IEDA
Project Information
ANT LIA: Do Molecular Data Support High Endemism and Divergent Evolution of Antarctic Marine Nematodes and their Host-associated Microbiomes?
Start Date:
2022-07-15
End Date:
2026-06-30
Description/Abstract
Non-technical Abstract: The long isolation and unique biodiversity of the Southern Ocean represents an important case study region for understanding the evolution and ecology of populations. This study uses modern -omics approaches to evaluate the biodiversity, evolution, and ecology of Antarctic marine nematodes and their host-associated microbiomes from a variety of habitats collected at different depths. The results are producing an important baseline dataset of Antarctic meiofaunal diversity. All genomic resources generated in this project will be publicly accessible as open-source datasets with the potential for long-term scientific reuse. This project supports diverse researchers from underrepresented backgrounds and produces a suite of Antarctic-focused digital public outreach products. Technical Abstract: Nematode worms are abundant and ubiquitous in marine sediment habitats worldwide, performing key functions such as nutrient cycling and sediment stability. However, study of this phylum suffers from a perpetual and severe taxonomic deficit, with less than 5,000 formally described marine species. Fauna from the Southern Ocean are especially poorly studied due to limited sampling and the general inaccessibility of the Antarctic benthos. This study is providing the first large-scale molecular-based investigation from marine nematodes in the Eastern Antarctic continental shelf, providing an important comparative dataset for the existing body of historical (morphological) taxonomic studies. This project uses a combination of classical taxonomy (microscopy) and modern -omics tools to achieve three overarching aims: 1) determine if molecular data supports high biodiversity and endemism of benthic meiofauna in Antarctic benthic ecosystems; 2) determine the proportion of marine nematode species that have a deep-sea versus shallow-water evolutionary origin on the Antarctic shelf, and assess patterns of cryptic speciation in the Southern Ocean; and 3) determine the most important drivers of the host-associated microbiome in Antarctic marine nematodes. This project is designed to rapidly advance knowledge of the evolutionary origins of Antarctic meiofauna, provide insight on population-level patterns within key indicator genera, and elucidate the potential ecological and environmental factors which may influence microbiome patterns. Broader Impacts activities include an intensive cruise- and land-based outreach program focusing on social media engagement and digital outreach products, raising awareness of Antarctic marine ecosystems and understudied microbial-animal relationships. The diverse research team includes female scientists, first-generation college students, and Latinx trainees. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Personnel
Person Role
Bik, Holly Investigator and contact
Tiago, Pereira Researcher
Mirayana, Barros Researcher
Funding
Antarctic Organisms and Ecosystems Award # 2132641
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided

This project has been viewed 21 times since May 2019 (based on unique date-IP combinations)