polar ice. While soluble impurities are generally thought to concentrate at inter-grain boundaries and determine electrical conductivity, the fate of insoluble particulates is much less clear, and microscopic examinations are extremely challenging. These in situ borehole measurements will help to unravel intimate relationships between impurities, flow, and crystal fabric. Data from this project will further develop a unique record of South Pole surface roughness as a proxy for paleowind and provide new insights for understanding glacial radar propagation. This project has field work in Antarctica.
Phytoplankton blooms in the coastal waters of the Ross Sea, Antarctica are typically dominated by either diatoms or Phaeocystis Antarctica (a flagellated algae that often can form large colonies in a gelatinous matrix). The project seeks to determine if an association of bacterial populations with Phaeocystis antarctica colonies can directly supply Phaeocystis with Vitamin B12, which can be an important co-limiting micronutrient in the Ross Sea. The supply of an essential vitamin coupled with the ability to grow at lower iron concentrations may put Phaeocystis at a competitive advantage over diatoms. Because Phaeocystis cells can fix more carbon than diatoms and Phaeocystis are not grazed as efficiently as diatoms, the project will help in refining understanding of carbon dynamics in the region as well as the basis of the food web webs. Such understanding also has the potential to help refine predictive ecological models for the region. The project will conduct public outreach activities and will contribute to undergraduate and graduate research. Engagement of underrepresented students will occur during summer student internships. A collaboration with Italian Antarctic researchers, who have been studying the Terra Nova Bay ecosystem since the 1980s, aims to enhance the project and promote international scientific collaborations. <br/><br/>The study will test whether a mutualistic symbioses between attached bacteria and Phaeocystis provides colonial cells a mechanism for alleviating chronic Vitamin B12 co-limitation effects thereby conferring them with a competitive advantage over diatom communities. The use of drifters in a time series study will provide the opportunity to track in both space and time a developing algal bloom in Terra Nova Bay and to determine community structure and the physiological nutrient status of microbial populations. A combination of flow cytometry, proteomics, metatranscriptomics, radioisotopic and stable isotopic labeling experiments will determine carbon and nutrient uptake rates and the role of bacteria in mitigating potential vitamin B12 and iron limitation. Membrane inlet and proton transfer reaction mass spectrometry will also be used to estimate net community production and release of volatile organic carbon compounds that are climatically active. Understanding how environmental parameters can influence microbial community dynamics in Antarctic coastal waters will advance an understanding of how changes in ocean stratification and chemistry could impact the biogeochemistry and food web dynamics of Southern Ocean ecosystems.
ABSTRACT<br/>Intellectual Merit:<br/>The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (δ15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2.<br/><br/>Broader impacts:<br/>This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.
Rapid changes in the extent and thickness of sea ice during the austral spring subject microorganisms within or attached to the ice to large fluctuations in temperature, salinity, light and nutrients. This project aims to identify cellular responses in sea-ice algae to increasing temperature and decreasing salinity during the spring melt along the western Antarctic Peninsula and to determine how associated changes at the cellular level can potentially affect dynamic, biologically driven processes. Understanding how sea-ice algae cope with, and are adapted to, their environment will not only help predict how polar ecosystems may change as the extent and thickness of sea ice change, but will also provide a better understanding of the widespread success of photosynthetic life on Earth. The scientific context and resulting advances from the research will be communicated to the general public through outreach activities that includes work with Science Communication Fellows and the popular Polar Science Weekend at the Pacific Science Center in Seattle, Washington. The project will provide student training to college students as well as provide for educational experiences for K-12 school children. <br/><br/><br/>There is currently a poor understanding of feedback relationships that exist between the rapidly changing environment in the western Antarctic Peninsula region and sea-ice algal production. The large shifts in temperature and salinity that algae experience during the spring melt affect critical cellular processes, including rates of enzyme-catalyzed reactions involved in photosynthesis and respiration, and the production of stress-protective compounds. These changes in cellular processes are poorly constrained but can be large and may have impacts on local ecosystem productivity and biogeochemical cycles. In particular, this study will focus on the thermal sensitivity of enzymes and the cycling of compatible solutes and exopolymers used for halo- and cryo-protection, and how they influence primary production and the biogeochemical cycling of carbon and nitrogen. Approaches will include field sampling during spring melt, incubation experiments of natural sea-ice communities under variable temperature and salinity conditions, and controlled manipulation of sea-ice algal species in laboratory culture. Employment of a range of techniques, from fast repetition rate fluorometry and gross and net photosynthetic measurements to metabolomics and enzyme kinetics, will tease apart the mechanistic effects of temperature and salinity on cell metabolism and primary production with the goal of quantifying how these changes will impact biogeochemical processes along the western Antarctic Peninsula.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess.
Intellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport.
Broader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops.
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys.
The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal will be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Beginning with the earliest expeditions to the poles, scientists have noted that many polar taxa grow to unusually large body sizes, a phenomenon now known as 'polar gigantism.' Although scientists have been interested in polar giants for many years, many questions still remain about the biology of this significant form of polar diversity. This award from the Antarctic Organisms and Ecosystems program within the Polar Sciences Division at the National Science Foundation will investigate the respiratory and biomechanical mechanisms underlying polar gigantism in Antarctic pycnogonids (commonly known as sea spiders). The project will use a series of manipulative experiments to investigate the effects of temperature and oxygen availability on respiratory capacity and biomechanical strength, and will compare Antarctic sea spiders to related species from temperate and tropical regions. The research will provide insight into the ability of polar giants to withstand the warming polar ocean temperatures associated with climate change.<br/><br/>The prevailing hypothesis to explain the evolution of gigantism invokes shifts in respiratory relationships in extremely cold ocean waters: in the cold, oxygen is more plentiful while at the same time metabolic rates are very low. Together these effects alleviate constraints on oxygen supply that restrict organisms living in warmer waters. Respiratory capacity must evolve in the context of adaptive tradeoffs, so for organisms including pycnogonids there must be tradeoffs between respiratory capacity and resistance to biomechanical stresses. The investigators will test a novel hypothesis that respiratory challenges are not associated with particular body sizes, and will answer the following questions: What are the dynamics of oxygen transport and consumption in Antarctic pycnogonids; how do structural features related to oxygen diffusion trade off with requirements for body support and locomotion; how does body size influence vulnerability to environmental hypoxia and to temperature-oxygen interactions; and does the cold-driven high oxygen availability in the Antarctic raise the limit on body size by reducing trade-offs between diffusivity and structural integrity? The research will explore the effects of increased ocean temperatures upon organisms that have different body sizes. In addition, it will provide training for graduate and undergraduate students affiliated with universities in EPSCOR states.
This award supports an integrated field observation, remote sensing and numerical modeling study of the McMurdo Shear Zone (SZ). The SZ is a 5-10 km wide strip of heavily crevassed ice that separates the McMurdo and Ross ice shelves, and is an important region of lateral support for the Ross Ice Shelf. Previous radar and remote sensing studies reveal an enigmatic picture of the SZ in which crevasses detected at depth have no apparent surface expression, and have orientations which are possibly inconsistent with the observed flow field. In the proposed work, we seek to test the hypothesis that the SZ is a zone of chaotic Lagrangian mixing with (intersecting) buried crevasses which leads to rheological instability, potentially allowing large scale velocity discontinuities. The work will involve detailed field-based observations of crevasse distributions and structure using ground-penetrating radar, and GPS and remote sensing observations of the flow and stress field in the SZ. Because of the hazardous nature of the SZ, the radar surveys will be conducted largely with the aid of a lightweight robotic vehicle. Observations will be used to develop a finite element model of ice shelf shear margin behavior. The intellectual merit of this project is an increased understanding of ice shelf shear margin dynamics. Shear margins play a key role in ice shelf stability, and ice shelves in turn modulate the flux of ice from the ice sheet across the grounding line to the ocean. Insights from this project will improve large-scale models being developed to predict ice sheet evolution and future rates of sea level rise, which are topics of enormous societal concern. The broader impacts of the project include an improved basis for US Antarctic Program logistics planning as well as numerous opportunities to engage K-12 students in scientific discovery. Intensified crevassing in the shear zone between the Ross and McMurdo ice shelves would preclude surface crossing by heavy traverse vehicles which would lead to increased costs of delivering fuel to South Pole and a concomitant loss of flight time provided by heavy-lift aircraft for science missions on the continent. Our multidisciplinary research combining glaciology, numerical modeling, and robotics engineering is an engaging way to show how robotics can assist scientists in collecting hazardous field measurements. Our outreach activities will leverage Dartmouth's current NSF GK-12 program, build on faculty-educator relationships established during University of Maine's recent GK-12 program, and incorporate project results into University of Maine's IDEAS initiative, which integrates computational modeling with the existing science curriculum at the middle school level. This award has field work in Antarctica.
Intellectual Merit:<br/>This project will produce a new compilation of Ross Sea seismic stratigraphy, including new interpretations, that can be used to provide boundary conditions on the tectonic and glacial evolution of West Antarctica and the Ross Sea. The principal goals include compilation of, and interpretation of, all available existing seismic reflection data for the Western Ross Sea, coupled with geophysical modeling to produce paleo-bathymetric reconstructions for the entire 800 km-wide Ross Sea. Specific tasks will include: extending existing work on mapping travel time to reflectors, identifying relations in the seismic data that indicate subsidence through sea level, constructing velocity models for converting travel time to thickness, and using the velocity models to estimate density and porosity of sediments for backstripping analysis. Modeling/backstripping efforts will be used to constrain past bathymetry. Digital interpretations and stratigraphic grids will be provided as supplements to publications. In that way the results of this study can be used in thermal subsidence modeling and restoration of eroded rock to other parts of Ross Embayment and Marie Byrd Land by others. Digital products may be provided in advance of publication to modelers in a way that will not hurt publication chances.<br/><br/>Broader impacts: <br/>The results of this work will be important for paleo-geographic reconstructions of Antarctica and will therefore be of use to a broad range of researchers, particularly those working in the Ross Sea region. The digital products can be used to test models for the past fluctuations of West Antarctic ice sheets, and in planning for future sediment drilling projects. Two undergraduates to be chosen from applicants will be involved in summer internships held at the University of Rhode Island. Outreach will also include a new website and one or more Wikipedia entries related to Ross Sea sub-sea floor characteristics. The project includes an international collaboration with Dr. Chiara Sauli and others at Instituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Italy.
The Palmer Antarctica LTER (Long Term Ecological Research) site has been in operation since 1990. The goal of all the LTER sites is to conduct policy-relevant research on ecological questions that require tens of years of data, and cover large geographical areas. For the Palmer Antarctica LTER, the questions are centered around how the marine ecosystem west of the Antarctica peninsula is responding to a climate that is changing as rapidly as any place on the Earth. For example, satellite observations over the past 35 years indicate the average duration of sea ice cover is now ~90 days (3 months!) shorter than it was. The extended period of open water has implications for many aspects of ecosystem research, with the concurrent decrease of Adèlie penguins within this region regularly cited as an exemplar of climate change impacts in Antarctica. Cutting edge technologies such as autonomous underwater (and possibly airborne) vehicles, seafloor moorings, and numerical modeling, coupled with annual oceanographic cruises, and weekly environmental sampling, enables the Palmer Antarctica LTER to expand and bridge the time and space scales needed to assess climatic impacts. This award includes for the first time study of the roles of whales as major predators in the seasonal sea ice zone ecosystem. The team will also focus on submarine canyons, special regions of enhanced biological activity, along the Western Antarctic Peninsula (WAP).<br/><br/>The current award's overarching research question is: How do seasonality, interannual variability, and long term trends in sea ice extent and duration influence the structure and dynamics of marine ecosystems and biogeochemical cycling? Specific foci within the broad question include: 1. Long-term change and ecosystem transitions. What is the sensitivity or resilience of the ecosystem to external perturbations as a function of the ecosystem state? 2. Lateral connectivity and vertical stratification. What are the effects of lateral transports of freshwater, heat and nutrients on local ocean stratification and productivity and how do they drive changes in the ecosystem? 3. Top-down controls and shifting baselines. How is the ecosystem responding to the cessation of whaling and subsequent long-term recovery of whale stocks? 4. Foodweb structure and biogeochemical processes. How do temporal and spatial variations in foodweb structure influence carbon and nutrient cycling, export, and storage? The broader impacts of the award leverage local educational partnerships including the Sandwich, MA STEM Academy, the New England Aquarium, and the NSF funded Polar Learning and Responding (PoLAR) Climate Change Education Partnership at Columbia's Earth Institute to build new synergies between Arctic and Antarctic, marine and terrestrial scientists and students, governments and NGOs. The Palmer Antarctic LTER will also conduct appropriate cross LTER site comparisons, and serve as a leader in information management to enable knowledge-building within and beyond the Antarctic, oceanographic, and LTER communities.
Waddington/1246045 <br/><br/>This award supports a project to investigate the onset and growth of folds and other disturbances seen in the stratigraphic layers of polar ice sheets. The intellectual merit of the work is that it will lead to a better understanding of the grain-scale processes that control the development of these stratigraphic features in the ice and will help answer questions such as what processes can initiate such disturbances. Snow is deposited on polar ice sheets in layers that are generally flat, with thicknesses that vary slowly along the layers. However, ice cores and ice-penetrating radar show that in some cases, after conversion to ice, and following lengthy burial, the layers can become folded, develop pinch-and-swell structures (boudinage), and be sheared by ice flow, at scales ranging from centimeters to hundreds of meters. The processes causing these disturbances are still poorly understood. Disturbances appear to develop first at the ice-crystal scale, then cascade up to larger scales with continuing ice flow and strain. Crystal-scale processes causing distortions of cm-scale layers will be modeled using Elle, a microstructure-modeling package, and constrained by fabric thin-sections and grain-elongation measurements from the West Antarctic Ice Sheet divide ice-core. A full-stress continuum anisotropic ice-flow model coupled to an ice-fabric evolution model will be used to study bulk flow of anisotropic ice, to understand evolution and growth of flow disturbances on the meter and larger scale. Results from this study will assist in future ice-core site selection, and interpretation of stratigraphy in ice cores and radar, and will provide improved descriptions of rheology and stratigraphy for ice-sheet flow models.The broader impacts are that it will bring greater understanding to ice dynamics responsible for stratigraphic disturbance. This information is valuable to constrain depth-age relationships in ice cores for paleoclimate study. This will allow researchers to put current climate change in a more accurate context. This project will provide three years of support for a graduate student as well as support and research experience for an undergraduate research assistant; this will contribute to development of talent needed to address important future questions in glaciology and climate change. The research will be communicated to the public through outreach events and results from the study will be disseminated through public and professional meetings as well as journal publications. The project does not require field work in Antarctica.
This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The West Antarctic Ice Sheet is believed to be vulnerable to climate change as it is grounded below sea level, is drained by rapidly flowing ice streams and is fringed by floating ice shelves subject to melting by incursions of relatively warm Antarctic circumpolar water. Currently, the most rapidly thinning glaciers in Antarctica occur in the Amundsen and Bellingshausen Sea sectors. This study seeks to place the present day observations into a longer-term geological context over a broad scale by high-resolution swath bathymetric mapping of continental shelf sea floor features that indicate past ice presence and behavior. Gaps in existing survey coverage of glacial lineations and troughs indicating ice flow direction and paleo-grounding zone wedges over the Ross, Amundsen and Bellingshausen Sea sectors are targeted. The surveys will be conducted as part of the 2010 Icebreaker Oden science opportunity and will take advantage of the vessel?s state-of-the-art swath mapping system.<br/><br/>Broader impacts:<br/>This activity will supplement and complement more focused regional studies by US, Swedish, UK, French, Japanese and Polish collaborators also sailing on the Oden. The PI will compile bathymetric data to be acquired by the Oden and other ships in the region over the duration of the project into the existing bathymetric data base. The compiled data set will be made publically available through the NSF founded Antarctic Multibeam Bathymetry and Geophysical Data Synthesis (AMBS) site. It will also be integrated into the GEBCO International Bathymetric Chart of the Southern Ocean (IBCSO) and so significantly improve the basis for ship navigation in the Pacific sector of the Southern Ocean. Undergraduate students will be involved in the research under supervision of the PI via the Lamont summer internship program. The PI is a young investigator and this will be his first NSF grant as a PI.
The research will examine how diatoms (an important group of plankton in the Southern Ocean) adapt to environmental change. Diatoms will be sampled from different regions of the Southern Ocean, including the Drake Passage, the Pacific Sector of the Southern Ocean and the Ross Sea and examined to determine the range of genetic variation among diatoms in these regions. Experiments on a range of diatoms will be conducted in home laboratories and will be aimed at measuring shifts in physiological capacities over many generations in response to directional changes in the environment (temperature and pH). The information on the genetic diversity of field populations combined with information on potential rates of adaptability and genome changes will provide insight into ways in which polar marine diatoms populations may respond to environmental changes that may occur in surface oceans in the future or may have occurred during past climate conditions. Such information allows better modeling of biogeochemical cycles in the ocean as well as improves our abilities to interpret records of past ocean conditions. The project will support a doctoral student and a postdoctoral researcher as well as several undergraduate students. These scientists will learn the fundamentals of experimental evolution, a skill set that is being sought in the fields of biology and oceanography. The project also includes a collaboration with the Metcalf Institute for Marine and Environmental Reporting that will design and facilitate a session focused on current research related to evolution and climate change to be held at the annual conference of the National Association of Science Writers (NASW). <br/><br/>Both physiological and genetic variation are key parameters for understanding evolutionary processes in phytoplankton but they are essentially unknown for Southern Ocean diatoms. The extent to which these two factors determine plasticity and adaptability in field populations and the interaction between them will influence how and whether cold-adapted diatoms can respond to changing environments. This project includes a combination of field work to identify genetic diversity within diatoms using molecular approaches and experiments in the lab to assess the range of physiological variation in contemporary populations of diatoms and evolution experiments in the lab to assess how the combination of genetic diversity and physiological variation influence the evolutionary potential of diatoms under a changing environment. This research will uncover general relationships between physiological variation, genetic diversity, and evolutionary potential that may apply across microbial taxa and geographical regions, substantially improving efforts to predict shifts in marine ecosystems. Results from this study can be integrated into developing models that incorporate evolution to predict ecosystem changes under future climate change scenarios.
This award supports a project to obtain the first set of isotopic-based provenance data from the WAIS divide ice core. A lack of data from the WAIS prevents even a basic knowledge of whether different sources of dust blew around the Pacific and Atlantic sectors of the southern latitudes. Precise isotopic measurements on dust in the new WAIS ice divide core are specifically warranted because the data will be synergistically integrated with other high frequency proxies, such as dust concentration and flux, and carbon dioxide, for example. Higher resolution proxies will bridge gaps between our observations on the same well-dated, well-preserved core. The intellectual merit of the project is that the proposed analyses will contribute to the WAIS Divide Project science themes. Whether an active driver or passive recorder, dust is one of the most important but least understood components of regional and global climate. Collaborative and expert discussion with dust-climate modelers will lead to an important progression in understanding of dust and past atmospheric circulation patterns and climate around the southern latitudes, and help to exclude unlikely air trajectories to the ice sheets. The project will provide data to help evaluate models that simulate the dust patterns and cycle and the relative importance of changes in the sources, air trajectories and transport processes, and deposition to the ice sheet under different climate states. The results will be of broad interest to a range of disciplines beyond those directly associated with the WAIS ice core project, including the paleoceanography and dust- paleoclimatology communities. The broader impacts of the project include infrastructure and professional development, as the proposed research will initiate collaborations between LDEO and other WAIS scientists and modelers with expertise in climate and dust. Most of the researchers are still in the early phase of their careers and hence the project will facilitate long-term relationships. This includes a graduate student from UMaine, an undergraduate student from Columbia University who will be involved in lab work, in addition to a LDEO Postdoctoral scientist, and possibly an additional student involved in the international project PIRE-ICETRICS. The proposed research will broaden the scientific outlooks of three PIs, who come to Antarctic ice core science from a variety of other terrestrial and marine geology perspectives. Outreach activities include interaction with the science writers of the Columbia's Earth Institute for news releases and associated blog websites, public speaking, and involvement in an arts/science initiative between New York City's arts and science communities to bridge the gap between scientific knowledge and public perception.
Intellectual Merit: <br/>This project will use sediment cores from the Victoria Land Basin (VLB), Antarctica, to study secondary (diagenetic) carbonate minerals, as indicators of the basin?s fluid-flow history, within the well-constrained tectonic, depositional, and climatic context provided by sediment cores. This study will provide insights into subsurface processes in Victoria Land Basin, Antarctica and their relationships with the region?s climatic, cryospheric, and tectonic history. The work will utilize cores previously recovered by US-sponsored stratigraphic drilling projects (CIROS, CRP, and ANDRILL projects). This work is motivated by the unexpected discovery of dense brine in the subsurface of Southern McMurdo Sound during drilling by the ANDRILL Southern McMurdo Sound project. The presence of the brine is intriguing because it contradicts previous models for the origin of subsurface fluids that called upon large contributions from glacial melt water. Project objectives involve documenting the distribution of the brine (and potentially other fluids) via characterization of diagenetic precipitates. The approach will involve integration of petrographic and geochemical data (including conventional carbon, oxygen, and ?clumped? isotopes) to fully characterize diagenetic phases and allow development of a robust paragenetic history. This work will provide novel insights into the Cenozoic evolution of the VLB and, more broadly, the role of glacial processes in generating subsurface fluids. <br/><br/>Broader impacts: <br/>Results from this project will help understand the origins of brines, groundwater and hydrocarbon reservoirs in analogous modern and ancient deposits elsewhere, which is of broad interest. This project will support the training of one graduate and one undergraduate student at the University of Nebraska-Lincoln (UNL) providing learning opportunities in sedimentary geology and diagenesis, fields with wide applicability. This proposal emphasizes rapid dissemination of results to the scientific community via conference presentations and contributions to peer-reviewed publications. The results will be integrated into education activities designed to develop skills in petrography and diagenesis, which are highly sought after in the energy sector. The project will generate a well-constrained dataset that allows direct linkage of diagenetic phases to environmental and tectonic change across a large sedimentary basin which will provide the basis for a comprehensive case study in an upper-level course (Sedimentary Petrography and Diagenesis) at UNL. In addition, online exercises will be developed and submitted to an open-access site (SEPM Stratigraphy Web) dedicated to sedimentary geology.
This proposed research aims to produce high resolution, precise and accurate records of deep water temperatures in the Drake Passage over the past ~40,000 years, by applying the newly developed carbonate clumped isotope thermometer to a unique collection of modern and fossil deep-sea corals, and thus advance the understanding of the role of the Southern Ocean in modulating global climate. In addition, this study will provide further evaluation on the potential of this new thermometer to derive accurate estimates of past ocean temperatures from deep-sea coral skeletons. Funding will support an early-career junior scientist and a graduate student. <br/><br/>Despite its crucial role in modulating global climate, rates and amplitudes of environmental changes in the Southern Ocean are often difficult to constrain. In particular, the knowledge about the deep water temperatures in the Southern Ocean during the last glacial cycle is extremely limited. This results both from the lack of well-dated climate archives for the deep Southern Ocean and from the fact that most existing temperature proxies (e.g. del18O and Mg/Ca of foraminifera and corals) suffer from the biological 'vital effects'. The latter is especially problematic; it causes substantial challenges in interpreting these geochemical proxies and can lead to biases equivalent to tens of degrees in temperature estimates. Recent development of carbonate clumped isotope thermometer, holds new promises for reconstructing deep water temperatures in the Southern Ocean, since calibration studies of this thermometer in deep-sea corals suggest it is largely free of vital effects. This proposed research seeks to refine the calibration of carbonate clumped isotope thermometer in deep-sea corals at low temperatures, improve the experimental methods to obtain high precision in temperature estimates, and then apply this thermometer to a unique collection of modern and fossil deep-sea corals collected from the Drake Passage during two recent Office of Polar Programs (OPP)-funded cruises, that have already been dated by radiocarbon and U-series methods. By combining the reconstructed temperatures with the radiocarbon and U-Th ages for these deep-sea corals, this study will explore the relationships between these temperature changes and global climate changes.
Intellectual Merit: <br/>This proposal requests support for research on Early Jurassic vertebrate fauna of the Beardmore Glacier region of Antarctica. The project will support preparation and systematic and paleobiological research on four Antarctic dinosaurs, including two new species, collected in the Central Transantarctic Mountains. With the new material Cryolophosaurus will become one of the most complete Early Jurassic theropods known, and thus has the potential to become a keystone taxon for resolving the debated early evolutionary history of theropod dinosaurs, the group that gave rise to birds. Two new dinosaur specimens include a nearly complete articulated skeleton of a juvenile sauropodomorph, and the articulated hip region of another small individual. Both appear to be new taxa. The dinosaurs from the Hanson Formation represent some of the highest paleolatitude vertebrates known from the Jurassic. The PIs will generate CT datasets for Cryolophosaurus and the more complete new sauropodomorph species to mine for phylogenetic trait information, and to investigate their comparative neuroanatomy and feeding behavior. Histological datasets will be generated from multiple skeletal elements for all four Mt. Kirkpatrick taxa to understand patterns of growth in different clades of polar dinosaurs and compare them to relatives from lower paleolatitudes. This paleohistological study of a relatively diverse sample of sauropodomorph taxa from Antarctica may contribute to determining whether and how these dinosaurs responded to contemporary climatic extremes.<br/><br/>Broader impacts: <br/>The PIs have established a successful undergraduate training program as part of previous research. Summer interns from Augustana are trained at the Field Museum in specimen preparation, curation, molding/casting, and histological sampling. They also participate in existing Field Museum REU programs, including a course on phylogenetic systematics. Four undergraduate internships and student research projects will be supported through this proposal. The PIs will develop a traveling exhibit on Antarctic Mesozoic paleontology that they estimate will be seen by 2.5 million people over the five-year tour.
Intellectual Merit: <br/>This project will investigate glacial advance and retreat of the East Antarctic Ice Sheet through the Eocene-Oligocene transition, a major episode of ice growth. In Prydz Bay, East Antarctica, a 130-170 m thick Eocene-Oligocene transition interval of glaciomarine sediments was cored in drillholes of the Ocean Drilling Program at Sites 739, 742 and 1166. Correlations between the Prydz Bay drillholes have recently been made through well-log and multichannel seismic interpretations. Recent drilling on the Wilkes Land margin of East Antarctica recovered earliest Oligocene sediments overlying a major regional unconformity in two drillholes. The PI will study the lithostratigraphy and weathering history of cores in the five drillholes, to establish a unique Eocene-Oligocene transition record within Antarctic continental margin sediments of glacial advance and retreat cycles, the onset of physical weathering, and glacio-isostasy and self-gravitation processes with implications for the margin architecture, sediment routing, and off-shore sediment dispersal. Cores from the five drillholes will be re-examined through detailed core description using an updated classification scheme, so that lithofacies can be compared between drillholes. Samples will be collected for detailed laser particle size and bulk major element geochemistry via ICP-AES to determine the degree of chemical alteration of the sediments. Phases of major ice growth will be recognized as marker beds of physically eroded sediment and will be correlated to isotopic records documenting Antarctic ice growth offshore in the Southern Ocean. <br/><br/>Broader impacts: <br/>This project will benefit a large minority undergraduate student population through the availability of up to two paid laboratory internships, a classroom exercise, and the availability of research equipment supported by this award. The project also allows support and training of a graduate student.
Intellectual Merit: <br/>The primary goal of this project is to sample two beds in the Meyer Desert Formation, which are known to be especially fossiliferous containing plants, insects, other arthropods, freshwater mollusks, and fish. There is a possibility that the teeth and bones of a small marsupial could also be found. Previous studies have demonstrated that these horizons contain unique fossil assemblages that provide information used to reconstruct paleoenvironments and paleoclimate. The fossils represent organisms previously not found in Antarctica and consequently their study will lead to the development of new hypotheses concerning southern hemisphere biogeography. The new discoveries will also increase knowledge of paleoenvironments and paleoclimates as well as biogeographic relationships of the biota of the southern hemisphere. For some organisms, such as Nothofagus (Southern Beech) or the trechine groundbeetle, fossils would confirm that Antarctica was inhabited as part of Gondwana. For other fossils, such as the cyclorrhaphan fly or freshwater mollusks not expected to have inhabited Antarctica, the discoveries will require a reassessment of phylogenetic interpretations and a reinvestigation of the role of Antarctica in the evolutionary history of those organisms. The new fossil-based knowledge will require integration with interpretations from cladistics and molecular genetics to develop more comprehensive phylogenetic hypotheses for a range of organisms.<br/><br/>Broader impacts: <br/>The discovery of fossils in Antarctica and implications for climate change has proven to be popular with the media. This attention will help disseminate the results of this study. Before the field season, the PI will work with local media and with area schools to set up field interviews and web casts from Antarctica. The project will also involve the training of a graduate student in the field and in the follow up studies of the fossils in the laboratory.
1043649/Braun<br/><br/><br/>This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.
Intellectual Merit: <br/>The PI requests support for preparation of a large collection of vertebrate fossils recently recovered from the Central Transantarctic Mountains (CTAM) of Antarctica. These fossils will be used to place early Mesozoic Antarctic dinosaurs and other vertebrates into a global evolutionary, biogeographic, and faunal context; assess the degree of endemism in Triassic vertebrate faunas of Antarctica; constrain temporal relationships of the Triassic Antarctic vertebrate faunas; and refine the stratigraphic context for the Triassic Antarctic vertebrate assemblages to establish a paleoenvironmental framework. The lower and middle Triassic fossils offer a rare window on life in terrestrial environments at high-latitudes immediately after the Permian mass extinction. <br/><br/>Broader impacts: <br/>The PI will use their fossils to educate the public about the geologic, climatic, and biologic history of Antarctica by visiting local schools. They will create and publish at least two new videos to the Burke Museum blog that relate the graduate student?s experience of fieldwork in Antarctica. They will also update the Antarctica section on the UWBM "Explore Your World" website with images and findings from their field season.
The Office of Polar Programs, Antarctic Science Division, Ocean & Climate Systems Program has made this award to support a multidisciplinary effort to study the upwelling of relatively warm deep water onto the Amundsen Sea continental shelf and how it relates to atmospheric forcing and bottom bathymetry and how the warm waters interact with both glacial and sea ice. This study constitutes a contribution of a coordinated research effort in the region known as the Amundsen Sea Embayment Project or ASEP. Previous work by the PI and others has shown that the West Antarctic Ice Sheet has been found to be melting faster, perhaps by orders of magnitude, than ice sheets elsewhere around Antarctica, excluding those on the Peninsula. Submarine channels that incise the continental shelf are thought to provide fairly direct access of relatively warm circum polar deep water to the cavity under the floating extension of the ice shelf. Interactions with sea ice en route can modify the upwelled waters. The proposed investigations build on previous efforts by the PI and colleagues to use hydrographic measurements to put quantitative bounds on the rate of glacial ice melt by relatively warm seawater. <br/>The region can be quite difficult to access due to sea ice conditions and previous hydrographic measurements have been restricted to the austral summer time frame. In this project it was proposed to obtain the first austral spring hydrographic data via CTD casts and XBT drops (September-October 2007) as part of a separately funded cruise (PI Steve Ackley) the primary focus of which is sea-ice conditions to be studied while the RV Nathanial B Palmer (RV NBP) drifts in the ice pack. This includes opportunistic sampling for pCO2 and TCO2. A dedicated cruise in austral summer 2009 will follow this opportunity. The principal objectives of the dedicated field program are to deploy a set of moorings with which to characterize temporal variability in warm water intrusions onto the shelf and to conduct repeat hydrographic surveying and swath mapping in targeted areas, ice conditions permitting. Automatic weather stations are to be deployed in concert with the program, sea-ice observations will be undertaken from the vessel and the marine cavity beneath the Pine Island may be explored pending availability of the British autonomous underwater vehicle Autosub 3. These combined ocean-sea ice-atmosphere observations are aimed at a range of model validations. A well-defined plan for making data available as well as archiving in a timely fashion should facilitate a variety of modeling efforts and so extend the value of the spatially limited observations. <br/>Broader impacts: This project is relevant to an International Polar Year research emphasis on ice sheet dynamics focusing in particular on the seaward ocean-ice sheet interactions. Such interactions must be clarified for understanding the potential for sea level rise by melt of the West Antarctic ice Sheet. The project entails substantive international partnerships (British Antarctic Survey and Alfred Wegner Institute) and complements other Amundsen Sea Embayment Project proposals covering other elements of ice sheet dynamics. The proposal includes partial support for 2 graduate students and 2 post docs. Participants from the Antarctic Artists and Writers program are to take part in the cruise and so aid in outreach. In addition, the project is to be represented in the Lamont-Doherty annual open house.
Collaborative With: McPhee 0732804, Holland 0732869, Truffer 0732730, Stanton 0732926, Anandakrishnan 0732844 <br/>Title: Collaborative Research: IPY: Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica<br/><br/>The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. <br/><br/>Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the "Multidisciplinary Study of the Amundsen Sea Embayment" proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded "Polar Palooza" education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.
Emperor penguins (Aptenodytes forsteri) and leopard seals (Hydrurga leptonyx) are iconic, top predators in Antarctica. Understanding their physiological ecology is essential to the assessment of their adaptability to the threats of climate change, pollution, and overfishing. The proposed research has multipronged objectives. Prior results suggest that Emperor penguins have flexible (vs. static) aerobic dive limits (ADL) that vary with the type of dive, and that the role of heart rate in utilization of oxygen stores also varies with dive type. A series of physiological measurements are proposed with backpack electrocardiogram recorders, that will allow further delineation of patterns and interrelationships among heart rate, dive behavior, and oxygen stores. Importantly, the research will be done on free diving emperors, and not individuals confined to a dive hole, thereby providing a more genuine measure of diving physiology and behavior. A separate objective is to examine foraging behavior of leopard seals, using a backpack digital camera and time depth recorder. Leopard seal behavior and prey intake is poorly quantified, but known to be significant. Accordingly the research is somewhat exploratory but will provide important baseline data. Finally, the P.I. proposes to continue long term overflight censuses of Emperor penguin colonies in the Ross Sea. Broader impacts include collaboration with National Geographic television, graduate student training, and development of sedation techniques for leopard seals.
Dissolved organic matter (DOM) comprises a significant pool of Earth's organic carbon that dwarfs the amount present in living aquatic organisms. The properties and reactivity of DOM are not well defined, and the evolution of autochthonous DOM from its precursor materials in freshwater has not been observed. Recent sampling of a supraglacial stream formed on the Cotton Glacier in the Transantarctic Mountains revealed DOM that more closely resembles an assemblage of recognizable precursor organic compounds, based upon its UV-VIS and fluorescence spectra. It is suggested that the DOM from this water evolved over time to resemble materials present in marine and many inland surface waters. The transient nature of the system i.e., it reforms seasonally, also prevents any accumulation of the refractory DOM present in most surface waters. Thus, the Cotton Glacier provides us with a unique environment to study the formation of DOM from precursor materials. An interdisciplinary team will study the biogeochemistry of this progenitor DOM and how microbes modify it. By focusing on the chemical composition of the DOM as it shifts from precursor material to the more humified fractions, the investigators will relate this transition to bioavailability, enzymatic activity, community composition and microbial growth efficiency. This project will support education at all levels, K-12, high school, undergraduate, graduate and post-doc and will increase participation by under-represented groups in science. Towards these goals, the investigators have established relationships with girls' schools and Native American programs. Additional outreach will be carried out in coordination with PolarTREC, PolarPalooza, and if possible, an Antarctic Artist and Writer.
The research will explore the genetics, diversity, and biogeography of Antarctic marine benthic invertebrates, seeking to overturn the widely accepted suggestion that benthic fauna do not constitute a large, panmictic population. The investigators will sample adults and larvae from undersampled regions of West Antarctica that, combined with existing samples, will provide significant coverage of the western hemisphere of the Southern Ocean. The objectives are: 1) To assess the degree of genetic connectivity (or isolation) of benthic invertebrate species in the Western Antarctic using high-resolution genetic markers. 2) To begin exploring planktonic larvae spatial and bathymetric distributions for benthic shelf invertebrates in the Bellinghausen, Amundsen and Ross Seas. 3) To continue to develop a Marine Antarctic Genetic Inventory (MAGI) that relates larval and adult forms via DNA barcoding. Broader impacts include traditional forms of training (postdocs, graduate studentships, undergraduate research experiences) and lectures to K-12 groups.
Intellectual Merit: <br/>The goal of this project is to address relationships between foreland basins and their tectonic settings by combining detrital zircon isotope characteristics and sedimentological data. To accomplish this goal the PIs will develop a detailed geochronology and analyze Hf- and O-isotopes of detrital zircons in sandstones of the Devonian Taylor Group and the Permian-Triassic Victoria Group. These data will allow them to better determine provenance and basin fill, and to understand the nature of the now ice covered source regions in East and West Antarctica. The PIs will document possible unexposed/unknown crustal terrains in West Antarctica, investigate sub-glacial terrains of East Antarctica that were exposed to erosion during Devonian to Triassic time, and determine the evolving provenance and tectonic history of the Devonian to Triassic Gondwana basins in the central Transantarctic Mountains. Detrital zircon data will be interpreted in the context of fluvial dispersal/drainage patterns, sandstone petrology, and sequence stratigraphy. This interpretation will identify source terrains and evolving sediment provenances. Paleocurrent analysis and sequence stratigraphy will determine the timing and nature of changing tectonic conditions associated with development of the depositional basins and document the tectonic history of the Antarctic sector of Gondwana. Results from this study will answer questions about the Panthalassan margin of Gondwana, the Antarctic craton, and the Beacon depositional basin and their respective roles in global tectonics and the geologic and biotic history of Antarctica. The Beacon basin and adjacent uplands played an important role in the development and demise of Gondwanan glaciation through modification of polar climates, development of peat-forming mires, colonization of the landscape by plants, and were a migration route for Mesozoic vertebrates into Antarctica. <br/><br/>Broader impacts: <br/>This proposal includes support for two graduate students who will participate in the fieldwork, and also support for other students to participate in laboratory studies. Results of the research will be incorporated in classroom teaching at the undergraduate and graduate levels and will help train the next generation of field geologists. Interactions with K-12 science classes will be achieved by video/computer conferencing and satellite phone connections from Antarctica. Another outreach effort is the developing cooperation between the Byrd Polar Research Center and the Center of Science and Industry in Columbus.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>The teleost fish fauna in the waters surrounding Antarctica are completely dominated by a single clade of closely related species, the Notothenioidei. This clade offers an unprecedented opportunity to investigate the effects of deep time paleogeographic transformations and periods of global climate change on lineage diversification and facilitation of adaptive radiation. With over 100 species, the Antarctic notothenioid radiation has been the subject of intensive investigation of biochemical, physiological, and morphological adaptations associated with freezing avoidance in the subzero Southern Ocean marine habitats. However, broadly sampled time-calibrated phylogenetic hypotheses of notothenioids have not been used to examine patterns of adaptive radiation in this clade. The goals of this project are to develop an intensive phylogenomic scale dataset for 90 of the 124 recognized notothenioid species, and use this genomic resource to generate time-calibrated molecular phylogenetic trees. The results of pilot phylogenetic studies indicate a very exciting correlation of the initial diversification of notothenioids with the fragmentation of East Gondwana approximately 80 million years ago, and the origin of the Antarctic Clade adaptive radiation at a time of global cooling and formation of polar conditions in the Southern Ocean, approximately 35 million years ago. This project will provide research experiences for undergraduates, training for a graduate student, and support a post doctoral researcher. In addition the project will include three high school students from New Haven Public Schools for summer research internships.
Since 1990, Palmer LTER (PAL) research has been guided by the hypothesis that variability in the polar marine ecosystem is mechanistically coupled to changes in the annual advance, retreat and spatial extent of sea ice. Since that time, the hypothesis has been modified to incorporate climate migration, i.e. the displacement of a cold, dry polar climate by a warm, moist climate regime in the northern component of the PAL region, producing fundamental changes in food web structure and elemental cycling. The observed northern changes are affecting all trophic levels and elemental cycling, and the primary mechanism of change involves match-mismatch dynamics. The proposed research builds on previous findings, with a new emphasis on process studies and modeling to elucidate the mechanistic links between teleconnections, climate change, physical oceanographic forcing and ecosystem dynamics. The proposed research will examine the hypothesis that regional warming and sea ice decline associated with historical and on-going climate migration in the northern part of the study area have altered key phenological relationships, leading to changes in species distributions, increasing trophic mismatches and changes in habitat, food availability, ecosystem dynamics and biogeochemical cycling. Through targeted process studies linked to numerical model simulations, the research also will test the hypothesis that deep cross-shelf canyons characterizing the core study region are focal areas for ecosystem processes that result in predictable, elevated food resources for top-predators. The effort includes the addition of 3 new PIs: a zooplankton ecologist with expertise in biogeochemical fluxes, a phytoplankton ecologist focusing on bio-optics and autonomous observations using gliders, and a numerical simulation modeler specializing in coupled global models of ocean circulation, plankton ecology and biogeochemical cycles. The program will add trace metal sampling and analysis, moored physical oceanographic sensors, a moored sediment trap in the south, drifting sediment traps and stable carbon (del 13C) and nitrogen (del 15N) isotope analyses. Missions lasting up to 45 days using gliders deployed before, during and after summer cruises will, along with moorings and satellite remote sensing of sea ice, ocean color, sea surface temperatures and wind fields, greatly extend the observational program in space and time. <br/><br/>Since its inception, PAL has been a leader in Information Management to enable knowledge-building within and beyond the Antarctic, oceanographic and LTER communities. PAL has designed and deployed a new information infrastructure with a relational database architecture to facilitate data distribution and sharing. The Education and Outreach program capitalizes on the public's fascination with Antarctica to promote scientific literacy from kindergarten students to adult citizens concerned with climate change and environmental sustainability. Through communicating results to the public and working with scientific assessment bodies (e.g., IPCC) and Antarctic Treaty parties to protect Earth's last frontier, PAL researchers contribute to the national scientific agenda and the greater public benefit.
This award supports a project to perform continuous microparticle concentration and size distribution measurements (using coulter counter and state-of-the-art laser detector methods), analysis of biologically relevant trace elements associated with microparticles (Fe, Zn, Co, Cd, Cu), and tephra measurements on the WAIS Divide ice core. This initial three-year project includes analysis of ice core spanning the instrumental (~1850-present) to mid- Holocene (~5000 years BP) period, with sample resolution ranging from subannual to decadal. The intellectual merit of the project is that it will help in establishing the relationships among climate, atmospheric aerosols from terrestrial and volcanic sources, ocean biogeochemistry, and greenhouse gases on several timescales which remain a fundamental problem in paleoclimatology. The atmospheric mineral dust plays an important but uncertain role in direct radiative forcing, and the microparticle datasets produced in this project will allow us to examine changes in South Pacific aerosol loading, atmospheric dynamics, and dust source area climate. The phasing of changes in aerosol properties within Antarctica, throughout the Southern Hemisphere, and globally is unclear, largely due to the limited number of annually dated records extending into the glacial period and the lack of a<br/>tephra framework to correlate records. The broader impacts of the proposed research are an interdisciplinary approach to climate science problems, and will contribute to several WAIS Divide science themes as well as the broader paleoclimate and oceanographic communities. Because the research topics have a large and direct societal relevance, the project will form a centerpiece of various outreach efforts at UMaine and NMT including institution websites, public speaking, local K-12 school interaction, media interviews and news releases, and popular literature. At least one PhD student and one MS student will be directly supported by this project, including fieldwork, core processing, laboratory analysis, and data interpretation/publication. We expect that one graduate student per year will apply for a core handler/assistant driller position through the WAIS Divide Science Coordination Office, and that undergraduate student involvement will result in several Capstone experience projects (a UMaine graduation requirement). Data and ideas generated from the project will be integrated into undergraduate and graduate course curricula at both institutions.
Brook 0739766<br/><br/>This award supports a project to create a 25,000-year high-resolution record of atmospheric CO2 from the WAIS Divide ice core. The site has high ice accumulation rate, relatively cold temperatures, and annual layering that should be preserved back to 40,000 years, all prerequisite for preserving a high quality, well-dated CO2 record. The new record will be used to examine relationships between Antarctic climate, Northern Hemisphere climate, and atmospheric CO2 on glacial-interglacial to centennial time scales, at unprecedented temporal resolution. The intellectual merit of the proposed work is simply that CO2 is the most important greenhouse gas that humans directly impact, and understanding the sources, sinks, and controls of atmospheric CO2 is a major goal for the global scientific community. Accurate chronology and detailed records are primary requirements for developing and testing models that explain and predict CO2 variability. The proposed work has several broader impacts. It contributes to the training of a post-doctoral researcher, who will transfer to a research faculty position during the award period and who will participate in graduate teaching and guest lecture in undergraduate courses. An undergraduate researcher will gain valuable lab training and conduct independent research. Bringing the results of<br/>the proposed work to the classroom will enrich courses taught by the PI. Outreach efforts will expose pre-college students to ice core research. The proposed work will enhance the laboratory facilities for ice core research at OSU, insuring that the capability for CO2 measurements exists for future projects. All data will be archived at the National Snow and Ice Data Center and other similar archives, per OPP policy. Highly significant results will be disseminated to the news media through OSU?s very effective News and Communications group. Carbon dioxide is the most important greenhouse gas that humans are directly changing. Understanding how CO2 and climate are linked on all time scales is necessary for predicting the future behavior of the carbon cycle and climate system, primarily to insure that the appropriate processes are represented in carbon cycle/climate models. Part of the proposed work emphasizes the relationship of CO2 and abrupt climate change. Understanding how future abrupt change might impact the carbon cycle is an important issue for society.
Ice sheet models of the Last Glacial Maximum, and previous glaciation events in the Miocene, suggest that current low altitude, ice-free surfaces in Antarctica were completely covered with ice. If so, the terrestrial biota of Antarctica today would result from recolonization events after each glacial maximum. However, there is emerging evidence that much of the terrestrial Antarctic biota are of ancient origin and have somehow survived these glaciation events. The Transantarctic Mountains TRANsition Zone (TAM-TRANZ) plays a pivotal role in understanding the evolution and biogeographic history of today's Antarctic terrestrial biota, primarily because it contains numerous inland areas that could have served as refugia during glacial maxima. Due to its remote location, the TAM-TRANZ has not been systematically surveyed for animal biodiversity. Although an exhaustive survey of the region requires a multi-discipline, multi-year and multi-region effort, the research herein combines ecological, evolutionary and geophysical expertise to conduct an exploratory investigation of the extreme southern limits of biotic communities. The project will examine the historical geophysical requirements for the colonization and maintenance of functional ecosystems by multicellular organisms, and the feasibility and desirability to implement more systematic biogeographic studies in the future. Broader impacts include graduate and undergraduate student ownership of important subprojects that will provide research, presentation and publication opportunities. The investigators also will contribute to ongoing public education efforts through relationships with K-12 teachers and administrators in the public school districts where the project personnel reside. Finally, the project is leveraged by opportunistic collaboration with scientists associated with Antarctica New Zealand.
This proposed work is a study of the biological production and export flux of biogenic matter in response to ventilation of intermediate and deep water masses within the Polar Front zone. It is a collaborative work between the University of Maine and the Chinese Antarctic Research Expedition (CHINARE). The shipboard work is proposed for the Chinese antarctic resupply vessel off Prydz Bay in the Indian Ocean sector. In the austral Spring, this region experiences phytoplankton blooms that are thought to be the result of nutrient transport by the ventilation of intermediate and deep water masses. On an annual basis, it is believed that such blooms are the primary source of particulate organic carbon and biogenic silica flux to the ocean bottom. At this time however no data exists on the amount of particulate organic matter that sinks through the water column, leaving the quantitative relationships between production and export largely undefined in this region. The initial phase of the work consists of setting out a time-series sediment trap mooring at approximately 64 deg S latitude and 73 deg E longitude to take advantage of the historical data set that CHINARE has obtained in this area over the past decade. The biweekly to monthly trap samples will be analyzed for their organic constituents, and in conjunction with primary productivity observations will provide the basic data from which export values can be derived. This work will be carried out in collaboration with the State Oceanic Administration of the People's Republic of China, and the Chinese Antarctic Research Expedition. In addition to providing time on the antarctic resupply vessel, the SOA will sponsor the shipboard primary productivity experiments and the supporting hydrographic measurements. The collaborating American scientists will provide guidance in making these observations to standards developed for the Joint Global Ocean Flux Study, and provide the hardware for the moored sediment trap. There will be a mutual sharing between the U.S. and Chinese investigators of all samples and data sets, and the data analysis will be carried out jointly. ***
The Western Antarctic Peninsula is experiencing one of the most rapid rates of climate warming on Earth, with an increase of 5degrees C in the mean winter temperature in 50 years. Impacts on upper trophic levels are evident, though there have been few, if any studies that have considered the impacts on bacterioplankton in the Southern Ocean. This proposal will characterize the winter bacterioplankton genome, transcriptome, and proteome and discover those features (community composition, genes up-regulated, and proteins expressed) that are essential to winter bacterioplankton survival and livelihood. We have assembled a polar ocean ecology and genomics network including strategic partnerships with Palmer LTER, the British Antarctic Survey's ocean metagenome program, US and Canadian scientists studying the Arctic Ocean genome, an Australian colleague who specialized in archaeal proteomics, and French colleagues studying Sub-Antarctic and Coastal Adelie Land marine bacterioplankton. The primary objectives of this program are: 1 Describe the differences in diversity and genomic content between austral winter and summer bacterioplankton communities. 2. Investigate the winter-time bacterioplankton growth and cellular signals (mRNA and proteins expressed) in order to understand the specific adaptations key to survival. <br/><br/>Our results will extend from the Antarctic to the Arctic - as the cold, dark, carbon-limited deep seas linking these two systems have many common features. Education and outreach activities target (i) undergraduate and graduate students, hopefully including minority students recruited through the Diversity in Research in Environmental and Marine Sciences (DREAMS) Program at VIMS; (ii) a broad audience with our education and outreach partnerships with The Cousteau Society and with the Census for Antarctic Marine Life program. Data and links to external databases will be listed on the http://genex2.dri.edu website. Sequence data will be publicly accessible in GenBank and IMG-M databases.
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.<br/><br/>The objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice.<br/><br/>The water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes.<br/>***
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.<br/><br/>There are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. <br/>***
9908828<br/>Aronson<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.<br/><br/>A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). <br/><br/>Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to study the deep crustal structure of the Bransfield Strait region. Bransfield Strait, in the northern Antarctic Peninsula, is one of a small number of modern basins that may be critical for understanding ancient mountain-building processes. The Strait is an actively-extending marginal basin in the far southeast Pacific, between the Antarctic Peninsula and the South Shetland Islands, an inactive volcanic arc. Widespread crustal extension, accompanied by volcanism along the Strait's axis, may be associated with slow underthrusting of oceanic crust at the South Shetland Trench; similar "back-arc" extension occurred along the entire Pacific margin (now western South America/West Antarctica) of the supercontinent known as Gondwanaland during the Jurassic-Early Cretaceous. Mid-Cretaceous deformation of these basins some 100 million years ago initiated uplift of the Andes. By understanding the deep structure and evolution of Bransfield rift, it should be possible to evaluate the crustal precursor to the Andes, and thereby understand more fully the early evolution of this globally important mountain chain.<br/><br/>Years of international earth sciences research in Bransfield Strait has produced consensus on important aspects of its geologic environment: (1) It is probably a young (probably ~4 million years old) rift in preexisting Antarctic Peninsula crust; continued stretching of this crust results in complex fault patterns and associated volcanism. The volcanism, high heat flow, and mapped crustal trends are all consistent with the basin's continuing evolution as a rift; (2) The volcanism, which is recent and continuing, occurs along a "neovolcanic" zone centralized along the basin's axis. Multichannel seismic data collected aboard R/V Maurice Ewing in 1991 illustrate the following basin-wide characteristics of Bransfield Strait - a) widespread extension and faulting, b) the rise of crustal diapirs or domes associated with flower-shaped normal-fault structures, and c) a complicated system of fault-bounded segments across strike. The geophysical evidence also suggests NE-to-SW propagation of the rift, with initial crustal inflation/doming followed by deflation/subsidence, volcanism, and extension along normal faults.<br/><br/>Although Bransfield Strait exhibits geophysical and geologic evidence for extension and volcanism, continental crust fragmentation does not appear to have gone to completion in this "back-arc" basin and ocean crust is not yet being generated. Instead, Bransfield rift lies near the critical transition from intracontinental rifting to seafloor-spreading. The basin's asymmetry, and seismic evidence for shallow intracrustal detachment faulting, suggest that it may be near one end-member of the spectrum of models proposed for continental break-up. Therefore, this basin is a "natural lab" for studying diverse processes involved in forming continental margins.<br/><br/>Understanding Bransfield rift's deep crustal structure is the key to resolving its stage of evolution, and should also provide a starting point for models of Andean mountain-building. This work will define the deep structure by collecting and analyzing high-quality, high-density ocean bottom seismometer (OBS) profiles both along and across the Strait's strike. Scientific objectives are as follows: (1) to develop a detailed seismic velocity model for this rift; (2) to calibrate velocity structure and crustal thickness changes associated with presumed NE-to-SW rift propagation, as deduced from the multichannel seismic interpretations; (3) to document the degree to which deep velocity structure corresponds to along- and across-strike crustal segmentation; and (4) to assess structural relationships between the South Shetland Islands "arc" and Bransfield rift.<br/><br/>The proposed OBS data, integrated with interpretations of both Ewing profiles and those from other high-quality geophysical coverage in Bransfield Strait, will complement ongoing deep seismic analysis of Antarctic Peninsula crust to the southwest and additional OBS monitoring for deep earthquakes, in order to understand the complex plate tectonic evolution of this region.
9815961 <br/>BENGTSON<br/>The pack ice region surrounding Antarctica contains at least fifty percent of the world's population of seals, comprising about eighty percent of the world's total pinniped biomass. As a group, these seals are among the dominant top predators in Southern Ocean ecosystems, and the fluctuation in their abundance, growth patterns, life histories, and behavior provide a potential source of information about environmental variability integrated over a wide range of spatial and temporal scales. This proposal was developed as part of the international Antarctic Pack Ice Seals (APIS) program, which is aimed to better understand the ecological relationships between the distribution of pack ice seals and their environment. During January-February, 2000, a research cruise through the pack ice zone of the eastern Ross Sea and western Amundsen Sea will be conducted to survey and sample along six transects perpendicular to the continental shelf. Each of these transects will pass through five environmental sampling strata: continental shelf zone, Antarctic slope front, pelagic zone, the ice edge front, and the open water outside the pack ice zone. All zones but open water will be ice-covered to some degree. Surveys along each transect will gather data on bathymetry, hydrography, sea ice dynamics and characteristics, phytoplankton and ice algae stocks, prey species (e.g., fish, cephalopods and euphausiids), and seal distribution, abundance and diet. This physical and trophic approach to investigating ecological interactions among pack ice seals, prey and the physical environment will allow the interdisciplinary research team to test the hypothesis that there are measurable physical and biological features in the Southern Ocean that result in area of high biological activity by upper trophic level predators. Better insight into the interplay among pack ice seals and biological and physical features of Antarctic marine ecosystems will allow for a better prediction of fluctuation in seal population in the context of environmental change.
95-30398 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. The overall objectives of JGOFS are to determine and understand processes controlling the time-varying fluxes of carbon and associated biogenic elements, and to predict the response of marine biogeochemical processes to climate change. The Southern Ocean is critical in the global carbon cycle, as judged by its size and the physical processes which occur in it (e.g., deep and intermediate water formation), but its present quantitative role is uncertain. JGOFS objectives for the Southern Ocean study are as follows: 1) to constrain the fluxes of carbon (organic and inorganic) and to place these fluxes in the context of the contemporary carbon cycle; 2) to identify the factors and processes which regulate the magnitude and variability of primary productivity and the fate of biogenic matter; 3) to determine the response of the Southern Ocean to natural climate perturbations; and 4) to predict the response of the Southern Ocean to climate change. In order to successfully address these objectives, a large field program has been designed to provide various investigators the opportunity to test specific hypotheses which relate to these broadly-defined objectives. We expect the field test to begin in September 1996, and last through March 1998 using two ships, the R.V. Palmer, and the R.V. Thompson. As most of the investigators will use hydrographic and nutrient data from these cruises, this proposal requests funds for the support of the analysis of nutrient concentrations during these thirteen crui ses. A team of oceanographic experts from a variety of institutions has been assembled to complete these analyses; furthermore, the data will be scrutinized for errors and provided in a timely fashion to all PI's in the project, as well as to the relevant oceanographic data storage facilities. The hydrography and coring groups have been put together using the successful model for the Arabian Sea JGOFS study, and in conjunction with the nutrient data (supported under a separate proposal), will form a large portion of the Southern Ocean JGOFS database which both field investigators and modelers will use to clarify the role of the Southern Ocean in the global carbon cycle.
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.<br/><br/>A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). <br/><br/>Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.
The growing season for phytoplankton in polar oceans is short, but intense. There is an increasing body of evidence that in many Antarctic habitats, the most active period may be very early in the season, a period that has not been emphasized in previous investigations. This project is part of an interdisciplinary program that focuses on the dynamics of the spring phytoplankton bloom in a highly productive subsystem of the Antarctic, the Ross Sea. The overall program will test hypotheses related to the initiation of the phytoplankton bloom shortly after the onset of ice melt, the mechanisms controlling phytoplankton growth and productivity in spring, the implications and short-term fate of high productivity in spring, and the transition from spring to midsummer conditions. This component will test the closely related hypotheses that: (1) phytoplankton growth is controlled primarily by the relationship between solar irradiance and mixed-layer depth throughout the spring (2) diatom growth rates are much higher in spring than at any other time of year, in response to the more favorable irradiance/mixing relationships, and (3) persistence of diatom blooms in summer results from the diatoms' ability to outcompete other groups under the light-limited conditions that develop in turbid, high-biomass waters. These hypotheses will be tested by (1) obtaining the first reliable estimates of the Sverdrup "critical depth" in the Antarctic so that the changing relationship between the critical depth and the mixed- layer depth in spring can be defined, and (2) estimating diatom growth rates and the gross and net production attributable to diatoms throughout the spring. The results will provide information critical to an understanding of phytoplankton bloom dynamics in the Ross Sea.
This award supports a project to obtain stable isotope profiles from shallow (<100 m) ice cores from East Antarctica, to add to the growing database of environmental proxy data collected under the auspices of the "ITASE" (International TransAntarctic Scientific Expedition) program. In Antarctica, the instrumental record of climate is particularly short (~40 years except in a few isolated locations on the coast), and ice core proxy data are the only means available for extending this record into the past. The use of stable isotopes of water (18-O/16-O and D/H ratios) from ice cores as proxies for temperature is well established for both very short (i.e. seasonal) and long timescales (centuries, millennia). Using multivariate regression methods and shallow ice cores from West Antarctica, a reconstruction of Antarctic climate over the last ~150 years has been developed which suggests the continent has been warming, on average, at a rate of ~0.2 K/century. Further improving these reconstructions is the chief motivation for further extending the US ITASE project. Ten to fifteen shallow (~ 100 m) from Victoria Land, East Antarctica will be obtained and analyzed. The core will be collected along a traverse route beginning at Taylor Dome and ending at the South Pole. Age-depth relationships for the cores will be determined through a combination of stable isotopes, visual stratigraphy and seasonal chemical signatures and marker horizons. Reconstructions of Antarctic climate obtained from these cores will be incorporated into the global network of paleoclimate information, which has been important in science, policy and educational contexts. The project will include graduate student and postdoctoral training and field experience.
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions:<br/>o Do P. Antarctica solitary cells and colonies differ in growth, composition and<br/>photosynthetic rates?<br/>o How do nutrients and grazers affect colony development and size distribution of P. <br/>Antarctica?<br/>o How do nutrients and grazers act synergistically to affect the long-term population<br/>dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science PhD students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.